2013147879 AT |10 0000 OO0 000 0 0

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/147879 Al

3 October 2013 (03.10.2013) WIPOIPCT

(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/30 (2006.01) GO6F 13/14 (2006.01) kind of national protection available). AE, AG, AL, AM,
GO6F 9/38 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

. e . CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(21) International Application Number: DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

PCT/US2012/031635 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
30 March 2012 (30.03.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): INTEL (84) D.esignated. States (unle.ss othefﬂwise indicated, for every
CORPORATION [US/US]; 2200 Mision College kind of regional protection available): ARIPO (BW, GH,
Boulevard, MS: RNB-4-150, Santa Clara, California 95052 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventors; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(75) Inventors/Applicants (for US ornly): FORSYTH, An- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

74

drew, T. [GB/US]; 6841 N.E. 137th Street, Kirkland,
Washington 98034 (US). THOMAS, Renju [IN/US];
3607 Greystone Dr., Apt. 1516, Austin, Texas 78731 (US).
DUPRAT, Jean-Luc [CA/CA]; 916 Monterey Ave., Vic-
toria, British Columbia V8S 4V2 (CA).

Agents: SHAQO, Kevin, G. et al.; Blakely Sokolotf Taylor
& Zafman LLP, 1279 Oakmead Parkway, Sunnyvale, Cali-
fornia 94085 (US).

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

(54) Title: DYNAMIC BRANCH HINTS USING BRANCHES-TO-NOWHERE CONDITIONAL BRANCH

200

Instruction Fetch

Instruction Cache Unit

o | Instruction Decoder

e 2t

| Execution Unit(s)
203

202

Branch Predictor
206

207

Branch History
Table

IP Match Logic

208

Branch Prediction Unit

N>
I

FIG. 2

(57) Abstract: A processor includes an execution pipeline having one or more execution units to execution the instructions and a
branch prediction unit coupled to the execution units. The branch prediction unit includes a branch history table to store prior branch
predictions, a branch predictor, in response to a conditional branch instruction, to predict a branch target address of the conditional
branch instruction based on the branch history table, and address match logic to compare the predicted branch target address with an
address of a next instruction executed immediately following the conditional branch instruction. The address match logic is to cause
the execution pipeline to be flushed if the predicted branch target address does not match the address of the next instruction to be ex -
ecuted.

10

15

20

25

WO 2013/147879 PCT/US2012/031635

DYNAMIC BRANCH HINTS USING BRANCHES-TO-NOWHERE CONDITIONAL

BRANCH

TECHNICAL FIELD

Embodiments of the present invention relate generally to branch predictions of a
processor. More particularly, embodiments of the invention relate to dynamic branch hints

using a branch-to-nowhere conditional branch.

BACKGROUND ART

Modern microprocessor pipelines use branch prediction to mitigate performance loss
due to control dependency stalls. Many solutions where the branch predictor learns entirely
in hardware or in a combination with software have been proposed and used in several
generations of microprocessors. All of these schemes attempt to predict a branch outcome
based on a history context that is derived from prior computation state that contains
correlated information to the branch outcome. Global history based branch predictors such as
gshare and bgG use a context derived from global branch history which has been proven to
contain correlated information for correctly predicting branches in many cases. However, in
certain cases such as when the branch outcome depends on input data with no predictable
patterns, the global history may not have any correlated information, and such branches are
hard to predict using predictors such as gshare.

However, a compiler might know the outcome of such hard-to-predict data-dependent
branches and be able to convey that information to the hardware. One of the most attractive
solutions are branch hint instructions that can be placed ahead of a branch in the code stream
and provide a hint about which way the branch is going. These may be static hints or they
may be dynamic, with static hints being simple, but outperformed by a modern branch

prediction. Dynamic branch hints are more complex to implement, and while they have been

10

15

20

25

WO 2013/147879 PCT/US2012/031635

proposed many times, there is resistance to them for many reasons, such as the significant
additional complexity to the microarchitecture is an example.

Figure 1A is pseudocode representing a typical program loop with a conditional
branch. In this example the loop is executed an unpredictable number of times, which means
that existing branch predictors such as gshare or loop prediction do not work perfectly.
Typically they will mispredict the non-taken branch (e.g., instruction 101) at the end of the
loop and will speculate that the loop will continue to run. Figure 1B illustrates a global
branch history recorded for code as shown in Figure 1A, when predicting loop exit while
running the loop over and over with random loop counts. Note that the distance between 0's
in the global history (prior loop exits) will be a random distribution when the loop count is
random. Therefore, the global history does not contain information that helps in correctly
predicting loop exit.

Mispredicting the loop leads to wasted fetch, decode and execution of many wrong
path instructions, which must then be thrown away when the branch is resolved.
Mispredictions and subsequent wrong path execution reduce performance by consuming
cycles that could have been used to execute correct instructions; the machine is also wasting
joules performing speculative computations that then get thrown away. The performance and
energy cost of mispredictions is exacerbated in a longer pipeline.

In an attempt to reduce mispredictions, a standard dynamic branch hint instruction
would be deployed, in which new instruction 102 and label 103 are added as shown in Figure
1C. The mythical instruction 102 checks the flags with a “greater than” test. If the test
passes, it tells the branch predictor that the instruction at the address given by its argument
103 will branch the same way. This instruction has no architectural affect as it does not
change program state; it simply updates or hints the branch prediction hardware. Note the
trick of using a “greater than” test at the top of the loop but a “greater or equal” at the bottom,
and also of reusing the flags set by instruction DEC at the bottom of the loop to feed the hint
at the top. Alternatively instruction DEC could be moved to the top of the loop and both tests
changed to use a “greater or equal” test, but frequently the body of the loop will want to use

the loop counter as an input.

10

15

20

25

WO 2013/147879 PCT/US2012/031635

Ideally, the branch hint instruction needs to be put a number of clocks ahead of the
branch itself in the pipeline, so that it is executed and its condition resolved well before the
hard-to-predict branch for which the hint is targeted has entered the start of the pipeline.
Thus the optimal distance does depend on the details of the microarchitecture and the pipeline
length. The obvious problem with adding branch hint instructions is that they are a new set
of instructions, and thus have compatibility concerns both forwards and backwards.
Furthermore, after instruction 102 of Figure 1C is computed, this value has to be
communicated to the predictor before predicting the hard-predict-branch for which the hint is
targeted. This means that somehow there has to be a dynamic matching and communication
of computed value from the branch hint instruction to the dynamic branch for which the hint
is targeted prior to its prediction time. Potential implementations of this communication

mechanism in microarchitecture are very complex and may not be reliable.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not limitation in
the figures of the accompanying drawings in which like references indicate similar elements.

