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PREDICTING PROCESSING WORKLOADS

BACKGROUND

[0001] The use of electronic devices has expanded. Computing devices are
a kind of electronic device that includes electronic circuitry for performing
processing. As processing capabilities have expanded, computing devices have
been utilized to perform more functions. For example, a variety of computing
devices are used for work, communication, and entertainment. Computing
devices may be linked to a network to facilitate communication between

computing devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Figure 1 is a flow diagram illustrating an example of a method for
predicting processing workload,;

[0003] Figure 2 is a flow diagram illustrating an example of a method for
predicting processing workloads;

[0004] Figure 3 is a block diagram of an example of an apparatus that may
be used in predicting processing workloads; and

[0005] Figure 4 is a block diagram illustrating an example of a computer-
readable medium for predicting processing workloads.

DETAILED DESCRIPTION

[0006] Machine learning is a technique where a machine learning model is

trained to perform a task based on a set of examples (e.g., data). In some
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examples, executing machine learning models may be computationally
demanding for processors, such as central processing units (CPUs). Deploying
machine learning models can be challenging in the context of providing machine
learning models as a service.

[0007] In some approaches, processors may perpetually maintain machine
learning models in random access memory (RAM) to keep machine learning
models ready to use, which may enable a service to quickly respond to clients.
For example, machine learning models may be perpetually maintained in RAM
to provide machine learning models through representational state transfer
(REST) application programming interfaces (APIs) due to high loading times.
However, perpetually maintaining machine learning models in RAM may come
with increased cost and/or energy consumption. This may be due to expensive
and/or power-hungry hardware, such as graphics processing units (GPUs). For
example, maintaining machine learning models on GPUs may consume
increased resources. A GPU is hardware (e.g., circuitry) that performs arithmetic
calculations. For example, a GPU may perform calculations related to graphics
processing and/or rendering.

[0008] In some approaches, machine learning models may be loaded on
demand (e.g., a machine learning model is loaded when a client requests). One
issue with loading machine learning models on demand is that loading times
may be high depending on the model. For example, some convolutional neural
networks may utilize increased loading times. This may affect service availability
and/or the client may experience undesirable delay in the service.

[0009] Some examples of the techniques described herein may allow
machine learning models to be loaded in anticipation of a client request (e.g.,
before inferences are requested via an API), using a director mechanism to
determine whether and/or when machine learning models should be loaded. In
some examples, the director mechanism may be based on a machine learning
model (e.g., predictive model(s), neural network(s), etc.). In some examples, a
set of machine learning models may be stored in memory (e.g., non-volatile
memory (NVM), solid state drives, flash memory, etc.). Some examples of NVM
may provide relatively high transfer speeds and/or low loading times. For
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instance, some examples of NVM may include dual in-line memory modules
(DIMMs) (e.g., persistent DIMMS, non-volatile DIMMs), solid state drives
(SSDs), flash memory, etc. Storing the machine learning models in some kinds
of memory (e.g., some kinds of NVM) may reduce loading time while reducing
processor usage, which may reduce energy consumption and/or cost. For
example, the machine learning models may be stored in memory while not in
use. In some examples, the NVM may provide access speed that is slower (e.g.,
5x slower, 8x slower, 9x slower, 10x slower, etc.) than RAM.

[0010] In some examples, the director mechanism may enable efficiently
handling requests and/or triggering loading/unloading of resources. This may
result in a more efficient use of processors and memory. For example, some of
the techniques described herein may reduce loading time for machine learning
models and/or may reduce the usage of resources by using a machine learning
model. In some examples, the machine learning model may be trained to learn
the workload of the processors. In some examples, the machine learning model
may provide organized API| processing execution with NVM loading approaches
that may reduce load time for a CPU.

[0011] Some examples of the techniques described herein may avoid
perpetually maintaining machine learning models running in processing
resources (e.g., CPU, GPU, and/or tensor processing unit (TPU)). For example,
the director mechanism may predict when to load machine learning models
and/or which processing resource(s) to use. Some examples of the techniques
described herein may utilize NVM to reduce loading time of the machine
learning models, which may enable increased service availability and/or may
reduce service delay.

[0012] In some examples of the techniques described herein, a set of
machine learning models may be pre-trained for provision as a service. Some
examples of the techniques described herein may enable balancing processing
workload by providing a director mechanism to load a machine learning model
or models from NVM. For instance, the director mechanism may be based on a
machine learning model to predict processing workload, which may be utilized
to load a machine learning model before receiving a client request.
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[0013] Throughout the drawings, identical reference numbers may designate
similar, but not necessarily identical, elements. Similar numbers may indicate
similar elements. When an element is referred to without a reference number,
this may refer to the element generally, without necessary limitation to any
particular drawing figure. The drawing figures are not necessarily to scale, and
the size of some parts may be exaggerated to more clearly illustrate the
example shown. Moreover, the drawings provide examples and/or
implementations in accordance with the description; however, the description is
not limited to the examples and/or implementations provided in the drawings.
[0014] Figure 1 is a flow diagram illustrating an example of a method 100 for
predicting processing workload. The method 100 and/or a method 100 element
or elements may be performed by an apparatus (e.g., electronic device,
computing device, server, etc.). For example, the method 100 may be
performed by the apparatus 302 described in connection with Figure 3.

