

US009430463B2

(12) United States Patent

Futrell et al.

(54) EXEMPLAR-BASED NATURAL LANGUAGE PROCESSING

(71) Applicant: Apple Inc., Cupertino, CA (US)

(72) Inventors: Richard L. Futrell, New Orleans, LA

(US); Thomas R. Gruber, Emerald

Hills, CA (US)

(73) Assignee: Apple Inc., Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/503,128

(22) Filed: Sep. 30, 2014

(65) Prior Publication Data

US 2015/0347393 A1 Dec. 3, 2015

Related U.S. Application Data

- (60) Provisional application No. 62/005,786, filed on May 30, 2014.
- (51) Int. Cl. *G06F 17/27* (2006.01) *G06F 17/22* (2006.01)
- (52) U.S. Cl. CPC *G06F 17/2785* (2013.01); *G06F 17/2211* (2013.01)
- (58) Field of Classification Search
 None
 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,559,320 A 10/1925 Hirsh 2,180,522 A 11/1939 Henne 3,704,345 A 11/1972 Coker et al.

(10) Patent No.: US 9,430,463 B2

(45) **Date of Patent:** Aug. 30, 2016

3,710,321 A	1/1973	Rubenstein
3,828,132 A		Flanagan et al.
3,979,557 A	9/1976	
4,013,085 A	3/1977	Wright
4,081,631 A	3/1978	Feder
4,090,216 A	5/1978	Constable
4,107,784 A	8/1978	Van Bemmelen
	(Con	tinued)

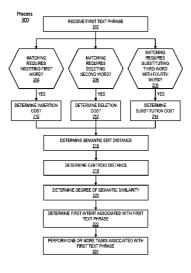
FOREIGN PATENT DOCUMENTS

CH 681573 A5 4/1993 CN 1673939 A 9/2005 (Continued)

OTHER PUBLICATIONS

Sullivan, Danny, "How Google Instant's Autocomplete Suggestions Work", available at http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592, Apr. 6, 2011, 12 pages.

(Continued)


Primary Examiner — Qian Yang

(74) Attorney, Agent, or Firm — Morrison & Foerster LLP

(57) ABSTRACT

Systems and processes for exemplar-based natural language processing are provided. In one example process, a first text phrase can be received. It can be determined whether editing the first text phrase to match a second text phrase requires one or more of inserting, deleting, and substituting a word of the first text phrase. In response to determining that editing the first text phrase to match the second text phrase requires one or more of inserting, deleting, and substituting a word of the first text phrase, one or more of an insertion cost, a deletion cost, and a substitution cost can be determined. A semantic edit distance between the first text phrase and the second text phrase in a semantic space can be determined based on one or more of the insertion cost, the deletion cost, and the substitution cost.

19 Claims, 10 Drawing Sheets

(56)		Referen	ces Cited	4,887,212			Zamora et al.
	11.0	DATENT	DOCUMENTS	4,896,359 4,903,305			Yamamoto et al. Gillick et al.
	U.S.	PAIENI	DOCUMENTS	4,905,163			Garber et al.
4.10	8,211 A	8/1978	Tanaka	4,908,867	A	3/1990	Silverman
	9,536 A		Kehoe et al.	4,914,586			Swinehart et al.
	1,821 A		Pirz et al.	4,914,590 4,918,723			Loatman et al. Iggulden et al.
	4,089 A 1,286 A	5/1980 12/1980	Key et al.	4,926,491			Maeda et al.
	3,477 A		Eichman	4,928,307		5/1990	Lynn
4,27	8,838 A	7/1981	Antonov	4,935,954			Thompson et al.
	2,405 A	8/1981	Taguchi	4,939,639 4,941,488			Lee et al. Marxer et al.
	0,721 A 2,464 A		Manley et al. Bartulis et al.	4,944,013			Gouvianakis et al.
	2,404 A 8,553 A		Baker et al.	4,945,504			Nakama et al.
4,38	4,169 A		Mozer et al.	4,953,106			Gansner et al.
	6,345 A		Narveson et al.	4,955,047 4,965,763		9/1990 10/1990	Morganstein et al.
	3,377 A 1,849 A	2/1984 5/1984	Eustis et al.	4,972,462		11/1990	
	5,439 A		Rothstein	4,974,191			Amirghodsi et al.
	5,644 A		Parks et al.	4,975,975		12/1990	
	3,379 A		Wilson et al.	4,977,598 4,980,916		12/1990	Doddington et al.
	3,435 A 5,775 A	4/1985 11/1985	Sakoe et al.	4,985,924			Matsuura
	7,343 A	3/1986		4,992,972	A		Brooks et al.
	6,158 A		Brandle	4,994,966			Hutchins
	7,670 A		Levinson et al.	4,994,983 5,003,577			Landell et al. Ertz et al.
	9,022 A		Prince et al.	5,003,377			Nara et al.
	1,346 A 5,081 A	10/1986	Bednar et al.	5,007,098		4/1991	Kumagai
	8,984 A		Das et al.	5,010,574		4/1991	Wang
	2,790 A		Minshull et al.	5,016,002			Levanto
	3,021 A	3/1987		5,020,112 5,021,971		5/1991 6/1991	Lindsay
	4,875 A 5,233 A		Srihari et al. Laughlin	5,022,081			Hirose et al.
	8,425 A		Julstrom	5,027,110	A	6/1991	Chang et al.
4,67	0,848 A		Schramm	5,027,406			Roberts et al.
	7,570 A	6/1987		5,027,408 5,029,211		6/1991 7/1991	Kroeker et al.
	0,429 A 0,805 A	7/1987	Murdock et al.	5,031,217			Nishimura
	8,195 A	8/1987		5,032,989	A	7/1991	Tornetta
4,69	2,941 A		Jacks et al.	5,033,087			Bahl et al.
	8,625 A		McCaskill et al.	5,040,218 5,046,099			Vitale et al. Nishimura
	9,390 A 3,775 A		Atal et al. Scott et al.	5,047,614		9/1991	
	8,094 A		Bahl et al.	5,050,215			Nishimura
4,72	4,542 A		Williford	5,053,758			Cornett et al.
	6,065 A	2/1988		5,054,084 5,057,915			Tanaka et al. Von Kohorn
	7,354 A 6,296 A		Lindsay Katayama et al.	5,067,158			Arjmand
	0,122 A		Kaji et al.	5,067,503	A	11/1991	Stile
4,75	4,489 A	6/1988	Bokser	5,072,452			Brown et al.
	5,811 A		Slavin et al.	5,075,896 5,079,723		1/1991	Wilcox et al. Herceg et al.
4,77	6,016 A 3,804 A	10/1988	Juang et al.	5,083,119	A		Trevett et al.
	3,807 A	11/1988		5,083,268	A	1/1992	Hemphill et al.
	5,413 A	11/1988	Atsumi	5,086,792			Chodorow
	0,028 A	12/1988		5,090,012 5,091,790			Kajiyama et al. Silverberg
	7,930 A 2,223 A		Goudie Lin et al.	5,091,945		2/1992	
	3,729 A	2/1989		5,103,498			Lanier et al.
	7,752 A		Chodorow	5,109,509			Katayama et al.
	1,243 A	3/1989		5,111,423 5,119,079			Kopec, Jr. et al. Hube et al.
	3,074 A 9,271 A		Marcus Bahl et al.	5,122,951			Kamiya
	7,518 A		Feustel et al.	5,123,103			Ohtaki et al.
	7,520 A		Zeinstra	5,125,022			Hunt et al.
	9,576 A	5/1989		5,125,030 5,127,043			Nomura et al. Hunt et al.
	9,583 A 1,551 A	5/1989 5/1989	Monroe et al. Schalk et al.	5,127,053		6/1992	
	3,712 A		Bahl et al.	5,127,055			Larkey
4,83	3,718 A	5/1989	Sprague	5,128,672			Kaehler
	7,798 A		Cohen et al.	5,133,011			McKiel, Jr.
	7,831 A 9,853 A		Gillick et al. Deerwester et al.	5,133,023 5,142,584		7/1992 8/1992	Bokser
	9,833 A 2,168 A	6/1989 7/1989		5,148,541			Lee et al.
	2,504 A		Nomura	5,153,913			Kandefer et al.
4,87	5,187 A	10/1989	Smith	5,157,610			Asano et al.
4,87	8,230 A	10/1989	Murakami et al.	5,161,102	A	11/1992	Griffin et al.

(56)		I	Referen	ces Cited	5,335,276			Thompson et al.
	Ţ	IS P.	ATENT	DOCUMENTS	5,341,293 5,341,466			Vertelney et al. Perlin et al.
	(J.G. 12	ALLINI	DOCUMENTS	5,345,536			Hoshimi et al.
	5,164,900	A 1	11/1992	Bernath	5,349,645	A	9/1994	Zhao
	5,164,982		1/1992		5,353,374			Wilson et al.
	5,165,007			Bahl et al.	5,353,376			Oh et al. Kuroda et al.
	5,167,004			Netsch et al.	5,353,377 5,353,408			Kuroda et al.
	5,175,536 . 5,175,803 .		12/1992	Aschliman et al.	5,353,432			Richek et al.
	5,175,814			Anick et al.	5,357,431	A	10/1994	Nakada et al.
	5,179,627	A	1/1993	Sweet et al.	5,367,640			Hamilton et al.
	5,179,652			Rozmanith et al.	5,369,575 5,369,577			Lamberti et al. Kadashevich et al.
	5,194,950 . 5,195,034 .			Murakami et al. Garneau et al.	5,371,853			Kao et al.
	5,195,167			Bahl et al.	5,373,566		12/1994	Murdock
	5,197,005			Shwartz et al.	5,377,103			Lamberti et al.
	5,199,077			Wilcox et al.	5,377,301 5,377,303		12/1994 12/1994	Rosenberg et al.
	5,201,034			Matsuura et al. Gillick et al.	5,384,671		1/1995	
	5,202,952 . 5,208,862 .		5/1993		5,384,892		1/1995	Strong
	5,210,689			Baker et al.	5,384,893			Hutchins
	5,212,638		5/1993		5,386,494		1/1995	
	5,212,821			Gorin et al.	5,386,556 5,390,236			Hedin et al. Klausner et al.
	5,216,747 . 5,218,700 .			Hardwick et al. Beechick	5,390,230		2/1995	
	5,220,629			Kosaka et al.	5,390,281			Luciw et al.
	5,220,639		6/1993	Lee	5,392,419			Walton
	5,220,657			Bly et al.	5,396,625 5,400,434		3/1995	Parkes Pearson
	5,222,146			Bahl et al.	5,404,295			Katz et al.
	5,230,036 . 5,231,670 .			Akamine et al. Goldhor et al.	5,406,305		4/1995	
	5,235,680			Bijnagte	5,408,060			Muurinen
	5,237,502	A		White et al.	5,412,756			Bauman et al.
	5,241,619			Schwartz et al.	5,412,804 5,412,806			Krishna Du et al.
	5,253,325		10/1993	Clark Richek et al.	5,418,951			Damashek
	5,257,387 . 5,260,697 .			Barrett et al.	5,422,656			Allard et al.
	5,266,931			Tanaka	5,424,947			Nagao et al.
	5,266,949		11/1993		5,425,108			Hwang et al.
	5,267,345			Brown et al.	5,428,731 5,434,777		6/1995 7/1995	Powers, III
	5,268,990 . 5,274,771 .			Cohen et al. Hamilton et al.	5,442,598			Haikawa et al.
	5,274,818			Vasilevsky et al.	5,442,780	A		Takanashi et al.
	5,276,616		1/1994	Kuga et al.	5,444,823			Nguyen
	5,276,794			Lamb, Jr.	5,449,368 5,450,523		9/1995	Kuzmak Zhao
	5,278,980 . 5,282,265 .			Pedersen et al. Rohra Suda et al.	5,455,888		10/1995	Iyengar et al.
	5,283,818			Klausner et al.	5,457,768			Tsuboi et al.
	5,287,448	A		Nicol et al.	5,459,488		10/1995	
	5,289,562			Mizuta et al.	5,463,696 5,463,725			Beernink et al. Henckel et al.
	RE34,562			Murakami et al.	5,465,401			Thompson
	5,291,286 . 5,293,448 .			Murakami et al. Honda	5,469,529			Bimbot et al.
	5,293,452	A		Picone et al.	5,471,611	A	11/1995	McGregor
	5,296,642		3/1994		5,473,728			Luginbuhl et al.
	5,297,170			Eyuboglu et al.	5,475,587 5,475,796		12/1995	Anick et al.
	5,297,194 <i>.</i> 5,299,125 <i>.</i>			Hunt et al. Baker et al.	5,477,447			Luciw et al.
	5,299,284		3/1994		5,477,448			Golding et al.
	5,301,109	A	4/1994	Landauer et al.	5,477,451			Brown et al.
	5,303,406			Hansen et al.	5,479,488 5,481,739		1/1995	Lennig et al.
	5,305,205 . 5,305,768 .			Weber et al. Gross et al.	5,485,372			Golding et al.
	5,309,359			Katz et al.	5,485,543	A	1/1996	
	5,315,689			Kanazawa et al.	5,488,727			Agrawal et al.
	5,317,507		5/1994		5,490,234 5,491,758			Narayan Pollogarda et al
	5,317,647 . 5,325,297 .		5/1994		5,491,738		2/1996	Bellegarda et al. Hardwick et al.
	5,325,297		6/1994	Bird et al. Gallant	5,493,677			Balogh et al.
	5,325,462		6/1994		5,495,604		2/1996	Harding et al.
	5,326,270	A	7/1994	Ostby et al.	5,497,319			Chong et al.
	5,327,342		7/1994		5,500,903		3/1996	
	5,327,498		7/1994		5,500,905 5,500,937			Martin et al. Thompson-Rohrlich
	5,329,608 . 5,333,236 .			Bocchieri et al. Bahl et al.	5,502,774			Bellegarda et al.
	5,333,266			Boaz et al.	5,502,779		3/1996	
	5,333,275			Wheatley et al.	5,502,791	A		Nishimura et al.
	5,335,011	A		Addeo et al.	5,515,475	A	5/1996	Gupta et al.

(56)	Referen	ces Cited	5,682,475			Johnson et al.
T.	I O DATENT	DOCUMENTS	5,682,539 5,684,513		10/1997 11/1997	Conrad et al.
U	S. PATENT	DOCUMENTS	5,687,077			Gough, Jr.
5,521,816 A	5/1996	Roche et al.	5,689,287		11/1997	
5,524,140 A		Klausner et al.	5,689,618	A	11/1997	Gasper et al.
5,533,182 A	A 7/1996	Bates et al.	5,696,962		12/1997	
5,535,121 A		Roche et al.	5,699,082 5,701,400		12/1997 12/1997	Marks et al. Amado
5,536,902 A		Serra et al. Schabes et al.	5,706,442		1/1998	Anderson et al.
5,537,317 A 5,537,618 A		Boulton et al.	5,708,659	A		Rostoker et al.
5,537,647 A		Hermansky et al.	5,708,822		1/1998	
5,543,588 A		Bisset et al.	5,710,886			Christensen et al.
5,543,897 A		Altrieth, III	5,710,922 5,712,949			Alley et al. Kato et al.
5,544,264 <i>A</i> 5,548,507 <i>A</i>		Bellegarda et al. Martino et al.	5,712,957			Waibel et al.
5,555,343 A			5,715,468			Budzinski
5,555,344 A		Zunkler	5,717,877			Orton et al.
5,559,301 A		Bryan, Jr. et al.	5,721,827 5,721,949			Logan et al. Smith et al.
5,559,945 <i>A</i> 5,564,446 <i>A</i>		Beaudet et al. Wiltshire	5,724,406		3/1998	
5,565,888 A			5,724,985	Α		Snell et al.
5,568,536 A	A 10/1996	Tiller et al.	5,726,672			Hernandez et al.
5,568,540 A		Greco et al.	5,727,950 5,729,694			Cook et al. Holzrichter et al.
5,570,324 <i>A</i> 5,572,576 <i>A</i>	10/1996	Geil Klausner et al.	5,732,216			Logan et al.
5,574,823 A		Hassanein et al.	5,732,390			Katayanagi et al.
5,574,824 A		Slyh et al.	5,732,395		3/1998	
5,577,135 A	A 11/1996	Grajski et al.	5,734,750			Arai et al.
5,577,164 A		Kaneko et al.	5,734,791 5,736,974		3/1998 4/1998	Acero et al.
5,577,241 <i>A</i> 5,578,808 <i>A</i>			5,737,487			Bellegarda et al.
5,579,037 A		Tahara et al.	5,737,734		4/1998	Schultz
5,579,436 A		Chou et al.	5,739,451			Winksy et al.
5,581,484 A			5,740,143 5,742,705			Suetomi Parthasarathy
5,581,652 A		Abe et al.	5,742,703			Haddock
5,581,655 A 5,583,993 A		Cohen et al. Foster et al.	5,745,116			Pisutha-Arnond
5,584,024 A			5,745,873			Braida et al.
5,594,641		Kaplan et al.	5,748,512		5/1998	
5,596,260 A		Moravec et al.	5,748,974 5,749,071		5/1998	Johnson Silverman
5,596,676 <i>A</i> 5,596,994 <i>A</i>		Swaminathan et al.	5,749,081			Whiteis
5,608,624 A			5,751,906	A	5/1998	
5,608,698 A		Yamanoi et al.	5,757,358		5/1998	
5,608,841 A		Tsuboka	5,757,979 5,758,079		5/1998	Hongo et al. Ludwig et al.
5,610,812 A 5,613,036 A		Schabes et al.	5.758.314			McKenna
5,613,122 A		Burnard et al.	5,759,101	A	6/1998	Von Kohorn
5,615,378 A		Nishino et al.	5,761,640			Kalyanswamy et al.
5,615,384 A		Allard et al.	5,765,131 5,765,168			Stentiford et al. Burrows
5,616,876 A			5,771,276		6/1998	
5,617,386 <i>A</i> 5,617,507 <i>A</i>	4/1997 4 4/1997	Lee et al.	5,774,834		6/1998	
5,617,539 A	4/1997	Ludwig et al.	5,774,855	Α		Foti et al.
5,619,583 A	A 4/1997	Page et al.	5,774,859			Houser et al.
5,619,694 A		Shimazu	5,777,614 5,778,405			Ando et al. Ogawa
5,621,859 A 5,621,903 A		Schwartz et al. Luciw et al.	5,790,978			Olive et al.
5,627,939 A		Huang et al.	5,794,050			Dahlgren et al.
5,634,084 A		Malsheen et al.	5,794,182			Manduchi et al.
5,636,325 A			5,794,207 5,794,237			Walker et al. Gore, Jr.
5,638,425 A 5,638,489 A		Meador, III et al. Tsuboka	5,797,008			Burrows
5,638,523 A		Mullet et al.	5,799,268	A		Boguraev
5,640,487 A		Lau et al.	5,799,269		8/1998	Schabes et al.
5,642,464 A		Yue et al.	5,799,276 5,801,692			Komissarchik et al. Muzio et al.
5,642,466 <i>A</i> 5,642,519 <i>A</i>		Narayan Martin	5,801,092			Gallant et al.
5,642,519 <i>F</i> 5,644,656 <i>F</i>		Akra et al.	5,802,526			Fawcett et al.
5,644,727 A			5,812,697		9/1998	Sakai et al.
5,649,060 A	A 7/1997	Ellozy et al.	5,812,698			Platt et al.
5,652,828 A		Silverman	5,815,142		9/1998	Allard et al.
5,652,884 A		Palevich	5,815,225			Nelson Bertram et al
5,652,897 <i>A</i> 5,661,787 <i>A</i>		Linebarger et al. Pocock	5,818,451 5,818,924			Bertram et al. King et al.
5,664,055 A			5,822,288	A	10/1998	
5,670,985 A		Cappels, Sr. et al.	5,822,730			Roth et al.
5,675,819		Schuetze	5,822,743			Gupta et al.

(56)			Referen	ces Cited	5,940,811		8/1999	
	т	TO 1	DATENT	DOCUMENTS.	5,940,841 5,941,944		8/1999	Schmuck et al. Messerly
	Ĺ	J.S. I	PATENT	DOCUMENTS	5,943,043			Furuhata et al.
5 025	2.40		10/1009	Main at al	5,943,049		8/1999	Matsubara et al.
	5,349 5,881			Meier et al. Colvin, Sr.	5,943,052		8/1999	Allen et al.
	5,261		10/1998		5,943,443			Itonori et al.
	3,768			Eatwell et al.	5,943,670	A	8/1999	Prager
	3,999			Bellegarda et al.	5,948,040			DeLorme et al.
	2,433		11/1998	Yashchin et al.	5,949,961		9/1999	Sharman
5,832	2,435 .	A		Silverman	5,950,123		9/1999	Schwelb et al.
	,077			Dao et al.	5,952,992 5,953,541		9/1999	King et al.
	,721 .			Donahue et al.	5,956,021			Kubota et al.
	5,732			Kikinis et al.	5,956,699			Wong et al.
	5,893			Ushioda Pollogarda	5,960,394			Gould et al.
),106 . 1,902 .		11/1998	Bellegarda	5,960,422		9/1999	
	2,165			Raman et al.	5,963,924			Williams et al.
	,255		12/1998		5,966,126	A	10/1999	Szabo
	,480		12/1998		5,970,474			LeRoy et al.
	,629			Holm et al.	5,973,676			Kawakura
5,854	1,893	A	12/1998	Ludwig et al.	5,974,146			Randle et al.
	7,184		1/1999		5,977,950		11/1999	
	,063 .			Gorin et al.	5,982,352 5,982,891		11/1999 11/1999	
),064 .			Henton	5,982,902		11/1999	
),075 .			Hashizume et al.	5,983,179			Gould et al.
	2,223			Walker et al. Mokbel et al.	5,987,132			Rowney
	1,806 . 1,815 .			Rozak et al.	5,987,140			Rowney et al.
	1.844			James et al.	5,987,401			Trudeau
,	1,855			Ruocco et al.	5,987,404		11/1999	Della Pietra et al.
	1,868			Contois	5,987,440			O'Neil et al.
	7,799			Lang et al.	5,990,887			Redpath et al.
	,710 .			Ozawa et al.	5,991,441		11/1999	
5,873	,056	A	2/1999	Liddy et al.	5,995,460			Takagi et al.
	,427			Yamazaki	5,995,590			Brunet et al.
	,437		2/1999		5,998,972		12/1999	
	5,396 .			Lo et al.	5,999,169 5,999,895		12/1999 12/1999	
	7,751			Kanemitsu et al.	5,999,908		12/1999	Abelow
	3,393			Hata et al.	5,999,927			Tukey et al.
	3,394 . 3,396 .			Muhling Henton	6,006,274			Hawkins et al.
),731 .			Liles et al.	6,009,237		12/1999	Hirabayashi et al.
	1,039			Ludwig et al.	6,011,585	A	1/2000	Anderson
	1,323			Hawkins et al.	6,014,428	Α	1/2000	Wolf
),117 .			Silverman	6,016,471			Kuhn et al.
	,122 .		3/1999	Van et al.	6,018,705			Gaudet et al.
	,180 .			Greeninger et al.	6,018,711		1/2000	French-St. George et al.
	,448 .			Vysotsky et al.	6,020,881		2/2000 2/2000	Naughton et al.
	,464		4/1999	Bhandari et al.	6,023,536 6,023,676		2/2000	
	5,466 . 5,321 .			Goldberg et al. Miller et al.	6,023,684		2/2000	Pearson
	5,500 .			Ludwig et al.	6,024,288			Gottlich et al.
	,972		5/1999	Miyazawa et al.	6,026,345			Shah et al.
5,909	,666	A	6/1999	Gould et al.	6,026,375		2/2000	Hall et al.
	2,951			Checchio et al.	6,026,388	A		Liddy et al.
	2,952 .		6/1999	Brendzel	6,026,393			Gupta et al.
	3,193 .			Huang et al.	6,029,132		2/2000	Kuhn et al.
	,236			Gould et al.	6,035,267 6,035,303		3/2000	Watanabe et al. Baer et al.
	,238		6/1999		6,035,336			Lu et al.
	5,249		6/1999	Spencer Ulrich	6,038,533			Buchsbaum et al.
	7,487 3,303			Yamaura et al.	6,040,824		3/2000	Maekawa et al.
),327		7/1999		6,041,023			Lakhansingh
),836			Gould et al.	6,047,255	A	4/2000	Williamson
),837			Gould et al.	6,052,654		4/2000	Gaudet et al.
	,757		7/1999	Hocker et al.	6,052,656		4/2000	Suda et al.
5,924	1,068	A	7/1999	Richard et al.	6,054,990		4/2000	Tran
	,769 .			Valimaa et al.	6,055,514		4/2000	
	5,789			Barbara et al.	6,055,531			Bennett et al.
),408 .		7/1999		6,064,767		5/2000	Muir et al.
),751 .			Cohrs et al.	6,064,959			Young et al.
),754 . 260			Karaali et al.	6,064,960 6,064,963		5/2000	Bellegarda et al. Gainsboro
),769 .),783 .		7/1999	Li et al.	6,067,519		5/2000 5/2000	
	3,783 . 3,477 .		7/1999 8/1999		6,069,648		5/2000	Suso et al.
	3,806 .		8/1999	Beyerlein et al.	6,070,138		5/2000	Iwata
	3,822 .		8/1999	Braden-Harder et al.	6,070,139		5/2000	Miyazawa et al.
	5,926		8/1999	Yokouchi et al.	6,070,147			Harms et al.
2,230	,- 20	-	, _,		.,,* 1/			