Figures 1A-1C are pseudocode representing a typical program loop with a conditional
branch.

Figure 2 is a block diagram of an execution pipeline of a processor or processor core
according to one embodiment of the invention.

Figures 3A and 3B are pseudocode representing a typical program loop with a branch-
to-nowhere conditional branch according to certain embodiments.

Figure 4 is a flow diagram illustrating a method for branch predictions according to
one embodiment of the invention.

Figures SA and 5B are block diagrams illustrating an execution pipeline of a
processor according to certain embodiments.

Figure 6 is a block diagram illustrating an example of a data processing system

according to one embodiment.

10

15

20

25

WO 2013/147879 PCT/US2012/031635

Figure 7 is a block diagram illustrating an example of a data processing system

according to another embodiment.

DESCRIPTION OF THE EMBODIMENTS

Various embodiments and aspects of the inventions will be described with reference
to details discussed below, and the accompanying drawings will illustrate the various
embodiments. The following description and drawings are illustrative of the invention and
are not to be construed as limiting the invention. Numerous specific details are described to
provide a thorough understanding of various embodiments of the present invention.
However, in certain instances, well-known or conventional details are not described in order
to provide a concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention. The appearances of the phrase
“in one embodiment” in various places in the specification do not necessarily all refer to the
same embodiment.

According to some embodiments, a mechanism is presented to boost predictability of
hard-to-predict branches by injecting correlated information into the global history of
dynamic predictors such as gshare using existing conditional branch instructions effectively
as dynamic branch hints by means of specific modifications to the microarchitecture. An
embodiment of the invention is to replace the mythical branch_hint instruction with a
standard conditional branch, but one that goes to the next instruction in the code stream,
whether the branch is taken or not (also referred to as a branch-to-nowhere conditional
branch). The rationale is that by inserting such a branch in code prior to the branch-under-
prediction (subject to certain minimum distance requirements between the two), it injects
correlated information into the global history that will help the subsequent branch to predict

correctly.

10

15

20

25

WO 2013/147879 PCT/US2012/031635

Furthermore, according to a further embodiment, certain microarchitecture features
are implemented that significantly reduce pipeline penalty for all mispredictions of the
branch-to-nowhere. It is a combination of using the branch-to-nowhere to correctly predict
the branch-under-prediction (e.g., a following branch prediction), but incurring zero or
significantly less pipeline penalty for its own mispredictions that is the key to gaining a net
performance benefit. In one embodiment, instead of flushing the pipeline based on a branch
misprediction, the pipeline may be flushed based on a comparison of instruction pointers
(IPs) of predicted target branch address of a conditional branch and an address of an
instruction immediately following the conditional branch, while the global history
information is updated based on whether the predicted target branch address has been taken.
Because the instruction following the branch-to-nowhere is the same whether or not the
branch is taken, this IP comparison always succeeds, and thus no flush is ever generated by
the branch-to-nowhere.

Figure 2 is a block diagram of an execution pipeline of a processor or processor core
according to one embodiment of the invention. Referring to Figure 2, processor 200 may
represent any kind of instruction processing apparatuses. For example, processor 200 may be
a general-purpose processor. Processor 200 may be any of various complex instruction set
computing (CISC) processors, various reduced instruction set computing (RISC) processors,
various very long instruction word (VLIW) processors, various hybrids thereof, or other types
of processors entirely. Processor 200 may also represent one or more processor cores.

Processor cores may be implemented in different ways, for different purposes, and in
different processors. For instance, implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose computing; 2) a high performance general
purpose out-of-order core intended for general-purpose computing; 3) a special purpose core
intended primarily for graphics and/or scientific (throughput) computing. Implementations of
different processors may include: 1) a central processing unit (CPU) including one or more
general purpose in-order cores intended for general-purpose computing and/or one or more
general purpose out-of-order cores intended for general-purpose computing; and 2) a

coprocessor including one or more special purpose cores intended primarily for graphics

10

15

20

25

WO 2013/147879 PCT/US2012/031635

and/or scientific (throughput). Such different processors lead to different computer system
architectures, which may include: 1) the coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU; 3) the coprocessor on the same
die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose
logic, such as integrated graphics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same die the described CPU
(sometimes referred to as the application core(s) or application processor(s)), the above
described coprocessor, and additional functionality. Exemplary core architectures are
described next, followed by descriptions of exemplary processors and computer architectures.

In one embodiment, processor 200 includes, but is not limited to, instruction fetch unit
201, instruction decoder 202, one or more execution units 203, instruction cache 204, and
branch prediction unit 205. Instruction fetch unit 201 is configured to fetch or prefetch
instructions from instruction cache 204 or from system memory (not shown). Instruction
decoder 202 is to receive and decode instructions from instruction fetch unit 201. Instruction
decoder 202 may generate and output one or more micro-operations, micro-code, entry
points, microinstructions, other instructions, or other control signals, which reflect, or are
derived from, the instructions. Instruction decoder 202 may be implemented using various
different mechanisms. Examples of suitable mechanisms include, but are not limited to,
microcode read only memories (ROMs), look-up tables, hardware implementations,
programmable logic arrays (PLAs), and the like.

Execution units 203, which may include an arithmetic logic unit, or another type of
logic unit capable of performing operations based on instructions. As a result of instruction
decoder 202 decoding the instructions, execution unit 203 may receive one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which reflect, or are derived from, the instructions. Execution unit 203 may be
operable as a result of instructions indicating one or more source operands (SRC) and to store
a result in one or more destination operands (DEST) of a register set indicated by the
instructions. Execution unit 203 may include circuitry or other execution logic (e.g., software

combined with hardware and/or firmware) operable to execute instructions or other control

10

15

20

25

WO 2013/147879 PCT/US2012/031635

signals derived from the instructions and perform an operation accordingly. Execution unit
203 may represent any kinds of execution units such as logic units, arithmetic logic units
(ALUs), arithmetic units, integer units, etc.

Some or all of the source and destination operands may be stored in registers of a
register set or memory. The register set may be part of a register file, along with potentially
other registers, such as status registers, flag registers, etc. A register may be a storage
location or device that may be used to store data. The register set may often be physically
located on die with the execution unit(s). The registers may be visible from the outside of the
processor or from a programmer's perspective. For example, instructions may specify
operands stored in the registers. Various different types of registers are suitable, as long as
they are capable of storing and providing data as described herein. The registers may or may
not be renamed. Examples of suitable registers include, but are not limited to, dedicated
physical registers, dynamically allocated physical registers using register renaming,
combinations of dedicated and dynamically allocated physical registers, etc. Alternatively,
one or more of the source and destination operands may be stored in a storage location other
than a register, such as, for example, a location in system memory.