[0015] The apparatus may predict 102 a processing workload for a set of
machine learning models. A processing workload is an amount of processing for
a project. A project is a computational task performed on a set of data.
Examples of projects may include classification, object detection, regression,
clustering, etc., performed on a set of data. For instance, examples of projects
may include performing object detection in a set of digital images, object
recognition in a set of digital images, speech recognition in digital audio data,
classifying spam emails in a set of email data, etc. In some examples, a
processing workload may be quantified as a percentage of processing
resources used to process a project. For example, an image classification
project may have a processing workload of 10% of a GPU.

[0016] A machine learning model is a structure that learns based on training.
For example, a machine learning model may be trained with a data set to
perform prediction, classification, object detection, regression, clustering, etc.
Examples of machine learning models may include artificial neural networks,
support vector machines, decision trees, etc. A set of machine learning models
may include different machine learning models that may be utilized for different
types of projects. For instance, one machine learning model may be utilized to



WO 2021/025694 PCT/US2019/045577

perform image classification and another machine learning model may be
utilized to perform object detection.

[0017] Predicting 102 the processing workload for the set of machine
learning models may include predicting a processing workload for a machine
learning model or machine learning models of the set of machine learning
models to perform a project. For example, a machine learning model may
consume 20% of the processing resources of a tensor processing unit (TPU) to
perform image classification on a set of digital images. A TPU is hardware (e.g.,
circuitry) for processing linear algebra workloads. For example, a TPU may be
utilized to process heavy linear algebra workloads.

[0018] The apparatus may load 104 a machine learning model of the set of
machine learning models from non-volatiie memory (NVM) based on the
predicted processing workload. For example, loading 104 the machine learning
model may include retrieving the machine learning model from non-volatile
memory and storing the machine learning model in random access memory
(RAM). In some examples, loading 104 the machine learning model may include
sending a message to a resource instance to retrieve the machine learning
model from NVM and store the machine learning model into RAM. In some
examples, the predicted processing workload may be utilized to determine
whether to load the machine learning model and/or to determine a processor
type utilized. For instance, loading 104 the machine learning model based on
the predicted processing workload may include determining whether the
predicted processing workload is greater than a workload threshold. In some
examples, if the predicted processing workload is greater than the workload
threshold, the machine learning model may be loaded from NVM to RAM and/or
may be loaded for a resource instance with a processor type (e.g., TPU). In
some examples, if the predicted processing workload is less than or equal to
(e.g., is not greater than) the workload threshold, the machine learning model
may not be loaded or may be loaded for a resource instance with another
processor type (e.g., CPU, GPU).

[0019] A resource instance is a combination of memory and processing
resources. For example, a resource instance may include NVM, RAM, CPU
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resources, GPU resources, and/or TPU resources. In some examples, resource
instances may be physical machines (e.g., computing devices, servers, etc.),
virtual machines, and/or containers. In some examples, multiple resource
instances may share a pool of NVM, RAM, CPU resources, GPU resources,
and/or TPU resources. CPU resources, GPU resources, and/or TPU resources
may be utilized to perform processing related to a machine learning model or
machine learning models. In some examples, a resource instance or resource
instances may be included in the apparatus. In some examples, resource
instance(s) may be housed in separate computing devices (e.g., servers) that
are in communication with the apparatus. For instance, an apparatus may load
104 a machine learning model from NVM into RAM within the apparatus and/or
may load 104 a machine learning model by sending a message over a network
to a computing device to cause the computing device to load a machine
learning model from NVM into RAM on the computing device.

[0020] In some examples, the method 100 (or an operation or operations of
the method 100) may be repeated over time. For example, predicting 102 a
processing workload and/or loading 104 may machine learning model may be
repeated periodically over time.

[0021] Figure 2 is a flow diagram illustrating an example of a method 200
for predicting processing workloads. The method 200 and/or a method 200
element or elements may be performed by an apparatus (e.g., electronic device,
computing device, server, etc.). For example, the method 200 may be
performed by the apparatus 302 described in connection with Figure 3. In some
examples, the method 200 or element(s) thereof described in connection with
Figure 2 may be an example of the method 100 or element(s) thereof described
in connection with Figure 1.

[0022] In some examples, the apparatus may train 202 a first machine
learning model with a set of data sizes, a set of processing workloads, a set of
processor types, a set of model types, a set of protocols, a set of data formats,
and/or a set of information (that characterizes a workload or type of work, for
instance) corresponding to a set of projects. For example, the first machine
learning model may be trained based on a set of projects that have been
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previously requested and/or completed. For instance, the apparatus may
receive, measure, record, and/or store information associated with a project
request and/or performance of a project. A project request is a message
received from a client. In some examples, a project request may indicate a data
size for a project, a model type or model types for a project, a protocol used to
communicate the project request, and/or a data format of data for a project.
[0023] Adata size is an amount of information for processing in a project. For
example, a data size may indicate an amount of information of a file or set of
files, image(s), audio, samples, etc., corresponding to a project. In some
examples, a data size may be indicated by a project request. For example, a
data size may be indicated by a project request received from a client. The data
size may be stored in association with the project.