(56)	Referen	nces Cited		614 B1		Mizuno et al.
U.S.	PATENT	DOCUMENTS		322 B1 539 B1		Looney et al.
			, ,	966 B1		Kurlander
6,073,033 A		Campo	6,233, 6,233	545 B1 559 B1	5/2001	Datig Balakrishnan
6,073,036 A 6,073,097 A		Heikkinen et al. Gould et al.	6,233,	578 B1		Machihara et al.
6,076,051 A		Messerly et al.		025 B1		Ludwig et al.
6,076,060 A		Lin et al.		303 B1 681 B1	5/2001	Katzur Guji et al.
6,076,088 A 6,078,914 A		Paik et al. Redfern		981 B1	6/2001	Papineni et al.
6,081,750 A		Hoffberg et al.	6,248,	946 B1	6/2001	Dwek
6,081,774 A		de Hita et al.		606 B1 436 B1		Kiraly et al. Moon et al.
6,081,780 A 6,088,671 A		Lumelsky Gould et al.		826 B1		Pollard et al.
6,088,731 A		Kiraly et al.	6,260,	011 B1		Heckerman et al.
6,092,043 A		Squires et al.		013 B1 016 B1	7/2001	Sejnoha Holm et al.
6,094,649 A 6,097,391 A		Bowen et al. Wilcox		010 B1 024 B1	7/2001	
6,101,468 A		Gould et al.	6,266,	637 B1	7/2001	Donovan et al.
6,101,470 A		Eide et al.		859 B1 712 B1		Andresen et al. Zentmyer
6,105,865 A 6,108,627 A		Hardesty Sabourin		835 B1		Hoeksma
6,111,562 A		Downs et al.	6,272,	456 B1	8/2001	De Campos
6,116,907 A		Baker et al.		464 B1 795 B1		Kiraz et al. Tzirkel-Hancock
6,119,101 A 6,121,960 A		Peckover Carroll et al.		824 B1	8/2001	O'Flaherty et al.
6,121,900 A 6,122,340 A		Darley et al.	6,278,	970 B1	8/2001	Milner
6,122,614 A	9/2000	Kahn et al.		507 B1 785 B1		Horiguchi et al. Bellegarda et al.
6,122,616 A 6,125,284 A		Henton Moore et al.		786 B1	9/2001	
6,125,346 A		Nishimura et al.	6,289,	085 B1	9/2001	Miyashita et al.
6,125,356 A		Brockman et al.		124 B1 301 B1		Okamoto Higginbotham et al.
6,129,582 A 6,138,098 A		Wilhite et al. Shieber et al.		353 B1		Hazlehurst et al.
6,141,642 A	10/2000		6,292,	772 B1	9/2001	Kantrowitz
6,141,644 A		Kuhn et al.		778 B1	9/2001	
6,144,377 A 6,144,938 A		Oppermann et al. Surace et al.		390 B1 541 B1		Kobayashi et al. Bodnar et al.
6,144,939 A		Pearson et al.	6,297,	818 B1	10/2001	Ulrich et al.
6,151,401 A	11/2000	Annaratone		314 B1		Blackadar et al.
6,154,551 A 6,154,720 A		Frenkel Onishi et al.		321 B1 844 B1		Karlov et al. Pan et al.
6,157,935 A		Tran et al.	6,304,	846 B1	10/2001	George et al.
6,161,084 A		Messerly et al.		548 B1 149 B1		Flinchem et al. Gaussier et al.
6,161,087 A 6,161,944 A	12/2000	Wightman et al.		157 B1	10/2001	
6,163,769 A		Acero et al.	6,311,	189 B1	10/2001	deVries et al.
6,163,809 A		Buckley		237 B1 594 B1	11/2001 11/2001	Nakao et al. Gossman et al.
6,167,369 A 6,169,538 B1		Schulze Nowlan et al.		707 B1		Bangalore et al.
6,172,948 B1		Keller et al.	6,317,	831 B1	11/2001	King
6,173,194 B1		Vanttila		092 B1 512 B1	11/2001	Fitch et al. Junqua et al.
6,173,251 B1 6,173,261 B1		Ito et al. Arai et al.		538 B1	12/2001	
6,173,263 B1		Conkie		175 B1		Birrell et al.
6,173,279 B1		Levin et al.		103 B1 722 B1		Surace et al. Tani et al.
6,177,905 B1 6,177,931 B1		Welch Alexander et al.		365 B1		Blackadar et al.
6,179,432 B1	1/2001	Zhang et al.		727 B1	1/2002	
6,182,028 B1		Karaali et al.		937 B1 316 B1		Stepita-Klauco Kloba et al.
6,185,533 B1 6,188,999 B1		Holm et al. Moody	6,343,	267 B1	1/2002	Kuhn et al.
6,191,939 B1	2/2001	Burnett		250 B1	2/2002	
6,192,253 B1		Charlier et al. Abecassis		522 B1 762 B1		Vitikainen Ludwig et al.
6,192,340 B1 6,195,641 B1		Loring et al.	6,353,	442 B1	3/2002	
6,205,456 B1	3/2001	Nakao	6,353,	794 B1		Davis et al.
6,208,044 B1		Viswanadham et al.		854 B1 864 B1		Schubert et al. Foltz et al.
6,208,956 B1 6,208,964 B1		Motoyama Sabourin		905 B1		Gershman et al.
6,208,967 B1	3/2001	Pauws et al.	6,357,	147 B1	3/2002	Darley et al.
6,208,971 B1		Bellegarda et al.	, ,	572 B1	3/2002	
6,216,102 B1 6,216,131 B1		Martino et al. Liu et al.	, ,	970 B1 227 B1		Burgess Aggarwal et al.
6,217,183 B1		Shipman		237 B1		Schulz et al.
6,222,347 B1	4/2001	Gong	6,366,	883 B1	4/2002	Campbell et al.
6,226,403 B1		Parthasarathy		884 B1	4/2002	Bellegarda et al. Bellegarda
6,226,533 B1	5/2001	Akahane	0,3/4,	217 B1	4/2002	Denegarda

(56)	I	Referen	ces Cited	6,529,608			Gersabeck et al.
	IIS P	ATENT	DOCUMENTS	6,532,444 6,532,446		3/2003 3/2003	
	U.S. F2	ALDIVI	DOCUMENTS	6,535,610			Stewart
6,377,530	B1	4/2002	Burrows	6,535,852		3/2003	
6,377,925		4/2002	Greene, Jr. et al.	6,535,983			McCormack et al.
6,377,928			Saxena et al.	6,536,139 6,538,665			Darley et al. Crow et al.
6,385,586 6,385,662		5/2002	Moon et al.	6,542,171			Satou et al.
6,389,114			Dowens et al.	6,542,584			Sherwood et al.
6,397,183			Baba et al.	6,546,262			Freadman
6,397,186			Bush et al.	6,546,367		4/2003	Otsuka Edlund et al.
6,401,065			Kanevsky et al.	6,546,388 6,549,497			Miyamoto et al.
6,405,169 6,408,272			Kondo et al. White et al.	6,553,343			Kagoshima et al.
6,411,932			Molnar et al.	6,553,344			Bellegarda et al.
6,415,250			Van Den Akker	6,556,971			Rigsby et al.
6,421,305			Gioscia et al.	6,556,983 6,560,903		5/2003	Altschuler et al.
6,421,672 6,421,707			McAllister et al. Miller et al.	6,563,769			Van Der Meulen
6,424,944			Hikawa	6,564,186		5/2003	Kiraly et al.
6,430,551			Thelen et al.	6,582,342			Kaufman
6,434,522			Tsuboka	6,583,806 6,584,464			Ludwig et al. Warthen
6,434,524		8/2002		6,587,403			Keller et al.
6,434,604 6,437,818			Harada et al. Ludwig et al.	6,587,404			Keller et al.
6,438,523			Oberteuffer et al.	6,591,379			LeVine et al.
6,442,518	B1		Van Thong et al.	6,594,673			Smith et al.
6,442,523		8/2002		6,594,688 6,597,345			Ludwig et al. Hirshberg
6,446,076 6,448,485		9/2002	Burkey et al.	6,598,021			Shambaugh et al.
6,448,986		9/2002		6,598,022	B2	7/2003	Yuschik
6,449,620			Draper et al.	6,598,039			Livowsky
6,453,281			Walters et al.	6,598,054 6,601,026			Schuetze et al. Appelt et al.
6,453,292 6,453,315			Ramaswamy et al. Weissman et al.	6,601,234			Bowman-Amuah
6,456,616			Rantanen	6,603,837		8/2003	Kesanupalli et al.
6,456,972			Gladstein et al.	6,604,059			Strubbe et al.
6,460,015			Hetherington et al.	6,606,388 6,606,632			Townsend et al. Saulpaugh et al.
6,460,029			Fries et al. Abram et al.	6,611,789		8/2003	
6,462,778 6,463,128		0/2002		6,615,172			Bennett et al.
6,466,654			Cooper et al.	6,615,175			Gazdzinski
6,467,924			Shipman	6,615,176			Lewis et al. Austin et al.
6,469,712			Hilpert, Jr. et al.	6,615,220 6,621,768			Keller et al.
6,469,722 6,469,732			Kinoe et al. Chang et al.	6,621,892		9/2003	Banister et al.
6,470,347		0/2002		6,622,121			Crepy et al.
6,473,630			Baranowski et al.	6,622,136			Russell Lakritz
6,477,488			Bellegarda	6,623,529 6,625,583			Silverman et al.
6,477,494 6,487,533	B2 1		Hyde-Thomson et al. Hyde-Thomson et al.	6,628,808			Bach et al.
6,487,534			Thelen et al.	6,631,186			Gibson et al.
6,487,663			Jaisimha et al.				Karaorman et al. Bennett et al.
6,489,951			Wong et al. Ramaswamy et al.	6,633,846 6,633,932			Bork et al.
6,490,560 6.493,428		2/2002		6,643,401			Kashioka et al.
6,493,652			Ohlenbusch et al.	6,647,260			Dusse et al.
6,493,667			De Souza et al.	6,650,735			Burton et al.
6,499,013 6,499,014		12/2002		6,654,740 6,658,389			Tokuda et al. Alpdemir
6,501,937			Chihara Ho et al.	6,658,577			Huppi et al.
6,502,194			Berman et al.	6,662,023		12/2003	
6,505,158		1/2003		6,665,639			Mozer et al.
6,505,175 6,505,183	B1		Silverman et al.	6,665,640 6,665,641			Bennett et al. Coorman et al.
6,510,406			Loofbourrow et al. Marchisio	6,671,672		12/2003	
6,510,417			Woods et al.	6,671,683	B2	12/2003	Kanno
6,513,008	B2	1/2003	Pearson et al.	6,671,856		1/2003	
6,513,063			Julia et al.	6,675,169 6,675,233			Bennett et al. Du et al.
6,519,565 6,519,566			Clements et al. Boyer et al.	6,680,675			Suzuki
6,523,026		2/2003		6,684,187			Conkie
6,523,061	B1		Halverson et al.	6,684,376	B1	1/2004	Kerzman et al.
6,523,172			Martinez-Guerra et al.	6,690,387			Zimmerman et al.
6,526,351			Whitham	6,690,800			Resnick
6,526,382			Yuschik	6,690,828 6,691,064			Meyers Vroman
6,526,395 6,529,592		2/2003 3/2003		6,691,064			Vroman Laurila et al.
0,525,532	101	5, 2003	Tanual	0,001,000	1/1	2,2007	Laurna et al.

(56)			Referen	ces Cited	6,813,218 6,813,491			Antonelli et al. McKinney
		U.S.	PATENT	DOCUMENTS	6,813,607	B1	11/2004	Faruquie et al.
					6,816,578 6,820,055			Kredo et al. Saindon et al.
	6,691,111 6,691,151			Lazaridis et al. Cheyer et al.	6,829,018			Lin et al.
	6,694,295			Lindholm et al.	6,829,603	В1	12/2004	Chai et al.
	6,694,297		2/2004	Sato	6,832,194			Mozer et al.
	6,697,780			Beutnagel et al.	6,832,381 6,836,760			Mathur et al. Silverman et al.
	6,697,824 6,701,294			Bowman-Amuah Ball et al.	6,839,464			Hawkins et al.
	6,701,305		3/2004	Holt et al.	6,839,669			Gould et al.
	6,701,318			Fox et al.	6,839,670 6,839,742			Stammler et al. Dyer et al.
	6,704,015 6,704,698			Bovarnick et al. Paulsen, Jr. et al.	6,842,767			Partovi et al.
	6,704,710	B2	3/2004		6,847,966			Sommer et al.
	6,708,153			Brittan et al.	6,847,979 6,850,775		2/2005	Allemang et al.
	6,711,585 6,714,221			Copperman et al. Christie et al.	6,850,887		2/2005	Epstein et al.
	6,716,139		4/2004	Hosseinzadeh-Dolkhani et al.	6,851,115		2/2005	Cheyer et al.
	6,718,324			Edlund et al.	6,857,800 6,859,931		2/2005	Zhang et al. Cheyer et al.
	6,718,331 6,720,980			Davis et al. Lui et al.	6,862,568		3/2005	
	6,721,728			McGreevy	6,862,710			Marchisio
	6,721,734			Subasic et al.	6,865,533 6,868,045			Addison et al. Schroder
	6,724,370 6,728,675			Dutta et al. Maddalozzo, Jr. et al.	6,868,385		3/2005	
	6,728,729			Jawa et al.	6,870,529	B1	3/2005	
	6,731,312	B2		Robbin	6,871,346 6,873,986			Kumbalimutt et al. McConnell et al.
	6,732,142 6,735,632			Bates et al. Kiraly et al.	6,876,947			Darley et al.
	6,738,738			Henton	6,877,003	B2	4/2005	Ho et al.
	6,741,264	B1	5/2004	Lesser	6,879,957			Pechter et al.
	6,742,021			Halverson et al.	6,882,335 6,882,747			Saarinen Thawonmas et al.
	6,751,592 6,751,595		6/2004 6/2004	Busayapongchai et al.	6,882,955	В1		Ohlenbusch et al.
	6,751,621	В1	6/2004	Calistri-Yeh et al.	6,882,971		4/2005	
	6,754,504		6/2004		6,885,734 6,889,361			Eberle et al. Bates et al.
	6,757,362 6,757,365			Cooper et al. Bogard	6,895,084		5/2005	Saylor et al.
	6,757,646			Marchisio	6,895,257			Boman et al.
	6,757,653			Buth et al.	6,895,380 6,895,558			Sepe, Jr. Loveland
	6,757,718 6,760,412			Halverson et al. Loucks	6,898,550			Blackadar et al.
	6,760,700			Lewis et al.	6,901,364			Nguyen et al.
	6,760,754			Isaacs et al.	6,901,399 6,904,405			Corston et al. Suominen
	6,762,741 6,763,089		7/2004	Weindorf Feigenbaum	6,907,112			Guedalia et al.
	6,766,294		7/2004	MacGinite et al.	6,910,004		6/2005	
	6,766,320			Wang et al.	6,910,007 6,910,186		6/2005	Stylianou et al.
	6,766,324 6,768,979			Carlson et al. Menendez-Pidal et al.	6,911,971			Suzuki et al.
	6,772,123			Cooklev et al.	6,912,407			Clarke et al.
	6,772,195			Hatlelid et al.	6,912,498 6,912,499	B2 B1		Stevens et al. Sabourin et al.
	6,775,358 6,778,951			Breitenbach et al. Contractor	6,915,138		7/2005	
	6,778,952			Bellegarda	6,915,246			Gusler et al.
	6,778,962			Kasai et al.	6,917,373 6,918,677			Vong et al. Shipman
	6,778,970 6,778,979		8/2004 8/2004	Grefenstette et al.	6,924,828		8/2005	
	6,782,510			Gross et al.	6,925,438			Mohamed et al.
	6,784,901			Harvey et al.	6,928,149 6,928,614			Panjwani et al. Everhart
	6,789,094 6,789,231			Rudoff et al. Reynar et al.	6,931,255	B2	8/2005	Mekuria
	6,790,704	B2	9/2004	Doyle et al.	6,931,384			Horvitz et al.
	6,792,082		9/2004		6,932,708 6,934,394			Yamashita et al. Anderson
	6,792,086 6,792,407			Saylor et al. Kibre et al.	6,934,684	B2		Alpdemir et al.
	6,794,566	B2	9/2004	Pachet	6,934,756		8/2005	
	6,795,059		9/2004		6,934,812 6,937,975			Robbin et al. Elworthy
	6,799,226 6,801,604			Robbin et al. Maes et al.	6,937,975			Denenberg et al.
	6,801,964			Mahdavi	6,944,593			Kuzunuki et al.
	6,803,905			Capps et al.	6,948,094			Schultz et al.
	6,804,649 6,804,677			Miranda Shadman at al	6,950,087 6,950,502			Knox et al. Jenkins
	6,804,677			Shadmon et al. Achlioptas et al.	6,954,755			Reisman
	6,807,574	B1	10/2004	Partovi et al.	6,954,899	В1	10/2005	Anderson
	6,810,379	В1	10/2004	Vermeulen et al.	6,956,845	B2	10/2005	Baker et al.

(56)		Referen	ces Cited	7,072,686			Schrager
	U.S.	PATENT	DOCUMENTS	7,072,941 7,076,527	B2	7/2006	Griffin et al. Bellegarda et al.
				7,082,322		7/2006	
6,957,0			Hunzinger	7,084,758 7,084,856		8/2006 8/2006	
6,960,7		11/2005		7,085,723			Ross et al.
6,961,6			Kahn et al.	7,085,960			Bouat et al.
6,963,8 6,964,0			Handal et al. Maes et al.	7,092,370			Jiang et al.
6,965,3			Tani et al.	7,092,887			Mozer et al.
6,968,3			Knockeart et al.	7,092,928	B1	8/2006	Elad et al.
6,970,8			Junqua et al.	7,092,950			Wong et al.
6,970,8		11/2005	Moĥan et al.	7,093,693			Gazdzinski
6,970,9	15 B1	11/2005	Partovi et al.	7,095,733			Yarlagadda et al.
6,970,9		11/2005		7,096,183		8/2006	Junqua Squibbs et al.
6,976,0			Ben-Shaul et al.	7,103,548 7,107,204			Liu et al.
6,978,1			Bulthuis et al. Chu et al.	7,111,248		9/2006	Mulvey et al.
6,978,2 6,980,9		12/2005		7,113,803		9/2006	
6,980,9			Okutani et al.	7,113,943	B2	9/2006	Bradford et al.
6,983,2			Umemoto et al.	7,115,035		10/2006	
6,985,8	58 B2	1/2006	Frey et al.	7,117,231			Fischer et al.
6,985,8			Packingham et al.	7,123,696		10/2006	
6,988,0			Gazdzinski	7,124,081 7,124,082			Bellegarda Freedman
6,990,4			Case et al.	7,124,164			Chemtob
6,996,5 6,996,5		2/2006	Korall et al.	7,127,046			Smith et al.
6,996,5			Cox et al.	7,127,396		10/2006	Chu et al.
6,999,0			Litwiller	7,127,403			Saylor et al.
6,999,9		2/2006	Boerner et al.	7,133,900		11/2006	
6,999,9			Fischer et al.	7,136,710			Hoffberg et al. Cosatto et al.
6,999,9			Mozer et al.	7,136,818 7,137,126			Cosano et al.
7,000,1			Dutta et al.	7,137,120			Häkkinen et al.
7,003,0 7,003,4			Zhang et al. Maes et al.	7,139,714			Bennett et al.
7,007,2			Hawkins et al.	7,139,722	B2		Perrella et al.
7,010,5			Brown et al.	7,143,028			Hillis et al.
7,013,2		3/2006	Horn et al.	7,143,038		11/2006	
7,013,4			Fujimoto et al.	7,143,040			Durston et al.
7,020,6			Chen et al.	7,146,319 7,146,437		12/2006	Robbin et al.
7,024,3			Comerford et al. Guerra et al.	7,149,319		12/2006	
7,024,3 7,024,3			Deyoe et al.	7,149,695			Bellegarda
7,024,4			Koopmas et al.	7,149,964	В1	12/2006	Cottrille et al.
7,027,5			Simpson et al.	7,152,070			Musick et al.
7,027,9			Busch et al.	7,152,093			Ludwig et al.
7,027,9			Sussman	7,154,526 7,155,668			Foote et al. Holland et al.
7,028,2			Baru et al.	7,158,647		1/2007	Azima et al.
7,031,5 7,031,9			Driggs et al. Mao et al.	7,159,174		1/2007	Johnson et al.
7,031,9			Sirivara	7,162,412		1/2007	Yamada et al.
7,035,8			Jimenez-Feltstrom	7,162,482		1/2007	Dunning
7,035,8	07 B1	4/2006	Brittain et al.	7,165,073		1/2007	Vandersluis
7,036,1	28 B1	4/2006	Julia et al.	7,166,791	B2 D2	1/2007	Robbin et al.
7,038,6			Rajkowski	7,171,360 7,174,295			Huang et al. Kivimaki
7,039,5 7,043,4			Okutani et al. Ratnaparkhi	7,174,297			Guerra et al.
7,043,4			Gao et al.	7,177,794	B2		Mani et al.
7,046,2			Zadesky et al.	7,177,798	B2		Hsu et al.
7,046,8			Braspenning et al.	7,177,817			Khosla et al.
7,047,1			Bellegarda	7,181,386			Mohri et al.
7,050,9			Packingham	7,181,388 7,185,276		2/2007 2/2007	
7,050,9			Bennett	7,183,276			Pelletier
7,051,0 7,054,4		5/2006	Krawiec et al.	7,190,794		3/2007	
7,054,8			LaChapelle et al.	7,191,118		3/2007	Bellegarda
7,057,6			Mayoraz et al.	7,191,131		3/2007	Nagao
7,058,5		6/2006	Coorman et al.	7,193,615			Kim et al.
7,058,8			Gjerstad et al.	7,194,186		3/2007	Strub et al.
7,058,8			Trovato et al.	7,194,413 7,194,471		3/2007 3/2007	Mahoney et al. Nagatsuka et al.
7,062,2 7,062,2		6/2006 6/2006	Gerber et al.	7,194,471		3/2007	Bear et al.
7,062,2			Hogenhout et al.	7,194,699		3/2007	Thomson et al.
7,062,4			Kobayashi et al.	7,197,120			Luehrig et al.
7,065,1		6/2006		7,197,460		3/2007	Gupta et al.
7,065,4			Chong-White et al.	7,200,550		4/2007	Menezes et al.
7,069,2		6/2006	Thompson	7,200,558		4/2007	Kato et al.
7,069,2			Coffman et al.	7,200,559		4/2007	Wang
7,069,5	60 B1	6/2006	Cheyer et al.	7,203,646	B2	4/2007	Bennett

(56)		Referen	ces Cited	7,401,300		7/2008	
	211	PATENIT	DOCUMENTS	7,403,938 7,404,143			Harrison et al. Freelander et al.
	U.S.	PATENT	DOCUMENTS	7,409,337			Potter et al.
7,206,809	B2	4/2007	Ludwig et al.	7,409,347	B1		Bellegarda
7,216,008		5/2007	Sakata	7,412,470			Masuno et al.
7,216,073			Lavi et al.	7,415,100			Cooper et al. Chu et al.
7,216,080			Tsiao et al.	7,418,389 7,418,392			Mozer et al.
7,218,920 7,218,943		5/2007 5/2007	Klassen et al.	7,426,467			Nashida et al.
7,219,063			Schalk et al.	7,426,468			Coifman et al.
7,219,123			Fiechter et al.	7,427,024			Gazdzinski et al.
7,225,125			Bennett et al.	7,428,541 7,433,869		9/2008	Gollapudi
7,228,278 7,231,343		6/2007	Nguyen et al. Treadgold et al.	7,433,921		10/2008	Ludwig et al.
7,231,343		6/2007	Kjellberg et al.	7,441,184			Frerebeau et al.
7,233,904		6/2007		7,443,316		10/2008	
7,234,026			Robbin et al.	7,447,635			Konopka et al.
7,236,932			Grajski	7,454,351 7,460,652		12/2008	Jeschke et al.
7,240,002 7,243,305			Minamino et al. Schabes et al.	7,467,087	B1		Gillick et al.
7,246,151			Isaacs et al.	7,467,164	B2	12/2008	
7,251,454		7/2007		7,472,061			Alewine et al.
7,254,773			Bates et al.	7,472,065 7,475,010		1/2008	Aaron et al.
7,260,529		8/2007		7,475,010			Datta et al.
7,263,373 7,266,189		9/2007	Mattisson Day	7,477,238			Fux et al.
7,266,495			Beaufays et al.	7,477,240			Yanagisawa
7,266,496		9/2007	Wang et al.	7,478,037		1/2009	
7,266,499			Surace et al.	7,478,091 7,478,129		1/2009	Mojsilovic et al. Chemtob
7,269,544 7,269,556		9/2007	Simske Kiss et al.	7,483,832		1/2009	Tischer
7,209,330		9/2007		7,483,894		1/2009	
7,277,088			Robinson et al.	7,487,089		2/2009	
7,277,854			Bennett et al.	7,487,093			Mutsuno et al.
7,277,855			Acker et al.	7,490,034 7,496,498			Finnigan et al. Chu et al.
7,280,958 7,283,072			Pavlov et al. Plachta et al.	7,496,512			Zhao et al.
7,283,072			Lisitsa et al.	7,499,923			Kawatani
7,292,579		11/2007		7,502,738			Kennewick et al.
7,292,979			Karas et al.	7,505,795			Lim et al.
7,299,033			Kjellberg et al.	7,508,324 7,508,373			Suraqui Lin et al.
7,302,392 7,302,686		11/2007	Thenthiruperai et al.	7,516,123			Betz et al.
7,308,408			Stifelman et al.	7,519,327	B2	4/2009	
7,310,329			Vieri et al.	7,522,927			Fitch et al.
7,310,600			Garner et al.	7,523,036 7,523,108		4/2009 4/2009	Akabane et al. Cao
7,310,605 7,313,523			Janakiraman et al. Bellegarda et al.	7,525,106		4/2009	Au
7,315,818			Stevens et al.	7,526,738			Ording et al.
7,319,957			Robinson et al.	7,528,713		5/2009	Singh et al.
7,321,783	B2	1/2008		7,529,671		5/2009	Rockenbeck et al.
7,324,833			White et al.	7,529,676 7,535,997			Koyama McQuaide, Jr. et al.
7,324,947 7,328,155			Jordan et al. Endo et al.	7,536,029			Choi et al.
7,349,953			Lisitsa et al.	7,536,565	B2		Girish et al.
7,353,139	B1	4/2008	Burrell et al.	7,538,685			Cooper et al.
7,359,493			Wang et al.	7,539,619 7,539,656			Seligman et al. Fratkina et al.
7,359,671 7,359,851			Richenstein et al. Tong et al.	7,541,940		6/2009	
7,362,738			Taube et al.	7,542,967			Hurst-Hiller et al.
7,363,227			Mapes-Riordan et al.	7,543,232			Easton, Jr. et al.
7,365,260		4/2008	Kawashima	7,546,382			Healey et al.
7,366,461		4/2008		7,546,529 7,548,895			Reynar et al. Pulsipher
7,373,612 7,376,556			Risch et al. Bennett	7,552,045			Barliga et al.
7,376,632			Sadek et al.	7,552,055	B2		Lecoeuche
7,376,645	B2	5/2008	Bernard	7,555,431			Bennett
7,378,963			Begault et al.	7,555,496 7,558,381		6/2009 7/2009	Lantrip et al. Ali et al.
7,379,874			Schmid et al.	7,558,730			Davis et al.
7,380,203 7,383,170			Keely et al. Mills et al.	7,559,026			Girish et al.
7,385,170			Sun et al.	7,561,069			Horstemeyer
7,386,799			Clanton et al.	7,562,007		7/2009	Hwang
7,389,224	B1	6/2008	Elworthy	7,565,104			
7,389,225			Jensen et al.	7,565,380		7/2009	
7,392,185			Bennett	7,571,106		8/2009	
7,394,947 7,398,209			Li et al. Kennewick et al.	7,577,522 7,580,551		8/2009 8/2009	Rosenberg Srihari et al.
7,398,209	D 2	112008	Kennewick et al.	7,500,551	DI	0/2009	Sillali Ct al.