Referring back to Figure 2, according to one embodiment, branch prediction unit 205
includes branch predictor 206, branch history table 207, and IP match logic 208. Branch
predictor 206 may be a circuit that tries to guess which way a branch will go before it is
known for sure. The purpose of branch predictor 206 is to improve the flow in the instruction
pipeline. In one embodiment, branch predictor 206 is to predict a branch target address of a
conditional branch based on branch history information of previous branch predictions taken
or not taken, which may be maintained in branch history table 207. Branch predictor 206
may be implemented similar to a variety of branch predictors such as bgG and/or gshare
branch predictors.

According to some embodiments, a mechanism is utilized to boost predictability of
hard-to-predict branches by injecting correlated information into the global history of
dynamic predictors such as gshare using existing conditional branch instructions effectively

as dynamic branch hints by means of specific modifications to the microarchitecture. An

10

15

20

25

WO 2013/147879 PCT/US2012/031635

embodiment of the invention is to replace the mythical branch_hint instruction with a
standard conditional branch, but one that goes to the next instruction in the code stream,
whether the branch is taken or not (also referred to as a branch-to-nowhere conditional
branch). The rationale is that by inserting such a branch in code prior to the branch-under-
prediction (subject to certain minimum distance requirements between the two), it injects
correlated information into the global history that will help the subsequent branch to predict
correctly. Such a branch-to-nowhere conditional branch may be injected or inserted by a
compiler or a software developer when source code is developed and compiled into execution
code to be executed by processor 200.

According to one embodiment, branch predictor 206 is to predict a target branch
address of a conditional branch (e.g., a branch-to-nowhere) based on prior branch predictions
obtained from branch history 207. Based on the branch prediction, instead of flushing the
pipeline based on a branch misprediction, branch predictor 206 is to flush the pipeline based
on a comparison of instruction pointers (IPs) of predicted target branch address of a
conditional branch and an address of an instruction that is executed immediately following
the conditional branch, referred to herein as a next-executed instruction. A next-executed
instruction refers to a dynamic instruction following the conditional branch in the program
being executed by the processor. In one embodiment, IP match logic 208 is invoked to match
an IP value of the predicted target branch address and an IP value of an instruction
immediately following the conditional branch instruction just predicted by branch predictor
206. If the predicted IP value matches the IP value of the next-executed instruction, it means
that the branch prediction is correct. However, if the predicted IP value does not match the
IP value of the next-executed instruction, according to one embodiment, it is considered as a
branch misprediction. That is, the predictor provides a predicted IP. For a conditional
branch, that prediction can either be the destination of the branch, or it can be the instruction
following the branch in memory order. But then later when the branch is executed and fully
resolved, that resolution will also give an IP - either the target of the address or the instruction
after the branch in memory order. This time it is not a prediction; rather, it is the actual

result, i.e., where the processor needs to have gone for the code to function correctly. The

10

15

20

25

WO 2013/147879 PCT/US2012/031635

two results (i.e., the predicted IP, and the resolved IP) then need to be compared. Either or
both might be the following instruction in memory order. If they differ, the pipeline is
flushed. When there is a misprediction, the pipeline is flushed. After the conditional branch
is executed, the global history information is updated based on whether the predicted target
branch address has been taken to be utilized for future branch predictions.

Figure 3A is pseudocode representing a typical program loop with a branch-to-
nowhere conditional branch according to one embodiment. Referring to Figure 3A, the
inserted branch instruction 301 is architecturally pointless, i.e., whether taken or not, it
always goes to instruction 302 immediately following it. Instruction 301 may be inserted by
a compiler or a software developer. It is a form of instruction sometimes called a “pseudo-
nop” (although in x86 even the canonical “nop” is actually the pseudo-nop “xchg ax, ax”) in
that it is a real instruction, but with these specific arguments it has no effect. This is clearly
useful for forwards and backwards compatibility — the code functions correctly, and future
architectures that choose not to implement the functionality can ignore them without breaking
code.

Unlike the branch_hint instruction, it does not have a direct reference to the branch it
is intended to be a hint for. Embodiments of the invention are to utilize the way modern
predictors based on global branch history (such as gshare or bg(G) to find correlations. In one
embodiment, a branch predictor is to record the direction the last N branches took, construct a
bit-string from that, and then use that bit-string to look up in a table of 2-bit saturating
counter predictor (e.g., strongly taken, weakly taken, weakly not-taken, weakly not-taken).
This provides good results when two branches at different locations have high correlation —
the predictor can use the knowledge of where the first went to predict where the second went.
As can be seen in Figure 3A, a programmer or compiler has deliberately provided two
branches 301 and 101 that are correlated. This means that there have already been all the
mechanisms needed to use this trick to correctly hint the branch at the end of the loop, i.e., it
is just the existing branch predictor doing what it does.

Figure 3B illustrates an example global history for code as shown in Figure 3B. It can

be seen that every loop exit branch is preceded in global history in the immediate vicinity

10

15

20

25

WO 2013/147879 PCT/US2012/031635

with an outcome that has a correlated value from branch 301. So no further changes are
needed to predict second branch 101 correctly. That is, a typical branch predictor already
does that. However, branch 301 does not have any correlated information in the global
history when it comes to predicting its value, and will mispredict. Thus the misprediction has
not been removed, but it has been moved from branch 101 to branch 301. Without further
modification, this will still cause a performance penalty, as branch 301 will cause pipeline
flushes.

According to one embodiment, an IP match logic as described above is utilized to
solve this problem so that when branch 301 mispredicts it does not incur a misprediction
performance penalty. The key observation is that whether branch 301 is taken or not, the
instruction executed after it is always the same irrespective of its prediction outcome.
Therefore, there is no possibility of wrong path instructions during misprediction of branch
301, and thus no pipeline flush is needed.

According to one embodiment, a general way to implement the necessary logic
modification to the pipeline is to flush the pipeline based on checking when the actual IP
calculated for the instruction that follows the branch is not equal to the predicted target
instead of flushing the pipeline based on comparison of taken/not taken branch direction
(misprediction detection), for example, by IP match logic 208 of Figure 2. In other words,
when the branch is finally non-speculatively executed, calculate the IP of the next instruction
to be executed, and check that IP against the next instruction IP that was predicted by the
branch predictor. If they match, the pipeline has fetched and/or speculatively executed the
correct instruction sequence, and there is no need to flush the pipeline. This is true even if
the taken/not-taken branch direction prediction was incorrect, 1.e., something that would
normally result in a misprediction and a pipeline flush.

