

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

H01L 21/68 (2006.01)

(21) 출원번호 **10-2005-0062006**

(22) 출원일자 **2005년07월11일** 심사청구일자 **2010년07월08일**

(65) 공개번호10-2007-0007415(43) 공개일자2007년01월16일

(56) 선행기술조사문헌

US06887317 B2* JP01003120 U*

JP2003124297 A KR1020050046319 A

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2012년12월27일

(11) 등록번호 10-1215893

(24) 등록일자 2012년12월20일

(73) 특허권자

주성엔지니어링(주)

경기도 광주시 오포읍 오포로 240

(72) 발명자

한승수

경상북도 칠곡군 석적읍 북중리3길 70, 부영아파 트 102동 1107호

하진희

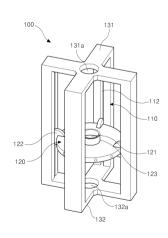
경상북도 칠곡군 석적읍 대교길 36, 동화아파트 103동 508호

(74) 대리인

특허법인네이트

전체 청구항 수 : 총 12 항

심사관: 김진성


(54) 발명의 명칭 승강부재를 포함하는 기판지지장치

(57) 요 약

본 발명은, 리프트 핀과 함께 승강하는 승강부재를 이용하여 리프트핀에 가해지는 마찰력을 해소시킬 수 있는 기판지지장치에 관한 것으로서, 구체적으로는 기판을 안치하는 서셉터의 관통부에 결합하는 리프트핀; 상기 리프트핀의 상하운동에 연동하여 승강하는 승강부재; 상기 승강부재에 인접 설치되어 상기 승강부재의 승강운동을 가이드하는 가이드부재를 포함하는 기판지지장치를 제공한다.

본 발명에 따르면, 승강부재에 의하여 리프트 핀의 상하운동이 원활해지므로 서셉터가 상승할 때 리프트 핀이 리프트핀 홀에 끼는 현상이 방지될 수 있고, 서셉터가 하강할 때도 리프트 핀에 가해지는 힘이 승강부재에 의해 분산 또는 해소되므로 리프트 핀의 파손이 방지된다.

대 표 도 - 도4

특허청구의 범위

청구항 1

기판을 거치하는 리프트핀;

상기 리프트핀의 상하운동에 연동하여 승강하는 승강부재;

상기 승강부재에 인접 설치되어 상기 승강부재의 승강운동을 가이드하는 가이드부재를 포함하고,

상기 가이드부재의 내측에 상기 승강부재와 접하는 하나 이상의 길이방향의 가이드홈을 구비하는 기판 지지 장치.

청구항 2

제1항에 있어서.

상기 승강부재는,

상기 리프트 핀이 삽입되는 삽입홀을 가지는 몸체;

상기 몸체의 주연부에 형성되어 상기 가이드부재와 접하는 접촉수단

을 포함하는 기판 지지 장치.

청구항 3

제2항에 있어서.

상기 접촉수단은 회전체인 기판 지지 장치.

청구항 4

제3항에 있어서,

상기 접촉수단은 롤러인 기판 지지 장치.

청구항 5

제2항에 있어서,

상기 접촉수단과 접하는 가이드부재는 각각 2 이상 설치되는 기판 지지 장치.

청구항 6

제5항에 있어서,

상기 가이드부재 중 적어도 하나는 2개 이상의 롤러를 함께 가이드하는 기판 지지 장치.

청구항 7

제5항에 있어서,

상기 접촉수단 중 적어도 하나는 2개 이상의 가이드부재에 의해서 가이드되는 기판 지지 장치.

청구항 8

제2항에 있어서,

상기 접촉수단은 곡면을 가진 돌출부인 기판 지지 장치.

청구항 9

제2항에 있어서,

상기 삽입홀은 아래로 갈수록 직경이 좁아지는 기판 지지 장치.

청구항 10

삭제

청구항 11

제1항에 있어서.

상기 기판이 안치되는 서셉터를 더 포함하며,

상기 가이드부재는 상기 서셉터 관통부의 내측에 설치되는 기판 지지 장치.

청구항 12

제1항에 있어서.

상기 기판이 안치되는 서셉터를 더 포함하며,

상기 가이드부재는 상기 서셉터 관통부의 내측벽인 것을 특징으로 하는 기판 지지 장치.

청구항 13

제1항에 있어서.

상기 가이드부재는 내주면이 상기 승강부재와 접하는 원통체인 기판 지지 장치.