(56)		Referen	ces Cited	7,743,188 B		Haitani et al.
	U.S.	PATENT	DOCUMENTS	7,747,616 B 7,752,152 B 7,756,868 B	2 7/2010	Yamada et al. Paek et al.
	7.500.576 D3	0/2000	XX7	7,757,182 B		Elliott et al.
	7,580,576 B2 7,580,839 B2		Wang et al. Tamura et al.	7,761,296 B		Bakis et al.
	7,584,093 B2		Potter et al.	7,763,842 B		Hsu et al.
	7,593,868 B2		Margiloff et al.	7,774,204 B		Mozer et al.
	7,596,499 B2		Anguera et al.	7,774,388 B		Runchey
	7,599,918 B2	10/2009		7,778,432 B 7,778,595 B		Larsen White et al.
	7,603,381 B2 7,609,179 B2		Burke et al. Diaz-Gutierrez et al.	7,778,632 B		Kurlander et al.
	7,613,264 B2		Wells et al.	7,779,353 B		Grigoriu et al.
	7,617,094 B2		Aoki et al.	7,783,283 B		Kuusinen et al.
	7,620,407 B1		Donald et al.	7,783,486 B 7,797,265 B		Rosser et al.
	7,620,549 B2		Di Cristo et al.	7,797,265 B		Brinker et al. Rieman et al.
	7,624,007 B2 7,627,481 B1	11/2009	Kuo et al.	7,801,721 B		Rosart et al.
	7,630,901 B2	12/2009		7,801,728 B		Ben-David et al.
	7,634,409 B2	12/2009	Kennewick et al.	7,801,729 B		
	7,634,413 B1		Kuo et al.	7,805,299 B 7,809,565 B		Coifman Coifman
	7,636,657 B2 7,640,160 B2	12/2009	Di Cristo et al.	7,809,569 B		Attwater et al.
	7,643,990 B1		Bellegarda	7,809,570 B		Kennewick et al.
	7,647,225 B2		Bennett et al.	7,809,610 B		
	7,649,454 B2		Singh et al.	7,809,744 B		Nevidomski et al.
	7,649,877 B2		Vieri et al.	7,818,165 B 7,818,176 B		Carlgren et al. Freeman et al.
	7,656,393 B2 7,657,424 B2		King et al. Bennett	7,818,170 B		Ferguson et al.
	7,664,558 B2		Lindahl et al.	7,822,608 B		Cross, Jr. et al.
	7,664,638 B2		Cooper et al.	7,823,123 B	2 10/2010	Sabbouh
	7,669,134 B1		Christie et al.	7,826,945 B 7,827,047 B		Zhang et al. Anderson et al.
	7,672,841 B2		Bennett	7,827,047 B		
	7,672,952 B2 7,673,238 B2		Isaacson et al. Girish et al.	7,831,426 B		
	7,673,340 B1		Cohen et al.	7,831,432 B		Bodin et al.
	7,676,026 B1		Baxter, Jr.	7,840,400 B		Lavi et al.
	7,676,365 B2		Hwang et al.	7,840,447 B 7,840,581 B		Kleinrock et al. Ross et al.
	7,676,463 B2 7,679,534 B2		Thompson et al. Kay et al.	7,848,924 B		Nurminen et al.
	7,680,649 B2	3/2010		7,848,926 B		Goto et al.
	7,681,126 B2	3/2010		7,853,444 B		Wang et al.
	7,683,886 B2	3/2010		7,853,445 B 7,853,574 B		Bachenko et al. Kraenzel et al.
	7,684,985 B2 7,684,990 B2		Dominach et al. Caskey et al.	7,853,577 B		
	7,684,991 B2	3/2010		7,853,664 B	1 12/2010	Wang et al.
	7,689,408 B2	3/2010	Chen et al.	7,869,999 B		
	7,689,409 B2		Heinecke	7,870,118 B 7,873,519 B		Jiang et al. Bennett
	7,689,421 B2 7,693,715 B2		Li et al. Hwang et al.	7,873,654 B		Bernard
	7,693,717 B2		Kahn et al.	7,877,705 B	2 1/2011	Chambers et al.
	7,693,719 B2		Chu et al.	7,880,730 B		Robinson et al.
	7,693,720 B2		Kennewick et al.	7,881,936 B 7,885,844 B		Longe et al. Cohen et al.
	7,698,131 B2 7,702,500 B2		Bennett Blaedow	7,890,330 B	2/2011	Ozkaragoz et al.
	7,702,500 B2 7,702,508 B2		Bennett	7,890,652 B	2 2/2011	Bull et al.
	7,706,510 B2	4/2010		7,899,666 B		Varone
	7,707,026 B2	4/2010		7,908,287 B 7,912,699 B		Katragadda Saraclar et al.
	7,707,027 B2 7,707,032 B2		Balchandran et al. Wang et al.	7,912,702 B		Bennett
	7,707,032 B2 7,707,221 B1		Dunning et al.	7,917,367 B		Di Cristo et al.
	7,707,267 B2		Lisitsa et al.	7,917,497 B		Harrison et al.
	7,710,262 B2	5/2010		7,920,678 B 7,920,682 B		Cooper et al. Byrne et al.
	7,711,129 B2 7,711,565 B1		Lindahl et al. Gazdzinski	7,920,857 B		Lau et al.
	7,711,672 B2	5/2010		7,925,525 B		
	7,712,053 B2	5/2010	Bradford et al.	7,925,610 B		Elbaz et al.
	7,716,056 B2		Weng et al.	7,929,805 B 7,930,168 B		Wang et al.
	7,720,674 B2		Kaiser et al.	7,930,108 B 7,930,183 B	2 4/2011	Weng et al. Odell et al.
	7,720,683 B1 7,721,301 B2		Vermeulen et al. Wong et al.	7,930,197 B		
	7,725,307 B2		Bennett	7,941,009 B		Li et al.
	7,725,318 B2	5/2010	Gavalda et al.	7,949,529 B		Weider et al.
	7,725,320 B2		Bennett	7,949,534 B		Davis et al.
	7,725,321 B2 7,725,838 B2		Bennett Williams	7,953,679 B 7,962,179 B		Chidlovskii et al. Huang
	7,729,904 B2		Bennett	7,962,179 B 7,974,844 B		Sumita
	7,729,916 B2		Coffman et al.	7,974,972 B		
	7,734,461 B2		Kwak et al.	7,983,915 B		Knight et al.

(56)		Referen	ces Cited	8,255,217			Stent et al.
	11.0	DATENT	DOCUMENTS	8,275,621 8,285,546		10/2012	Alewine et al.
	0.3.	PAIENI	DOCUMENTS	8,285,551			Gazdzinski
	7,983,917 B2	7/2011	Kennewick et al.	8,285,553	B2		Gazdzinski
	7,983,919 B2		Conkie	8,290,777			Nguyen et al.
	7,983,997 B2		Allen et al.	8,290,778			Gazdzinski
	7,984,062 B2		Dunning et al.	8,290,781 8,296,146			Gazdzinski Gazdzinski
	7,986,431 B2 7,987,151 B2		Emori et al. Schott et al.	8,296,153			Gazdzinski
	7,987,131 B2 7,987,244 B1		Lewis et al.	8,296,383		10/2012	
	7,991,614 B2		Washio et al.	8,301,456			Gazdzinski
	7,996,228 B2		Miller et al.	8,311,834			Gazdzinski
	7,999,669 B2		Singh et al.	8,332,224 8,345,665			Di Cristo et al. Vieri et al.
	8,000,453 B2 8,005,664 B2		Cooper et al. Hanumanthappa	8,352,268			Naik et al.
	8,005,679 B2		Jordan et al.	8,352,272			Rogers et al.
	8,006,180 B2		Tunning et al.	8,355,919			Silverman et al.
	8,015,006 B2		Kennewick et al.	8,359,234		1/2013	
	8,015,011 B2		Nagano et al.	8,370,158 8,371,503			Gazdzinski Gazdzinski
	8,015,144 B2		Zheng et al.	8,374,871	B2		Ehsani et al.
	8,019,271 B1 8,024,195 B2		Izdepski Mozer et al.	8,380,504			Peden et al.
	8,027,836 B2		Baker et al.	8,381,107			Rottler et al.
	8,032,383 B1		Bhardwaj et al.	8,396,714			Rogers et al.
	8,036,901 B2	10/2011		8,428,758			Naik et al.
	8,037,034 B2		Plachta et al.	8,447,612			Gazdzinski
	8,041,557 B2	10/2011		8,498,857 8,521,513			Kopparapu et al. Millett et al.
	8,041,570 B2		Mirkovic et al.	8,595,004			Koshinaka
	8,041,611 B2 8,046,363 B2		Kleinrock et al. Cha et al.	8,620,659			Di Cristo et al.
	8,050,500 B1		Batty et al.	8,645,137			Bellegarda et al.
	8,055,502 B2		Clark et al.	8,660,849			Gruber et al.
	8,055,708 B2		Chitsaz et al.	8,660,970			Fiedorowicz
	8,065,143 B2		Yanagihara	2001/0005859			Okuyama et al.
	8,065,155 B1		Gazdzinski	2001/0020259 2001/0027396		10/2001	Sekiguchi et al.
	8,065,156 B2		Gazdzinski	2001/0027390			Chin et al.
	8,069,046 B2 8,069,422 B2		Kennewick et al. Sheshagiri et al.	2001/0030660			Zainoulline
	8,073,681 B2		Baldwin et al.	2001/0032080	A1	10/2001	Fukada
	8,078,473 B1		Gazdzinski	2001/0041021			Boyle et al.
	8,082,153 B2	12/2011	Coffman et al.	2001/0042107		11/2001	
	8,082,498 B2		Salamon et al.	2001/0044724 2001/0047264			Hon et al. Roundtree
	8,090,571 B2		Elshishiny et al.	2001/0047204			Piehn et al.
	8,095,364 B2 8,099,289 B2		Longe et al. Mozer et al.	2001/0056347			Chazan et al.
	8,099,418 B2		Inoue et al.	2002/0001395			Davis et al.
	8,103,510 B2	1/2012		2002/0002039			Qureshey et al.
	8,107,401 B2		John et al.	2002/0002413		1/2002	
	8,112,275 B2		Kennewick et al.	2002/0002461			Tetsumoto Gaspard, II
	8,112,280 B2	2/2012		2002/0004703 2002/0010581			Euler et al.
	8,117,037 B2 8,122,353 B2	2/2012	Gazdzinski Bouta	2002/0010584			Schultz et al.
	8,131,557 B2		Davis et al.	2002/0010726			Rogson
	8,135,115 B1		Hogg, Jr. et al.	2002/0010798			Ben-Shaul et al.
	8,138,912 B2	3/2012	Singh et al.	2002/0013784			Swanson
	8,140,335 B2		Kennewick et al.	2002/0013852 2002/0015064		1/2002	Robotham et al.
	8,140,567 B2		Padovitz et al.	2002/0013004			Hinckley et al.
	8,150,694 B2 8,150,700 B2		Kennewick et al. Shin et al.	2002/0026315			Miranda
	8,155,956 B2		Cho et al.	2002/0026456		2/2002	Bradford
	8,156,005 B2	4/2012		2002/0031254			Lantrip et al.
	8,165,321 B2		Paquier et al.	2002/0031262			Imagawa et al.
	8,165,886 B1		Gagnon et al.	2002/0032564 2002/0032751			Ehsani et al. Bharadwaj
	8,166,019 B1		Lee et al.	2002/0032731			Morimoto et al.
	8,170,790 B2 8,179,370 B1		Lee et al. Yamasani et al.	2002/0035469			Holzapfel
	8,188,856 B2		Singh et al.	2002/0035474	A1		Alpdemir
	8,190,359 B2		Bourne	2002/0040359			Green et al.
	8,195,467 B2	6/2012	Mozer et al.	2002/0042707			Zhao et al.
	8,200,495 B2		Braho et al.	2002/0045438			Tagawa et al.
	8,204,238 B2	6/2012		2002/0045961			Gibbs et al.
	8,205,788 B1		Gazdzinski et al.	2002/0046025		4/2002	Hain Miller et al.
	8,219,115 B1 8,219,406 B2		Nelissen Yu et al.	2002/0046315 2002/0052730		5/2002	
	8,219,406 B2 8,219,407 B1		Roy et al.	2002/0032730			Charlesworth et al.
	8,219,608 B2		alSafadi et al.	2002/0052747			Sarukkai
	8,224,649 B2		Chaudhari et al.	2002/0054094			Matsuda
	8,239,207 B2		Seligman et al.	2002/0055844			L'Esperance et al.
	•		-				

(56)]	Referen	ces Cited	2003/0028380			Freeland et al.
	IIS P	ATENT	DOCUMENTS	2003/0033153 2003/0033214		2/2003 2/2003	Olson et al. Mikkelsen et al.
	0.5.1	ZILIVI	DOCOMENTS	2003/0037073		2/2003	Tokuda et al.
2002/0055934	A1	5/2002	Lipscomb et al.	2003/0037254		2/2003	Fischer et al.
2002/0059066			O'hagan	2003/0040908 2003/0046401		2/2003 3/2003	Yang et al.
2002/0059068			Rose et al.	2003/0046434		3/2003	Abbott et al. Flanagin et al.
2002/0065659 2002/0067308			Isono et al. Robertson	2003/0050781		3/2003	Tamura et al.
2002/0069063			Buchner et al.	2003/0051136		3/2003	Curtis et al.
2002/0069220		6/2002	Tran	2003/0061317		3/2003	Brown et al.
2002/0072816			Shdema et al.	2003/0074198 2003/0074457		4/2003 4/2003	Sussman Kluth
2002/0072908 2002/0077082			Case et al. Cruickshank	2003/0076301		4/2003	Tsuk et al.
2002/0077817		6/2002		2003/0078766	A1	4/2003	Appelt et al.
2002/0078041		6/2002		2003/0078780		4/2003	Kochanski et al.
2002/0080163		6/2002		2003/0078969 2003/0079024		4/2003 4/2003	Sprague et al. Hough et al.
2002/0085037 2002/0087508			Leavitt et al. Hull et al.	2003/0079024			Robbin et al.
2002/0091511			Hellwig et al.	2003/0080991	A1		Crow et al.
2002/0095286			Ross et al.	2003/0083878			Lee et al.
2002/0099547			Chu et al.	2003/0083884 2003/0088414			Odinak et al. Huang et al.
2002/0099552 2002/0103641			Rubin et al. Kuo et al.	2003/0090467		5/2003	Hohl et al.
2002/0103646			Kuo et al. Kochanski et al.	2003/0090474		5/2003	Schaefer
2002/0107684		8/2002		2003/0095096		5/2003	Robbin et al.
2002/0109709		8/2002		2003/0097210		5/2003 5/2003	Horst et al.
2002/0111810			Khan et al.	2003/0097379 2003/0097408		5/2003	Ireton Kageyama et al.
2002/0116082 2002/0116171			Gudorf Russell	2003/0098892		5/2003	Hiipakka
2002/0116171			Cooper et al.	2003/0099335		5/2003	Tanaka et al.
2002/0116189	A1	8/2002	Yeh et al.	2003/0101045		5/2003	Moffatt et al.
2002/0120697			Generous et al.	2003/0115060 2003/0115064		6/2003 6/2003	Junqua et al. Gusler et al.
2002/0120925 2002/0122053		8/2002	Logan Dutta et al.	2003/0115186		6/2003	Wilkinson et al.
2002/0122033			Woodward	2003/0115552		6/2003	Jahnke et al.
2002/0126097			Savolainen	2003/0117365		6/2003	Shteyn
2002/0128827			Bu et al.	2003/0120494 2003/0122787		6/2003 7/2003	Jost et al. Zimmerman et al.
2002/0128840 2002/0133347			Hinde et al. Schoneburg et al.	2003/0125/37		7/2003	Seme
2002/0133348			Pearson et al.	2003/0126559	A1	7/2003	Fuhrmann
2002/0135565			Gordon et al.	2003/0128819			Lee et al.
2002/0138254			Isaka et al.	2003/0133694 2003/0134678		7/2003 7/2003	Yeo Tanaka
2002/0138265 2002/0138270			Stevens et al. Bellegarda et al.	2003/0134070		7/2003	Talmor et al.
2002/0138270			Basson et al.	2003/0144846	A1	7/2003	Denenberg et al.
2002/0140679	A1	10/2002	Wen	2003/0145285		7/2003	Miyahira et al.
2002/0143533			Lucas et al.	2003/0147512 2003/0149557		8/2003 8/2003	Abburi Cox et al.
2002/0143542 2002/0143551		10/2002	Sharma et al.	2003/0149567		8/2003	Schmitz et al.
2002/0143331			Day et al.	2003/0149978		8/2003	Plotnick
2002/0151297	A1	10/2002	Remboski et al.	2003/0152203		8/2003	Berger et al.
2002/0152045			Dowling et al.	2003/0154081 2003/0157968		8/2003 8/2003	Chu et al. Boman et al.
2002/0152255 2002/0154160			Smith et al. Hosokawa	2003/0157308			Yamada et al.
2002/0154100			Nguyen	2003/0158737	A1	8/2003	Csicsatka
2002/0163544	A1		Baker et al.	2003/0160702		8/2003	Tanaka
2002/0164000			Cohen et al.	2003/0163316 2003/0164848		8/2003 9/2003	Addison et al. Dutta et al.
2002/0165918 2002/0169592		11/2002 11/2002		2003/0167318		9/2003	Robbin et al.
2002/0169605			Damiba et al.	2003/0167335	A1	9/2003	Alexander
2002/0173273	A1	11/2002	Spurgat et al.	2003/0171928			Falcon et al.
2002/0173889			Odinak et al.	2003/0171936 2003/0179222		9/2003 9/2003	Sall et al. Noma et al.
2002/0173961 2002/0173962		11/2002	Tang et al.	2003/0187655		10/2003	Dunsmuir
2002/0173966		11/2002		2003/0187844		10/2003	
2002/0177993			Veditz et al.	2003/0187925		10/2003	Inala et al.
2002/0184189			Hay et al.	2003/0190074 2003/0191645		10/2003 10/2003	Loudon et al. Zhou
2002/0189426 2002/0191029			Hirade et al. Gillespie et al.	2003/0191043		10/2003	Sokolsky
2002/0191029			Squibbs et al.	2003/0195741		10/2003	Mani et al.
2002/0198714	A1	12/2002	Zhou	2003/0197736		10/2003	Murphy
2002/0198715		12/2002		2003/0197744		10/2003	
2003/0001881 2003/0002632			Mannheimer et al. Bhogal et al.	2003/0200858 2003/0204392		10/2003 10/2003	Xie Finnigan et al.
2003/0002632			Ausems et al.	2003/0204392		10/2003	Wolf et al.
2003/0015403			Trans et al.	2003/0208756		11/2003	Macrae et al.
2003/0020760	Al	1/2003	Takatsu et al.	2003/0210266		11/2003	Cragun et al.
2003/0026402	A1	2/2003	Clapper	2003/0212961	A1	11/2003	Soin et al.

(56)	Referen	ices Cited	2004/0186713			Gomas et al.
U.S.	PATENT	DOCUMENTS	2004/0186714 2004/0186777	A1		Margiloff et al.
			2004/0193398			Chu et al.
2003/0214519 A1		Smith et al.	2004/0193420			Kennewick et al.
2003/0224760 A1	12/2003		2004/0193421 2004/0193426		9/2004	Maddux et al.
2003/0228863 A1 2003/0228909 A1		Vander Veen et al. Tanaka et al.	2004/0196256			Wobbrock et al.
2003/0229490 A1	12/2003		2004/0198436	A1	10/2004	
2003/0229616 A1	12/2003		2004/0199375			Ehsani et al.
2003/0233230 A1		Ammicht et al.	2004/0199387			Wang et al.
2003/0233237 A1		Garside et al.	2004/0199663 2004/0203520		10/2004	Horvitz et al. Schirtzinger et al.
2003/0233240 A1 2003/0234824 A1		Kaatrasalo Litwiller	2004/02053520		10/2004	
2003/0234824 A1 2003/0236663 A1		Dimitrova et al.	2004/0205671	A1	10/2004	Sukehiro et al.
2004/0001396 A1		Keller et al.	2004/0208302			Urban et al.
2004/0006467 A1		Anisimovich et al.	2004/0210634			Ferrer et al.
2004/0012556 A1		Yong et al.	2004/0215731 2004/0218451			Tzann-en Szeto Said et al.
2004/0013252 A1 2004/0021676 A1		Craner Chen et al.	2004/0220798			Chi et al.
2004/0022373 A1		Suder et al.	2004/0223485			Arellano et al.
2004/0023643 A1		Vander Veen et al.	2004/0224638			Fadell et al.
2004/0030556 A1		Bennett	2004/0225650 2004/0225746			Cooper et al. Niell et al.
2004/0030996 A1		Van Liempd et al.	2004/0223740		11/2004	
2004/0036715 A1 2004/0048627 A1		Warren Olvera-Hernandez	2004/0242286			Benco et al.
2004/0049391 A1		Polanyi et al.	2004/0243419		12/2004	
2004/0051729 A1		Borden, IV	2004/0249629		12/2004	
2004/0052338 A1		Celi, Jr. et al.	2004/0249667		12/2004	
2004/0054533 A1		Bellegarda	2004/0252119 2004/0252604			Hunleth et al. Johnson et al.
2004/0054534 A1 2004/0054535 A1		Junqua Mackie et al.	2004/0252966			Holloway et al.
2004/0054541 A1	3/2004	Kryze et al.	2004/0254791	A1		Coifman et al.
2004/0054690 A1		Hillerbrand et al.	2004/0254792			Busayapongchai et al.
2004/0055446 A1		Robbin et al.	2004/0257432			Girish et al.
2004/0056899 A1	3/2004		2004/0259536 2004/0263636			Keskar et al. Cutler et al.
2004/0059577 A1 2004/0059790 A1		Pickering Austin-Lane et al.	2004/0267825			Novak et al.
2004/0039790 A1 2004/0061717 A1		Menon et al.	2004/0268262			Gupta et al.
2004/0062367 A1		Fellenstein et al.	2005/0002507			Timmins et al.
2004/0064593 A1	4/2004	Sinclair et al.	2005/0015254			Beaman
2004/0069122 A1		Wilson	2005/0015772 2005/0022114			Saare et al. Shanahan et al.
2004/0070567 A1 2004/0070612 A1		Longe et al. Sinclair et al.	2005/0024341			Gillespie et al.
2004/0070012 A1 2004/0073427 A1		Moore	2005/0024345			Eastty et al.
2004/0073428 A1		Zlokarnik et al.	2005/0027385		2/2005	
2004/0076086 A1		Keller et al.	2005/0030175		2/2005	
2004/0078382 A1		Mercer et al.	2005/0031106 2005/0033582			Henderson Gadd et al.
2004/0085162 A1 2004/0086120 A1		Agarwal et al. Akins, III et al.	2005/00333771			Schmitter et al.
2004/0093213 A1		Conkie	2005/0043946	A1	2/2005	Ueyama et al.
2004/0093215 A1		Gupta et al.	2005/0043949			Roth et al.
2004/0094018 A1		Ueshima et al.	2005/0044569			Marcus
2004/0100479 A1		Nakano et al.	2005/0045373 2005/0049880		3/2005	Roth et al.
2004/0106432 A1 2004/0107169 A1	6/2004	Kanamori et al.	2005/0055403			Brittan
2004/01111266 A1		Coorman et al.	2005/0058438		3/2005	Hayashi
2004/0111332 A1		Baar et al.	2005/0060155			Chu et al.
2004/0114731 A1		Gillett et al.	2005/0071165 2005/0071332			Hofstader et al. Ortega et al.
2004/0122656 A1	6/2004		2005/0071437			Bear et al.
2004/0124583 A1 2004/0125088 A1		Landis Zimmerman et al.	2005/0074113			Mathew et al.
2004/0125922 A1		Specht	2005/0080613	A1	4/2005	Colledge et al.
2004/0127198 A1		Roskind et al.	2005/0080625			Bennett et al.
2004/0127241 A1		Shostak	2005/0080632			Endo et al.
2004/0128137 A1		Bush et al.	2005/0080780 2005/0086059			Colledge et al. Bennett
2004/0133817 A1 2004/0135701 A1	7/2004 7/2004	Yasuda et al.	2005/0086605			Ferrer et al.
2004/0135701 A1 2004/0135774 A1		La Monica	2005/0091118	A1	4/2005	Fano
2004/0136510 A1		Vander Veen	2005/0099398			Garside et al.
2004/0138869 A1		Heinecke	2005/0100214			Zhang et al.
2004/0145607 A1		Alderson	2005/0102144			Rapoport
2004/0153306 A1 2004/0160419 A1		Tanner et al. Padgitt	2005/0102614 2005/0102625			Brockett et al. Lee et al.
2004/0160419 A1 2004/0162741 A1		Flaxer et al.	2005/0102023			Aarskog
2004/0176958 A1		Salmenkaita et al.	2005/0108001			Bloechl et al.
2004/0177319 A1	9/2004		2005/0108338		5/2005	Simske et al.
2004/0178994 A1		Kairls, Jr.	2005/0108344		5/2005	Tafoya et al.
2004/0183833 A1	9/2004	Chua	2005/0114124	A1	5/2005	Liu et al.