However, some architectures only update the branch predictor internal state upon
detecting a misprediction and they assume that misprediction always results in a pipeline
flush. Thus, if there is no pipeline flush, the predictor state is never updated. This behavior
needs to be modified to separate misprediction detection logic based on taken/not taken

direction from pipeline flush logic based on IP comparison, and use the misprediction signal

10

10

15

20

25

WO 2013/147879 PCT/US2012/031635

rather than the pipeline flush signal for updating the predictor. This is because in the above
code when we have mispredictions for branch 301, it is important that the branch predictor
gets this updated information about its actual outcome, even though with the new IP-
checking, that instruction will never cause a pipeline flush. An alternative implementation is
to keep the "misprediction == pipeline flush" assumption, and change the misprediction
detection logic to be based on IP comparison, but always update the predictor with actual
outcome for a branch-to-nowhere. A branch-to-nowhere can be detected in hardware once
the taken and not-taken target addresses are available. The branch-to-nowhere has to be
resolved and the global history updated with its actual outcome before the branch-under-
prediction uses the global history for prediction lookup. This requirement imposes a
minimum distance constraint between the branch-to-nowhere and the branch-under-
prediction.

Figure 4 is a flow diagram illustrating a method for branch predictions according to
one embodiment of the invention. Method 400 may be performed by processor 200 of Figure
2. Referring to Figure 4, at block 401, in response to a conditional branch instruction
received at a pipeline of a processor or processor core, processing logic performs a branch
prediction, generating a predicted branch address. At block 402, processing logic fetches one
or more instructions based on the predicted branch address and the conditional branch
instruction is executed by an execution unit. At block 403, processing logic compares the
predicted branch address and an address of an instruction immediately following the
conditional branch instruction. If they do not match (i.e., misprediction), at block 404, the
pipeline is flushed. At block 405, the branch history table is updated based on whether the
predicted branch has been taken or not taken.

Figure 5A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to
embodiments of the invention. Figure 5B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exemplary register renaming, out-of-

order issue/execution architecture core to be included in a processor according to

11

10

15

20

25

WO 2013/147879 PCT/US2012/031635

embodiments of the invention. Figure SA and/or Figure 5B may be implemented as part of
processor 200 of Figure 2.

Referring to Figures SA and 5B, the solid lined boxes illustrate the in-order pipeline
and in-order core, while the optional addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core. Given that the in-order aspect is a
subset of the out-of-order aspect, the out-of-order aspect will be described. In Figure 5A, a
processor pipeline 500 includes a fetch stage 502, a length decode stage 504, a decode stage
506, an allocation stage 508, a renaming stage 510, a scheduling (also known as a dispatch or
issue) stage 512, a register read/memory read stage 514, an execute stage 516, a write
back/memory write stage 518, an exception handling stage 522, and a commit stage 524.

Figure 5B shows processor core 590 including a front end unit 530 coupled to an
execution engine unit 550, and both are coupled to a memory unit 570. The core 590 may be
a reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 590 may be a special-purpose core, such as, for example, a network
or communication core, compression engine, coprocessor core, general purpose computing
graphics processing unit (GPGPU) core, graphics core, or the like.

The front end unit 530 includes a branch prediction unit 532 coupled to an instruction
cache unit 534, which is coupled to an instruction translation look-aside buffer (TLB) 536,
which is coupled to an instruction fetch unit 538, which is coupled to a decode unit 540. The
decode unit 540 (or decoder) may decode instructions, and generate as an output one or more
micro-operations, micro-code entry points, microinstructions, other instructions, or other
control signals, which are decoded from, or which otherwise reflect, or are derived from, the
original instructions. The decode unit 540 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but are not limited to, look-up tables,
hardware implementations, programmable logic arrays (PLAs), microcode read only
memories (ROMs), etc. In one embodiment, the core 590 includes a microcode ROM or

other medium that stores microcode for certain macroinstructions (e.g., in decode unit 540 or

12

10

15

20

25

WO 2013/147879 PCT/US2012/031635

otherwise within the front end unit 530). The decode unit 540 is coupled to a
rename/allocator unit 552 in the execution engine unit 550.

The execution engine unit 550 includes the rename/allocator unit 552 coupled to a
retirement unit 554 and a set of one or more scheduler unit(s) 556. The scheduler unit(s) 556
represents any number of different schedulers, including reservations stations, central
instruction window, etc. The scheduler unit(s) 556 is coupled to the physical register file(s)
unit(s) 558. Each of the physical register file(s) units 558 represents one or more physical
register files, different ones of which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating point, vector integer, vector
floating point,, status (e.g., an instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register file(s) unit 558 comprises a
vector registers unit, a write mask registers unit, and a scalar registers unit. These register
units may provide architectural vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 558 is overlapped by the retirement unit 554 to
illustrate various ways in which register renaming and out-of-order execution may be
implemented (e.g., using a reorder buffer(s) and a retirement register file(s); using a future
file(s), a history buffer(s), and a retirement register file(s); using a register maps and a pool of
registers; etc.). The retirement unit 554 and the physical register file(s) unit(s) 558 are
coupled to the execution cluster(s) 560. The execution cluster(s) 560 includes a set of one or
more execution units 562 and a set of one or more memory access units 564. The execution
units 562 may perform various operations (e.g., shifts, addition, subtraction, multiplication)
and on various types of data (e.g., scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodiments may include a number of
execution units dedicated to specific functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units that all perform all functions. The
scheduler unit(s) 556, physical register file(s) unit(s) 558, and execution cluster(s) 560 are
shown as being possibly plural because certain embodiments create separate pipelines for
certain types of data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed

integer/packed floating point/vector integer/vector floating point pipeline, and/or a memory

13

10

15

20

25

WO 2013/147879 PCT/US2012/031635

access pipeline that each have their own scheduler unit, physical register file(s) unit, and/or
execution cluster — and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution cluster of this pipeline has the
memory access unit(s) 564). It should also be understood that where separate pipelines are
used, one or more of these pipelines may be out-of-order issue/execution and the rest in-
order.

The set of memory access units 564 is coupled to the memory unit 570, which
includes a data TLB unit 572 coupled to a data cache unit 574 coupled to a level 2 (L2) cache
unit 576. In one exemplary embodiment, the memory access units 564 may include a load
unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit
572 in the memory unit 570. The instruction cache unit 534 is further coupled to a level 2
(L2) cache unit 576 in the memory unit 570. The L2 cache unit 576 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution
core architecture may implement the pipeline 500 as follows: 1) the instruction fetch 538
performs the fetch and length decoding stages 502 and 504; 2) the decode unit 540 performs
the decode stage 506; 3) the rename/allocator unit 552 performs the allocation stage 508 and
renaming stage 510; 4) the scheduler unit(s) 556 performs the schedule stage 512; 5) the
physical register file(s) unit(s) 558 and the memory unit 570 perform the register
read/memory read stage 514; the execution cluster 560 perform the execute stage 516; 6) the
memory unit 570 and the physical register file(s) unit(s) 558 perform the write back/memory
write stage 518; 7) various units may be involved in the exception handling stage 522; and 8)
the retirement unit 554 and the physical register file(s) unit(s) 558 perform the commit stage
524.