[0024] A processor type is a type of processor or processing resource.
Examples of processor types include CPUs, GPUs, and TPUs. For training, a
processor type may indicate a processor or processing resource that was used
to perform a project. A processor type may indicate a single processor type
(e.g., a CPU, GPU, or TPU) or multiple processor types (e.g., a combination of
CPU(s), GPU(s), and/or TPU(s)). In some examples, a processor type may
indicate a number of processors used to process a project (e.g., 1 CPU and 2
GPUs, 1 CPU and a TPU, etc.). In some examples, the processor type used for
a project may be received and/or stored. For example, the apparatus may select
a processor type(s) for a project based on a project parameter or parameters
(e.g., model type, data size, protocol, data format, etc.). For instance, before the
first machine learning model is trained, the apparatus may select the processor
type(s) for a project requested by a client. In some examples, the apparatus
may select the processor type(s) from a look-up table. For instance, the project
parameter(s) may be utilized to look up the processor type(s). The processor
type(s) for the project may be stored in association with the project.

[0025] As described above, a processing workload is an amount of
processing for a project. For training, a processing workload may indicate an

amount of processing performed for a project. For example, an amount of
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processing performed for a project may be measured, received, and/or stored in
association with the project.

[0026] A model type is a type of machine learning model or models. In some
examples, a model type may indicate a pre-trained machine learning model or
models from a set of machine learning models (e.g., a predetermined set of
machine learning models offered by a service). Examples of model types
include classification models, detection models, regression models, clustering
models, etc. For training, a model type may indicate the machine learning
model(s) used to perform a project. A model type may indicate a single machine
learning model or multiple machine learning models. In some examples, a
model type may be indicated by a project request. For example, a model type or
types may be indicated by a project request received from a client. The model
type(s) may be stored in association with the project.

[0027] A protocol is a communication protocol or an indication of a protocol.
For example, a protocol may be a communication protocol used to send and/or
receive a project request. Examples of protocols include representational state
transfer (REST), simple object access protocol (SOAP), and remote procedure
call (RPC) (e.g., gRPC). Other protocols may be utilized. In some examples, a
protocol may be indicated by a project request. For example, a protocol may be
indicated by a project request received from a client. The protocol may be
stored in association with the project.

[0028] A data format is a format for data of a project. For example, a data
format may be a format in which data for a project is received. Examples of data
formats include JavaScript object notation (JSON) and protocol buffers
(protobuf). Other data formats may be utilized. In some examples, a data format
may be indicated by a project request. For example, a data format may be
indicated by a project request received from a client. The data format may be
stored in association with the project.

[0029] In some examples, other data or information may be utilized to train
202 the first machine learning model. For example, project request times (e.g.,
time of day, date, etc.) may be utilized to train 202 the first machine learning
model. In some examples, the data sizes, processing workloads, processor
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types, model types, protocols, and/or data formats may be omitted from data to
train 202 the first machine learning model.

[0030] Training 202 the machine learning model may include adjusting a
weight or weights of the machine learning model. In some examples, the
machine learning model may be trained to predict a processing workload and/or
a processor type. In some examples, the machine learning model may be
trained to predict a time or times at which project requests may arrive and/or a
time or times when demand occurs for a machine learning model or machine
learning models. In some examples, predicting the processor type may
correspond to the processing workload (e.g., processing amount) and/or may
include predicting a processor type that offers improved efficiency and/or speed.
For example, the machine learning model may be trained to predict a processor
type that offers reduced power consumption, reduced resource consumption,
and/or reduced processing time to complete a project. In some examples, the
machine learning model may be trained with data from previously executed
projects, such as power consumption, number of processors utilized, types of
processors utilized, and/or processing time. The trained machine learning model
may predict a processor type that offers reduced power consumption (e.g., a
least amount of power consumption of available processor types), reduced
resource consumption (e.g., the least number of processors utilized), and/or
reduced processing time (e.g., the least length of processing time of available
processor types). In some examples, the predicted processor type may
correspond to the processing workload (e.g., amount of processing) and/or to an
anticipated type of workload or project. For example, a TPU may be better
suited to some linear algebra workloads (e.g., some kinds of image
classification), a GPU may be suited to some kinds of image classification
workloads, and/or a CPU may be suited to some kinds of object detection
workloads.

[0031] The apparatus may predict 204 by the first machine learning model, a
processing workload and a processor type. The processor type may be
predicted from a group of processor types including CPU, GPU, and TPU. For



WO 2021/025694 PCT/US2019/045577

10

example, the first machine learning model may be utilized to predict processing
workload and processor type for an anticipated project or projects.

[0032] In some examples, the apparatus may determine 206 a confidence
value. A confidence value is a value that indicates a confidence of a prediction.
For example, the confidence value may accompany a prediction (e.g.,
processing workload prediction, processor type prediction, etc.) and may
indicate a likelihood that the prediction is correct. In some examples, the first
machine learning model may produce the confidence value. For example, the
first machine learning model may determine the confidence value in association
with the prediction 204 of the processing workload and/or processor type.

[0033] In some examples, the apparatus may determine 208 whether the
processing workload is greater than a workload threshold and the confidence
value is greater than or equal to a confidence threshold. For example, the
apparatus may compare the predicted processing workload to a workload
threshold (e.g., 70%) and may compare the confidence value to a confidence
threshold (e.g., 0.9).