(56)	Referen	ices Cited	2006/0041		2/2006 2/2006	Todhunter et al.
ЦS	PATENT	DOCUMENTS	2006/0041- 2006/0047-		3/2006	
0.5.		DOCUMENTS	2006/0050	865 A1		Kortum et al.
2005/0114140 A1	5/2005	Brackett et al.	2006/00533			Henderson et al.
2005/0119890 A1		Hirose	2006/0061- 2006/0067			Dunton Culbert et al.
2005/0119897 A1		Bennett et al.	2006/0067			Culbert et al.
2005/0125216 A1 2005/0125235 A1		Chitrapura et al. Lazay et al.	2006/0069			Tischer et al.
2005/0123255 A1 2005/0131951 A1		Zhang et al.	2006/0072:	248 A1		Watanabe et al.
2005/0132301 A1	6/2005		2006/0072		4/2006	
2005/0136949 A1		Barnes, Jr.	2006/0074			Waters et al.
2005/0138305 A1		Zellner	2006/0074 2006/0074			Zhang et al. Clark et al.
2005/0140504 A1 2005/0143972 A1		Marshall et al. Gopalakrishnan et al.	2006/0074			Gavalda et al.
2005/0144903 A1		Iso-Sipila	2006/0077		4/2006	
2005/0144070 A1		Cheshire	2006/0080			Campbell
2005/0144568 A1		Gruen et al.	2006/0085			Barquilla
2005/0148356 A1		Ferguson et al.	2006/0085- 2006/0095:			Nori et al. Chu et al.
2005/0149214 A1 2005/0149330 A1		Yoo et al. Katae	2006/0095		5/2006	
2005/0149330 A1 2005/0149332 A1		Kuzunuki et al.	2006/0095		5/2006	
2005/0149510 A1		Shafrir	2006/0100			Cozzi et al.
2005/0152558 A1		Van Tassel	2006/0100		5/2006	
2005/0152602 A1		Chen et al.	2006/0106 2006/0106			Brockett et al. Brockett et al.
2005/0154578 A1 2005/0162395 A1		Tong et al. Unruh	2006/0106			Brockett et al.
2005/0162593 A1 2005/0165607 A1		Di Fabbrizio et al.	2006/0111		5/2006	Cross et al.
2005/0166153 A1		Eytchison et al.	2006/01119			Maes et al.
2005/0177445 A1	8/2005	Church	2006/0116			Samuelsson et al.
2005/0181770 A1		Helferich	2006/0116 2006/0117		6/2006	Pickering et al.
2005/0182616 A1 2005/0182627 A1		Kotipalli Tanaka et al.	2006/0117			Ng et al.
2005/0182628 A1	8/2005		2006/0122			Bennett
2005/0182629 A1		Coorman et al.	2006/0122			Cross et al.
2005/0182630 A1		Miro et al.	2006/01299			Weber et al.
2005/0187773 A1		Filoche et al.	2006/0143/ 2006/0143			Koh et al. Gupta et al.
2005/0190970 A1		Griffin	2006/0148			Baker et al.
2005/0192801 A1 2005/0195429 A1		Lewis et al. Archbold	2006/0152			Knaven
2005/0196733 A1		Budra et al.	2006/0153			Girish et al.
2005/0201572 A1		Lindahl et al.	2006/0156			Sheshagiri et al.
2005/0203747 A1		Lecoeuche	2006/01613 2006/01679		7/2006	Rytivaara et al.
2005/0203991 A1		Kawamura et al.	2006/01670			Naik et al.
2005/0209848 A1 2005/0210394 A1	9/2005 9/2005	Crandall et al.	2006/0168			Hansen
2005/0216331 A1		Ahrens et al.	2006/0168			Hawkins et al.
2005/0222843 A1	10/2005	Kahn et al.	2006/0174			Deshpande
2005/0222973 A1	10/2005		2006/0184 2006/0187			Chung et al. Lin et al.
2005/0228665 A1		Kobayashi et al.	2006/0190			Tessel et al.
2005/0245243 A1 2005/0246350 A1		Zuniga Canaran	2006/0190			Yamada
2005/0246365 A1		Lowles et al.	2006/0193		8/2006	
2005/0271216 A1			2006/0195			Moon et al.
2005/0273337 A1		Erell et al.	2006/0195 2006/0197			Monne et al. Hotelling
2005/0273626 A1		Pearson et al. Nelson	2006/0197			Bawany
2005/0278297 A1 2005/0278643 A1		Ukai et al.	2006/0200		9/2006	Hoffberg et al.
2005/0278647 A1		Leavitt et al.	2006/0200			Corston-Oliver et al.
2005/0283364 A1		Longe et al.	2006/02003			Kim et al.
2005/0283726 A1	12/2005		2006/0205- 2006/0206-			Hawkins et al. Forstall et al.
2005/0288934 A1 2005/0288936 A1	12/2005	Omi Busayapongchai et al.	2006/02124			Backer et al.
2005/0289463 A1 2005/0289463 A1		Wu et al.	2006/02179			Goertzen et al.
2006/0001652 A1		Chiu et al.	2006/0221			Lindahl et al.
2006/0004570 A1	1/2006	Ju et al.	2006/02299		10/2006	
2006/0004744 A1		Nevidomski et al.	2006/0229			Aaron et al. Doulton
2006/0007174 A1	1/2006	Shen Nguyen et al.	2006/0234 2006/0235			Csicsatka et al.
2006/0009973 A1 2006/0013414 A1	1/2006		2006/0235			Wong et al.
2006/0015414 A1 2006/0015819 A1		Hawkins et al.	2006/0235			Betz et al.
2006/0018446 A1		Schmandt et al.	2006/0236			Bathiche et al.
2006/0018492 A1		Chiu et al.	2006/0239			Joseph et al.
2006/0025999 A1		Feng et al.	2006/0239-			Mao et al.
2006/0026233 A1		Tenembaum et al.	2006/0240		10/2006	
2006/0026521 A1 2006/0026535 A1		Hotelling et al. Hotelling et al.	2006/0242 2006/0246		10/2006	Wnek Nirhamo et al.
2006/0026333 A1 2006/0033724 A1		Chaudhri et al.	2006/02409			Caskey et al.
2006/0035632 A1		Sorvari et al.	2006/02524			Schrager
						J

(56)	Referen	ices Cited	2007/0118377			Badino et al.
II S	PATENT	DOCUMENTS	2007/0118378 2007/0121846			Skuratovsky Altberg et al.
0.5.	LAILIVI	DOCCIVILIVIS	2007/0124149			Shen et al.
2006/0253210 A1	11/2006	Rosenberg	2007/0124676			Amundsen et al.
2006/0253787 A1	11/2006		2007/0127888 2007/0128777			Hayashi et al. Yin et al.
2006/0256934 A1 2006/0262876 A1	11/2006 11/2006		2007/0128777			Nadarajah et al.
2006/0265208 A1		Assadollahi	2007/0130014			Altberg et al.
2006/0265503 A1		Jones et al.	2007/0130128			Garg et al.
2006/0265648 A1		Rainisto et al.	2007/0132738 2007/0135949			Lowles et al. Snover et al.
2006/0274051 A1 2006/0274905 A1		Longe et al. Lindahl et al.	2007/0136064			Carroll
2006/0277058 A1		J'maev et al.	2007/0136778			Birger et al.
2006/0282264 A1		Denny et al.	2007/0152978 2007/0155346			Kocienda et al.
2006/0282415 A1		Shibata et al.	2007/0155340			Mijatovic et al. Stohr et al.
2006/0282455 A1* 2006/0288024 A1	12/2006	Lee G06F 17/30864 Braica	2007/0157268			Girish et al.
2006/0293876 A1		Kamatani et al.	2007/0162296			Altberg et al.
2006/0293880 A1		Elshishiny et al.	2007/0162414 2007/0173233			Horowitz et al. Vander Veen et al.
2006/0293886 A1 2007/0003026 A1		Odell et al.	2007/0173233			Klassen et al.
2007/0003020 A1 2007/0004451 A1		Hodge et al. C. Anderson	2007/0174188		7/2007	
2007/0005849 A1	1/2007	Oliver	2007/0174396			Kumar et al.
2007/0006098 A1		Krumm et al.	2007/0180383 2007/0182595		8/2007 8/2007	Naik Ghasabian
2007/0011154 A1 2007/0016563 A1	1/2007	Musgrove et al. Omoigui	2007/0182595			Meadows et al.
2007/0016365 A1		Johnson et al.	2007/0185754	A1	8/2007	Schmidt
2007/0021956 A1	1/2007	Qu et al.	2007/0185831			Churcher
2007/0025704 A1		Tsukazaki et al.	2007/0185917 2007/0188901			Prahlad et al. Heckerman et al.
2007/0026852 A1 2007/0027732 A1		Logan et al. Hudgens	2007/0192027			Lee et al.
2007/0028009 A1		Robbin et al.	2007/0192105			Neeracher et al.
2007/0032247 A1	2/2007	Shaffer et al.	2007/0192293		8/2007	
2007/0033003 A1		Morris	2007/0192403 2007/0192744			Heine et al. Reponen
2007/0038436 A1 2007/0038609 A1	2/2007	Cristoe et al.	2007/0198269			Braho et al.
2007/0040813 A1		Kushler et al.	2007/0198273			Hennecke
2007/0041361 A1		Iso-Sipila	2007/0198566 2007/0207785		8/2007	Sustik Chatterjee et al.
2007/0043568 A1 2007/0044038 A1		Dhanakshirur et al. Horentrup et al.	2007/0207783			Subramanian et al.
2007/0044038 A1 2007/0046641 A1	3/2007		2007/0208579		9/2007	Peterson
2007/0047719 A1		Dhawan et al.	2007/0208726			Krishnaprasad et al.
2007/0050184 A1		Drucker et al.	2007/0211071 2007/0213099		9/2007	Slotznick et al.
2007/0050191 A1 2007/0050393 A1		Weider et al. Vogel et al.	2007/0213857			Bodin et al.
2007/0050712 A1		Hull et al.	2007/0219777			Chu et al.
2007/0052586 A1		Horstemeyer	2007/0219803 2007/0225980			Chiu et al. Sumita
2007/0055493 A1 2007/0055514 A1	3/2007	Lee Beattie et al.	2007/0225980			Milstein et al.
2007/0055525 A1		Kennewick et al.	2007/0226652			Kikuchi et al.
2007/0055529 A1		Kanevsky et al.	2007/0229323			Plachta et al.
2007/0058832 A1		Hug et al.	2007/0233490 2007/0233725		10/2007 10/2007	Michmerhuizen et al.
2007/0061487 A1 2007/0061754 A1		Moore et al. Ardhanari et al.	2007/0238520			Kacmarcik
2007/0067173 A1		Bellegarda	2007/0239429			Johnson et al.
2007/0067272 A1		Flynt et al.	2007/0244702 2007/0255435			Kahn et al. Cohen et al.
2007/0073540 A1 2007/0073541 A1	3/2007	Hirakawa et al.	2007/0255979			Deily et al.
2007/0080936 A1		Tsuk et al.	2007/0260460	A1	11/2007	Hyatt
2007/0083467 A1	4/2007	Lindahl et al.	2007/0260595			Beatty et al.
2007/0083623 A1		Nishimura et al.	2007/0260822 2007/0261080		11/2007 11/2007	
2007/0088556 A1 2007/0089132 A1		Andrew Qureshey et al.	2007/0265831			Dinur et al.
2007/0089135 A1		Qureshey et al.	2007/0271510			Grigoriu et al.
2007/0093277 A1		Cavacuiti et al.	2007/0274468 2007/0276651		11/2007	Cai Bliss et al.
2007/0094026 A1 2007/0098195 A1		Ativanichayaphong et al. Holmes	2007/0276714			Beringer
2007/0098193 A1 2007/0100206 A1		Lin et al.	2007/0276810	A1	11/2007	Rosen
2007/0100602 A1	5/2007	Kim	2007/0282595			Tunning et al.
2007/0100635 A1		Mahajan et al.	2007/0285958			Platchta et al.
2007/0100790 A1 2007/0100883 A1		Cheyer et al. Rose et al.	2007/0286363 2007/0288241			Burg et al. Cross et al.
2007/0106491 A1*		Carter G06F 17/277	2007/0288449			Datta et al.
		704/4	2007/0291108	A1		Huber et al.
2007/0106512 A1		Acero et al.	2007/0294077			Narayanan et al.
2007/0106513 A1 2007/0106674 A1	5/2007 5/2007	Boillot et al. Agrawal et al.	2007/0294263 2007/0299664			Punj et al. Peters et al.
2007/0100074 AT 2007/0116195 AT		Thompson et al.	2008/0010355			Vieri et al.
		1				

(56)	Referen	ces Cited	2008/0165144			Forstall et al.
T	I C DATENIT	DOCUMENTS	2008/0165980 2008/0165994			Pavlovic et al. Caren et al.
C	J.S. PATENT	DOCUMENTS	2008/0167013			Novick et al.
2008/0012950	A1 1/2008	Lee et al.	2008/0167858			Christie et al.
2008/0013751		Hiselius	2008/0168366			Kocienda et al.
2008/0015864		Ross et al.	2008/0183473			Nagano et al.
2008/0016575		Vincent et al.	2008/0189099 2008/0189106			Friedman et al. Low et al.
2008/0021708 A 2008/0022208 A		Bennett et al.	2008/0189110			Freeman et al.
2008/0031475		Goldstein	2008/0189114			Fail et al.
2008/0034032		Healey et al.	2008/0189606		8/2008	
2008/0034044		Bhakta et al.	2008/0195601			Ntoulas et al.
2008/0040339		Zhou et al.	2008/0195940 2008/0201306			Gail et al. Cooper et al.
2008/0042970 A 2008/0043936 A		Liang et al. Liebermann	2008/0201375			Khedouri et al.
2008/0043943		Sipher et al.	2008/0204379			Perez-Noguera
2008/0046239	A1 2/2008	Boo	2008/0207176			Brackbill et al.
2008/0046422		Lee et al.	2008/0208585 2008/0208587			Ativanichayaphong et al. Ben-David et al.
2008/0046948 A 2008/0048908 A		Verosub	2008/0208387		9/2008	
2008/0052063		Bennett et al.	2008/0221866			Katragadda et al.
2008/0052073		Goto et al.	2008/0221880			Cerra et al.
2008/0052077		Bennett et al.	2008/0221889			Cerra et al.
2008/0056459		Vallier et al.	2008/0221903 2008/0222118			Kanevsky et al. Scian et al.
2008/0056579 A 2008/0059190 A		Guna Chu et al.	2008/0228463			Mori et al.
2008/0059190 1			2008/0228485		9/2008	
2008/0059876		Hantler et al.	2008/0228490			Fischer et al.
2008/0065382	A1 3/2008	Gerl et al.	2008/0228496			Yu et al.
2008/0071529		Silverman et al.	2008/0228928 2008/0229185		9/2008	Donelli et al.
2008/0071544 A 2008/0075296 A		Beaufays et al. Lindahl et al.	2008/0229183			Goldberg et al.
2008/0073296 1		Agapi et al.	2008/0240569			Tonouchi
2008/0077391		Chino et al.	2008/0242280			Shapiro et al.
2008/0077393		Gao et al.	2008/0244390			Fux et al.
2008/0077406		Ganong, III	2008/0247519 2008/0248797			Abella et al. Freeman et al.
2008/0077859 1 2008/0079566 1		Schabes et al.	2008/0248797			Kim et al.
2008/0079300 1		Singh et al. Mallett et al.	2008/0253577			Eppolito
2008/0082338		O''Neil et al.	2008/0255845			Bennett
2008/0082390		Hawkins et al.	2008/0256613		0/2008	
2008/0082576		Bodin et al.	2008/0259022 2008/0262838			Mansfield et al. Nurminen et al.
2008/0082651 A 2008/0091406 A		Singh et al. Baldwin et al.	2008/0262846			Burns et al.
2008/0091406 1		Rempel et al.	2008/0270118			Kuo et al.
2008/0091443		Strope et al.	2008/0270138			Knight et al.
2008/0096726		Riley et al.	2008/0270139			Shi et al.
2008/0097937		Hadjarian	2008/0270140 2008/0281510			Hertz et al. Shahine
2008/0098302 A 2008/0100579 A		Roose Robinson et al.	2008/0292112			Valenzuela et al.
2008/0100379			2008/0294651		1/2008	Masuyama et al.
2008/0114480			2008/0298766			Wen et al.
2008/0114598		Prieto et al.	2008/0300871		2/2008	
2008/0114841		Lambert	2008/0300878 2008/0306727			Bennett Thurmair et al.
2008/0118143 A 2008/0120102 A		Gordon et al.	2008/0300727			Hermansen et al.
2008/0120102		Jordan et al.	2008/0313335	A1 1	2/2008	Jung et al.
2008/0120342	A1 5/2008	Reed et al.	2008/0319753			Hancock
2008/0122796		Jobs et al.	2008/0319763 2009/0003115			Di Fabbrizio et al. Lindahl et al.
2008/0126100		Grost et al.	2009/0005113			Van Heugten
2008/0129520 A 2008/0130867 A		Bowen	2009/0005891			Batson et al.
2008/0131006			2009/0006097			Etezadi et al.
2008/0133215	A1 6/2008	Sarukkai	2009/0006099			Sharpe et al.
2008/0133228			2009/0006100 2009/0006343			Badger et al. Platt et al.
2008/0133241 2 2008/0140413 2		Baker et al. Millman et al.	2009/0006488			Lindahl et al.
2008/0140416		Shostak	2009/0006671			Batson et al.
2008/0140652		Millman et al.	2009/0007001			Morin et al.
2008/0140657	A1 6/2008	Azvine et al.	2009/0011709			Akasaka et al.
2008/0141180		Reed et al.	2009/0012748			Beish et al.
2008/0146290		Sreeram et al.	2009/0012775 2009/0018828			El Hady et al.
2008/0147408 2 2008/0147411 2		Da Palma et al. Dames et al.	2009/0018828			Nakadai et al. Cooper et al.
2008/0154600		Tian et al.	2009/0018839			Cooper et al.
2008/0154612		Evermann et al.	2009/0018840			Lutz et al.
2008/0157867	A1 7/2008	Krah	2009/0022329			Mahowald
2008/0163131	A1 7/2008	Hirai et al.	2009/0028435	A1	1/2009	Wu et al.

(56) Refere	nces Cited	2009/0239552 A1		Churchill et al.
IIS PATENT	T DOCUMENTS	2009/0240485 A1 2009/0241760 A1	10/2009	Dalal et al. Georges
0.5. 171121(1	Decements	2009/0247237 A1	10/2009	Mittleman et al.
2009/0030800 A1 1/2009	Grois	2009/0248182 A1		Logan et al.
	Johnson et al.	2009/0249198 A1 2009/0252350 A1	10/2009	
	Agapi et al. Yam et al.	2009/0252550 AT 2009/0253457 AT	10/2009	
	Burckart et al.	2009/0253463 A1	10/2009	Shin et al.
	Murray	2009/0254339 A1	10/2009	Seguin
	Cho et al.	2009/0254345 A1 2009/0271109 A1	10/2009	Fleizach et al. Lee et al.
	Lance et al. Kocienda	2009/0271105 A1 2009/0271175 A1	10/2009	
	Bull et al.	2009/0271176 A1	10/2009	Bodin et al.
	Bull et al.	2009/0271178 A1	10/2009	
	Bull et al.	2009/0274315 A1 2009/0281789 A1	11/2009	Carnes et al. Waibel et al.
	Wu et al. Maegawa	2009/0287583 A1	11/2009	
	Staszak	2009/0290718 A1		Kahn et al.
	Bradford et al.	2009/0296552 A1		Hicks et al.
	Lawson-Tancred	2009/0299745 A1 2009/0299849 A1	12/2009 12/2009	Kennewick et al. Cao et al.
	Daraselia Wouters et al.	2009/0300488 A1	12/2009	Salamon et al.
	Brenner et al.	2009/0304198 A1		Herre et al.
	Bradford et al.	2009/0306967 A1 2009/0306980 A1	12/2009 12/2009	Nicolov et al. Shin
	Rhodes et al. Huang et al.	2009/0306980 A1 2009/0306981 A1	12/2009	
	Zhao et al.	2009/0306985 A1	12/2009	Roberts et al.
	Gleason et al.	2009/0306989 A1	12/2009	
	Lindahl et al.	2009/0307162 A1 2009/0307201 A1	12/2009 12/2009	Bui et al. Dunning et al.
2009/0092260 A1 4/2009 2009/0092261 A1 4/2009	Powers	2009/0307201 A1 2009/0313026 A1	12/2009	
	Costa et al.	2009/0313544 A1	12/2009	Wood et al.
	Koch et al.	2009/0313564 A1	12/2009	Rottler et al.
	Mozer et al.	2009/0316943 A1 2009/0318198 A1	12/2009 12/2009	Frigola Munoz et al.
2009/0100049 A1 4/2009 2009/0100454 A1 4/2009	Cao Weber	2009/0318198 A1 2009/0319266 A1	12/2009	
	Ferrieux	2009/0326936 A1	12/2009	
	Tom et al.	2009/0326938 A1		Marila et al.
	O'Keefe	2009/0326949 A1 2009/0327977 A1	12/2009	Douthitt et al. Bachfischer et al.
	Thorn Rhett	2010/0004931 A1		Ma et al.
	Cardie et al.	2010/0005081 A1		Bennett
	Jung et al.	2010/0023318 A1 2010/0023320 A1		Lemoine Di Cristo et al.
	Iwasaki Lu et al.	2010/0023320 A1 2010/0030928 A1		Conroy et al.
	Luke et al.	2010/0031143 A1	2/2010	Rao et al.
2009/0138736 A1 5/2009	Chin	2010/0036655 A1		Cecil et al.
	Schultz et al.	2010/0036660 A1 2010/0042400 A1		Bennett Block et al.
	Haddad et al. Liang et al.	2010/0049514 A1		Kennewick et al.
	Ghassabian	2010/0054512 A1	3/2010	
	Jacoby et al.	2010/0057457 A1 2010/0057643 A1	3/2010 3/2010	Ogata et al.
	Kennewick et al. Wood et al.	2010/0037643 A1 2010/0060646 A1	3/2010	Unsal et al.
2009/0157382 A1 6/2009		2010/0063804 A1	3/2010	Sato et al.
2009/0157384 A1 6/2009	Toutanova et al.	2010/0063825 A1		Williams et al.
	Bennett	2010/0063961 A1 2010/0064113 A1		Guiheneuf et al. Lindahl et al.
	Orlassino et al. Cheyer	2010/0067723 A1		Bergmann et al.
	Pettersson et al.	2010/0070899 A1		Hunt et al.
	Fadell et al.	2010/0076760 A1 2010/0080398 A1		Kraenzel et al. Waldmann
	Fadell et al. Kennewick et al.	2010/0080398 A1 2010/0080470 A1		Deluca et al.
	Girish et al.	2010/0081456 A1		Singh et al.
	Kocienda et al.	2010/0081487 A1		Chen et al.
	Ehsani et al.	2010/0082327 A1 2010/0082328 A1		Rogers et al. Rogers et al.
	Girish et al. Reznik et al.	2010/0082328 A1 2010/0082329 A1		Silverman et al.
	Singh et al.	2010/0082346 A1	4/2010	Rogers et al.
2009/0192782 A1 7/2009	Drewes	2010/0082347 A1		Rogers et al.
	Kwon	2010/0082348 A1		Silverman et al.
	Mozer et al. Stephanick et al.	2010/0082349 A1 2010/0082970 A1		Bellegarda et al. Lindahl et al.
	Zheng et al.	2010/0082570 A1 2010/0086152 A1		Rank et al.
	Boerries et al.	2010/0086153 A1	4/2010	Hagen et al.
	Wang et al.	2010/0086156 A1		Rank et al.
2009/0228281 A1 9/2009 2009/0234655 A1 9/2009	Singleton et al. Kwon	2010/0088020 A1 2010/0088093 A1		Sano et al. Lee et al.
2003/023 1 033 A1 3/2009	Kwon	2010/0000093 A1	7/2010	Lee et al.