The core 590 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)

described herein. In one embodiment, the core 590 includes logic to support a packed data

14

10

15

20

25

WO 2013/147879 PCT/US2012/031635

instruction set extension (e.g., AVX1, AVX2), thereby allowing the operations used by many
multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a single physical core provides a
logical core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of out-of-order execution, it
should be understood that register renaming may be used in an in-order architecture. While
the illustrated embodiment of the processor also includes separate instruction and data cache
units 534/574 and a shared L2 cache unit 576, alternative embodiments may have a single
internal cache for both instructions and data, such as, for example, a Level 1 (L1) internal
cache, or multiple levels of internal cache. In some embodiments, the system may include a
combination of an internal cache and an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to the core and/or the processor.

Figure 6 is a block diagram illustrating an example of a data processing system
according to one embodiment of the invention. System 900 may represent any of the systems
described above. For example, system 900 may represent a desktop, a laptop, a tablet, a
server, a mobile phone (e.g., Smartphone), a media player, a personal digital assistant (PDA),
a personal communicator, a gaming device, a network router or hub, a wireless access point
or repeater, a set-top box, or a combination thereof. Note that while Figure 6 illustrates
various components of a data processing system, it is not intended to represent any particular
architecture or manner of interconnecting the components; as such details are not germane to
embodiments of the present invention. It will also be appreciated that network computers,
handheld computers, mobile phones, and other data processing systems which have fewer
components or perhaps more components may also be used with embodiments of the present

invention.

15

10

15

20

25

WO 2013/147879 PCT/US2012/031635

Referring to Figure 6, in one embodiment, system 900 includes processor 901 and
chipset 902 to couple various components to processor 901 including memory 905 and
devices 903-904 via a bus or an interconnect. Processor 901 may represent a single processor
or multiple processors with a single processor core or multiple processor cores 909 included
therein. Processor 901 may represent one or more general-purpose processors such as a
microprocessor, a central processing unit (CPU), or the like. More particularly, processor
901 may be a complex instruction set computing (CISC) microprocessor, reduced instruction
set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or
processor implementing other instruction sets, or processors implementing a combination of
instruction sets. Processor 901 may also be one or more special-purpose processors such as
an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), a network processor, a graphics processor, a network
processor, a communications processor, a cryptographic processor, a co-processor, an
embedded processor, or any other type of logic capable of processing instructions. For
example, processor 901 may be a Pentium® 4, Pentium® Dual-Core, Core™ 2 Duo and Quad,
Xeon™ Itanium™, XScale™, Core™ i7, Core™ i5, Celeron®, or StrongARM™
microprocessor available from Intel Corporation of Santa Clara, California. Processor 901 is
configured to execute instructions for performing the operations and steps discussed herein.

Processor 901 may include an instruction decoder, which may receive and decode a
variety of instructions. The decoder may generate and output one or more micro-operations,
micro-code entry points, microinstructions, other instructions, or other control signals, which
reflect, or are derived from, an original input instruction. The decoder may be implemented
using various different mechanisms. Examples of suitable mechanisms include, but are not
limited to, microcode read only memories (ROMs), look-up tables, hardware
implementations, programmable logic arrays (PLAs), and the like.

The decoder may not be a required component of processor 901. In one or more other
embodiments, processor 901 may instead have an instruction emulator, an instruction
translator, an instruction morpher, an instruction interpreter, or other instruction conversion

logic. Various different types of instruction emulators, instruction morphers, instruction

16

10

15

20

25

WO 2013/147879 PCT/US2012/031635

translators, and the like, are known in the arts. The instruction conversion logic may receive
the bit range isolation instruction, emulate, translate, morph, interpret, or otherwise convert
the bit range isolation instruction, and output one or more instructions or control signals
corresponding to the original bit range isolation instruction. The instruction conversion logic
may be implemented in software, hardware, firmware, or a combination thereof. In some
cases, some or all of the instruction conversion logic may be located off-die with the rest of
the instruction processing apparatus, such as a separate die or in a system memory. In some
cases, the instruction processing apparatus may have both the decoder and the instruction
conversion logic.

Processor 901 and/or cores 909 may further include one or more execution units
coupled with, or otherwise in communication with, an output of the decoder. The term
"coupled" may mean that two or more elements are in direct electrical contact or connection.
However, "coupled" may also mean that two or more elements are not in direct connection
with each other, but yet still co-operate or interact or communicate with each other (e.g.,
through an intervening component). As one example, the decoder and the execution unit may
be coupled with one another through an intervening optional buffer or other component(s)
known in the arts to possibly be coupled between a decoder and an execution unit. Processor
901 and/or cores 909 may further include multiple different types of execution units, such as,
for example, arithmetic units, arithmetic logic units (ALUs), integer units, etc.

Processor 901 may further include one or more register files including, but are not
limited to, integer registers, floating point registers, vector or extended registers, status
registers, and an instruction pointer register, etc. The term "registers" is used herein to refer
to the on-board processor storage locations that are used as part of macro-instructions to
identify operands. In other words, the registers referred to herein are those that are visible
from the outside of the processor (from a programmer's perspective). However, the registers
should not be limited in meaning to a particular type of circuit. Rather, a register need only
be capable of storing and providing data, and performing the functions described herein. The
registers described herein can be implemented by circuitry within a processor using any

number of different techniques, such as dedicated physical registers, dynamically allocated

17

10

15

20

25

WO 2013/147879 PCT/US2012/031635

physical registers using register renaming, combinations of dedicated and dynamically
allocated physical registers, etc. In one embodiment, integer registers store 32-bit or 64-bit
integer data. A register file may contain extended multimedia SIMD registers (e.g., XMM)
for packed data. Such registers may include 128 bits wide XMM registers and 256 bits wide
registers (which may incorporate the XMM registers in their low order bits) relating to SSE2,
SSE3, SSE4, GSSE, and beyond (referred to generically as "SSEx") technology to hold such
packed data operands.

Processor 901 and/or cores 909 may also optionally include one or more other well-
known components. For example, processor 901 may optionally include instruction fetch
logic, pre-decode logic, scheduling logic, re-order buffers, branch prediction logic, retirement
logic, register renaming logic, and the like, or some combination thereof. These components
may be implemented conventionally, or with minor adaptations that would be apparent to
those skilled in the art based on the present disclosure. Further description of these
components is not needed in order to understand the embodiments herein, although further
description is readily available, if desired, in the public literature. There are literally
numerous different combinations and configurations of such components known in the arts.
The scope is not limited to any known such combination or configuration. Embodiments
may be implemented either with or without such additional components.