명세서

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

- [0018] 본 발명은 반도체소자 또는 액정표시소자(Liquid Crystal Display: LCD)의 제조장치에 관한 것으로서 구체적으로는 기판을 안치하는 서셉터에 결합하여 기판을 지지하는 기판지지장치에 관한 것이다.
- [0019] 일반적으로 반도체소자 또는 액정표시소자를 제조하기 위해서는 실리콘웨이퍼 또는 글래스(이하 '기판'이라함)에 원료물질을 증착하는 박막증착공정, 감광성 물질을 사용하여 이들 박막 중 선택된 영역을 노출 또는 은폐시키는 포토리소그라피 공정, 선택된 영역의 박막을 제거하여 목적하는 대로 패터닝(patterning)하는 식각공정 등을 거치게 되며, 이들 각 공정은 해당공정을 위해 최적의 환경으로 설계된 공정챔버에서 진행된다.
- [0020] 도 1은 액정표시소자의 제조장치 중에서 원료물질을 플라즈마 상태로 변환시킨 후 이를 이용하여 박막을 증착하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치의 개략적인 구성을 나타낸 것이다.
- [0021] 이를 살펴보면, 일정한 반응영역을 정의하는 챔버(11)와, 상기 챔버(11)의 내부에 위치하며 상면에 기판(s)을 안치하는 서셉터(12)와, 상기 서셉터(12)의 상부로 원료가스를 분사하는 샤워헤드(13)와, 상기 샤워헤드(13)로 원료가스를 유입하는 가스유입관(14)을 포함한다.
- [0022] 가스유입관(14)에는 RF전원(16)이 연결되는데, RF전원(16)으로부터 공급되는 RF전력은 샤워헤드(13)와 접지된 서셉터(12) 사이에 RF전기장을 형성하며, RF전기장의 내부에서 전자가 가속되어 중성기체와 충돌함으로써 반응성이 강한 활성종(radical)이 생성된다. 이렇게 생성된 활성종이 기판(s)으로 입사하여 박막을 증착한다.
- [0023] 서셉터(12)에는 챔버 내부로 반입된 기판(s)을 거치하는 리프트 핀(15)이 관통하여 결합되는데, 도 1에서는 서셉터(12)가 하강하면서 리프트 핀(15)의 하단이 챔버 저면(11a)에 닿았을 때 리프트 핀(15)의 상단이 서셉터(12)의 상부로 돌출된 모습을 나타낸 것이다.
- [0024] 도 2는 리프트 핀(15)과 서셉터(12)의 결합관계를 보다 상세히 나타낸 것인데, 서셉터(12)는 리프트 핀(15)이 관통하는 리프트 핀 홀(12a)을 구비하며, 리프트 핀 홀(12a)의 내벽에는 걸림턱(12b)이 형성된다. 또한 리프트 핀 홀(12a)에는 리프트 핀(15)의 승강운동을 가이드하는 리프트 핀 홀더(16)가 삽입된다.