(56)	Referei	nces Cited	2011/0083079 A1		Farrell et al.
U.S.	PATENT	DOCUMENTS	2011/0087491 A1 2011/0090078 A1	4/2011	Wittenstein et al. Kim et al.
2010/0000100 41	4/2010	T :- J-1-1	2011/0093261 A1 2011/0099000 A1		Angott Rai et al.
2010/0088100 A1 2010/0100212 A1		Lindahl Lindahl et al.	2011/0103682 A1		Chidlovskii et al.
2010/0100384 A1	4/2010	Ju et al.	2011/0106736 A1		Aharonson et al.
2010/0103776 A1	4/2010		2011/0112827 A1 2011/0112921 A1		Kennewick et al. Kennewick et al.
2010/0106498 A1*	4/2010	Morrison	2011/0112921 A1 2011/0119049 A1		Ylonen
2010/0106500 A1	4/2010	McKee et al.	2011/0119051 A1		Li et al.
2010/0125460 A1		Mellott et al.	2011/0125540 A1 2011/0130958 A1		Jang et al. Stahl et al.
2010/0131273 A1 2010/0138215 A1		Aley-Raz et al. Williams	2011/0131036 A1		DiCristo et al.
2010/0138213 A1 2010/0138224 A1		Bedingfield, Sr.	2011/0131038 A1	6/2011	Oyaizu et al.
2010/0138416 A1	6/2010	Bellotti	2011/0131045 A1		Cristo et al.
2010/0142740 A1		Roerup Ju et al.	2011/0143811 A1 2011/0144973 A1		Rodriguez Bocchieri et al.
2010/0145694 A1 2010/0145700 A1		Kennewick et al.	2011/0144999 A1		Jang et al.
2010/0146442 A1		Nagasaka et al.	2011/0161076 A1		Davis et al.
2010/0161313 A1		Karttunen	2011/0161309 A1 2011/0175810 A1		Lung et al. Markovic et al.
2010/0161554 A1 2010/0164897 A1		Datuashvili et al. Morin et al.	2011/0179002 A1		Dumitru et al.
2010/0169075 A1		Raffa et al.	2011/0179372 A1		Moore et al.
2010/0169097 A1		Nachman et al.	2011/0184721 A1 2011/0184730 A1		Subramanian et al. LeBeau et al.
2010/0179991 A1 2010/0185448 A1		Lorch et al. Meisel	2011/0194730 A1 2011/0191271 A1		Baker et al.
2010/0183448 A1 2010/0204986 A1		Kennewick et al.	2011/0191344 A1	8/2011	Jin et al.
2010/0211199 A1	8/2010	Naik et al.	2011/0195758 A1		Damale et al.
2010/0217604 A1		Baldwin et al.	2011/0201387 A1 2011/0208511 A1*		Paek et al. Sikstrom G06F 17/2785
2010/0222098 A1 2010/0228540 A1	9/2010 9/2010	Bennett	2011/0200311 111	0/2011	704/9
2010/0228691 A1	9/2010	Yang et al.	2011/0218855 A1		Cao et al.
2010/0231474 A1		Yamagajo et al.	2011/0224972 A1 2011/0231182 A1		Millett et al. Weider et al.
2010/0235167 A1 2010/0235341 A1		Bourdon Bennett	2011/0231182 A1		Kennewick et al.
2010/0250542 A1		Fujimaki	2011/0231474 A1		Locker et al.
2010/0250599 A1		Schmidt et al.	2011/0238408 A1 2011/0260861 A1		Larcheveque et al. Singh et al.
2010/0257160 A1 2010/0257478 A1	10/2010	Cao Longe et al.	2011/0264643 A1	10/2011	
2010/0262599 A1	10/2010		2011/0274303 A1		Filson et al.
2010/0268539 A1		Xu et al.	2011/0276598 A1 2011/0279368 A1		Kozempel Klein et al.
2010/0274753 A1 2010/0277579 A1		Liberty et al. Cho et al.	2011/02/9308 A1 2011/0288861 A1		Kurzweil et al.
2010/0277379 A1 2010/0278320 A1		Arsenault et al.	2011/0298585 A1	12/2011	Barry
2010/0278453 A1	11/2010	King	2011/0306426 A1		Novak et al.
2010/0280983 A1 2010/0281034 A1		Cho et al. Petrou et al.	2011/0314404 A1 2012/0002820 A1		Kotler et al. Leichter
2010/0281034 A1 2010/0286985 A1		Kennewick et al.	2012/0011138 A1		Dunning et al.
2010/0299133 A1	11/2010	Kopparapu et al.	2012/0016678 A1		Gruber et al.
2010/0299142 A1		Freeman et al.	2012/0020490 A1 2012/0022787 A1		Leichter LeBeau et al.
2010/0302056 A1 2010/0305807 A1		Dutton et al. Basir et al.	2012/0022857 A1	1/2012	Baldwin et al.
2010/0305947 A1		Schwarz et al.	2012/0022860 A1		Lloyd et al.
2010/0312547 A1		Van Os et al.	2012/0022868 A1 2012/0022869 A1		LeBeau et al. Lloyd et al.
2010/0312566 A1 2010/0318576 A1	12/2010	Odinak et al. Kim	2012/0022870 A1		Kristjansson et al.
2010/0322438 A1	12/2010		2012/0022872 A1		Gruber et al.
2010/0324905 A1		Kurzweil et al.	2012/0022874 A1 2012/0022876 A1		Lloyd et al. LeBeau et al.
2010/0325588 A1 2010/0332224 A1		Reddy et al. Mäkelä et al.	2012/0022876 A1 2012/0023088 A1		Cheng et al.
2010/0332221 A1	12/2010		2012/0034904 A1		LeBeau et al.
2010/0332280 A1		Bradley et al.	2012/0035908 A1 2012/0035924 A1		Lebeau et al. Jitkoff et al.
2010/0332348 A1 2010/0332976 A1	12/2010	Cao Fux et al.	2012/0035924 A1 2012/0035931 A1		LeBeau et al.
2010/0332970 A1 2011/0002487 A1		Panther et al.	2012/0035932 A1	2/2012	Jitkoff et al.
2011/0010178 A1		Lee et al.	2012/0042343 A1		Laligand et al.
2011/0022292 A1 2011/0022952 A1		Shen et al. Wu et al.	2012/0053815 A1 2012/0078627 A1		Montanari et al. Wagner
2011/0022932 A1 2011/0033064 A1		Johnson et al.	2012/0082317 A1		Pance et al.
2011/0038489 A1	2/2011	Visser et al.	2012/0084086 A1		Gilbert et al.
2011/0047072 A1		Ciurea Myropo et al	2012/0108221 A1		Thomas et al.
2011/0047161 A1 2011/0054901 A1		Myaeng et al. Oin et al.	2012/0136572 A1 2012/0137367 A1		Norton Dupont et al.
2011/0054501 A1 2011/0060584 A1		Ferrucci et al.	2012/0149394 A1		Singh et al.
2011/0060587 A1	3/2011	Phillips et al.	2012/0150580 A1	6/2012	Norton
2011/0060807 A1		Martin et al.	2012/0158293 A1		Burnham Burnham et al.
2011/0076994 A1 2011/0082688 A1		Kim et al. Kim et al.	2012/0158422 A1 2012/0173464 A1		Burnham et al. Tur et al.
2011/0002000 A1	7/2011	ixiii et ai.	2012/01/3707 AI	112012	ita ot ai.

(56)	Referei	nces Cited	EP	0845894 A2	6/1998
	U.S. PATENT	DOCUMENTS	EP EP	0863453 A1 0863469 A2	9/1998 9/1998
2012/01052	25 41 5/2012	C " 1	EP EP	0867860 A2 0869697 A2	9/1998 10/1998
2012/01852 2012/01979		Gajic et al. Kessel et al.	EP	0559349 B1	1/1999
2012/02145			EP	0889626 A1	1/1999
2012/02213		Wang et al.	EP EP	0917077 A2 0691023 B1	5/1999
2012/02457 2012/02459		Story, Jr. et al. Gruber et al.	EP EP	0946032 A2	9/1999 9/1999
2012/02459		Gruber et al.	EP	0981236 A1	2/2000
2012/02716	25 A1 10/2012	Bernard	EP	0982732 A1	3/2000 3/2000
2012/02716 2012/02716		Ljolje Aravamudan et al.	EP EP	0984430 A2 1001588 A2	5/2000
2012/02/10		Mallett et al.	EP	1014277 A1	6/2000
2012/02966	49 A1 11/2012	Bansal et al.	EP	1028425 A2	8/2000
2012/03093 2012/03106		Gruber et al. Cao et al.	EP EP	1028426 A2 1047251 A2	8/2000 10/2000
2012/03100		Cannistraro et al.	EP	1076302 A1	2/2001
2012/03115	83 A1 12/2012	Gruber et al.	EP	1091615 A1	4/2001
2012/03115 2012/03115		Gruber et al. Gruber et al.	EP EP	1229496 A2 1233600 A2	8/2002 8/2002
2012/03113		Jaiswal	EP	1245023 A1	10/2002
2012/03306	61 A1 12/2012	Lindahl	EP	1311102 A1	5/2003
2013/00066 2013/01105		Lindahl	EP EP	1315084 A1 1315086 A1	5/2003 5/2003
2013/01103		Gruber et al. Guzzoni et al.	EP	1347361 A1	9/2003
2013/01105	18 A1 5/2013	Gruber et al.	EP	1379061 A2	1/2004
2013/01105		Cheyer et al.	EP EP	1432219 A1 1517228 A2	6/2004 3/2005
2013/01105 2013/01113		Cheyer et al. Gruber et al.	EP	1536612 A1	6/2005
2013/01114	87 A1 5/2013	Cheyer et al.	EP	1566948 A1	8/2005
2013/01159		Gruber et al.	EP EP	1693829 A1 1818786 A1	8/2006 8/2007
2013/01170 2013/01850		Chen et al. Gruber et al.	EP	1892700 A1	2/2008
2013/01850	81 A1 7/2013	Cheyer et al.	EP	1912205 A2	4/2008
2013/02251			EP EP	1939860 A1 0651543 B1	7/2008 9/2008
2013/02460	48 A1 9/2013	Nagase G06F 17/2223 704/9	EP	1909263 B1	1/2009
2013/03254	43 A1 12/2013	Begeja et al.	EP	1335620 B1	3/2009
2014/01525	77 A1 6/2014	Yuen et al.	EP EP	2094032 A1 2109295 A1	8/2009 10/2009
,	EODEIGN DATE	NT DOCUMENTS	EP	1720375 B1	7/2010
	FOREIGN PALE	INI DOCUMENTS	EP	2205010 A1	7/2010
CN	1864204 A	11/2006	EP EP	2400373 A1 2431842 A2	12/2011 3/2012
DE	3837590 A1	5/1990	GB	2293667 A	4/1996
DE DE	4126902 A1 4334773 A1	2/1992 4/1994	GB	2310559 A	8/1997
DE	4445023 A1	6/1996	GB GB	2342802 A 2384399 A	4/2000 7/2003
	-2004-029203 A1 19841541 B4	12/2005	GB	2402855 A	12/2004
DE EP	0030390 A1	12/2007 6/1981	GB	2445436 A	7/2008
EP	0057514 A1	8/1982	IT JP	FI20010199 A1 57-41731 A	4/2003 3/1982
EP	0138061 A1	4/1985	JР	59-57336 A	4/1984
EP EP	0218859 A2 0262938 A1	4/1987 4/1988	JP JP	2-86397 A	3/1990
EP	0138061 B1	6/1988	JР	2-153415 A 3-113578 A	6/1990 5/1991
EP EP	0283995 A2 0293259 A2	9/1988 11/1988	JP	4-236624 A	8/1992
EP EP	0293239 A2 0299572 A2	1/1988	JP JP	5-79951 A	3/1993
EP	0313975 A2	5/1989	JР	5-165459 A 5-293126 A	7/1993 11/1993
EP EP	0314908 A2	5/1989 8/1989	JР	6-19965 A	1/1994
EP EP	0327408 A2 0389271 A2	9/1990	JP JP	6-69954 A	3/1994 9/1994
EP	0411675 A2	2/1991	JP	6-274586 A 6-332617 A	12/1994
EP EP	0441089 A2 0464712 A2	8/1991 1/1992	JP	7-199379 A	8/1995
EP	0404712 A2 0476972 A2	3/1992	JP JP	7-320051 A	12/1995
EP	0558312 A1	9/1993	JP JP	7-320079 A 8-63330 A	12/1995 3/1996
EP EP	0559349 A1 0570660 A1	9/1993 11/1993	JP	8-185265 A	7/1996
EP	0575146 A2	12/1993	JР	8-227341 A	9/1996
EP	0578604 A1	1/1994	JP JP	9-18585 A 9-55792 A	1/1997 2/1997
EP EP	0586996 A2 0609030 A1	3/1994 8/1994	JР	9-259063 A	10/1997
EP EP	0609030 A1 0651543 A2	5/1994 5/1995	JР	9-265457 A	10/1997
EP	0679005 A1	10/1995	JР	10-105324 A	4/1998
EP EP	0795811 A1 0476972 B1	9/1997 5/1998	JP JP	11-6743 A 11-45241 A	1/1999 2/1999
LI	V-7/U5/Z DI	J/ 1770	31	11-732 7 1 A	ム・エノフフ

(56)	Referen	ces Cited	WO	00/68936 A1	11/2000
	EODELGNI DATEN	UT DOCUMENTS	WO WO	01/06489 A1	1/2001
	FOREIGN PALE	NT DOCUMENTS	WO	01/30046 A2 01/60435 A3	4/2001 4/2001
***			WO	01/33569 A1	5/2001
JР	2000-99225 A	4/2000	WO	01/35399 A1 01/35391 A1	5/2001
JР	2000-134407 A	5/2000	WO	01/46946 A1	6/2001
JР	2000-339137 A	12/2000	wo	01/65413 A1	9/2001
JР	2001-56233 A	2/2001	WO	01/67753 A1	9/2001
JP	2001-125896 A	5/2001	wo	02/25610 A1	3/2002
JР	2001-148899 A	5/2001	WO	02/31814 A1	4/2002
JP JP	2002-14954 A	1/2002 1/2002	WO	02/37469 A2	5/2002
JР	2002-024212 A 2002-82893 A	3/2002	WO	02/073603 A1	9/2002
JР	2002-82893 A 2003-44091 A	2/2003	WO	03/003152 A2	1/2003
JP	2003-84877 A	3/2003	WO	03/003765 A1	1/2003
JP	2003-517158 A	5/2003	WO	03/023786 A2	3/2003
JР	2003-233568 A	8/2003	WO	03/041364 A2	5/2003
JР	2004-48804 A	2/2004	WO	03/049494 A1	6/2003
JP	2004-505525 A	2/2004	WO	03/056789 A1	7/2003
JP	2004-152063 A	5/2004	WO	03/067202 A2	8/2003
JP	2005-86624 A	3/2005	WO	03/084196 A1	10/2003
JP	2005-92441 A	4/2005	WO	2004/008801 A1	1/2004
JP	2005-181386 A	7/2005	WO	2004/025938 A1	3/2004
JP	2005-221678 A	8/2005	WO	2004/047415 A1	6/2004
JР	2005-311864 A	11/2005	WO	2004/055637 A2	7/2004
JР	2006-146008 A	6/2006	WO	2004/057486 A1	7/2004
JP	2007-4633 A	1/2007	WO	2004/061850 A1	7/2004
JP	2008-26381 A	2/2008	WO WO	2004/084413 A2	9/2004
JP	2008-97003 A	4/2008	WO	2005/003920 A2 2005/008505 A1	1/2005 1/2005
JР	2008-236448 A	10/2008	wo	2005/008505 AT 2005/008899 AT	1/2005
JР	2008-271481 A	11/2008	WO	2005/000899 A1 2005/010725 A2	2/2005
JР	2009-036999 A	2/2009	WO	2005/027472 A2	3/2005
JР	2009-98490 A	5/2009	wo	2005/027472 A2 2005/027485 A1	3/2005
JР	2009-294913 A	12/2009	WO	2005/02/103 AT 2005/031737 A1	4/2005
JР KR	2010-535377 A	11/2010	WO	2005/034085 A1	4/2005
KR	10-1999-0073234 A 10-2002-0069952 A	10/1999 9/2002	WO	2005/041455 A1	5/2005
KR	10-2002-0009932 A 10-2003-0016993 A	3/2002	WO	2005/059895 A1	6/2005
KR	10-2005-0010393 A 10-2005-0083561 A	8/2005	WO	2006/020305 A2	2/2006
KR	10-2006-0012730 A	2/2006	WO	2006/054724 A1	5/2006
KR	10-2006-0012730 A	6/2006	WO	2006/056822 A1	6/2006
KR	10-2007-0071675 A	7/2007	WO	2006/078246 A1	7/2006
KR	10-0757496 B1	9/2007	WO	2006/101649 A2	9/2006
KR	10-0776800 B1	11/2007	WO	2006/129967 A1	12/2006
KR	10-0801227 B1	2/2008	WO	2006/133571 A1	12/2006
KR	10-0810500 B1	3/2008	WO	2007/002753 A2	1/2007
KR	10-2008-0049647 A	6/2008	WO	2007/080559 A2	7/2007
KR	10-2008-0109322 A	12/2008	WO	2007/083894 A1	7/2007
KR	10-2009-0001716 A	1/2009	WO	2008/071231 A1	6/2008
KR	10-2009-0086805 A	8/2009	WO	2008/085742 A2	7/2008
KR	10-0920267 B1	10/2009	WO WO	2008/109835 A2 2008/140236 A1	9/2008 11/2008
KR	10-2010-0119519 A	11/2010	WO	2008/140230 A1 2008/153639 A1	12/2008
KR	10-1032792 B1	5/2011	WO	2009/009240 A2	1/2009
KR	10-2011-0113414 A	10/2011	WO	2009/009240 A2 2009/017280 A1	2/2009
NL	1014847 C1	10/2001	WO	2009/01/280 A1 2009/156438 A1	12/2009
WO	93/20640 A1	10/1993	WO	2010/075623 A1	7/2010
WO WO	94/29788 A1 95/02221 A1	12/1994 1/1995	WO	2011/057346 A1	5/2011
WO	95/16950 A1	6/1995	WO	2011/088053 A2	7/2011
WO	95/17746 A1	6/1995	WO	2011/133543 A1	10/2011
WO	97/10586 A1	3/1997	WO	2011/150730 A1	12/2011
WO	97/26612 A1	7/1997	WO	2011/163350 A1	12/2011
WO	97/29614 A1	8/1997	WO	2012/167168 A2	12/2012
WO	97/38488 A1	10/1997		OTHER DIE	DI ICATIONS
WO	98/09270 A1	3/1998		OTHER PU	BLICATIONS
WO	98/33111 A1	7/1998	σ (2 11 + 1 #AGIG I	1 4 6 6 4 4 6 11
WO	98/41956 A1	9/1998			lementation of the Lyon Cochlea
WO	99/01834 A1	1/1999			992 International Conference on
WO	99/08238 A1	2/1999	Acoustics	s, Speech and Signal Pr	rocessing, IEEE, vol. V, 1992, pp.
WO	99/16181 A1	4/1999	673-676.		
WO	99/56227 A1	11/1999	T3 Maga	zine, "Creative MuVo	TX 256MB", available at http://
WO	00/19697 A1	4/2000			nent/mp3_player/creative_
WO	00/22820 A1	4/2000		_256mb>, Aug. 17, 20	
WO	00/29964 A1	5/2000			s Industry's First Ambient Light
WO	00/30070 A2	5/2000	Sensor t	o Convert Light Inte	nsity to Digital Signals", News
WO	00/38041 A1	6/2000	Release,		://www.taosinc.com/pressrelease_
WO	00/44173 A1	7/2000	090902.h	tm>, Sep. 16, 2002, 3	
WO	00/60435 A2	10/2000			2, Playlist Related Help Screens",
WO	00/63766 A1	10/2000		2.0, 2000-2001, 8 pages	
				, 1 8	

OTHER PUBLICATIONS

Tello, Ernest R., "Natural-Language Systems", Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988.

TG3 Electronics, Inc., "BL82 Series Backlit Keyboards", available at http://www.tg3electronics.com/products/backlit/backlit.htm, retrieved on Dec. 19, 2002, 2 pages.

The HP 150, "Hardware: Compact, Powerful, and Innovative", vol. 8, No. 10, Oct. 1983, pp. 36-50.

Tidwell, Jenifer, "Animated Transition", Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages.

Touch, Joseph, "Zoned Analog Personal Teleconferencing", USC / Information Sciences Institute, 1993, pp. 1-19.

Toutanova et al., "Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network", Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages.

Trigg et al., "Hypertext Habitats: Experiences of Writers in NoteCards", Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108.

Trowbridge, David, "Using Andrew for Development of Educational Applications", Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6

Tsao et al., "Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm", (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245.

Turletti, Thierry, "The INRIA Videoconferencing System (IVS)", Oct. 1994, pp. 1-7.

Uslan et al., "A Review of Henter-Joyce's MAGic for Windows NT", Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668.

Uslan et al., "A Review of Supernova Screen Magnification Program for Windows", Journal of Visual Impairment & Blindness, Feb. 1999, pp. 108-110.

Uslan et al., "A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows", Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13.

Veiga, Alex, "AT&T Wireless Launching Music Service", available at http://bizyahoo.com/ap/041005/at_t_mobile_music_5. html?printer=1>, Oct. 5, 2004, 2 pages.

Vogel et al., "Shift: A Technique for Operating Pen-Based Interfaces Using Touch", CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666.

W3C Working Draft, "Speech Synthesis Markup Language Specification for the Speech Interface Framework", available at http://www.w3org./TR/speech-synthesis, retrieved on Dec. 14, 2000, 42 pages.

Wadlow, M. G., "The Role of Human Interface Guidelines in the Design of Multimedia Applications", Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22.

Walker et al., "The LOCUS Distributed Operating System 1", University of California Los Angeles, 1983, pp. 49-70.

Wang et al., "An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models", International Computer Symposium, vol. 2, 1994, pp. 1140-1145.

Wang et al., "Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model", International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245. Ware et al., "The DragMag Image Magnifier", CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408.

Ware et al., "The DragMag Image Magnifier Prototype I", Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995.

Watabe et al., "Distributed Multiparty Desktop Conferencing System: MERMAID", CSCW 90 Proceedings, Oct. 1990, pp. 27-38. White, George M., "Speech Recognition, Neural Nets, and Brains", Jan. 1992, pp. 1-48.

Wikipedia, "Acoustic Model", available at http://en.wikipedia.org/wiki/AcousticModel, retrieved on Sep. 14, 2011, 2 pages.

Wikipedia, "Language Model", available at http://en.wikipedia.org/wiki/Language_model, retrieved on Sep. 14, 2011, 3 pages. Wikipedia, "Speech Recognition", available at http://en.wikipedia.org/wiki/Speech_recognition, retrieved on Sep. 14, 2011, 10 pages.

Wilensky et al., "Talking to UNIX in English: An Overview of UC", Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593.

Wilson, Mark, "New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech", available at http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech, Mar. 11, 2009, 13 pages.

Wirelessinfo, "SMS/MMS Ease of Use (8.0)", available at http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm, Mar. 2007, 3 pages.

Wong et al., "An 800 Bit/s Vector Quantization LPC Vocoder", (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232.

Wong et al., "Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization", (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236.

Wu et al., "Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis", Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237.

Yang et al., "Auditory Representations of Acoustic Signals", IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839

Yang et al., "Hidden Markov Model for Mandarin Lexical Tone Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992.

Yiourgalis et al., "Text-to-Speech system for Greek", ICASSP 91, vol. 1, May 14-17, 1991., pp. 525-528.

Zainab, "Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]", available at http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-

onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.

Zelig, "A Review of the Palm Treo 750v", available at http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/769/A-Review-of-the-Palm-Treo-750v.aspx, Feb. 5, 2007, 3 pages.

Zhang et al., "Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM", Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.

Ziegler, K, "A Distributed Information System Study", IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401.

Zipnick et al., U.S. Appl. No. 10/859,661, filed Jun. 2, 2004.

"2004 Chrysler Pacifica: U-Connect Hands-Free Communication System", The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page.

"2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT)", available at http://review.cnet.com/4505-10865_16-31833144.html, retrieved on Aug. 3, 2006, 10 pages.

"All Music Website", available at http://www.allmusic.com/, retrieved on Mar. 19, 2007, 2 pages.

"BluePhoneElite: About", available at http://www.reelintelligence.com/BluePhoneElite, retrieved on Sep. 25, 2006, 2 pages.

"Interactive Voice", available at http://www.helloivee.com/company/, retrieved on Feb. 10, 2014, 2 pages.

"Meet Ivee, Your Wi-Fi Voice Activated Assistant", available at http://www.helloivee.com/, retrieved on Feb. 10, 2014, 8 pages. "Speaker Recognition", Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, mailed on Oct. 3, 2013, 9 pages.

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, mailed on Aug. 17, 2012, 11 pages.

Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, mailed on Dec. 18, 2012. 4 pages.

Extended European Search Report received for European Patent Application No. 12186663.6, mailed on Jul. 16, 2013, 6 pages.

Apple Computer, "Knowledge Navigator", published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled 'Knowledge Navigator', 2008, 7 pages.

Applebaum et al., "Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training", International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305.

Bellegarda, Jerome R. "Latent Semantic Mapping", IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80.

Bellegarda et al., "Tied Mixture Continuous Parameter Modeling for Speech Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045. Chang et al., "Discriminative Training of Dynamic Programming based Speech Recognizers", IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143.

Cheyer et al., "Demonstration Video of Multimodal Maps Using an Agent Architecture", published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages.

Cheyer et al., "Demonstration Video of Multimodal Maps Using an Open-Agent Architecture", published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Open-Agent Architecture, 6 pages.

Cheyer, A., "Demonstration Video of Vanguard Mobile Portal", published by SRI International no later than 2004, as depicted in 'Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal', 2004, 10 pages.

Choi et al., "Acoustic and Visual Signal based Context Awareness System for Mobile Application", IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.

Kickstarter, "Ivee Sleek: Wi-Fi Voice-Activated Assistant", available at https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant, retrieved on Feb. 10, 2014, 13 pages. Navigli, Roberto, "Word Sense Disambiguation: A Survey", ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, mailed on Aug. 26, 2014, 17 pages.

Guim, Mark, "How to Set a Person-Based Reminder with Cortana", available at http://www.wpcentral.com/how-to-person-based-reminder-cortana, Apr. 26, 2014, 15 pages.

Miller, Chance, "Google Keyboard Updated with New Personalized Suggestions Feature", available at http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/, Mar. 19, 2014, 4 pages.

Roddy et al., "Interface Issues in Text Based Chat Rooms", SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123.

Viegas et al., "Chat Circles", SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16.

Shimazu et al., "CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser", NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.

Shinkle, L., "Team User's Guide", SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages.

Shklar et al., "InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information", Proceedings of CAiSE'95, Finland, 1995, 14 pages.

Sigurdsson et al., "Mel Frequency Cepstral Co-efficients: An Evaluation of Robustness of MP3 Encoded Music", Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages.

Silverman et al., "Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages.

Simonite, Tom, "One Easy Way to Make Sid Smarter", Technology Review, Oct. 18, 2011, 2 pages.

Singh, N., "Unifying Heterogeneous Information Models", Communications of the ACM, 1998, 13 pages.

SRI International, "The Open Agent Architecture TM 1.0 Distribution", Open Agent Architecture (OAA), 1999, 2 pages.

Starr et al., "Knowledge-Intensive Query Processing", Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages.

Stent et al., "The CommandTalk Spoken Dialogue System", SRI International, 1999, pp. 183-190.

Stern et al. "Multiple Approaches to Robust Speech Recognition"

Stern et al., "Multiple Approaches to Robust Speech Recognition", Proceedings of Speech and Natural Language Workshop, 1992, 6 pages.

Stickel, Mark E., "A Nonclausal Connection-Graph Resolution Theorem-Proving Program", Proceedings of AAAI'82, 1982, 5 pages.

Sugumaran, V., "A Distributed Intelligent Agent-Based Spatial Decision Support System", Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages.

Sycara et al., "Coordination of Multiple Intelligent Software Agents", International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 & 3, 1996, 31 pages.

Sycara et al., "Distributed Intelligent Agents", IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.

Sycara et al., "Dynamic Service Matchmaking among Agents in Open Information Environments", SIGMOD Record, 1999, 7 pages. Sycara et al., "The RETSINA MAS Infrastructure", Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages.

Tenenbaum et al., "Data Structure Using Pascal", Prentice-Hall, Inc., 1981, 34 pages.

Textndrive, "Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!", YouTube Video available at http://www.youtube.com/watch?v=WaGfzoHsAMw, Apr. 27, 2010, 1 page.

Tofel, Kevin C., "SpeakTolt: A Personal Assistant for Older iPhones, iPads", Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.

Tsai et al., "Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition", IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages

Tucker, Joshua, "Too Lazy to Grab Your TV Remote? Use Siri Instead", Engadget, Nov. 30, 2011, 8 pages.

Tur et al., "The CALO Meeting Assistant System", IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.

Tur et al., "The CALO Meeting Speech Recognition and Understanding System", Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.

Tyson et al., "Domain-Independent Task Specification in the TACITUS Natural Language System", SRI International, Artificial Intelligence Center, May 1990, 16 pages.