[0034] In a case that the processing workload is greater than the workload
threshold and the confidence value is greater than or equal to the confidence
threshold, the apparatus may load 210 a machine learning model to a resource
instance with a first processor type. For example, the machine learning model
may be loaded from NVM into RAM of a resource instance that includes the first
processor type. For instance, the apparatus may load 210 the machine learning
model to a resource instance with a CPU, GPU, or TPU.

[0035] In a case that the processing workload is not greater than a workload
threshold or the confidence value is not greater than or equal to the confidence
threshold, the apparatus may load 212 a machine learning model to a resource
instance with a second processor type (e.g., a processor type different from the
first processor type in some examples). For instance, the apparatus may load
212 the machine learning model to a resource instance with a CPU, GPU,
and/or TPU.

[0036] Loading the machine learning model based on the predicted
processing workload and/or the confidence value may provide benefits relating
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to resource consumption. For example, if the predicted processing workload is
greater than the workload threshold and the confidence value is greater than or
equal to the confidence threshold, the machine learning model may be loaded
210 with a first processor type. This may occur in cases where the processing
workload is relatively large and where the prediction is relatively confident. This
may be beneficial because resources may be expended in anticipation of a
large workload that utilizes a particular processing type. Thus, when a large
workload is requested, the machine learning model may already be loaded into
RAM for processing the large workload, thereby reducing loading delay for a
project or projects. In some examples, if the processing workload is less than or
equal to the workload threshold or if the confidence value is less than the
confidence threshold, the machine learning model 212 may be loaded to a
resource instance with a second processor type that utilizes less resources.
This may be beneficial in that fewer resources may be expended in anticipation
of a project in a case that the processing workload is less or in a case that the
prediction is less confident.

[0037] In some examples, the apparatus may load the machine learning
model into RAM of a resource instance with a predicted processor type and with
available processing resources that are greater than the predicted processing
workload. For example, the apparatus may determine a resource instance that
includes the predicted processor type (e.g., CPU, GPU, and/or TPU) and that
also has available processing resources that are greater than the predicted
processing workload.

[0038] Figure 3 is a block diagram of an example of an apparatus 302 that
may be used in predicting processing workloads. The apparatus 302 may be an
electronic device, such as a personal computer, a server computer, a
smartphone, a tablet computer, etc. The apparatus 302 may include and/or may
be coupled to a processor 304 and/or a memory 306. The apparatus 302 may
include additional components (not shown) and/or some of the components
described herein may be removed and/or modified without departing from the
scope of this disclosure.
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[0039] The processor 304 may be any of a central processing unit (CPU), a
digital signal processor (DSP), a semiconductor-based microprocessor, graphics
processing unit (GPU), field-programmable gate array (FPGA), an application-
specific integrated circuit (ASIC), and/or other hardware device suitable for
retrieval and execution of instructions stored in the memory 306. The processor
304 may fetch, decode, and/or execute instructions stored in the memory 306.
In some examples, the processor 304 may include an electronic circuit or
circuits that include electronic components for performing a function or functions
of the instructions. In some examples, the processor 304 may be implemented
to perform one, some, or all of the functions, operations, elements, methods,
etc., described in connection with one, some, or all of Figures 1-4.

[0040] The memory 306 may be any electronic, magnetic, optical, or other
physical storage device that contains or stores electronic information (e.g.,
instructions and/or data). The memory 306 may be, for example, Random
Access Memory (RAM), Electrically Erasable Programmable Read-Only
Memory (EEPROM), a storage device, an optical disc, and/or the like. In some
examples, the memory 306 may be volatile and/or non-volatile memory, such as
Dynamic Random Access Memory (DRAM), EEPROM, magnetoresistive
random-access memory (MRAM), phase change RAM (PCRAM), memristor,
flash memory, and/or the like. In some implementations, the memory 306 may
be a non-transitory tangible machine-readable storage medium, where the term
“non-transitory” does not encompass transitory propagating signals. In some
examples, the memory 306 may include multiple devices (e.g., a RAM card and
a solid-state drive (SSD)).

[0041] In some examples, the apparatus 302 may include a communication
interface 324 through which the processor 304 may communicate with an
external device or devices (e.g., client device(s) 328 and/or resource instance(s)
320). In some examples, the apparatus 302 may be in communication with (e.g.,
coupled to, have a communication link with) a remote client device 328 or
remote client devices 328 via a network 326. Examples of the client device(s)
328 may include computing devices, desktop computers, laptop computers,
smart phones, tablet devices, game consoles, etc. Examples of the network 326
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may include a local area network (LAN), wide area network (WAN), the Internet,
cellular network, Long Term Evolution (LTE) network, etc.

[0042] The communication interface 324 may include hardware and/or
machine-readable instructions to enable the processor 304 to communicate with
the external device or devices. The communication interface 324 may enable a
wired and/or wireless connection to the external device or devices. In some
examples, the communication interface 324 may include a network interface
card and/or may also include hardware and/or machine-readable instructions to
enable the processor 304 to communicate with various input and/or output
devices, such as a keyboard, a mouse, a display, another apparatus, electronic
device, computing device, etc., through which a user may input instructions
and/or data into the apparatus 302.