- [0025] 리프트 핀 홀더(16)는 리프트 핀(15)이 삽입되는 관통홀을 가지는 한편, 상단과 하단 부근의 내주면에 제1,2 돌 출부(16a,16b)를 구비하며, 상기 제1,2 돌출부(16a,16b)는 리프트 핀(15)과 접점을 최소화한 상태에서 리프트 핀(15)의 승강운동을 가이드하게 된다.
- [0026] 리프트 핀(15)은 통상 세라믹으로 제조되며, 상단에는 기판(s)의 손상을 방지하고 서셉터의 걸림턱(12b)에 걸릴 수 있도록 하기 위하여 상대적으로 큰 직경의 리프트 핀 헤드(15a)가 형성된다.
- [0027] 리프트 핀(15)은 이와 같이 별도의 구동수단 없이 단순히 서셉터(12)를 관통하여 설치되므로, 도 1과 같이 서셉 터(12)가 하강하면 리프트 핀(15)의 하단이 챔버 하부에 닿음으로써 리프트 핀(15)의 상단이 서셉터(12)의 상부로 돌출하고, 서셉터(12)가 공정영역으로 상승하면 리프트 핀 헤드(15a)가 걸림턱(12b)에 걸림으로써 서셉터(12)와 함께 상승한다. 서셉터(12)가 상승함에 따라 리프트 핀(15) 위에 놓여진 기판은 자연히 서셉터(12)의 상면에 안치된다.
- [0028] 이러한 리프트 핀(15)은 항상 수직상태를 유지하는 것이 바람직하지만, 서셉터(12)가 자중 또는 열에 의하여 변형되어 리프트 핀(15)과 리프트 핀 홀더(16)가 서셉터와 함께 미세하게 기울어질 수 있다. 또한, 상기 서셉터 (12)의 변형이 없더라도 리프트 핀 홀더(16)의 내경은 리프트 핀(15)이 상하로 움직이도록 리프트 핀의 직경보다 크도록 되어 있으므로, 리프트 핀(15)이 지면이나 챔버 바닥면을 기준으로 완벽한 수직상태를 유지하기는 어렵다.
- [0029] 도 3은 리프트 핀(15)의 상부에 안치된 기판(s)으로 인해 리프트 핀(15)이 기울어진 모습을 나타낸 단면도이다.
- [0030] 이와 같이 리프트 핀(15)이 기울어지는 현상은 공정을 마친 서셉터(12)가 하강하면서 리프트 핀(15)이 상부로 돌출되고 기판(s)이 서셉터(12)로부터 분리되기 시작하는 시점에서 주로 발생한다.
- [0031] 기울어진 기판(s)으로 인해 리프트 핀 헤드(15a)가 임의 방향으로 힘을 받게 되면 리프트 핀(15)도 기울어지게 되고, 이 상태에서 서셉터(12)가 하강하면 리프트 핀 홀더(16)의 제2 돌출부(16b)가 리프트 핀(15)에 대하여 리프트 핀(15)의 상승을 저지하는 방향으로 힘 F를 가하게 된다.
- [0032] 이때 리프트 핀(15)의 하단이 힘을 받는 방향으로 밀리면 문제가 없으나, 기판(s)의 하중을 지탱하는 리프트 핀(15) 하단과 챔버 저면(11a) 사이의 마찰력으로 인해 리프트 핀(15)이 잘 밀리지 않기 때문에, 이 상태에서 서 셉터(12)가 계속 하강하면 리프트 핀 홀더(16)의 제1,2 돌출부(16a,16b) 부근에서 리프트 핀이 부러지는 현상이 중중 발생한다.
- [0033] 한편, 서셉터(12)가 상승하는 경우에는 리프트핀(15)의 자중과 기판(s)의 하중때문에 리프트 핀(15)이 자연스럽게 하강하여야 하는데, 리프트 핀(15)과 리프트핀 홀더(16) 사이의 마찰 때문에 하강하지 못하고 리프트핀 홀더(16)에 끼인 상태로 매달리는 경우도 중종 발생하다.
- [0034] 이러한 상태에서 공정이 진행되면 기판(s)의 배면으로 플라즈마 리크(leak)가 발생하여 얼룩발생 등 제품불량을 초래하게 된다.

발명이 이루고자 하는 기술적 과제

[0035] 본 발명은 이러한 문제점을 해결하기 위한 것으로서, 리프트 핀이 리프트핀 홀더와의 마찰로 인해 파손되거나, 리프트 핀 홀더에 끼는 현상을 막을 수 있는 새로운 형태의 기판지지장치를 제공하는데 목적이 있다.

발명의 구성 및 작용

[0036] 본 발명은 이러한 목적을 달성하기 위해서, 기판을 안치하는 서셉터의 관통부에 결합하는 리프트핀; 상기 리프 트핀의 상하운동에 연동하여 승강하는 승강부재; 상기 승강부재에 인접 설치되어 상기 승강부재의 승강운동을 가이드하는 가이드부재를 포함하는 기판 지지 장치를 제공한다.