Chipset 902 may include memory control hub (MCH) 910 and input output control
hub (ICH) 911. MCH 910 may include a memory controller (not shown) that communicates
with a memory 905. MCH 910 may also include a graphics interface that communicates with
graphics device 912. In one embodiment of the invention, the graphics interface may
communicate with graphics device 912 via an accelerated graphics port (AGP), a peripheral
component interconnect (PCI) express bus, or other types of interconnects. ICH 911 may
provide an interface to I/0 devices such as devices 903-904. Any of devices 903-904 may be
a storage device (e.g., a hard drive, flash memory device), universal serial bus (USB) port(s),
a keyboard, a mouse, parallel port(s), serial port(s), a printer, a network interface (wired or

wireless), a wireless transceiver (e.g., WiFi, Bluetooth, or cellular transceiver), a media

18

10

15

20

25

WO 2013/147879 PCT/US2012/031635

device (e.g., audio/video codec or controller), a bus bridge (e.g., a PCI-PCI bridge), or a
combination thereof.

MCH 910 is sometimes referred to as a Northbridge and ICH 911 is sometimes
referred to as a Southbridge, although some people make a technical distinction between
them. As used herein, the terms MCH, ICH, Northbridge and Southbridge are intended to be
interpreted broadly to cover various chips who functions include passing interrupt signals
toward a processor. In some embodiments, MCH 910 may be integrated with processor 901.
In such a configuration, chipset 902 operates as an interface chip performing some functions
of MCH 910 and ICH 911, as shown in Figure 7. Furthermore, graphics accelerator 912 may
be integrated within MCH 910 or processor 901.

Memory 905 may store data including sequences of instructions that are executed by
processor 901, or any other device. For example, executable code 913 and/or data 914 of a
variety of operating systems, device drivers, firmware (e.g., input output basic system or
BIOS), and/or applications can be loaded in memory 905 and executed by processor 901. An
operating system can be any kind of operating systems, such as, for example, Windows®
operating system from Microsoft®, Mac OS®/i0S® from Apple, Android® from Google®,
Linux®, Unix®, or other real-time operating systems. In one embodiment, memory 905 may
include one or more volatile storage (or memory) devices such as random access memory
(RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or
other types of storage devices. Nonvolatile memory may also be utilized such as a hard disk
or a flash storage device. Front side bus (FSB) 906 may be a multi-drop or point-to-point
interconnect. The term FSB is intended to cover various types of interconnects to processor
901. Chipset 902 may communicate with other devices such as devices 903-904 via point-to-
point interfaces. Bus 906 may be implemented as a variety of buses or interconnects, such as,
for example, a quick path interconnect (QPI), a hyper transport interconnect, or a bus
compatible with advanced microcontroller bus architecture (AMBA) such as an AMBA high-
performance bus (AHB).

Cache 908 may be any kind of processor cache, such as level-1 (L1) cache, L2 cache,

L3 cache, L4 cache, last-level cache (LLC), or a combination thereof. Cache 908 may be

19

10

15

20

25

WO 2013/147879 PCT/US2012/031635

shared with processor cores 909 of processor 901. Cache 908 may be embedded within
processor 901 and/or external to processor 901. Cache 908 may be shared amongst cores
909. Alternatively, at least one of cores 909 further includes its own local cache embedded
therein. At least one of cores 909 may utilize both the local cache and the cache shared with
another one of cores 909. Processor 901 may further include a direct cache access (DCA)
logic to enable other devices such as devices 903-904 to directly access cache 908. Processor
901 and/or chipset 902 may further include an interrupt controller, such as an advanced
programmable interrupt controller (APIC), to handle interrupts such as message signaled
interrupts.

Embodiments of the invention include a processor having an execution pipeline
having one or more execution units to execution the instructions and a branch prediction unit
coupled to the execution units. The branch prediction unit includes a branch history table to
store prior branch outcomes, a branch predictor, in response to a conditional branch
instruction, to predict a branch target address of the conditional branch instruction based on
the branch history table, and address match logic to compare the predicted branch target
address with an address of a next instruction executed immediately following the conditional
branch instruction and to cause the execution pipeline to be flushed if the predicted branch
target address does not match the address of the next instruction to be executed. The branch
predictor is further to examine whether the branch is taken or not, once it has been resolved
and executed, and update the branch history table based on whether the branch has been
taken. The conditional branch instruction is a first conditional branch instruction, and
wherein the updated branch history table is used to predict a second conditional branch
condition that correlates with the first conditional branch instruction. The first conditional
branch instruction is to branch to an address immediately following an address of the first
conditional branch instruction. The first conditional branch is inserted by a compiler to
improve accuracy of branch prediction of the second conditional branch instruction. The first
conditional branch instruction is placed before the second conditional branch instruction by at

least a predetermined number of clock cycles that are determined based on a length of the

20

10

15

20

25

WO 2013/147879 PCT/US2012/031635

execution pipeline. The address match logic is to compare an instruction pointer (IP) of the
predicted branch target address to an IP of the address of the next instruction.

An example of a method performed by embodiments of the invention includes
predicting a branch target address of a conditional branch instruction based on the branch
history table storing prior branch predictions, the conditional branch instruction to be
executed by an execution pipeline of a processor; comparing the predicted branch target
address with a resolved branch target address; and flushing the execution pipeline if the
predicted branch target address does not match the resolved branch target address. The
method further includes examining whether the branch is taken or not, once it has been
resolved and executed; and updating the branch history table based on whether the branch has
been taken. The conditional branch instruction is a first conditional branch instruction, and
wherein the updated branch history table is used to predict a second conditional branch
condition that correlates with the first conditional branch instruction. The first conditional
branch instruction is to branch to an address immediately following an address of the first
conditional branch instruction. The first conditional branch is inserted by a compiler to
improve accuracy of branch prediction of the second conditional branch instruction. The first
conditional branch instruction is placed before the second conditional branch instruction by at
least a predetermined number of clock cycles that are determined based on a length of the
execution pipeline. The comparing the predicted branch target address with the address of
the next executed instruction determines whether or not to flush a pipeline of speculatively
fetched, decoded and executed instructions. Embodiments of the invention can further be
performed by a data processing system, where the data processing system includes a dynamic
random-access memory (DRAM); and a processor coupled to the DRAM configured to
perform the method set forth above.