Udell, J., "Computer Telephony", BYTE, vol. 19, No. 7, Jul. 1994,

Van Santen, J. P.H., "Contextual Effects on Vowel Duration", Journal Speech Communication, vol. 11, No. 6, Dec. 1992, pp. 513-546.

Vepa et al., "New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis", Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages.

Verschelde, Jan, "MATLAB Lecture 8. Special Matrices in MATLAB", UIC, Dept. of Math, Stat. & CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages.

Vingron, Martin, "Near-Optimal Sequence Alignment", Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352.

OTHER PUBLICATIONS

Vlingo, "Vlingo Launches Voice Enablement Application on Apple App Store", Press Release, Dec. 3, 2008, 2 pages.

Vlingo Incar, "Distracted Driving Solution with Vlingo InCar", YouTube Video, Available online at http://www.youtube.com/watch?v=Vqs8XfXxgz4, Oct. 2010, 2 pages.

Voiceassist, "Send Text, Listen to and Send E-Mail by Voice", YouTube Video, Available online at http://www.youtube.com/watch?v=0tEU61nHHA4, Jul. 30, 2009, 1 page.

Voiceonthego, "Voice on the Go (BlackBerry)", YouTube Video, available online at http://www.youtube.com/watch?v=pJqpWgQS98w, Jul. 27, 2009, 1 page.

Wahlster et al., "Smartkom: Multimodal Communication with a Life-Like Character", Eurospeech-Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages. Waldinger et al., "Deductive Question Answering from Multiple Resources", New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages.

Walker et al., "Natural Language Access to Medical Text", SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages. Waltz, D., "An English Language Question Answering System for a Large Relational Database", ACM, vol. 21, No. 7, 1978, 14 pages. Ward et al., "A Class Based Language Model for Speech Recognition", IEEE, 1996, 3 pages.

Ward et al., "Recent Improvements in the CMU Spoken Language Understanding System", ARPA Human Language Technology Workshop, 1994, 4 pages.

Ward, Wayne, "The CMU Air Travel Information Service: Understanding Spontaneous Speech", Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129.

Warren et al., "An Efficient Easily Adaptable System for Interpreting Natural Language Queries", American Journal of Computational Linguistics, vol. 8, No. 3-4, 1982, 11 pages.

Weizenbaum, J., "ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine", Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages. Werner et al., "Prosodic Aspects of Speech, Universite de Lausanne", Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages.

Winiwarter et al., "Adaptive Natural Language Interfaces to FAQ Knowledge Bases", Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages.

Wolff, M., "Post Structuralism and the ARTFUL Database: Some Theoretical Considerations", Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.

Wu, M., "Digital Speech Processing and Coding", Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages.

Wu et al., "KDA: A Knowledge-Based Database Assistant", Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages.

Wu, M., "Speech Recognition, Synthesis, and H.C.I.", Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages.

Wyle, M. F., "A Wide Area Network Information Filter", Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages.

Apple Computer, Inc., "iTunes 2: Specification Sheet", 2001, 2 pages.

Apple Computer, Inc., "iTunes, Playlist Related Help Screens", iTunes v1.0, 2000-2001, 8 pages.

Apple Computer, Inc., "QuickTime Movie Playback Programming Guide", Aug. 11, 2005, pp. 1-58.

Apple Computer, Inc., "QuickTime Overview", Aug. 11, 2005, pp. 1-34.

Apple Computer, Inc., "Welcome to Tiger", available at http://www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_v10.4_Tiger.pdf>, 2005, pp. 1-32.

"Corporate Ladder", BLOC Publishing Corporation, 1991, 1 page. Arango et al., "Touring Machine: A Software Platform for Distributed Multimedia Applications", 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11.

Arons, Barry M., "The Audio-Graphical Interface to a Personal Integrated Telecommunications System", Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages.

Badino et al., "Language Independent Phoneme Mapping for Foreign TTS", 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages.

Baechtle et al., "Adjustable Audio Indicator", IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages.

Baeza-Yates, Ricardo, "Visualization of Large Answers in Text Databases", AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107.

Bahl et al., "Recognition of a Continuously Read Natural Corpus", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424.

Bajarin, Tim, "With Low End Launched, Apple Turns to Portable Future", PC Week, vol. 7, Oct. 1990, p. 153 (1).

Barthel, B., "Information Access for Visually Impaired Persons: Do We Still Keep a "Document" in "Documentation"?", Professional Communication Conference, Sep. 1995, pp. 62-66.

Baudel et al., "2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface", Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.

Beck et al., "Integrating Natural Language, Query Processing, and Semantic Data Models", COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543.

Bederson et al., "Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics", UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26.

Bederson et al., "The Craft of Information Visualization", Elsevier Science, Inc., 2003, 435 pages.

"Diagrammaker", Action Software, 1989.

"Diagram-Master", Ashton-Tate, 1989.

Benel et al., "Optimal Size and Spacing of Touchscreen Input Areas", Human-Computer Interaction—INTERACT, 1987, pp. 581-585.

Beringer et al., "Operator Behavioral Biases Using High-Resolution Touch Input Devices", Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages.

Beringer, Dennis B., "Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation", Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages.

Bernabei et al., "Graphical I/O Devices for Medical Users", 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836.

Bernstein, Macrophone, "Speech Corpus", IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84.

Berry et al., "Symantec", New version of MORE.TM, Apr. 10, 1990. 1 page.

Best Buy, "When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear", Previews of New Releases, available at http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp, retrieved on Jan. 23, 2003, 5 pages.

Betts et al., "Goals and Objectives for User Interface Software", Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78.

Biemann, Chris, "Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering", Proceeding COLING ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12. Bier et al., "Toolglass and Magic Lenses: The See-Through Interface", Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80.

Birrell, Andrew, "Personal Jukebox (PJB)", available at http://birrell.org/andrew/talks/pjb-overview.ppt, Oct. 13, 2000, 6 pages.

OTHER PUBLICATIONS

Black et al., "Multilingual Text-to-Speech Synthesis", Acoustics, Speech and Signal Processing (ICASSP'04) Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, 4 pages. Bleher et al., "A Graphic Interactive Application Monitor", IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402.

Bluetooth PC Headsets, "Connecting' Your Bluetooth Headset with Your Computer", Enjoy Wireless VoIP Conversations, available at http://www.bluetoothpcheadsets.com/connect.htm, retrieved on Apr. 29, 2006, 4 pages.

Bocchieri et al., "Use of Geographical Meta-Data in ASR Language and Acoustic Models", IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.

Bociurkiw, Michael, "Product Guide: Vanessa Matz", available at http://www.forbes.com/asap/2000/1127/vmartz_print.html, retrieved on Jan. 23, 2003, 2 pages.

"Glossary of Adaptive Technologies: Word Prediction", available at http://www.utoronto.ca/atrc/reference/techwordpred.html, retrieved on Dec. 6, 2005, 5 pages.

Borenstein, Nathaniel S., "Cooperative Work in the Andrew Message System", Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323

Boy, Guy A., "Intelligent Assistant Systems", Harcourt Brace Jovanovicy, 1991, 1 page.

"iAP Sports Lingo 0x09 Protocol V1.00", May 1, 2006, 17 pages. Brown et al., "Browing Graphs Using a Fisheye View", Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992.

Brown et al., "Browsing Graphs Using a Fisheye View", CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516.

Burger, D., "Improved Access to Computers for the Visually Handicapped: New Prospects and Principles", IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118. "IEEE 1394 (Redirected from Firewire", Wikipedia, The Free Encyclopedia, available at http://www.wikipedia.org/wiki/Firewire, retrieved on Jun. 8, 2003, 2 pages.

Butler, Travis, "Archos Jukebox 6000 Challenges Nomad Jukebox", available at http://tidbits.com/article/6521, Aug. 13, 2001, 5 pages.

Butler, Travis, "Portable MP3: The Nomad Jukebox", available at http://tidbits.com/article/6261, Jan. 8, 2001, 4 pages.

Buxton et al., "EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences", Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34.

Call Centre, "Word Prediction", The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73.

Campbell et al., "An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)", (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.

Card et al., "Readings in Information Visualization Using Vision to Think", Interactive Technologies, 1999, 712 pages.

Eslambolchilar et al., "Making Sense of Fisheye Views", Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005. 6 pages.

Eslambolchilar et al., "Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming", UIST'04, Oct. 24-27, 2004, 2 pages.

Fanty et al., "A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition", IEEE, Nov. 1991.

Findlater et al., "Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non Alphanumeric Input", CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages. Fisher et al., "Virtual Environment Display System", Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87.

Forsdick, Harry, "Explorations into Real-Time Multimedia Conferencing", Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages.

Furnas et al., "Space-Scale Diagrams: Understanding Multiscale Interfaces", CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241.

Furnas, George W., "Effective View Navigation", Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374.

Furnas, George W., "Generalized Fisheye Views", CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23.

Furnas, George W., "The Fisheye Calendar System", Bellcore Technical Memorandum, Nov. 19, 1991.

Gardner, Jr., P. C., "A System for the Automated Office Environment", IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345. Garretson, R., "IBM Adds 'Drawing Assistant' Design Tool to Graphic Series", PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page. Gaver et al., "One is Not Enough: Multiple Views in a Media Space", INTERCHI, Apr. 24-29, 1993, pp. 335-341.

Gaver et al., "Realizing a Video Environment: EuroPARC's RAVE System", Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35. Giachin et al., "Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units", Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47.

Gillespie, Kelly, "Adventures in Integration", Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92. Gillespie, Kelly, "Internationalize Your Applications with Uni-

Gillespie, Kelly, "Internationalize Your Applications with Unicode", Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137. Gilloire et al., "Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography", Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166.

Glinert-Stevens, Susan, "Microsoft Publisher: Desktop Wizardry", PC Sources, vol. 3, No. 2, Feb. 1992, 1 page.

Gmail, "About Group Chat", available at http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages. Goldberg, Cheryl, "IBM Drawing Assistant: Graphics for the EGA", PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page.

Good et al., "Building a User-Derived Interface", Communications of the Acm; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043. Gray et al., "Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure", (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221.

Greenberg, Saul, "A Fisheye Text Editor for Relaxed-WYSIWIS Groupware", CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages.

Griffin et al., "Signal Estimation From Modified Short-Time Fourier Transform", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243.

Gruhn et al., "A Research Perspective on Computer-Assisted Office Work", IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456. Hain et al., "The Papageno TTS System", Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages.

Halbert, D. C., "Programming by Example", Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76.

Hall, William S., "Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support", Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58.

Haoui et al., "Embedded Coding of Speech: A Vector Quantization Approach", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299.

Hartson et al., "Advances in Human-Computer Interaction", Chapters 1, 5, and 6, vol. 3, 1992, 121 pages.

Heger et al., "KNOWBOT: An Adaptive Data Base Interface", Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157.

Hendrix et al., "The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface", Byte Magazine, Issue 14, Dec. 1987, 1 page.

OTHER PUBLICATIONS

Heyer et al., "Exploring Expression Data: Identification and Analysis of Coexpressed Genes", Genome Research, vol. 9, 1999, pp. 1106-1115.

Hill, R. D., "Some Important Features and Issues in User Interface Management System", Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120.

Hinckley et al., "A Survey of Design Issues in Spatial Input", UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222.

Hiroshi, "TeamWork Station: Towards a Seamless Shared Workspace", NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26.

Holmes, "Speech System and Research", 1955, pp. 129-135, 152-153.

Hon et al., "Towards Large Vocabulary Mandarin Chinese Speech Recognition", Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548

Hopper, Andy, "Pandora—An Experimental System for Multimedia Applications", Olivetti Research Laboratory, Apr. 1990, pp. 19-34. Howard, John H., "(Abstract) An Overview of the Andrew File System", Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) to Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6.

Huang et al., "Real-Time Software-Based Video Coder for Multimedia Communication Systems", Department of Computer Science and Information Engineering, 1993, 10 pages.

Hukin, R. W., "Testing an Auditory Model by Resynthesis", European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246.

Hunt, "Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database", Copyright 1996 IEEE. "To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA" ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376.

IBM, "Why Buy: ThinkPad", available at http://www.pc.ibm.com/us/thinkpad/easeofuse.html, retrieved on Dec. 19, 2002, 2 pages. IBM Corporation, "Simon Says Here's How", Users Manual, 1994, 3 pages.

Ichat AV, "Video Conferencing for the Rest of Us", Apple—Mac OS X—iChat AV, available at http://www.apple.com/macosx/features/ichat/, retrieved on Apr. 13, 2006, 3 pages.

Iphone Hacks, "Native iPhone MMS Application Released", available at http://www.iphonehacks.com/2007/12/iPhone-mms-app.html, retrieved on Dec. 25, 2007, 5 pages.

Iphonechat, "iChat for iPhone in JavaScript", available at http://www.publictivity.com/iPhoneChat/, retrieved on Dec. 25, 2007, 2 pages.

Jabra, "Bluetooth Headset: User Manual", 2005, 17 pages.

Mactech, "KeyStrokes 3.5 for Mac OS X Boosts Word Prediction", available at http://www.mactech.com/news/?p=1007129, retrieved on Jan. 7, 2008, 3 pages.

Mahedero et al., "Natural Language Processing of Lyrics", In

Mahedero et al., "Natural Language Processing of Lyrics", In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages.

Marcus et al., "Building a Large Annotated Corpus of English: The Penn Treebank", Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330.

Markel et al., "Linear Production of Speech", Reviews, 1976, pp. vii 288

Masui, Toshiyuki, "POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers", Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages.

Matsui et al., "Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition", 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-128.

Matsuzawa, A, "Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment", IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480.

Mellinger, David K., "Feature-Map Methods for Extracting Sound Frequency Modulation", IEEE Computer Society Press, 1991, pp. 795-799.

Menico, Costas, "Faster String Searches", Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77.

Menta, Richard, "1200 Song MP3 Portable is a Milestone Player", available at http://www.mp3newswire.net/stories/personaljuke.html, Jan. 11, 2000, 4 pages.

Meyer, Mike, "A Shell for Modern Personal Computers", University of California, Aug. 1987, pp. 13-19.

Meyrowitz et al., "Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems", Department of Computer Science, Brown University, 1981, pp. 180-189.

Miastkowski, Stan, "paperWorks Makes Paper Intelligent", Byte Magazine, Jun. 1992.

Microsoft, "Turn On and Use Magnifier", available at http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx, retrieved on Jun. 6, 2009.

Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pp. MSWord 2003 Figures 1-5, 1983-2003.

Microsoft Corporation, "Microsoft MS-DOS Operating System User's Guide", Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19.

Microsoft Press, "Microsoft Windows User's Guide for the Windows Graphical Environment", version 3.0, 1985-1990, pp. 33-41 & 70-74.

Microsoft Windows XP, "Magnifier Utility", Oct. 25, 2001, 2 pages. Microsoft Word 2000 Microsoft Corporation, pages MSWord Figures 1-5, 1999.

Microsoft/Ford, "Basic Sync Commands", www.SyncMyRide.com, Sep. 14, 2007, 1 page.

Milner, N. P., "A Review of Human Performance and Preferences with Different Input Devices to Computer Systems", Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352.

Miniman, Jared, "Applian Software's Replay Radio and Player v1.02", pocketnow.com—Review, available at http://www.pocketnow.com/reviews/replay/replay.htm, Jul. 31, 2001, 16 pages.

Moberg et al., "Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems", Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages.

Moberg, M., "Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices", Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages.

Mobile Tech News, "T9 Text Input Software Updated", available at http://www.mobiletechnews.com/info/2004/11/231122155.html, Nov. 23, 2004, 4 pages.

Mok et al., "Media Searching on Mobile Devices", IEEE EIT 2007 Proceedings, 2007, pp. 126-129.

Morland, D. V., "Human Factors Guidelines for Terminal Interface Design", Communications of the ACM vol. 26, No. 7, Jul. 1983, pp. 484-494.

Morris et al., "Andrew: A Distributed Personal Computing Environment", Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201.

Muller et al., "CSCW'92 Demonstrations", 1992, pp. 11-14.

Musicmatch, "Musicmatch and Xing Technology Introduce Musicmatch Jukebox", Press Releases, available at <a href="http://www.musicmatch.com/info/company/press/releases/?year="http://www.musicmatch.com/info/com/info/co

Muthesamy et al., "Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams", IEEE, Apr. 1990.

My Cool Aids, "What's New", available at http://www.mycoolaids.com/, 2012, 1 page.

Myers, Brad A., "Shortcutter for Palm", available at http://www.cs.cmu.edu/~pebbles/v5/shortcutter/palm/index.html, retrieved on Jun. 18, 2014, 10 pages.

OTHER PUBLICATIONS

Nadoli et al., "Intelligent Agents in the Simulation of Manufacturing Systems", Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page.

Nakagawa et al., "Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines", Proceedings of the 6th NLPRS, 2001, pp. 325-331.

Ahlstrom et al., "Overcoming Touchscreen User Fatigue by Workplace Design", CHI '92 Posters and Short Talks of the 1992 SIGHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102.

NCIP, "NCIP Library: Word Prediction Collection", available at http://www2.edc.org/ncip/library/wp/toc.htm, 1998, 4 pages.

NCIP, "What is Word Prediction?", available at http://www2.edc.org/NCIP/library/wp/what_is.htm, 1998, 2 pages.

NCIP Staff, "Magnification Technology", available at http://www2.edc.org/ncip/library/vi/magnifi.htm, 1994, 6 pages.

Newton, Harry, "Newton's Telecom Dictionary", Mar. 1998, pp. 62, 155, 610-611, 771.

Nguyen et al., "Generic Manager for Spoken Dialogue Systems", In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages.

Nilsson, B. A., "Microsoft Publisher is an Honorable Start for DTP Beginners", Computer Shopper, Feb. 1, 1992, 2 pages.

Noik, Emanuel G., "Layout-Independent Fisheye Views of Nested Graphs", IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages.

Nonhoff-Aps et al., "StraBenmusik: Portable MP3-Spieler mit USB Anschluss", CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175. Northern Telecom, "Meridian Mail PC User Guide", 1988, 17 Pages.

Notenboom, Leo A., "Can I Retrieve Old MSN Messenger Conversations?", available at http://ask-leo.com/can_i_retrieve_old_msn_messenger_conversations.html, Mar. 11, 2004, 23 pages.

O'Connor, Rory J., "Apple Banking on Newton's Brain", San Jose Mercury News, Apr. 22, 1991.

Ohsawa et al., "A computational Model of an Intelligent Agent Who Talks with a Person", Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18.

Ohtomo et al., "Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model", Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165.

Okazaki et al., "Multi-Fisheye Transformation Method for Large-Scale Network Maps", IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500.

Gruber, Tom, "2021: Mass Collaboration and the Really New Economy", TNTY Futures, vol. 1, No. 6, Available online at http://tomgruber.org/writing/tnty2001.htm, Aug. 2001, 5 pages. Gruber, Tom, "Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration", available at http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, Sep. 1995, 1 page.

Gruber, Tom, "Collective Knowledge Systems: Where the Social Web Meets the Semantic Web", Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19.

Gruber, Tom, "Despite Our Best Efforts, Ontologies are not the Problem", AAAI Spring Symposium, Available online at http://tomgruber.org/writing/aaai-ss08.htm, Mar. 2008, pp. 1-40.

Gruber, Tom, "Enterprise Collaboration Management with Intraspect", Intraspect Technical White Paper, Jul. 2001, pp. 1-24. Gruber, Tom, "Every Ontology is a Treaty—A Social Agreement—Among People with Some Common Motive in Sharing", Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5.

Gruber, Tom, "Helping Organizations Collaborate, Communicate, and Learn", Presentation to NASA Ames Research, Available online at http://tomgruber.org/writing/organizational-intelligence-talk.htm, Mar.-Oct. 2003, 30 pages.

Gruber, Tom, "Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience", Presentation at Semantic Technologies Conference, Available online at http://tomgruber.org/writing/semtech08.htm, May 20, 2008, pp. 1-40.

Gruber, Tom, "It is What it Does: The Pragmatics of Ontology for Knowledge Sharing", Proceedings of the International CIDOC CRM Symposium, Available online at http://tomgruber.org/writing/cidoc-ontology.htm, Mar. 26, 2003, 21 pages.

Gruber, Tom, "Ontologies, Web 2.0 and Beyond", Ontology Summit, Available online at http://tomgruber.org/writing/ontolog-social-web-keynote.htm, Apr. 2007, 17 pages.

Gruber, Tom, "Ontology of Folksonomy: A Mash-Up of Apples and Oranges", Int'l Journal on Semantic Web & Information Systems, vol. 3, No. 2, 2007, 7 pages.

Gruber, Tom, "Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface", Semantic Technologies Conference, Jun. 16, 2009, 21 pages.

Gruber, Tom, "TagOntology", Presentation to Tag Camp, Oct. 29, 2005, 20 pages.

Gruber, Tom, "Where the Social Web Meets the Semantic Web", Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages.

Guida et al., "NLI: A Robust Interface for Natural Language Person-Machine Communication", International Journal of Man-Machine Studies, vol. 17, 1982, 17 pages.

Guzzoni et al., "A Unified Platform for Building Intelligent Web Interaction Assistants", Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages.

Guzzoni et al., "Active, A Platform for Building Intelligent Operating Rooms", Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198.

Guzzoni et al., "Active, A platform for Building Intelligent Software", Computational Intelligence, available at http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier >, 2006, 5 pages.

Guzzoni et al., "Active, A Tool for Building Intelligent User Interfaces", ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages. Guzzoni, D., "Active: A Unified Platform for Building Intelligent Assistant Applications", Oct. 25, 2007, 262 pages.

Guzzoni et al., "Many Robots Make Short Work", AAAI Robot Contest, SRI International, 1996, 9 pages.

Guzzoni et al., "Modeling Human-Agent Interaction with Active Ontologies", AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages.

Haas et al., "An Approach to Acquiring and Applying Knowledge", SRI international, Nov. 1980, 22 pages.

Hadidi et al., "Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment", Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages.

Hardwar, Devindra, "Driving App Waze Builds its own Siri for Hands-Free Voice Control", Available online at http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control, retrieved on Feb. 9, 2012, 4 pages.

Harris, F. J., "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform", In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.

Hawkins et al., "Hierarchical Temporal Memory: Concepts, Theory and Terminology", Numenta, Inc., Mar. 27, 2007, 20 pages.

He et al., "Personal Security Agent: KQML-Based PKI", The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages.

Helm et al., "Building Visual Language Parsers", Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages.

Hendrix et al., "Developing a Natural Language Interface to Complex Data", ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147.

OTHER PUBLICATIONS

Hendrix, Gary G., "Human Engineering for Applied Natural Language Processing", SRI International, Technical Note 139, Feb. 1977, 27 pages.

Hendrix, Gary G., "Klaus: A System for Managing Information and Computational Resources", SRI International, Technical Note 230, Oct. 1980, 34 pages.

Hendrix, Gary G., "Lifer: A Natural Language Interface Facility", SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages.

Hendrix, Gary G., "Natural-Language Interface", American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61.

Hendrix, Gary G., "The Lifer Manual: A Guide to Building Practical Natural Language Interfaces", SRI International, Technical Note 138, Feb. 1977, 76 pages.

Hendrix et al., "Transportable Natural-Language Interfaces to Databases", SRI International, Technical Note 228, Apr. 30, 1981, 18 pages.

Hermansky, H., "Perceptual Linear Predictive (PLP) Analysis of Speech", Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.

Hermansky, H., "Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing", Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages.

Hirschman et al., "Multi-Site Data Collection and Evaluation in Spoken Language Understanding", Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24.

Hobbs et al., "Fastus: A System for Extracting Information from Natural-Language Text", SRI International, Technical Note 519, Nov. 19, 1992, 26 pages.

Hobbs et al., "Fastus: Extracting Information from Natural-Language Texts", SRI International, 1992, pp. 1-22.

Hobbs, Jerry R., "Sublanguage and Knowledge", SRI International, Technical Note 329, Jun. 1984, 30 pages.

Hodjat et al., "Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface", Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426.

Hoehfeld et al., "Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm", IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.

Holmes, J. N., "Speech Synthesis and Recognition-Stochastic Models for Word Recognition", Published by Chapman & Hall, London, ISBN 0 412 534304, 1998, 7 pages.

Hon et al., "CMU Robust Vocabulary-Independent Speech Recognition System", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages. Horvitz et al., "Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface", Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955.

Horvitz et al., "In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models", 1995, 8 pages.

Huang et al., "The SPHINX-II Speech Recognition System: An Overview", Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages.

IBM, "Speech Editor", IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages.

"Top 10 Best Practices for Voice User Interface Design" available at http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm, Nov. 1, 2002, 4 pages.

Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, mailed on Oct. 8, 2010, 5 pages.

Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, mailed on Jan. 17, 2013, 6 pages.

Aikawa et al., "Speech Recognition Using Time-Warping Neural Networks", Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages.

Bellegarda et al., "Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task", Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages.

Bellegarda et al., "The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation", IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages. Belvin et al., "Development of the HRL Route Navigation Dialogue

System", Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages.

Berry et al., "PTIME: Personalized Assistance for Calendaring", ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.

Berry et al., "Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project", Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages.

Black et al., "Automatically Clustering Similar Units for Unit Selection in Speech Synthesis", Proceedings of Eurospeech, vol. 2, 1997, 4 pages.

Blair et al., "An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System", Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.

Bobrow et al., "Knowledge Representation for Syntactic/Semantic Processing", From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages.

Bouchou et al., "Using Transducers in Natural Language Database Query", Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages.

Bratt et al., "The SRI Telephone-Based ATIS System", Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages.

Briner, L. L., "Identifying Keywords in Text Data Processing", In Zelkowitz, Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages.

Bulyko et al., "Error-Correction Detection and Response Generation in a Spoken Dialogue System", Speech Communication, vol. 45, 2005, pp. 271-288.

Bulyko et al., "Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis", Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.

Burke et al., "Question Answering from Frequently Asked Question Files", AI Magazine, vol. 18, No. 2, 1997, 10 pages.

Burns et al., "Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce", Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages.

Bussey, et al., "Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service", INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available online at http://slrohall.com/oublications/, Jun. 1990, 8 pages.

Bussler et al., "Web Service Execution Environment (WSMAX)", retrieved from Internet on Sep. 17, 2012, available at http://www.w3.org/SubmissionNVSMX, Jun. 3, 2005, 29 pages.

Butcher, Mike, "EVI Arrives in Town to go Toe-to-Toe with Siri", TechCrunch, Jan. 23, 2012, 2 pages.