- [0037] 상기 승강부재는 상기 리프트 핀이 삽입되는 삽입홀을 가지는 몸체; 상기 몸체의 주연부에 형성되어 상기 가이 드부재와 접하는 접촉수단을 포함할 수 있다.
- [0038] 이때 상기 접촉수단은 회전체인 것이 바람직하고, 특히 롤러인 것이 바람직하다.
- [0039] 상기 롤러 및 상기 롤러와 접하는 가이드부재는 각각 2 이상 설치될 수 있으며, 이때 상기 가이드부재 중 적어도 하나는 2개 이상의 롤러를 함께 가이드할 수 있으며, 상기 롤러 중 적어도 하나는 2개 이상의 가이드부재에 의해서 가이드될 수 있다.
- [0040] 또한 상기 접촉수단은 곡면을 가진 돌출부일 수도 있다.
- [0041] 상기 삽입홀은 아래로 갈수록 직경이 좁아지는 것이 바람직하며, 상기 가이드부재는 내측에 상기 승강부재와 접하는 하나 이상의 길이방향의 가이드홈을 구비하는 것이 바람직하다.
- [0042] 상기 가이드부재는 상기 서셉터 관통부의 내측에 설치될 수 있고, 상기 가이드부재는 상기 서셉터 관통부의 내 측벽일 수도 있으며, 내주면이 상기 승강부재와 접하는 원통체일 수도 있다.
- [0043] 이하에서는 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
- [0044] 본 발명은 서셉터에서 종래의 리프트핀 홀더를 생략하고, 리프트핀과 결합하는 승강부재 및 상기 승강부재의 승 강운동을 가이드하는 가이드부재를 설치한 점에 특징이 있다.
- [0045] 도 4는 이러한 승강부재 및 가이드부재를 이용한 리프트핀 가이드장치(100)의 모습을 예시한 사시도이다.
- [0046] 상기 리프트핀 가이드장치(100)의 형상을 살펴보면, 수직으로 세워진 4개의 막대로 이루어지는 가이드부재(110)와, 가이드부재(110)의 내측에 위치하여 리프트 핀(15)과의 마찰에 의해 승강하는 승강부재(120)를 포함한다.
- [0047] 각 가이드부재(110)는 내측에 길이방향으로 형성된 가이드홈(112)을 가지며, 상단과 하단은 각각 십자형상의 연결부(131,132)에 의해 서로 연결되고, 상기 연결부(131,132)의 중앙에는 리프트 핀(15)이 삽입되는 관통부(131a,132a)가 구비된다.
- [0048] 여기서 연결부(131,132)는 가이드부재(110)의 형태를 유지하여 내측의 승강부재(120)가 이탈되지 않도록 하는 역할을 하는 것이므로, 그 형상이 십자형태에 한정되는 것은 아니며, 모든 가이드부재(110)가 반드시 연결부 (131, 132)에 연결되어야 하는 것도 아니다.
- [0049] 즉, 가이드부재(110)를 서셉터(12)에 직접 결합하는 경우에는 연결부(131,132)를 생략하고 가이드부재(110)의 하단에 승강부재(120)의 이탈을 방지하는 걸림턱 정도만을 형성하여도 무방하다.
- [0050] 한편, 상기 가이드부재(110)는 내측에 위치하는 승강부재(120)의 승강운동을 가이드하는 것이므로 막대개수가 4 개에 한정되지 않음은 물론이고, 굳이 막대형상에 한정되는 것도 아니어서 승강부재(120)를 에워싸는 원통 형태일 수도 있다.
- [0051] 가이드부재(110)의 내벽에 형성된 가이드홈(112)에는 승강부재(120)의 일부가 삽입되어 승강부재(120)의 상하운 동을 가이드하게 된다.
- [0053] 따라서 리프트핀(15)이 승강함에 따라 삽입홀(121)의 내벽과 리프트핀(15)의 마찰력으로 인해 승강부재(120)도 연동하여 함께 승강하게 되며, 롤러(122)가 가이드홈(112)을 따라 회전하면서 이동하므로 승강부재(120)가 직선 왕복운동을 할 수 있게 된다.
- [0054] 삽입홀(121)에는 내주면에서 상부로 돌출된 원통편(123)이 형성될 수도 있는데, 상기 원통편(123)으로 인해 리프트 핀(15)이 약간만 기울어져도 원통편(123)의 내벽과 리프트 핀(15)이 접하게 되므로 리프트핀(15)과 승강부 재(130)의 연동운동이 보다 원활해진다.
- [0055] 한편, 리프트 핀(15)과 승강부재(120) 사이에 연결 수단을 추가하여 리프트 핀(15)이 승강하는 만큼 동일한 변 위로 승강부재(120)가 가이드홈(112)을 따라 이동할 수도 있다.