[0043] In some examples, the communication interface 324 may enable the
apparatus 302 to communicate with a resource instance 320 or resource
instances 320. For instance, a resources instance 320 may be an external
device (e.g., computing device, server, etc.) in some examples. The apparatus
302 may be linked and/or coupled to the resource instance(s) 320 in some
examples. For instance, the apparatus 302 may communicate with the resource
instance(s) 320 using wired and/or wireless connection(s). In some examples,
the apparatus 302 may communicate with the resource instance(s) 320 via a
network or networks (e.g., LAN, WAN, the Internet, cellular network, LTE
network, etc.). The network(s) may be included in the network 326 or may be
separate from the network 326. In some examples, a resource instance 320 or
resources instances 320 may be included in the apparatus 302. In some
examples, a resource instance(s) 320 may be included in the apparatus 302
and a resource instance(s) 320 may be external device(s) or may be included in
external device(s).

[0044] In some examples, the memory 306 of the apparatus 302 may store
director instructions 314, project data 308, and/or predicted data 310. In some
examples, the director instructions 314 may include training instructions 312,
first machine learning model data 316, and/or selector instructions 318.



WO 2021/025694 PCT/US2019/045577

14

[0045] In some examples, the apparatus 302 may receive and store
information (e.g., project request(s) and/or project data 308) corresponding to a
remote client device 328 or remote client devices 328. For example, the
processor 304 may receive a set of project requests indicating a corresponding
set of data sizes. The data sizes may be stored as project data 308. In some
examples, a project request may indicate a model type, a data size, a protocol,
a data format, and/or a request time corresponding to the project. The model
type, data size, protocol, data format, and/or request time for each project
request may be stored as project data 308 in some examples.

[0046] In some examples, the processor 304 may determine a set of
processing workloads and processor types utilized during execution of a set of
projects corresponding to the set of project requests. For example, when a
project is executed, the processor 304 may execute the director instructions 314
to select and/or direct a resource instance 320 or resource instances 320 to
execute the project. In some examples, the processor 304 may execute the
director instructions 314 to select a processor type or processor types for the
project. For instance, the processor 304 may look up a processor type or types
in a look-up table when the first machine learning model is not trained and/or
when a confidence value corresponding to a prediction is low. In some
examples, the apparatus 302 may send an instruction to the resource
instance(s) 320 to execute the project and/or may route data for the project to
the resource instance(s) 320. In some examples, the instruction may indicate a
selected processor type(s) (e.g., CPU, GPU, and/or TPU) to execute the project.
In some examples, the processor type(s) may be stored as project data 308.
Accordingly, the processor 304 may determine a set of processor types utilized
during execution of a set of projects corresponding to a set of project requests.
[0047] In some examples, a resource instance 320 may include CPU(s) 322,
GPU(s) 324, TPU(s) 330, RAM 332, and/or NVM 334. In some examples,
different resource instances 320 may include different numbers of CPU(s) 322,
GPU(s) 324, and/or TPU(s) 330. In some examples, different resource
instances 320 may include different amounts of RAM 332 and/or NVM 334. In
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some examples, a resource instance 320 may omit CPU(s) 322, GPU(s) 324,
TPU(s) 330, RAM 332, and/or NVM 334.

[0048] When the apparatus 302 directs a resource instance 320 to load a
machine learning model and/or to execute a project, the resource instance 320
may load a machine learning model of a set of machine learning models 336
from NVM 334 to RAM 332 in a case that the machine learning model is not
already loaded. In some examples, the apparatus 302 may monitor a
processing workload during execution of the project and/or may receive a
processing workload indicator from a resource instance 320. The processing
workload may be stored as project data 308. Accordingly, the processor 304
may determine a set of processing workloads utilized during execution of a set
of projects corresponding to a set of project requests.

[0049] In some examples, the processor 304 may execute the training
instructions 312 to train a first machine learning model based on the set of data
sizes, the set of processing workloads, and the set of processor types. The first
machine learning model may be stored as first machine learning model data
316. Training the first machine learning model may include adjusting weights of
the first machine learning model. For example, the weights may be stored in the
first machine learning model data 316. The first machine learning model may be
separate from the set of machine learning models 336. For example, the first
machine learning model may operate as a director mechanism or as part of a
director mechanism to enable selection of a machine learning model from the
set of machine learning models 336. In some examples, the set of machine
learning models 336 may be pre-trained and/or the first machine learning model
may not be pre-trained.

[0050] In some examples, the processor 304 may execute the director
instructions to predict a processing workload and a processor type based on the
first machine learning model. For instance, when the first machine learning
model is trained, the processor 304 may utilize the first machine learning model
to predict the processing workload and/or processor type for an anticipated
future project request (e.g., before receipt of the future project request). The
predicted processing workload and/or processor type may be stored as
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predicted data 310. In some examples, the training instructions 312 may be
executed periodically to update the training of the first machine learning model.
In some examples, the training may be updated based on whether anticipated
project request(s) were actually received and/or based on whether the predicted
processor workload(s) were accurate.