Some portions of the preceding detailed descriptions have been presented in terms of
algorithms and symbolic representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations are the ways used by those
skilled in the data processing arts to most effectively convey the substance of their work to

others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent

21

10

15

20

25

WO 2013/147879 PCT/US2012/031635

sequence of operations leading to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as apparent from the above
discussion, it is appreciated that throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and processes of a computer system,
or similar electronic computing device, that manipulates and transforms data represented as
physical (electronic) quantities within the computer system's registers and memories into
other data similarly represented as physical quantities within the computer system memories
or registers or other such information storage, transmission or display devices.

The techniques shown in the figures can be implemented using code and data stored
and executed on one or more electronic devices. Such electronic devices store and
communicate (internally and/or with other electronic devices over a network) code and data
using computer-readable media, such as non-transitory computer-readable storage media
(e.g., magnetic disks; optical disks; random access memory; read only memory; flash
memory devices; phase-change memory) and transitory computer-readable transmission
media (e.g., electrical, optical, acoustical or other form of propagated signals — such as carrier
waves, infrared signals, digital signals).

The processes or methods depicted in the preceding figures may be performed by
processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware,
software (e.g., embodied on a non-transitory computer readable medium), or a combination
of both. Although the processes or methods are described above in terms of some sequential
operations, it should be appreciated that some of the operations described may be performed
in a different order. Moreover, some operations may be performed in parallel rather than
sequentially.

In the foregoing specification, embodiments of the invention have been described
with reference to specific exemplary embodiments thereof. It will be evident that various

modifications may be made thereto without departing from the broader spirit and scope of the

22

WO 2013/147879 PCT/US2012/031635

invention as set forth in the following claims. The specification and drawings are,

accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

23

WO 2013/147879 PCT/US2012/031635

CLAIMS

What is claimed is:

1. A processor, comprising:
an execution pipeline having one or more execution units to execution the
instructions; and
5 a branch prediction unit coupled to the execution units, the branch prediction unit

including

a branch history table to store prior branch outcomes,

a branch predictor, in response to a conditional branch instruction, to predict a
branch target address of the conditional branch instruction based on the

10 branch history table, and

address match logic to compare the predicted branch target address with an
address of a next instruction executed immediately following the
conditional branch instruction and to cause the execution pipeline to be
flushed if the predicted branch target address does not match the

15 address of the next instruction to be executed.

0

The processor of claim 1, wherein the branch predictor is further to
examine whether the branch is taken or not, once it has been resolved and executed,
and

update the branch history table based on whether the branch has been taken.

20
3. The processor of claim 2, wherein the conditional branch instruction is a first
conditional branch instruction, and wherein the updated branch history table is used to predict
a second conditional branch condition that correlates with the first conditional branch

instruction.

24

WO 2013/147879 PCT/US2012/031635

4. The processor of claim 2, wherein the first conditional branch instruction is to branch

to an address immediately following an address of the first conditional branch instruction.

5. The processor of claim 2, wherein the first conditional branch is inserted by a
compiler to improve accuracy of branch prediction of the second conditional branch

instruction.

6. The processor of claim 5, wherein the first conditional branch instruction is placed
before the second conditional branch instruction by at least a predetermined number of clock

cycles that are determined based on a length of the execution pipeline.

7. The processor of claim 1, wherein the address match logic is to compare an
instruction pointer (IP) of the predicted branch target address to an IP of the address of the

next instruction.

8. A computer implemented method, comprising:
predicting a branch target address of a conditional branch instruction based on the
branch history table storing prior branch predictions, the conditional branch
instruction to be executed by an execution pipeline of a processor;
comparing the predicted branch target address with a resolved branch target address;
and
flushing the execution pipeline if the predicted branch target address does not match

the resolved branch target address.

0. The method of claim 8§, further comprising:
examining whether the branch is taken or not, once it has been resolved and executed;
and

updating the branch history table based on whether the branch has been taken.

25

10

WO 2013/147879 PCT/US2012/031635

10. The method of claim 9, wherein the conditional branch instruction is a first
conditional branch instruction, and wherein the updated branch history table is used to predict
a second conditional branch condition that correlates with the first conditional branch

instruction.

11. The method of claim 9, wherein the first conditional branch instruction is to branch to

an address immediately following an address of the first conditional branch instruction.

12. The method of claim 9, wherein the first conditional branch is inserted by a compiler

to improve accuracy of branch prediction of the second conditional branch instruction.

13. The method of claim 12, wherein the first conditional branch instruction is placed
before the second conditional branch instruction by at least a predetermined number of clock

cycles that are determined based on a length of the execution pipeline.

14. The method of claim 8, wherein comparing the predicted branch target address with
the address of the next executed instruction determines whether or not to flush a pipeline of

speculatively fetched, decoded and executed instructions.

15. A data processing system, comprising:
a dynamic random-access memory (DRAM); and
a processor coupled to the DRAM, the processor including
an execution pipeline having one or more execution units to execution the
instructions, and
a branch prediction unit coupled to the execution units, the branch prediction
unit including
a branch history table to store prior branch predictions,
a branch predictor, in response to a conditional branch instruction, to
predict a branch target address of the conditional branch

instruction based on the branch history table, and

26

10

15

WO 2013/147879 PCT/US2012/031635

address match logic to compare the predicted branch target address
with an address of a next instruction executed immediately
following the conditional branch instruction and to cause the
execution pipeline to be flushed if the predicted branch target
address does not match the address of the next instruction to be

executed.

16. The system of claim 15, wherein the branch predictor is further to
examine whether the branch is taken or not, once it has been resolved and executed,
and

update the branch history table based on whether the branch has been taken.

17. The system of claim 16, wherein the conditional branch instruction is a first
conditional branch instruction, and wherein the updated branch history table is used to predict
a second conditional branch condition that correlates with the first conditional branch

instruction.

18. The system of claim 16, wherein the first conditional branch instruction is to branch

to an address immediately following an address of the first conditional branch instruction.

19. The system of claim 16, wherein the first conditional branch is inserted by a compiler

to improve accuracy of branch prediction of the second conditional branch instruction.

20. The system of claim 19, wherein the first conditional branch instruction is placed
before the second conditional branch instruction by at least a predetermined number of clock

cycles that are determined based on a length of the execution pipeline.