- [0056] 도 5는 본 발명의 실시예에 따른 리프트핀 가이드장치(100)를 서셉터(12)의 하부에 설치한 모습을 도시한 단면 도로서, 가이드부재(110)의 상단을 서셉터(12)의 저면에 결합하고, 서셉터(12)의 상부로부터 리프트 핀 홀 (12a), 연결부 관통홀(131a,132a), 승강부재 삽입홀(121)을 거쳐 리프트 핀(15)이 삽입된 모습을 나타낸 것이다.
- [0057] 가이드부재(110)의 길이는 리프트핀이 서셉터(12)의 상부표면으로 올라가는 높이만큼 승강부재(120)가 승하강할 수 있는 길이이면 적당하나, 필요에 따라서 가이드부재(110)의 길이가 짧거나 길수도 있다.
- [0058] 그런데 이와 같이 서셉터(12)의 하부에 리프트핀 가이드장치(100)를 설치하게 되면, 서셉터(12) 하부 공간의 용적이 증가하여 챔버의 배기효율을 저하시키는 문제점이 발생할 수 있다.
- [0059] 따라서 도시된 바와 같이 챔버 저면(11a)에 소정 깊이의 요부(11b)를 형성하면 챔버의 용적을 크게 증가시키지 않고도 본 발명에 따른 리프트 핀 가이드장치(100)를 설치할 수 있다.
- [0060] 한편, 본 발명의 실시예에 따른 리프트 핀 가이드장치(100)는 도 6에 도시된 바와 같이 서셉터(12)의 내부에 삽입될 수도 있다.
- [0061] 즉, 서셉터(12)에 결합홈(12c)을 형성한 후, 내벽에 가이드부재(110)를 고정하고, 상기 가이드부재(110)에 승강부재(120)가 이탈하지 않도록 설치함으로써 서셉터(12)의 하부로 돌출되는 부분을 최소화하거나 없앨 수 있는 장점이 있다.
- [0062] 이때 상기 가이드부재(110)는 볼트 등에 의해 서셉터의 결합홈(12c)의 내벽에 고정될 수도 있고, 탄성을 가진 재질로 제조되어 억지끼움식으로 결합홈에 삽입될 수도 있다.
- [0063] 이와 같이 본 발명의 실시예에 따른 리프트 핀 가이드장치(100)에는 리프트 핀(15)과 연동하는 승강부재(120)에 회전운동을 하는 롤러(122)가 결합되기 때문에, 결합된 리프트 핀(15)이 다소 기울어지더라도 이와 연동하는 승강부재(120)의 상하이동이 가능하다.
- [0064] 따라서 종래처럼 서셉터(12)가 상승하는데도 리프트 핀(15)이 리프트핀 홀더에 끼여서 하강하지 못함으로써 서셉터(12)의 상부로 계속 돌출되는 현상이 방지될 수 있다.
- [0065] 또한 서셉터(12)의 하강으로 인해 리프트 핀(15)에 가해지는 외력이 롤러(134)의 회전에 의해 분산 또는 해소되므로 리프트 핀(15)의 파손을 방지할 수 있게 된다.
- [0066] 한편, 리프트 핀(15)은 승강부재 삽입홀(121)과 서셉터 상단의 리프트핀 홀(12a)에 의해 수직상태로 유지되므로, 승강부재 삽입홀(121)의 직경은 리프트 핀(15)의 직경보다 근소하게 큰 것이 바람직하다.
- [0067] 그런데 리프트 핀(15)을 서셉터(12)에 결합할 때에는 상부에서부터 리프트 핀 홀(12a), 연결부 관통홀(131a,), 승강부재 삽입홀(121), 연결부 관통홀(132a)을 순차적으로 관통시켜야 하는데, 승강부재 삽입홀(121)의 직경이 그리 크지 않기 때문에 리프트 핀(15)을 삽입하기가 용이하지 않을 수도 있다.
- [0068] 따라서 도 7에 도시된 바와 같이 승강부재의 삽입홀(121)을 하부로 갈수록 직경이 작아지도록 가공하면 리프트 핀(15)을 원활하게 삽입할 수 있다. 도 8은 도 7에서 삽입홀(121)의 중심에서 상부로 돌출된 원통편(123)을 생략한 도면이다.
- [0069] 한편, 이상에서는 원반형상의 승강부재(120)를 포함하는 리프트핀 가이드장치(100)에 대하여 설명하였으나, 승 강부재(120)는 리프트핀(15)과의 마찰로 인해 상하로 연동하는 구조물이므로 굳이 그 형상이 원반형상에 한정되는 것은 아니다.
- [0070] 다양한 형태의 승강부재(120)를 예상할 수 있는데, 도 9a 및 도 9b는 중앙에 리프트핀 삽입홀(121)을 가지는 타원형 기둥 형상의 몸체에 2개의 롤러(122)로 구성된 롤러 쌍 2개가 대칭적으로 결합된 모습을 각각 도시한 사시도 및 평면도이고, 도 9c는 이러한 승강부재(120)와 가이드부재(110)가 결합한 모습을 개략적으로 도시한 구성도이다.