[0051] In some examples, the processor 304 may execute the director
instructions 314 to load a machine learning model from the set of machine
learning models 336 based on the processing workload (e.g., the predicted
processing workload). For instance, if the predicted processing workload
indicates that the processing workload will increase due to an anticipated project
request, the processor 204 may load a machine learning model of the set of
machine learning models 336. For example, the processing workload may
increase from a state in which no project is being executed, or from a state in
which a project or projects (e.g., other project(s)) are currently being executed.
For instance, a machine learning model or machine learning models may
already be loaded into RAM for execution of a project or projects. The director
instructions 314 may be utilized to load another machine learning model from
NVM into RAM for execution of an anticipated project request or project
requests. In some examples, the processor 304 may execute the selector
instructions 318 to select a resource instance 320 based on the processing
workload (e.g., the predicted processing workload) and the processor type (e.g.,
the predicted processor type). For instance, the processor 304 may select a
resource instance 320 with the predicted processor type and with available
processing resources that are greater than the predicted processing workload.
In some examples, the processor 304 may send a message to a resource
instance 320 (e.g., the selected resource instance 320) to load the machine
learning model from NVM 334 into RAM 332.

[0052] While Figure 3 illustrates some examples of an architecture in which
some of the techniques described herein may be implemented, other
architectures may be utilized. In some examples, client devices 328 may send
project requests that request a service and/or API for machine learning models
336. The apparatus 302 may receive the project requests. The processor 304
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may execute the director instructions 314 to implement a director mechanism.
The project requests may be provided to the director mechanism. The director
mechanism may predict resource instances 320 and/or processing resources to
be used for projects and for triggering target resource instances 320. In some
examples, the resource instances 320 may be containers, virtual machines,
and/or physical machines. In some examples, a resource instance 320 may
include NVM 334 and/or heterogeneous processors (e.g., CPUs 322, GPUs 324
324, and/or TPUs 330). The processors (e.g., CPUs 322, GPUs 324, and/or
TPUs 330) may be capable of processing machine learning model processing
workloads. The NVM 334 may store the machine learning models 336 that may
be loaded for processing.

[0053] In some examples, the client device 328 may be a computing device
(e.g. smart phone, tablet, computer, laptop, etc.) that is capable of sending
requests via a communication protocol, such as REST, SOAP or gRPC. The
client device 328 may communicate via a local or network connection.

[0054] The director mechanism may receive project requests and may
analyze processing workload based on the project requests. In some examples,
the director mechanism may predict a processor type to perform the processing
workload based on execution time, response time, and/or availability. The
director mechanism may trigger processing for services to perform project(s). In
some examples, the director mechanism may include a first machine learning
model (e.g., predictive model(s)) and a selector.

[0055] In some examples, the first machine learning model may include a
model or models. For example, the model(s) may be implemented using
machine learning models such as linear regressions and/or recurrent neural
networks. In some examples, the first machine learning model may be trained at
run time. For instance, the first machine learning model may start operation
without training data and/or may use runtime data for training and prediction. In
some examples, the first machine learning model may be trained with
information from the project requests, such as model type (e.g., image
classification model A, object detection model, etc.), data size (e.g., data size in
bytes), protocol (e.g., REST), and/or data format (e.g., JSON, protobuf, etc.).
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For instance, data size may account for different amounts of data, such as
larger or smaller images. Upon a cold start, for example, the information from
the project requests may be stored with processor workload, model type, and
processor type as project data 308.

[0056] An example of information that may be stored as project data 308 is
illustrated in Table (1). The data sizes are shown in terms of megabytes (MB) in
Table (1).

Model Type | Data Protocol | Data ... | Processing | Processor

Size Format Workload | Type
Image 10 MB | REST JSON e | 10% GPU
Classification
A
Image 100 MB | REST JSON e | 20% TPU
Classification
B
Object 2 MB gRPC protobuf | ... | 15% CPU
Detection

Table (1)

[0057] When the first machine learning model is trained, the first machine
learning model may predict processing workload and/or processor type. In some
examples, the prediction of the first machine learning model may be used with
heuristics (e.g., predefined heuristics) that may guide the selection of the
resource instance 320 to run the processing workload. In some examples, the
heuristics may be in the form of an if-then rule or rules. The if-then rule(s) may
provide flexibility in terms of customizing workflows. In some examples, the
heuristics (e.g., if-then rules) may be included in the selector instructions 318.
The heuristics may be implemented in accordance with a specific application
and/or scenario. Some examples of the heuristics follow: IF confidence value >
0.8, THEN use model prediction. IF confidence value > 0.8 AND processor type
== GPU AND model type utilizes 10 gigabytes (GB), THEN execute in resource
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instance with GPU and RAM = 10 GB. IF confidence value = 0.9 AND
processing workload > 70%, THEN execute in resource instance with TPU 330.
IF confidence value < 0.7 THEN use look-up table. Other heuristics may be
utilized.

[0058] When the first machine learning model prediction has reached a
confidence threshold (which may be predetermined and/or specified by a user),
the first machine learning model may trigger the execution flow, which may load
the machine learning model from NVM 334 and dispatch the execution to the
selected resource instance 320. For example, the processor 304 may execute
the director instructions 314 to send data to the selected resource instance 320,
to receive a response, to store project request information and execution
information as project data 308 and/or to send a response to a client device 328
that requested the project. In the case of cold start, in some examples, the
director mechanism may have information regarding the services and
corresponding initial parameters to provide a routing mechanism.

[0059] In some examples, the NVM 334 may enable proper functioning by
providing a relatively large amount of rapid storage, which may be byte
addressable and/or addressable through network storage. For example, having
the machine learning models 336 stored in a pool of NVM 334 may allow the
director mechanism to send instructions to load (e.g., copy) machine learning
models 336 to target addressable space for processing resources with reduced
delay.