Buzo et al., "Speech Coding Based Upon Vector Quantization", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.

Caminero-Gil et al., "Data-Driven Discourse Modeling for Semantic Interpretation", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages.

Car Working Group, "Hands-Free Profile 1.5 HFP1.5_SPEC", Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages.

OTHER PUBLICATIONS

Carter, D., "Lexical Acquisition in the Core Language Engine", Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages.

Carter et al., "The Speech-Language Interface in the Spoken Language Translator", SRI International, Nov. 23, 1994, 9 pages.

guage Translator", SRI International, Nov. 23, 1994, 9 pages. Cawley, Gavin C. "The Application of Neural Networks to Phonetic Modelling", PhD. Thesis, University of Essex, Mar. 1996, 13 pages. Chai et al., "Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study", Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages.

Chang et al., "A Segment-Based Speech Recognition System for Isolated Mandarin Syllables", Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages.

Chen, Yi, "Multimedia Siri Finds and Plays Whatever You Ask for", PSFK Report, Feb. 9, 2012, 9 pages.

Cheyer, Adam, "A Perspective on AI & Agent Technologies for SCM", VerticalNet Presentation, 2001, 22 pages.

Cheyer, Adam, "About Adam Cheyer", available at http://www.adam.cheyer.com/about.html, retrieved on Sep. 17, 2012, 2 pages. Cheyer et al., "Multimodal Maps: An Agent-Based Approach", International Conference on Co-operative Multimodal Communication, 1995, 15 pages.

Cheyer et al., "Spoken Language and Multimodal Applications for Electronic Realities", Virtual Reality, vol. 3, 1999, pp. 1-15.

Cheyer et al., "The Open Agent Architecture", Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages.

Cheyer et al., "The Open Agent Architecture: Building Communities of Distributed Software Agents", Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at http://www.ai.sri.com/-oaa/, retrieved on Feb. 21, 1998, 25 pages.

Codd, E. F., "Databases: Improving Usability and Responsiveness—How About Recently", Copyright 1978, Academic Press, Inc., 1978, 28 pages.

Cohen et al., "An Open Agent Architecture", available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480, 1994, 8 pages.

Cohen et al., "Voice User Interface Design,", Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages.

Coles et al., "Chemistry Question-Answering", SRI International, Jun. 1969, 15 pages.

Coles et al., "Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input", SRI International, Nov. 1972, 198 Pages.

Coles et al., "The Application of Theorem Proving to Information Retrieval", SRI International, Jan. 1971, 21 pages.

Conklin, Jeff, "Hypertext: An Introduction and Survey", COM-PUTER Magazine, Sep. 1987, 25 pages.

Connolly et al., "Fast Algorithms for Complex Matrix Multiplication Using Surrogates", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages.

Constantinides et al., "A Schema Based Approach to Dialog Control", Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages.

Cox et al., "Speech and Language Processing for Next-Millennium Communications Services", Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.

Craig et al., "Deacon: Direct English Access and Control", AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18

Cutkosky et al., "PACT: An Experiment in Integrating Concurrent Engineering Systems", Journal & Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages.

Dar et al., "DTL's DataSpot: Database Exploration Using Plain Language", Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages. Carpendale et al., "3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information", UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226.

Carpendale et al., "Extending Distortion Viewing from 2D to 3D", IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51

Carpendale et al., "Making Distortions Comprehensible", IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages. Casner et al., "N-Way Conferencing with Packet Video", The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6. Chakarova et al., "Digital Still Cameras—Downloading Images to a Computer", Multimedia Reporting and Convergence, available at http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html, retrieved on May 9, 2005, 2 pages.

Chartier, David, "Using Multi-Network Meebo Chat Service on Your iPhone", available at http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/, Jul. 4, 2007, 5 pages.

Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, mailed on Feb. 20, 2007, 6 pages. Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, mailed on Dec. 9, 2010, 7

Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, mailed on Apr. 28, 2014, 14 pages. Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 13155688.8, mailed on Aug. 22, 2013, 11 pages. ABCOM PTY. Ltd. "12.1" 925 Candela Mobile PC", LCDHardware.com, available at http://www.lcdhardware.com/pane1/12_1_pane1/default.asp., retrieved on Dec. 19, 2002, 2 pages.

Cisco Systems, Inc., "Cisco Unity Unified Messaging User Guide", Release 4.0(5), Apr. 14, 2005, 152 pages.

Cisco Systems, Inc., "Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)", Release 4.0(5), Apr. 14, 2005, 152 pages.

Cisco Systems, Inc., "Operations Manager Tutorial, Cisco's IPC Management Solution", 2006, 256 pages.

Coleman, David W., "Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing", Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87.

Compaq, "Personal Jukebox", available at http://research.compaq.com/SRC/pib/, 2001, 3 pages.

Compaq Inspiration Technology, "Personal Jukebox (PJB)—Systems Research Center and PAAD", Oct. 13, 2000, 25 pages.

Conkie et al., "Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System", ISCA, 2000, 4 pages. Conklin, Jeffrey, "A Survey of Hypertext", MCC Software Tech-

Conklin, Jeffrey, "A Survey of Hypertext", MCC Software Tech nology Program, Dec. 1987, 40 pages.

Copperi et al., "CELP Coding for High Quality Speech at 8 kbits/s", Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327.

Corr, Paul, "Macintosh Utilities for Special Needs Users", available at http://homepage.mac.com/corrp/macsupt/columns/specneeds.html, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.

Creative, "Creative NOMAD MuVo", available at http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, retrieved on Jun. 7, 2006, 1 page.

Creative, "Creative NOMAD MuVo TX", available at http://web.archive.org/web/20041024175952/www.creative.com/products/ pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page. Creative, "Digital MP3 Player", available at http://web.archive.org/web/200410240748231www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1

OTHER PUBLICATIONS

Creative Technology Ltd., "Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)", available at http://ecl.images-amazon.com/media/i3d/01/A/man-migrate/

MANUAL000010757.pdf>, Jun. 1999, 40 pages

Creative Technology Ltd., "Creative NOMAD® II: Getting Started—User Guide (On Line Version)", available at http://ecl.images-amazon.com/media/i3d/01/a/man-migrate/

MANUAL000026434.pdf>, Apr. 2000, 46 pages.

Creative Technology Ltd., "Nomad Jukebox", User Guide, Version 1.0, Aug. 2000, 52 pages.

Croft et al., "Task Support in an Office System", Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24.

Crowley et al., "MMConf: An Infrastructure for Building Shared Multimedia Applications", CSCW 90 Proceedings, Oct. 1990, pp. 329-342.

Cuperman et al., "Vector Predictive Coding of Speech at 16 kbit s/s", (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311

ABF Software, "Lens—Magnifying Glass 1.5", available at http://download.com/3000-2437-10262078.html?tag=1st-0-1, retrieved on Feb. 11, 2004, 1 page.

Davis et al., "Stone Soup Translation", Department of Linguistics, Ohio State University, 2001, 11 pages.

De Herrera, Chris, "Microsoft ActiveSync 3.1", Version 1.02, available at http://www.cewindows.net/wce/activesync3.1.htm, Oct. 13, 2000, 8 pages.

Degani et al., "'Soft' Controls for Hard Displays: Still a Challenge", Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56.

Del Strother, Jonathan, "Coverflow", available at http://www.steelskies.com/coverflow, retrieved on Jun. 15, 2006, 14 pages. Diamond Multimedia Systems, Inc., "Rio PMP300: User's Guide", available at http://ec1.images-amazon.com/media/i3d/01/a/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages.

Dickinson et al., "Palmtips: Tiny Containers for All Your Data", PC Magazine, vol. 9, Mar. 1990, p. 218(3).

Digital Equipment Corporation, "OpenVMS RTL DECtalk (DTK\$) Manual", May 1993, 56 pages.

Donahue et al., "Whiteboards: A Graphical Database Tool", ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41.

Dourish et al., "Portholes: Supporting Awareness in a Distributed Work Group", CHI 1992; May 1992, pp. 541-547.

Abut et al., "Low-Rate Speech Encoding Using Vector Quantization and Subband Coding", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315. dyslexic.com, "AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs", available at http://www.dyslexic.com/procuts.php?catid-2&pid=465&PHPSESSID=2511b800000f7da, retrieved on Dec. 6, 2005, 13 pages.

Edwards, John R., "Q&A: Integrated Software with Macros and an Intelligent Assistant", Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.

Egido, Carmen, "Video Conferencing as a Technology to Support Group Work: A Review of its Failures", Bell Communications Research, 1988, pp. 13-24.

Elliot, Chip, "High-Quality Multimedia Conferencing Through a Long-Haul Packet Network", BBN Systems and Technologies, 1993, pp. 91-98.

Elliott et al., "Annotation Suggestion and Search for Personal Multimedia Objects on the Web", CIVR, Jul. 7-9, 2008, pp. 75-84. Elofson et al., "Delegation Technologies: Environmental Scanning with Intelligent Agents", Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62.

Eluminx, "Illuminated Keyboard", available at http://www.elumix.comi, retrieved on Dec. 19, 2002, 1 page.

Engst, Adam C., "SoundJam Keeps on Jammin", available at http://db.tidbits.com/getbits.acgi?tbart=05988, Jun. 19, 2000, 3 pages.

Ericsson Inc., "Cellular Phone with Integrated MP3 Player", Research Disclosure Journal No. 41815, Feb. 1999, 2 pages.

Scheifler, R. W., "The X Window System", MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109.

Schluter et al., "Using Phase Spectrum Information for Improved Speech Recognition Performance", IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136. Schmandt et al., "A Conversational Telephone Messaging System", IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv.

Schmandt et al., "Phone Slave: A Graphical Telecommunications Interface", Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages.

Schmandt et al., "Phone Slave: A Graphical Telecommunications Interface", Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82. Schmid, H., "Part-of-speech tagging with neural networks", COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176.

Schooler et al., "A Packet-switched Multimedia Conferencing System", by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22.

Schooler et al., "An Architecture for Multimedia Connection Management", Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274.

Schooler et al., "Multimedia Conferencing: Has it Come of Age?", Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716.

Schooler et al., "The Connection Control Protocol: Architecture Overview", USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6.

Schooler, Eve, "A Distributed Architecture for Multimedia Conference Control", ISI Research Report, Nov. 1991, pp. 1-18.

Schooler, Eve M., "Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System", Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120.

Schooler, Eve M., "The Impact of Scaling on a Multimedia Connection Architecture", Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9.

Schutze, H., "Distributional part-of-speech tagging", EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148.

Schutze, Hinrich, "Part-of-speech induction from scratch", ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258.

Schwartz et al., "Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208.

Schwartz et al., "Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24.

Schwartz et al., "The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses", IEEE, 1990, pp. 81-84.

Scott et al., "Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing", Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364.

Seagrave, Jim, "A Faster Way to Search Text", EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52.

Sears et al., "High Precision Touchscreens: Design Strategies and Comparisons with a Mouse", International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613.

Sears et al., "Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed", Behavior & Information Technology, vol. 12, No. 1, 1993, pp. 17-22.

OTHER PUBLICATIONS

Sears et al., "Touchscreen Keyboards", Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991.

Seide et al., "Improving Speech Understanding by Incorporating Database Constraints and Dialogue History", Proceedings of Fourth International Conference on Philadelphia, 1996, pp. 1017-1020.

Shiraki et al., "LPC Speech Coding Based on Variable-Length Segment Quantization", (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257.

Shneiderman, Ben, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Second Edition, 1992, 599 pages.

Shneiderman, Ben, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Third Edition, 1998, 669 pages.

Shneiderman, Ben, "Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces", Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39

Shneiderman, Ben, "Sparks of Innovation in Human-Computer Interaction", 1993, (Table of Contents, Title page, Ch. 4, Ch. 6 and List of References).

Shneiderman, Ben, "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations", IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343.

Shneiderman, Ben, "Touch Screens Now Offer Compelling Uses", IEEE Software, Mar. 1991, pp. 93-94.

Shoham et al., "Efficient Bit and Allocation for an Arbitrary Set of Quantizers", (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296.

Simkovitz, Daniel, "LP-DOS Magnifies the PC Screen", IEEE, 1992, pp. 203-204.

Singh et al., "Automatic Generation of Phone Sets and Lexical Transcriptions", Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page.

Sinitsyn, Alexander, "A Synchronization Framework for Personal Mobile Servers", Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5.

Slaney et al., "On the Importance of Time—A Temporal Representation of Sound", Visual Representation of Speech Signals, 1993, pp. 95-116.

Smeaton, Alan F., "Natural Language Processing and Information Retrieval", Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20.

Smith et al., "Guidelines for Designing User Interface Software", User Lab, Inc., Aug. 1986, pp. 1-384.

Smith et al., "Relating Distortion to Performance in Distortion Oriented Displays", Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11.

Soong et al., "A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment", (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319.

Spiller, Karen, "Low-Decibel Earbuds Keep Noise at a Reasonable Level", available at , Aug. 13, 2006, 3 pages. Apple Computer, Inc., "Inside Macintosh", vol. VI, 1985.

Srinivas et al., "Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems", CERC Technical Report Series Research Note, Feb. 1992.

Stealth Computer Corporation, "Peripherals for Industrial Keyboards & Pointing Devices", available at http://www.stealthcomputer.com/peripherals_oem.htm, retrieved on Dec. 19, 2002, 6 pages.

Steinberg, Gene, "Sonicblue Rio Car (10 GB, Reviewed: 6 GB)", available at http://electronics.cnet.com/electronics/0-6342420-1304-4098389.html, Dec. 12, 2000, 2 pages.

Stent et al., "Geo-Centric Language Models for Local Business Voice Search", AT&T Labs—Research, 2009, pp. 389-396.

Stone et al., "The Movable Filter as a User Interface Tool", CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312.

Su et al., "A Review of ZoomText Xtra Screen Magnification Program for Windows 95", Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119.

Su, Joseph C., "A Review of Telesensory's Vista PCI Screen Magnification System", Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710.

Markel et al., "Linear Prediction of Speech", Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages.

Martin et al., "Building and Using Practical Agent Applications", SRI International, PAAM Tutorial, 1998, 78 pages.

Martin et al., "Building Distributed Software Systems with the Open Agent Architecture", Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376.

Martin et al., "Development Tools for the Open Agent Architecture", Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17.

Martin et al., "Information Brokering in an Agent Architecture", Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20.

Martin et al., "Transportability and Generality in a Natural-Language Interface System", Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages.

Martin et al., "The Open Agent Architecture: A Framework for Building Distributed Software Systems", Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at http://adam.cheyer.com/papers/oaa.pdf, retrieved from internet on Jan.-Mar. 1999.

Matiasek et al., "Tamic-P: A System for NL Access to Social Insurance Database", 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages. McGuire et al., "SHADE: Technology for Knowledge-Based Collaborative Engineering", Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages.

Meng et al., "Wheels: A Conversational System in the Automobile Classified Domain", Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages. Michos et al., "Towards an Adaptive Natural Language Interface to Command Languages", Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209.

Milstead et al., "Metadata: Cataloging by Any Other Name", available at http://www.iicm.tugraz.at/thesis/cguetl_diss/literatur/Kapitel06/References/Milstead_et_al._1999/metadata.html, Jan. 1999, 18 pages.

Milward et al., "D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge", available at http://www.ihmc.us/users/nblaylock!Pubs/Files/talkd2.2.pdf, Aug. 8, 2006, 69 pages.

Minker et al., "Hidden Understanding Models for Machine Translation", Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, Jun. 1999, pp. 1-4.

Mitra et al., "A Graph-Oriented Model for Articulation of Ontology Interdependencies", Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15.

Modi et al., "CMRadar: A Personal Assistant Agent for Calendar Management", AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021.

OTHER PUBLICATIONS

Moore et al., "Combining Linguistic and Statistical Knowledge Sources in Natural—Language Processing for ATIS", SRI International, Artificial Intelligence Center, 1995, 4 pages.

Moore, Robert C., "Handling Complex Queries in a Distributed Data Base", SRI International, Technical Note 170, Oct. 8, 1979, 38

Moore, Robert C., "Practical Natural-Language Processing by Computer", SRI International, Technical Note 251, Oct. 1981, 34

Moore et al., "SRI's Experience with the Atis Evaluation", Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148.

Moore et al., "The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web", Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188.

Moore, Robert C., "The Role of Logic in Knowledge Representation and Commonsense Reasoning", SRI International, Technical Note 264, Jun. 1982, 19 pages.

Moore, Robert C., "Using Natural-Language Knowledge Sources in Speech Recognition", SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24.

Moran et al., "Intelligent Agent-Based User Interfaces", Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4.

Moran et al., "Multimodal User Interfaces in the Open Agent Architecture", International Conference on Intelligent User Interfaces (IUI97), 1997, 8 pages.

Moran, Douglas B., "Quantifier Scoping in the SRI Core Language Engine", Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40.

Morgan, B., "Business Objects (Business Objects for Windows) Business Objects Inc.", DBMS, vol. 5, No. 10, Sep. 1992, 3 pages. Motro, Amihai, "Flex: A Tolerant and Cooperative User Interface to Databases", IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246.

Mountford et al., "Talking and Listening to Computers", The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages.

Mozer, Michael C., "An Intelligent Environment must be Adaptive", IEEE Intelligent Systems, 1999, pp. 11-13.

Murty et al., "Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition", IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.

Murveit et al., "Integrating Natural Language Constraints into HMM-Based Speech Recognition", International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages

Murveit et al., "Speech Recognition in SRI's Resource Management and ATIS Systems", Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100.

Nakagawa et al., "Speaker Recognition by Combining MFCC and Phase Information", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages

Naone, Erica, "TR10: Intelligent Software Assistant", Technology Review, Mar.-Apr. 2009, 2 pages.

Neches et al., "Enabling Technology for Knowledge Sharing", Fall, 1991, pp. 37-56.

Niesler et al., "A Variable-Length Category-Based N-Gram Language Model", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages. Noth et al., "Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System", IEEE Transac-

tions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp.

Odubiyi et al., "SAIRE-A Scalable Agent-Based Information Retrieval Engine", Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages.

Owei et al., "Natural Language Query Filtration in the Conceptual Query Language", IEEE, 1997, pp. 539-549.

Pannu et al., "A Learning Personal Agent for Text Filtering and Notification", Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11.

Papadimitriou et al., "Latent Semantic Indexing: A Probabilistic Analysis", Available online at http://citeseerx.ist.psu.edu/mes- saqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages.

Parson, T. W., "Voice and Speech Processing", Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages.

Parsons, T. W., "Voice and Speech Processing", Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, issued on Apr. 10, 1995, 7 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, issued on Mar. 1, 1995, 5 pages.

International Search Report received for PCT Patent Application No. PCT/US1993/012666, mailed on Nov. 9, 1994, 8 pages

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, issued on Feb. 28, 1996, 4 pages.

International Search Report received for PCT Patent Application No. PCT/US1994/011011, mailed on Feb. 8, 1995, 7 pages.

Written Opinion received for PCT Patent Application No. PCT/ US1994/011011, mailed on Aug. 21, 1995, 4 pages.

"BluePhoneElite: Features", available at http://www.reelintel- ligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages.

"Digital Audio in the New Era", Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages.

"Mobile Speech Solutions, Mobile Accessibility", SVOX AG Product Information Sheet, available at http://www.svox.com/site/ bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.

"N200 Hands-Free Bluetooth Car Kit", available at <www. wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.

"PhatNoise", Voice Index on Tap, Kenwood Music Keg, available http://www.phatnoise.com/kenwood/kenwoodssamail.html, retrieved on Jul. 13, 2006, 1 page.

"What is Fuzzy Logic?", available at http://www.cs.cmu.edu, retrieved on Apr. 15, 1993, 5 pages.

"Windows XP: A Big Surprise!-Experiencing Amazement from Windows XP", New Computer, No. 2, Feb. 28, 2002, 8 pages.

Aikawa et al., "Generation for Multilingual MT", available at http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.

Anhui USTC IFL YTEK Co. Ltd., "Flytek Research Center Information Datasheet", available at http://www.iflttek.com/english/ Research.htm>, retrieved on Oct. 15, 2004, 3 pages.

Borden IV, G.R., "An Aural User Interface for Ubiquitous Computing", Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages.

Brain, Marshall, "How MP3 Files Work", available at , retrieved on Mar. 19, 2007, 4 pages.

Busemann et al., "Natural Language Diaglogue Service for Appointment Scheduling Agents", Technical Report RR-97-02, Deutsches Forschungszentrum für Kunstliche Intelligenz GmbH, 1997, 8 pages.

Dusan et al., "Multimodal Interaction on PDA's Integrating Speech and Pen Inputs", Eurospeech Geneva, 2003, 4 pages.

Lamel et al., "Generation and synthesis of Broadcast Messages". Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages.

Lyons et al., "Augmenting Conversations Using Dual-Purpose Speech", Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages.

Macsimum News, "Apple Files Patent for an Audio Interface for the iPod", available at http://www.macsimumnews.com/index.php/ar- chive/apple_files_patent_for_an_audio_interface_for_the_ ipod>, retrieved on Jul. 13, 2006, 8 pages.

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, mailed on Nov. 3, 2005, 6 pages.

Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, mailed on Aug. 4, 2005, 6 pages.

International Search Report received for PCT Patent Application No. PCT/US2011/037014, mailed on Oct. 4, 2011, 6 pages.

Invitation to Pay Additional Search Fees received for PCT Application No. PCT/US2011/037014, mailed on Aug. 2, 2011, 6 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, mailed on Nov. 14, 2012, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, mailed on Nov. 12, 2013, 11 pages.

Quazza et al., "Actor: A Multilingual Unit-Selection Speech Synthesis System", Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages.

Ricker, Thomas, "Apple Patents Audio User Interface", Engadget, available at http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/, May 4, 2006, 6 pages.

Santaholma, Marianne E., "Grammar Sharing Techniques for Rulebased Multilingual NLP Systems", Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages.

Taylor et al., "Speech Synthesis by Phonological Structure Matching", International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages.

Xu et al., "Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering", Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.

Yunker, John, "Beyond Borders: Web Globalization Strategies", New Riders, Aug. 22, 2002, 11 pages.

Yang et al., "Smart Sight: A Tourist Assistant System", Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages.

Yankelovich et al., "Intermedia: The Concept and the Construction of a Seamless Information Environment", Computer Magazine, IEEE, Jan. 1988, 16 pages.

Yoon et al., "Letter-to-Sound Rules for Korean", Department of Linguistics, The Ohio State University, 2002, 4 pages.

Zeng et al., "Cooperative Intelligent Software Agents", The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.

Zhao, Y., "An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394.

Zhao et al., "Intelligent Agents for Flexible Workflow Systems", Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages.

Zovato et al., "Towards Emotional Speech Synthesis: A Rule based Approach", Proceedings of 5th ISCA Speech Synthesis Workshop—Pittsburgh, 2004, pp. 219-220.

Zue, Victor, "Conversational Interfaces: Advances and Challenges", Spoken Language System Group, Sep. 1997, 10 pages.

Zue et al., "From Interface to Content: Translingual Access and Delivery of On-Line Information", Eurospeech, 1997, 4 pages.

Zue et al., "Jupiter: A Telephone-Based Conversational Interface for Weather Information", IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages.

Zue et al., "Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning", Speech Comunication, vol. 15, 1994, 10 pages. Zue et al., "The Voyager Speech Understanding System: Preliminary Development and Evaluation", Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages.

Zue, Victor W., "Toward Systems that Understand Spoken Language", ARPA Strategic Computing Institute, Feb. 1994, 9 pages. International Search Report received for PCT Patent Application No. PCT/GB2009/051684, mailed on Mar. 12, 2010, 4 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, mailed on Jun. 23, 2011, 10 pages.

Cucerzan et al., "Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day", In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7.

Schone et al., "Knowledge-Free Induction of Morphology Using Latent Semantic Analysis", Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72.

Davis et al., "A Personal Handheld Multi-Modal Shopping Assistant", International Conference on Networking and Services, IEEE, 2006, 9 pages.

SRI, "SRI Speech: Products: Software Development Kits: EduSpeak", available at http://www.speechatsri.com/products/

eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.

"Mel Scale", Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at http://en.wikipedia.org/wiki/Mel_scale, 2 pages.

"Minimum Phase", Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at http://en.wikipedia.org/wiki/Minimum_phase, 8 pages.

Acero et al., "Environmental Robustness in Automatic Speech Recognition", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.

Acero et al., "Robust Speech Recognition by Normalization of the Acoustic Space", International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages.

Agnas et al., "Spoken Language Translator: First-Year Report", SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages.

Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages.

Alfred App, "Alfred", available at http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.

Allen, J., "Natural Language Understanding", 2nd Edition, The Benjamin/Cummings Publishing Company, Inc., 1995, 671 pages. Alshawi et al., "CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine", SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages.

Alshawi et al., "Declarative Derivation of Database Queries from Meaning Representations", Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages.

Alshawi et al., "Logical Forms in the Core Language Engine", Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp. 25-32.

Alshawi et al., "Overview of the Core Language Engine", Proceedings of Future Generation Computing Systems, Tokyo, 13 pages. Alshawi, H., "Translation and Monotonic Interpretation/Generation", SRI International, Cambridge Computer Science Research Centre, Cambridge, available at http://www.cam.sri.com/tr/crc024/paperps.Z1992, Jul. 1992, 18 pages.

Ambite et al., "Design and Implementation of the CALO Query Manager", American Association for Artificial Intelligence, 2006, 8 pages.

Ambite et al., "Integration of Heterogeneous Knowledge Sources in the CALO Query Manager", The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages.

Anastasakos et al., "Duration Modeling in Large Vocabulary Speech Recognition", International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May, 1995, pp. 628-631.

Anderson et al., "Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics", Proceedings of Symposium on

OTHER PUBLICATIONS

Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages.

Ansari et al., "Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach", IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, pp. 60-62.

Anthony et al., "Supervised Adaption for Signature Verification System", IBM Technical Disclosure, Jun. 1, 1978, 3 pages.

Appelt et al., "Fastus: A Finite-State Processor for Information Extraction from Real-world Text", Proceedings of IJCAI, 1993, 8 pages.

Appelt et al., "SRI International Fastus System MUC-6 Test Results and Analysis", SRI International, Menlo Park, California, 1995, 12 pages.

Apple Computer, "Guide Maker User's Guide", Apple Computer, Inc., Apr. 27, 1994, 8 pages.

Apple Computer, "Introduction to Apple Guide", Apple Computer, Inc., Apr. 28, 1994, 20 pages.

Archbold et al., "A Team Users Guide", SRI International, Dec. 21, 1981, 70 pages.

Asanovic et al., "Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks", Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages.