- [0071] 각 롤러 쌍은 상하로 배열된 2개의 롤러(122)를 포함하며, 각 롤러쌍마다 하나의 가이드부재(110)가 대응 설치된다. 따라서 하나의 가이드부재(110)가 상하로 배열된 2개의 롤러(122)를 동시에 가이드하게 된다.
- [0072] 상기 승강부재(120)와 가이드부재(110)는 서셉터의 관통부 내부에 설치될 수도 있으므로, 이들이 차지하는 공간은 가급적 작은 것이 바람직하다. 따라서 승강부재(120)를 도 9b에 도시된 바와 같이 슬림한 타원형상의 단면을 가지도록 함으로써 원형 단면의 경우보다 차지하는 공간을 크게 줄일 수 있다.
- [0073] 도 10a 는 평면형상은 타원형이면서도 측벽 높이가 비대칭적인 승강부재의 사시도이고, 도 10b는 이러한 승강부 재(120)와 가이드부재(110)가 결합한 모습을 개략적으로 도시한 구성도이다.
- [0074] 여기서 몸체의 일 측벽에는 1개의 롤러(122)를 설치하고, 반대편의 측벽에는 2개의 롤러(122)를 상하로 설치하였는데, 도 9a 및 도 9b와 마찬가지로 2개의 가이드부재(110)를 설치하여 하나의 가이드부재(110)는 1 개의 롤러(122)를 가이드하고, 다른 가이드부재(110)는 상하로 배열된 2개의 롤러(122)를 동시에 가이드한다. 롤러(122)의 개수는 필요에 따라 더 많아질 수도 있으며, 바람직하게는 2이상 6개 이하를 사용한다.
- [0075] 도 11a 및 도 11b는 타원형 원반형상을 가지는 몸체에 타원의 장축과 직각방향으로 회전하는 롤러(122)를 장축의 양단부에 결합한 승강부재의 사시도 및 평면도이고, 도 11c는 이러한 승강부재(120)와 가이드부재(110)가 결합한 모습을 개략적으로 도시한 구성도이다.
- [0076] 롤러(122)가 장축과 직각방향으로 회전하는 경우에는, 가이드부재(110)가 도 11c에 도시된 바와 같이 롤러(12 2)의 양측을 동시에 가이드하는 것이 바람직하다.
- [0077] 이상에서는 승강부재(120)의 주연부에 롤러(122)를 결합하고, 롤러(122)가 가이드홈(112)을 따라 승강하는 구성에 대하여 설명하였으나, 승강부재(120)는 리프트핀(15)의 상하운동에 연동하여 승강함으로써 리프트핀(15)에 미치는 힘을 완화시키는 수단이므로, 롤러 대신에 도 12에 도시된 바와 같이 승강부재(120)의 외주에 가이드홈(112)과 점접촉하는 돌출부(124)를 형성할 수도 있다.

발명의 효과

[0078] 본 발명에 따르면, 승강부재에 의하여 리프트 핀의 상하운동이 원활해지므로 서셉터가 상승할 때 리프트 핀이 리프트핀 홀에 끼는 현상이 방지될 수 있고, 서셉터가 하강할 때도 리프트 핀에 가해지는 힘이 승강부재에 의해 분산 또는 해소되므로 리프트 핀의 파손이 방지된다.

도면의 간단한 설명

- [0001] 도 1은 일반적인 액정표시소자 제조장치의 개략 구성도
- [0002] 도 2는 서셉터와 리프트 핀의 결합상태를 나타낸 단면도
- [0003] 도 3은 리프트핀의 파손 메카니즘을 나타낸 도면
- [0004] 도 4는 본 발명의 실시예에 따른 리프트 핀 가이드장치의 사시도
- [0005] 도 5는 본 발명의 실시예에 따른 리프트 핀 가이드장치를 설치한 모습을 나타낸 단면도
- [0006] 도 6은 본 발명의 실시예에 따른 리프트 핀 가이드장치를 서셉터의 내부에 삽입한 모습을 나타낸 단면도
- [0007] 도 7 및 도 8은 승강부재의 다양한 삽입홀 형상을 나타낸 단면도
- [0008] 도 9a 내지 도 9c는 타원형 기둥형상의 승강부재를 나타낸 사시도,평면도 및 사용상태도
- [0009] 도 10a 및 도 10b는 다른 유형의 승강부재를 나타낸 사시도 및 사용상태도
- [0010] 도 11a 내지 도 11c는 또 다른 유형의 승강부재를 나타낸 사시도, 평면도 및 사용상태도
- [0011] 도 12는 돌출부를 가지는 승강부재를 나타낸 평면도