[0060] In some examples, the machine learning models 336 may be stored
in any NVM 334 pool and/or may be accessed through Remote Direct Memory
Access (RDMA) protocols for NVM 334. This approach may have network delay,
though no copy to locally addressable memory may be utilized. With this
approach, the machine learning models 336 may not be replicated in different
NVM 334 devices, since the machine learning models 336 may be directly
accessed through a network, by pointing to the resource instance 320 that
includes the selected machine learning model.

[0061] An example of a cold start scenario is given as follows: The client
device 328 may send a project request via REST to a service API, requesting an
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image classification service for a given image. The director mechanism may
receive the project request from the client device 328. Because the first machine
learning model is not yet trained, the director mechanism may looks for service
information in a look-up table, which may specify the service (e.g., image
classification service) and initial operating parameters (e.g., memory amount
and GPU 324 processor type). The director mechanism may trigger the
execution by a selected resource instance 320. For instance, the director
mechanism may send the data to a resource instance 320 that can offer better
performance for the project in comparison with other resource instances 320.
The director mechanism may also coordinate machine learning model loading
from the NVM 334 (which may be through a network). The resource instance
320 (which can interact with the NVM 334) may load the machine learning
model for a processor. For example, if the processor type is a GPU 324, the
machine learning model may be loaded to GPU 324 memory. The processor
may execute inference procedures and may send a response back to the
director mechanism. The director mechanism may store project request
information with processing workload (and/or execution time) and the processor
type as project data 308. The director mechanism may send a response (e.g.,
processing results) to the client device 328.

[0062] An example of a trained first machine learning model scenario is
given as follows: The client device 328 may send a project request via REST to
a service API, requesting an image classification service for a given image. The
director mechanism may receive the project request from the client device 328.
Because the first machine learning model is now trained, the director
mechanism sends the project request information to the first machine learning
model and obtains the predicted processor usage and processor type. The
director mechanism may evaluate the prediction with a confidence value.
Heuristics (which may be customized by a user in some examples) may be
utilized to decide whether or not to use this prediction or to use information from
the look-up table. The director mechanism may trigger the execution by a
selected resource instance 320. For instance, the director mechanism may send
the data to a resource instance 320 that can offer better performance for the
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project in comparison with other resource instances 320. The director
mechanism may also coordinate machine learning model loading from the NVM
334 (which may be through a network). The resource instance 320 (which can
interact with the NVM 334) may load the machine learning model for a
processor. For example, if the processor type is a GPU 324, the machine
learning model may be loaded to GPU 324 memory. The processor may
execute inference procedures and may send a response back to the director
mechanism. The director mechanism may store project request information with
processing workload (and/or execution time) and the processor type as project
data 308. The director mechanism may send a response (e.g., processing
results) to the client device 328.

[0063] Some of the elements described in the scenarios may be
implemented in different ways. For example, the look-up table may be manually
filled or be filled after executing a given machine learning model in example
scenarios. The first machine learning model used to decide the processor
workload and processor type to be used may be one of the above-mentioned
models or may be based on reinforcement learning approaches, where the cost
or reward may be specified by a measure, such as response time and/or energy
consumption. The heuristics for using the model may or may not be manually
specified. The heuristics may be rules regarding whether to utilize the prediction
or not based on a confidence value.

[0064] In some examples, the director instructions 314 may include a
preprocessing engine (which may include NVM 334 programming), which may
provide instructions to point to the machine learning models 336 stored in the
NVM 334, to maintain the program request information for analysis, to manage
the project requests, and/or to perform managing project request flows and
predictions. In some examples, when processing is completed for a project, the
processor (e.g., CPU 322, GPU 324, and/or TPU 330) may flush the data to the
NVM 334 and enter a stand-by mode. The processor (e.g., CPU 322, GPU 324,
and/or TPU 330) may await a trigger for further processing. Some examples of
the techniques described herein may accordingly provide resource savings. The
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resource saving may enable other resource investments by leveraging the
capability of power consumption savings and hardware consumption savings.
[0065] Some benefits of some examples of the techniques described herein
are given as follows. Some examples may reduce the costs of machine learning
services, since high resource consumption by processors may correspond to
high costs. Some examples may save energy in cases where complex models
are used (e.g., deep neural networks), since some models may use a large
amount of GPU memory and each GPU can consume up to 250 Watts (W).
[0066] Some examples may increase service availability, because some
customers may utilize a large processor infrastructure to keep enterprise
applications running. Some examples may improve service speed, because it
takes less time to load data from NVM than to consume a non-cached
application. Some examples may help to reduce processor usage without losing
performance. Some examples may reduce energy consumption in comparison
to other approaches that perpetually maintain processor activity. Some
examples may reduce memory usage in comparison with approaches that
perpetually maintain models in memory. Some examples may be utilized in
cloud implementations. Some examples may be utilized in local
implementations (e.g., micro data centers). Some examples offer an
architecture that balances processor workload by directing APl requests and
reducing the conflict between performance and cost. This is in contrast to other
approaches that offer processors as a commodity, which can increase costs.
Some examples enable flexible specification of heuristics, which may enable
compatibility with a variety of applications. Fuzzy heuristics may be utilized in
some examples.