27

PCT/US2012/031635

WO 2013/147879

1/8

ol Old

dl Old

Vi "Old

10T — doy doo| abl
L :SS2IPPE YIuRIq
€0l -~ X01 98P
-— ~*dooj ay Jo Apog 8y u1 8po9°

Ol ~ SSAIPpE” youelq J9jealh Juiy yosueiq
.doy~doo)

X1 98p

Junod uonesay dooj (0sez-uou) aanisod sy spjoy xa1 ‘Anus uQ
1ottt 1-1-1-1- 10
L AN J

Y Y
S,0 US8M)3q SOUE)SIP WOopUBYy

VOL ~_ doydooj o6
X1 98p
~*doo| 8y} Jo Apoq ay) ul 8pod
.doy~doo)
X1 98p
Junod uonesay dooj (0sez-uou) aanisod sy spjoy xa1 ‘Anus uQ

PCT/US2012/031635

WO 2013/147879

2/8

¢ Old

G0¢
Jun uonodipsid youelg
— — 70¢ —
50 oL 50
21607 yolep di AIISIH YouRIg JoJoIpald youeig
Y
0 o roe 702
SUEE— — n]
(Shiun uonnosx3 Japooa(uononisuy| 104 UOTORASU] ayoe) UoNINASU|
00¢

PCT/US2012/031635

WO 2013/147879

3/8

a¢ "Old

Ve 'Old

K011y [eqolb ul SawoNo pale|aLI0)

/ wJ/)

T-ToJo]-T-7-T o

[N)l J

Y Y

S,0 US8M]Sq S0UB)SID WOopUBY

L0} —— doy doo a6l

Z0¢ X0l 98p

**doo| 8y} Jo Apoq 8y} ul 8poo
:9J9ymou

—— _ dIaymou B[
L0€ .doy~doo)

X0l 98p

Junod uonesay dooj (0sez-uou) aanisod sy spjoy xa1 ‘Anus uQ

PCT/US2012/031635

WO 2013/147879

4/8

¥ "Old

Go

<

‘uononJsul
UOURIQ [BUOIIPUOD 8Uj) JO UONNDAXS Y JO }NSal B Se USYE) Usaq
sey uonolpaid youelq sy Jsyiaym uo paseq sjqe) Alojsiy Youeiq e syepdn

<
O
prd

‘auljedid sy ysnj4

ON

(0[0)7

& PRYdleN
SOA

€0y "uonoNAsul
UOURI([BUORIPUOD B JO UONNIaXa 8y} Buimoj|o) Ajgjepiawilul UonoNJSUl UB
10 (Jayuiod 4] “68) Ssaippe ue yum ssaippe youelq paipald sy) asedwon

4

<

"UONONJISUI YOURIQ [BUORIPUOD 8}
8)NDaXa PUEB SSaIPPE Youelq pajoipaid sy Uuo paseq suondnisul yosjeld

Loy "$S2IpPE Youelq pajoipaid e Bunelsuab ‘uononnsul
{youelq [euOnIpPUOI 8y} uo uonIpald youelq e wiopad ‘8109 108$8004d JO
10ss920.d € Jo suljedid e Je uononsul yasuelq [BUONIPUO B 0) asuodsal u|

PCT/US2012/031635

WO 2013/147879

5/8

VG "Old

|||4|||

| | 2z

| S g
NITANVH

".:§§oo_qo:amoxM

81G
LM
AHONIN
MOVE JLIEM

916
EQMRNEINEVE

4%

AV3H AJOW3N
/av3y

43181934

4% 016G 809
31NA3HIS [ONINYNIYH 0011V

00G INIT3dId

05
909 €05
ONId0d3d
30023d HIONTT HO134
—_———

PCT/US2012/031635

WO 2013/147879

6/8

9.8
LINN
JHOVO
¢1

1S

<€ | INN JHOVD Y.Lvd
.S

1INN 871 ¥1va

0.G 1INN
AHON3IN

7y
¥ 096 (S)¥3LSNTD NOILNDIAXT

96 (S)LINN
$S300V
AHOW3W

296
(S)LINN
NOILND3X3

866 (S)LINN STT14 ¥3LSIDTY TYIISAHd

|||||| C———A_

r 255 1INN

| uolvooTw/awwNay |

1

" y6g
LINA INIWINILTY

Lo

066G LINN

INIONT NOILNO3IX3

0vG LINN 3d033d

A

[8eS HOIFA NOILONYLISNI |

A

9€G LINN 871 NOILONYLSNI

0€s
LINN dN3 LNOdA

¢€G LINN

¥EG LINN JHOVO NOILONYLSNI

NOILOId34d HONVYHE

a¢ ‘ol

/ 065 34090

PCT/US2012/031635

WO 2013/147879

7/8

9 'Old

706 o €06
821A8(] 821A8(]
-
1067
1= 28 _
I jesdyp _
| |
I 116 _
| HOI _
| |
G06 I _
Aows I _ >T5
| _.ﬁ_umwm_w,_ _ (soiydeisy “6-s)
716 €l6 I _ 891A8Q
eleqd 8poD | |
906 =
106
(s)Jossaooid
006 506 306
(s)a100 ayoe)

PCT/US2012/031635

WO 2013/147879

8/8

706
8oIne(Q

L 'Old

€06
8oIn8(

< >
1067
206
d —
Jesalyd 15
(soydeiny <-6-9)
116 891A8Q
HOI
906 =
806 106
ayoe) paieys (s)1ossso01d
G06
Aows
016
716 €16 HOW
ejeq suolnonJsu|
§ L] L] L] msomo % Omm
8109 8109

International application No.

PCT/US2012/031635

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/30(20006.01)i, GOOF 9/38(2006.01)i, GOOF 13/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/30, GOGF 9/00; GO6F 9/38; GOGF 9/32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: branch prediction, history table, address, match, flush.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 7493480 B2 (EMMA, P.G. et al.) 17 February 2009 1-2,8-9,15-16
A See column 8 line 39 - column 9 line 40, claims 1,9-10, and figures 4-5,7. 3-7,10-14,17-20
Y US 2005-0144427 A1 (COL, G.M. et al.) 30 June 2005 1-2,8-9,15-16
A See paragraphs [0012]-[0013],[0034]1-[0035], claims 1-,2,6, and figures 2-3. 3-7,10-14,17-20
A US 2011-0225401 A1l (EMMA, P.G. et al.) 15 September 2011 1-20

See paragraphs [0033]-[0034], claims 1-2,9, and figures 3-4.

A US 7082520 B2 (BONANNO, J.J. et al.) 25 July 2006 1-20

claims 1-15, and figures 1-3.

See column 3 line 44 - column 4 line 4, colum 5 line 49 — column 6 line 10,

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

ey

ng"

Date of the actual completion of the international search

27 NOVEMBER 2012 (27.11.2012)

Date of mailing of the international search report

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

28 NOVEMBER 2012 (28.11.2012)

Authorized officer e

i,

Hwang, Seung Hee

Telephone No. 82-42-481-5749

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2012/031635

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 7493480 B2 17.02.2009 US 2004-015683 A1l 22.01.2004

US 2005-0144427 A1 30.06.2005 TW 12842828 21.07.2007
TW 284282 A 21.07.2007
TW 284282 B 21.07.2007

US 2011-0225401 A1 15.09.2011 None

US 7082520 B2 25.07.2006 US 2003-212882 A1l 13.11.2003

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