[0012] *도면의 주요부분에 대한 부호의 설명*

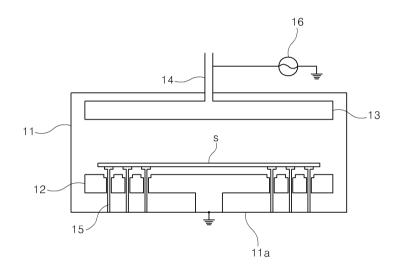
[0013] 100 : 리프트 핀 가이드장치 110 : 가이드부재

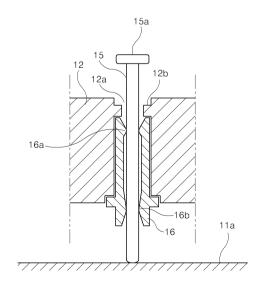
112 : 가이드홈 120 : 승강부재

121 : 삽입홀 122 : 롤러

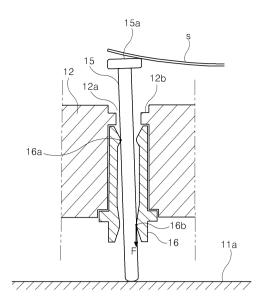
123 : 원통편 124 : 돌출부

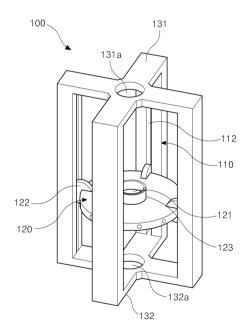
[0017] 131,132 : 연결부 131a,132a : 연결부 관통홀

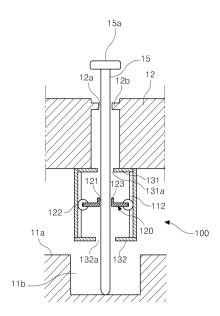

도면


[0014]

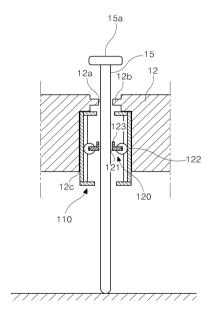
[0015]

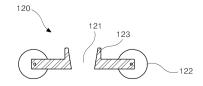

[0016]


도면1

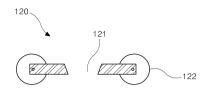


도면3

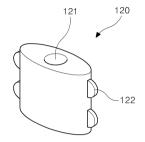


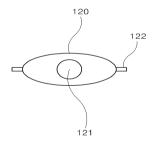


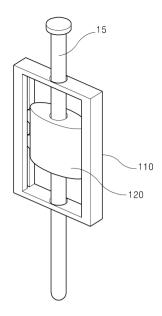
도면5

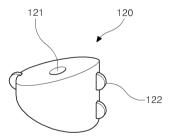


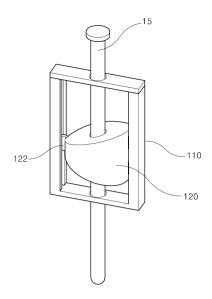
도면6

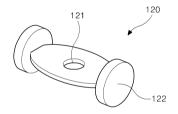


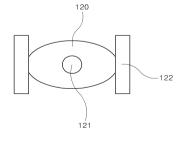

도면8

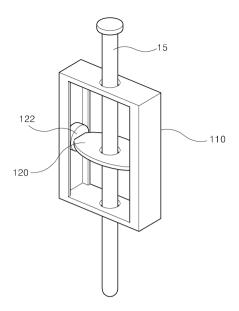

도면9a

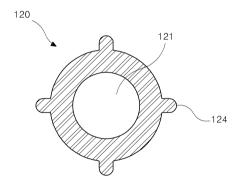

도면9b


도면9c


도면10a


도면10b


도면11a



도면11b

도면11c