[0067] In some examples, the apparatus 302 may create a recommendation
based on prediction (e.g., processing workload, processor type, etc.) and/or
received information. For instance, the processor 304 may execute the director
instructions 314 to create a recommendation based on prediction and/or based
on a project request (e.g., project request(s) and/or information associated with
the project request(s)). The recommendation may be sent to a client device 328
or client devices 328 to change a project request. In some examples, the
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recommendation may indicate that different project requests (e.g., different
service parameters) may be beneficial. For instance, the apparatus 302 may
send a recommendation to a client device 328 to recommend changing a
protocol to gRPC from REST. For instance, a project that utilizes gRPC may
offer better performance than a similar project that utilizes REST.

[0068] Figure 4 is a block diagram illustrating an example of a computer-
readable medium 414 for predicting processing workloads. The computer-
readable medium is a non-transitory, tangible computer-readable medium 414.
The computer-readable medium 414 may be, for example, RAM, EEPROM, a
storage device, an optical disc, and the like. In some examples, the computer-
readable medium 414 may be volatile and/or non-volatile memory, such as
DRAM, EEPROM, MRAM, PCRAM, memristor, flash memory, and the like. In
some implementations, the memory 306 described in connection with Figure 3
may be an example of the computer-readable medium 414 described in
connection with Figure 4.

[0069] The computer-readable medium 414 may include code (e.g., data
and/or instructions). For example, the computer-readable medium 414 may
include prediction instructions 416, resource instance selection instructions 418,
and/or communication instructions 420.

[0070] The prediction instructions 416 include code to cause a processor to
determine a predicted processing workload and a predicted processor type. This
may be accomplished as described in connection with Figure 1, Figure 2, and/or
Figure 3.

[0071] The resource instance selection instructions 418 may include code to
cause a processor to select a resource instance based on the predicted
processing workload and the predicted processor type. This may be
accomplished as described in connection with Figure 1, Figure 2, and/or Figure
3.

[0072] The communication instructions 420 may include code to cause a
processor to send a message to the resource instance to load a machine
learning model from NVM into RAM. This may be accomplished as described in
connection with Figure 1, Figure 2, and/or Figure 3.



WO 2021/025694 PCT/US2019/045577

24

[0073] In some examples, other kinds of machine learning models may be
trained and utilized. For example, classification models (e.g., supervised
classifier models), artificial neural networks, decision trees, random forests,
support vector machines, Gaussian classifiers, k-nearest neighbors (KNN),
including combinations thereof, etc., may be utilized.

[0074] While various examples of systems and methods are described
herein, the systems and methods are not limited to the examples. Variations of
the examples described herein may be implemented within the scope of the
disclosure. For example, operations, functions, aspects, or elements of the
examples described herein may be omitted or combined.
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CLAIMS

1. A method, comprising:
predicting a processing workload for a set of machine learning models;
and
loading a machine learning model of the set of machine learning models
from non-volatile memory based on the predicted processing
workload.

2. The method of claim 1, further comprising predicting a processor type

corresponding to the processing workload.

3. The method of claim 2, wherein the processor type is predicted from a
group of processor types comprising a central processing unit (CPU), graphics
processing unit (GPU), and tensor processing unit (TPU).

4. The method of claim 2, wherein the machine learning model is loaded
into random access memory (RAM) of a resource instance with the predicted
processor type and with available processing resources that are greater than
the predicted processing workload.

5. The method of claim 1, wherein predicting the processing workload is
performed by a first machine learning model.

6. The method of claim 5, wherein the first machine learning model is
trained with a set of data sizes corresponding to a set of projects.

7. The method of claim 5, wherein the first machine learning model is
trained with a set of processing workloads and a set of processor types

corresponding to a set of projects.

8. The method of claim 5, wherein the first machine learning model is

trained with a set of model types, a set of protocols, a set of data formats, or a
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set of information that characterizes workloads corresponding to a set of
projects.

9. The method of claim 1, further comprising determining a confidence
value that indicates a likelihood that the processing workload prediction is

correct.

10.  The method of claim 9, further comprising loading the machine learning
model to a resource instance with a first processor type in a case that the
processing workload is greater than a workload threshold and the confidence

value is greater than or equal to a confidence threshold.

11.  An apparatus, comprising:
a memory; and
a processor coupled to the memory, wherein the processor is to:
determine a set of processing workloads and processor types
utilized during execution of a set of projects corresponding
to a set of project requests indicating a corresponding set of
data sizes;
train a first machine learning model based on the set of data sizes,
the set of processing workloads, and the set of processor
types; and
predict a processing workload and a processor type based on the

first machine learning model.

12.  The apparatus of claim 11, wherein the processor is to send a
recommendation to a client device to change a project request.

13.  The apparatus of claim 11, wherein the processor is to:
select a resource instance based on the processing workload and the

processor type; and
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send a message to a resource instance to load the machine learning

model from non-volatile memory into random access memory.

14. A non-transitory tangible computer-readable medium storing executable
code, comprising:
code to cause a processor to determine a predicted processing workload
and a predicted processor type; and
code to cause the processor to select a resource instance based on the
predicted processing workload and the predicted processor type.

15.  The computer-readable medium of claim 14, further comprising code to
cause the processor to send a message to the resource instance to load a

machine learning model from non-volatile memory into random access memory.
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