Atal et al., "Efficient Coding of LPC Parameters by Temporal Decomposition", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages. Bahl et al., "A Maximum Likelihood Approach to Continuous Speech Recognition", IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages. Bahl et al., "A Tree-Based Statistical Language Model for Natural Language Speech Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages. Bahl et al., "Acoustic Markov Models Used in the Tangora Speech Recognition System", Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages.

Bahl et al., "Large Vocabulary Natural Language Continuous Speech Recognition", Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages.

Bahl et al., "Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.

Bahl et al., "Speech Recognition with Continuous-Parameter Hidden Markov Models", Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages.

Banbrook, M., "Nonlinear Analysis of Speech from a Synthesis Perspective", A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages. Bear et al., "A System for Labeling Self-Repairs in Speech", SRI International, Feb. 22, 1993, 9 pages.

Bear et al., "Detection and Correction of Repairs in Human-Computer Dialog", SRI International, May 1992, 11 pages.

Bear et al., "Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog", Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages.

Bear et al., "Using Information Extraction to Improve Document Retrieval", SRI International, Menlo Park, California, 1998, 11 pages.

Belaid et al., "A Syntactic Approach for Handwritten Mathematical Formula Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.

Bellegarda et al., "A Latent Semantic Analysis Framework for Large-Span Language Modeling", 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages.

Bellegarda et al., "A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages. Bellegarda et al., "A Novel Word Clustering Algorithm Based on Latent Semantic Analysis", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages.

Bellegarda et al., "Experiments Using Data Augmentation for Speaker Adaptation", International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages. Bellegarda, Jerome R., "Exploiting Latent Semantic Information in Statistical Language Modeling", Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages.

Bellegarda, Jerome R., "Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of both Local and Global Language Constraints", available at http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html, 1992, 7 pages.

Bellegarda, Jerome R., "Large Vocabulary Speech Recognition with Multispan Statistical Language Models", IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages. Bellegarda et al., "On-Line Handwriting Recognition using Statistical Mixtures", Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages. Appelt et al., "SRI: Description of the JV-FASTUS System used for MUC-5", SRI International, Artificial Intelligence Center, 1993, 19 pages.

Bellegarda, Jerome R., "Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling", Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1CASSP'98), vol. 2, May 1998, 5 pages. Jabra, "Bluetooth Introduction", 2004, 15 pages.

Jabra Corporation, "FreeSpeak: BT200 User Manual", 2002, 42 pages.

Jaybird, "Everything Wrong with AIM: Because We've All Thought About It", available at http://www.psychonoble.com/archives/articles/82.html, May 24, 2006, 3 pages.

Jeffay et al., "Kernel Support for Live Digital Audio and Video", In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21.

Jelinek et al., "Interpolated Estimation of Markov Source Parameters from Sparse Data", In Proceedings of the Workshop on Pattern Recognition in Practice May 1980, pp. 381-397.

Johnson, Jeff A., "A Comparison of User Interfaces for Panning on a Touch-Controlled Display", CHI '95 Proceedings, 1995, 8 pages. Kaeppner et al., "Architecture of HeiPhone: A Testbed for AudioNideo Teleconferencing", IBM European Networking Center, 1993

Kamba et al., "Using Small Screen Space More Efficiently", CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390.

Kang et al., "Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942.

Keahey et al., "Non-Linear Image Magnification", Apr. 24, 1996, 11

Keahey et al., "Nonlinear Magnification Fields", Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages.

Keahey et al., "Techniques for Non-Linear Magnification Transformations", IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45.

Keahey et al., "Viewing Text With Non-Linear Magnification: An Experimental Study", Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9.

Kennedy, P J., "Digital Data Storage Using Video Disc", IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171.

OTHER PUBLICATIONS

Kerr, "An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke", Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39.

Abut et al., "Vector Quantization of Speech and Speech-Like Waveforms", (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270.

Kim, E.A. S., "The Structure and Processing of Fundamental Frequency Contours", University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages.

Kirstein et al., "Piloting of Multimedia Integrated Communications for European Researchers", Proc. INET '93, 1993, pp. 1-12.

Kjelldahl et al., "Multimedia—Principles, Systems, and Applications", Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991.

Kline et al., "Improving GUI Accessibility for People with Low Vision", CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.

Kline et al., "UnWindows 1.0: X Windows Tools for Low Vision Users", ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.

Knight et al., "Heuristic Search", Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991.

Kroon et al., "Quantization Procedures for the Excitation in CELP Coders", (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323.

Kuo et al., "A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition", International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601.

Kuo et al., "A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI", IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865.

Kurlander et al., "Comic Chat", [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236.

Laface et al., "A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition", International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563.

Lafferty et al., "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages. Adium, "AboutAdium—Adium X—Trac", available at http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/

AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.

Lamping et al., "Laying Out and Visualizing Large Trees Using a Hyperbolic Space", Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14.

Lamping et al., "Visualizing Large Trees Using the Hyperbolic Browser", Apple Inc., Video Clip, MIT Media Library, on a CD, 1995.

Lantz et al., "Towards a Universal Directory Service", Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260.

Lantz, Keith, "An Experiment in Integrated Multimedia Conferencing", 1986, pp. 267-275.

Lauwers et al., "Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems", CHI'90 Proceedings, 1990, pp. 303-311.

Lauwers et al., "Replicated Architectures for Shared Window Systems: A Critique", COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260.

Lazzaro, Joseph J., "Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think", Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages. Leahy et al., "Effect of Touch Screen Target Location on User Accuracy", Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages.

Lee, Kai-Fu, "Automatic Speech Recognition", 1989, 14 pages (Table of Contents).

Leung et al., "A Review and Taxonomy of Distortion-Oriented Presentation Techniques", ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160.

Levinson et al., "Speech synthesis in telecommunications", IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53. Lewis, "Speech synthesis in a computer aided learning environment", UK IT, Mar. 19-22, 1990, pp. 294-298.

Lewis, Peter, "Two New Ways to Buy Your Bits", CNN Money, available at Dec. 31, 2003, 4 pages.">http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>Dec. 31, 2003, 4 pages.

Lieberman, Henry, "A Multi-Scale, Multi-Layer, Translucent Virtual Space", Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131.

Lieberman, Henry, "Powers of Ten Thousand: Navigating in Large Information Spaces", Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2.

Lyon, R., "A Computational Model of Binaural Localization and Separation", Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151. Ahlberg et al., "The Alphaslider: A Compact and Rapid Selector", CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371.

Lyons, Richard F., "CCD Correlators for Auditory Models", Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789.

MacKenzie et al., "Alphanumeric Entry on Pen-Based Computers", International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792.

Mackinlay et al., "The Perspective Wall: Detail and Context Smoothly Integrated", ACM, 1991, pp. 173-179.

Ahlberg et al., "Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317.

IBM, "Integrated Audio-Graphics User Interface", IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages.

IBM, "Speech Recognition with Hidden Markov Models of Speech Waveforms", IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages.

Intraspect Software, "The Intraspect Knowledge Management Solution: Technical Overview", available at http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf>, 1998, 18 pages.

Iowegian International, "FIR Filter Properties, DSPGuru, Digital Signal Processing Central", available at http://www.dspguru.com/dsp/faq/fir/properties retrieved on Jul. 28, 2010, 6 pages.

Issar et al., "CMU's Robust Spoken Language Understanding System", Proceedings of Eurospeech, 1993, 4 pages.

Issar, Sunil, "Estimation of Language Models for New Spoken Language Applications", Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages.

Jacobs et al., "Scisor: Extracting Information from On-Line News", Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages. Janas, Jurgen M., "The Semantics-Based Natural Language Interface to Relational Databases", Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188.

Jelinek, F., "Self-Organized Language Modeling for Speech Recognition", Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 1990, 63 pages.

Jennings et al., "A Personal News Service Based on a User Model Neural Network", IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages.

OTHER PUBLICATIONS

Ji et al., "A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model", 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages.

Johnson, Julia Ann., "A Data Management Strategy for Transportable Natural Language Interfaces", Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages.

Jones, J., "Speech Recognition for Cyclone", Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages.

Julia et al., "http://www.speech.sri.com/demos/atis.html", Proceedings of AAAI, Spring Symposium, 1997, 5 pages.

Julia et al., "Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)", Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626.

Kahn et al., "CoABS Grid Scalability Experiments", Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp. 171-178.

Kamel et al., "A Graph Based Knowledge Retrieval System", IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275.

Karp, P. D., "A Generic Knowledge-Base Access Protocol", Available online at http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages.

Katz, Boris, "A Three-Step Procedure for Language Generation", Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40.

Katz, Boris, "Annotating the World Wide Web Using Natural Language", Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages.

Katz, S. M., "Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.

Katz et al., "Exploiting Lexical Regularities in Designing Natural Language Systems", Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22.

Katz et al., "REXTOR: A System for Generating Relations from Natural Language", Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR), Oct. 2000, 11 pages.

Katz, Boris, "Using English for Indexing and Retrieving", Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332.

Kitano, H., "PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System", Computer, vol. 24, No. 6, Jun. 1991, 13 pages.

Klabbers et al., "Reducing Audible Spectral Discontinuities", IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.

Klatt et al., "Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence", Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.

Knownav, "Knowledge Navigator", YouTube Video available at http://www.youtube.com/watch?v=QRH8eimU_20, Apr. 29, 2008, 1 page.

Kominek et al., "Impact of Durational Outlier Removal from Unit Selection Catalogs", 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.

Konolige, Kurt, "A Framework for a Portable Natural-Language Interface to Large Data Bases", SRI International, Technical Note 197, Oct. 12, 1979, 54 pages.

Kubala et al., "Speaker Adaptation from a Speaker-Independent Training Corpus", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.

Kubala et al., "The Hub and Spoke Paradigm for CSR Evaluation", Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages.

Laird et al., "SOAR: An Architecture for General Intelligence", Artificial Intelligence, vol. 33, 1987, pp. 1-64.

Langley et al., "A Design for the ICARUS Architechture", SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109.

Larks, "Intelligent Software Agents", available at http://www.cs.cmu.edu/~softagents/larks.html retrieved on Mar. 15, 2013, 2 pages.

Lee et al., "A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary", International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages.

Lee et al., "Golden Mandarin (II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary", IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages.

Lee et al., "Golden Mandarin (II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions", International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages.

Lee, K. F., "Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System", Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages.

Lee et al., "System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters", International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages.

Lemon et al., "Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments", ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267.

Leong et al., "CASIS: A Context-Aware Speech Interface System", Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238.

Lieberman et al., "Out of Context: Computer Systems that Adapt to, and Learn from, Context", IBM Systems Journal, vol. 39, No. 3 & 4, 2000, pp. 617-632.

Lin et al., "A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History", Available on line at http://citeseerx.ist.psu.edu/viewdoc/sum-mary?doi=10.1.1.42.272>, 1999, 4 pages.

Lin et al., "A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages.

Linde et al., "An Algorithm for Vector Quantizer Design", IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.

Liu et al., "Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering", IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages.

Logan et al., "Mel Frequency Cepstral Co-efficients for Music Modeling", International Symposium on Music Information Retrieval, 2000, 2 pages.

Lowerre, B. T., "The-Harpy Speech Recognition System", Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.

Maghbouleh, Arman, "An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations", Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.

Decker et al., "Designing Behaviors for Information Agents", The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages.

Decker et al., "Matchmaking and Brokering", The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages.

Deerwester et al., "Indexing by Latent Semantic Analysis", Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.

Deller, Jr. et al., "Discrete-Time Processing of Speech Signals", Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages.

(56) References Cited

OTHER PUBLICATIONS

Digital Equipment Corporation, "Open VMS Software Overview", Software Manual, Dec. 1995, 159 pages.

Domingue et al., "Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services", Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages.

Donovan, R. E., "A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers", available at http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21. 6398>, 2001, 4 pages.

Dowding et al., "Gemini: A Natural Language System for Spoken-Language Understanding", Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages.

Dowding et al., "Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser", Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages.

Elio et al., "On Abstract Task Models and Conversation Policies", Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10.

Epstein et al., "Natural Language Access to a Melanoma Data Base", SRI International, Sep. 1978, 7 pages.

Ericsson et al., "Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain", Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages.

Evi, "Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems", Feb. 2012, 3 pages.

Exhibit 1, "Natural Language Interface Using Constrained Intermediate Dictionary of Results", List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page

Feigenbaum et al., "Computer-Assisted Semantic Annotation of Scientific Life Works", Oct. 15, 2007, 22 pages.

Ferguson et al., "TRIPS: An Integrated Intelligent Problem-Solving Assistant", Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7

Fikes et al., "A Network-Based Knowledge Representation and its Natural Deduction System", SRI International, Jul. 1977, 43 pages. Frisse, M. E., "Searching for Information in a Hypertext Medical Handbook", Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.

Gamback et al., "The Swedish Core Language Engine", NOTEX Conference, 1992, 17 pages.

Gannes, Liz, "Alfred App Gives Personalized Restaurant Recommendations", AllThingsD, Jul. 18, 2011, pp. 1-3.

Gautier et al., "Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering", CiteSeerx, 1993, pp. 89-97.

Gervasio et al., "Active Preference Learning for Personalized Calendar Scheduling Assistance", CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97.

Glass, Alyssa, "Explaining Preference Learning", CiteSeerx, 2006, pp. 1-5.

Glass et al., "Multilingual Language Generation Across Multiple Domains", International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages.

Glass et al., "Multilingual Spoken-Language Understanding in the Mit Voyager System", Available online at http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, Aug. 1995, 29 pages.

Goddeau et al., "A Form-Based Dialogue Manager for Spoken Language Applications", Available online at http://phasedance.com/pdf!icslp96.pdf, Oct. 1996, 4 pages.

Goddeau et al., "Galaxy: A Human-Language Interlace to On-Line Travel Information", International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710.

Goldberg et al., "Using Collaborative Filtering to Weave an Information Tapestry", Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.

Gong et al., "Guidelines for Handheld Mobile Device Interlace Design", Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756.

Gorin et al., "On Adaptive Acquisition of Language", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages.

Gotoh et al., "Document Space Models Using Latent Semantic Analysis", In Proceedings of Eurospeech, 1997, 4 pages.

Gray, R. M., "Vector Quantization", IEEE ASSP Magazine, Apr. 1984, 26 pages.

Green, C., "The Application of Theorem Proving to Question-Answering Systems", SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages.

Gregg et al., "DSS Access on the WWW: An Intelligent Agent Prototype", Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages. Grishman et al., "Computational Linguistics: An Introduction", Cambridge University Press, 1986, 172 pages.

Grosz et al., "Dialogic: A Core Natural-Language Processing System", SRI International, Nov. 1982, 17 pages.

Grosz et al., "Research on Natural-Language Processing at SRI", SRI International, Nov. 1981, 21 pages.

Grosz, B., "Team: A Transportable Natural-Language Interface System", Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages.

Grosz et al., "TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces", Artificial Intelligence, vol. 32, 1987, 71 pages.

Gruber, Tom, "(Avoiding) the Travesty of the Commons", Presentation at NPUC New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages.

Gruber, Thomas R., "A Translation Approach to Portable Ontology Specifications", Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220.

Gruber et al., "An Ontology for Engineering Mathematics", Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 1994, pp. 1-22.

Gruber, Thomas R., "Automated Knowledge Acquisition for Strategic Knowledge", Machine Learning, vol. 4, 1989, pp. 293-336. Gruber, Tom, "Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone", Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.

Gruber et al., "Generative Design Rationale: Beyond the Record and Replay Paradigm", Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages.

Gruber, Thomas R., "Interactive Acquisition of Justifications: Learning "Why" by Being Told "What"", Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages.

Gruber et al., "Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach", Proceedings of International Joint Conference on Artificial Intelligence, 1993, 7 pages.

Gruber et al., "NIKE: A National Infrastructure for Knowledge Exchange", A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10.

Gruber et al., "Toward a Knowledge Medium for Collaborative Product Development", Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19. Gruber, Thomas R., "Toward Principles for the Design of Ontologies used for Knowledge Sharing?", International Journal of Human-Computer Studies, vol. 43, No. 5-6, Nov. 1995, pp. 907-928.

Pearl, Amy, "System Support for Integrated Desktop Video Conferencing", Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15

Penn et al., "Ale for Speech: A Translation Prototype", Bell Laboratories, 1999, 4 pages.

(56) References Cited

OTHER PUBLICATIONS

Phillipps, Ben, "Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics", Electronic Products, Nov. 1994, pp. 63-70.

Phillips, Dick, "The Multi-Media Workstation", SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109.

Pickering, J. A., "Touch-Sensitive Screens: The Technologies and Their Application", International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269.

Pingali et al., "Audio-Visual Tracking for Natural Interactivity", ACM Multimedia, Oct. 1999, pp. 373-382.

Plaisant et al., "Touchscreen Interfaces for Alphanumeric Data Entry", Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297.

Plaisant et al., "Touchscreen Toggle Design", CHI'92, May 3-7, 1992, pp. 667-668.

Poly-Optical Products, Inc., "Poly-Optical Fiber Optic Membrane Switch Backlighting", available at http://www.poly-optical.com/membrane_switches.html, retrieved on Dec. 19, 2002, 3 pages. Poor, Alfred, "Microsoft Publisher", PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page.

Potter et al., "An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database", International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52.

Potter et al., "Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies", CHI '88 ACM, 1988, pp. 27-32.

Public Safety Technologies, "Tracer 2000 Computer", available at http://www.pst911.com/tracer.html, retrieved on Dec. 19, 2002, 3 pages.

Apple Computer, Inc., "Apple Announces iTunes 2", Press Release, Oct. 23, 2001, 2 pages.

Rabiner et al., "Digital Processing of Speech Signals", Prentice Hall, 1978, pp. 274-277.

Rampe et al., "SmartForm Designer and SmartForm Assistant", News release, Claris Corp., Jan. 9, 1989, 1 page.

Rao et al., "Exploring Large Tables with the Table Lens", Apple Inc., Video Clip, Xerox Corp., on a CD, 1994.

Rao et al., "Exploring Large Tables with the Table Lens", CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404.

Rao et al., "The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information", Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7. Raper, Larry K., "The C-MU PC Server Project", (CMU-ITC-86-051), Dec. 1986, pp. 1-30.

Ratcliffe et al., "Intelligent Agents Take U.S. Bows", MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page.

Reddy, D. R., "Speech Recognition by Machine: A Review", Proceedings of the IEEE, Apr. 1976, pp. 501-531.

Reininger et al., "Speech and Speaker Independent Codebook Design in VQ Coding Schemes", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.

Ren et al., "Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications", Proceedings of the IFIP TC2/ TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.

Ren et al., "Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks", ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416.

Ren et al., "The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer", Human-Computer Interaction INTERACT, 1997, pp. 85-92.

Apple Computer, Inc., "Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software", Macworld Expo, Jan. 9, 2001, 2 pages.

Riecken, R D., "Adaptive Direct Manipulation", IEEE Xplore, 1991, pp. 1115-1120.

Rioport, "Rio 500: Getting Started Guide", available at http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/

MANUAL000023453.pdf>, 1999, 2 pages.

Robbin et al., "MP3 Player and Encoder for Macintosh!", SoundJam MP Plus, Version 2.0, 2000, 76 pages.

Robertson et al., "Information Visualization Using 3D Interactive Animation", Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71.

Robertson et al., "The Document Lens", UIST '93, Nov. 3-5, 1993, pp. 101-108.

Root, Robert, "Design of a Multi-Media Vehicle for Social Browsing", Bell Communications Research, 1988, pp. 25-38.

Roseberry, Catherine, "How to Pair a Bluetooth Headset & Cell Phone", available at http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset_p.htm, retrieved on Apr. 29, 2006, 2 pages.

Rosenberg et al., "An Overview of the Andrew Message System", Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108.

Rosner et al., "In Touch: A Graphical User Interface Development Tool", IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7.

Rossfrank, "Konstenlose Sprachmitteilungins Festnetz", XP002234425, Dec. 10, 2000, pp. 1-4.

Roucos et al., "A Segment Vocoder at 150 B/S", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249.

Roucos et al., "High Quality Time-Scale Modification for Speech", Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496.

Sabin et al., "Product Code Vector Quantizers for Waveform and Voice Coding", (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288.

Apple Computer, Inc., "Apple's iPod Available in Stores Tomorrow". Press Release, Nov. 9, 2001, 1 page.

Santen, Jan P., "Assignment of Segmental Duration in Text-to-Speech Synthesis", Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128.

Sarawagi, Sunita, "CRF Package Page", available at http://crf.sourceforge.net/, retrieved on Apr. 6, 2011, 2 pages.

Sarkar et al., "Graphical Fisheye Views", Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83.

Sarkar et al., "Graphical Fisheye Views of Graphs", Systems Research Center, Digital Equipment Corporation,, Mar. 17, 1992, 31 pages.

Sarkar et al., "Graphical Fisheye Views of Graphs", CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91.

Sarkar et al., "Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens", UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91

Sastry, Ravindra W., "A Need for Speed: A New Speedometer for Runners", submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42.

Schafer et al., "Digital Representations of Speech Signals", Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677.

Schaffer et al., "Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods", ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188. Omologo et al., "Microphone Array Based Speech Recognition with Different Talker-Array Positions", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230.

(56) References Cited

OTHER PUBLICATIONS

Oregon Scientific, "512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer", available at http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=581, retrieved on Jul. 31, 2006, 2 pages.

Oregon Scientific, "Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual", 2005, 24 pages.

Padilla, Alfredo, "Palm Treo 750 Cell Phone Review—Messaging", available at http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm, Mar. 17, 2007, 6 pages.

Palay et al., "The Andrew Toolkit: An Overview", Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15. Palm, Inc., "User Guide: Your Palm® Treo.TM. 755p Smartphone", 2005-2007, 304 pages.

Panasonic, "Toughbook 28: Powerful, Rugged and Wireless", Panasonic: Toughbook Models, available at http://www.panasonic.com/computer/notebook/htm1/01a_s8.htm, retrieved on Dec. 19, 2002, 3 pages.

Parks et al., "Classification of Whale and Ice Sounds with a cochlear Model", IEEE, Mar. 1992.

Patterson et al., "Rendezvous: An Architecture for Synchronous Multi-User Applications", CSCW '90 Proceedings, 1990, pp. 317-328

International Search Report received for PCT Patent Application No. PCT/US2002/033330, mailed on Feb. 4, 2003, 6 pages.

Ahmed et al., "Intelligent Natural Language Query Processor", TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49.

Ahuja et al., "A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems", At&T Bell Laboratories, 1990, pp. 238-248.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, mailed on Apr. 5, 2006, 12 pages.

International Search Report received for PCT Patent Application No. PCT/US2005/046797, mailed on Nov. 24, 2006, 6 pages.

Invitation to Pay Additional Fees and Partial Search Report received for PCT Application No. PCT/US2005/046797, mailed on Jul. 3, 2006, 6 pages.

Written Opinion received for PCT Patent Application No. PCT/US2005/046797, mailed on Nov. 24, 2006, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, mailed on Jul. 2, 2007, 12 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, mailed on May 21, 2007, 11 pages.

Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, mailed on Jul. 10, 2007, 4 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, mailed on Jun. 19, 2007, 15 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, mailed on Mar. 31, 2008, 10 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077424, mailed on Jun. 19, 2008, 13 pages.

Invitation to Pay Additional Fees received for PCT Application No. PCT/US2007/077424, mailed on Apr. 29, 2008, 6 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077443, mailed on Feb. 21, 2008, 8 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, mailed on May 8, 2008, 8 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, mailed on May 8, 2008, 7 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, mailed on Jun. 12, 2008, 7 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, mailed on May 21, 2008, 7 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, mailed on Oct. 10, 2008, 12 pages.

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, mailed on Jun. 27, 2008, 4 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, mailed on Jun. 12, 2008, 7 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, mailed on Sep. 11, 2008, 12 pages.

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, mailed on Jul. 4, 2008, 4 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, mailed on Sep. 19, 2008, 18 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, mailed on Jul. 1, 2008, 13 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/050083, mailed on Jul. 4, 2008, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, mailed on Jun. 30, 2011, 17 pages.

Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/ U52011/020350, mailed on Apr. 14, 2011, 5 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, mailed on Aug. 2, 2012, 11 pages.

Aikawa, K. "Time-Warping Neural Network for Phoneme Recognition", IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127.

Allen et al., "Automated Natural Spoken Dialog", Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56.

Alleva et al., "Applying SPHINX-II to DARPA Wall Street Journal CSR Task", Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398.

Amrel Corporation, "Rocky Matrix BackLit Keyboard", available at http://www.amrel.com/asi_matrixkeyboard.html, retrieved on Dec. 19, 2002, 1 page.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, mailed on Jun. 11, 2012, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, mailed on Feb. 1, 2013, 4 pages (International Search Report only).

Apple, "VoiceOver", available at http://www.apple.com/accessi-bility/voiceover/, Feb. 2009, 5 pages.

Apple Computer, Inc., "Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC", available at http://www.apple.com/ipod/color/specs.html, 2005, 3 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, mailed on Aug. 23, 2013, 3 pages (International Search Report only).

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, mailed on Feb. 27, 2014, 7 pages. Invitation to Pay Additional Fees received for PCT Application No. PCT/US2013/052558, mailed on Nov. 7, 2013, 6 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1995/008369, issued on Oct. 9, 1996, 4 pages.

International Search Report received for PCT Patent Application No. PCT/US1995/008369, mailed on Nov. 8, 1995, 6 pages.

(56)References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, mailed on Aug. 25, 2010, 14 pages

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, mailed on Nov. 29, 2011, 12 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, mailed on Nov. 16, 2012, 14 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, mailed on Dec. 20, 2012, 11 pages

Pereira, Fernando, "Logic for Natural Language Analysis", SRI International, Technical Note 275, Jan. 1983, 194 pages

Perrault et al., "Natural-Language Interfaces", SRI International,

Perrault et al., Natural-Language interfaces, 35th International, Technical Note 393, Aug. 22, 1986, 48 pages.

Phoenix Solutions, Inc., "Declaration of Christopher Schmandt Regarding the MIT Galaxy System", West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.

Picone, J., "Continuous Speech Recognition using Hidden Markov Models", IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages. www.cam.sri.com/tr/crc042/paper.ps.Z>, 1993, 8 pages.

Rabiner et al., "Fundamental of Speech Recognition", AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17

Rabiner et al., "Note on the Properties of a Vector Quantizer for LPC Coefficients", Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.

Ratcliffe, M., "ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)", MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages

Ravishankar, Mosur K., "Efficient Algorithms for Speech Recognition", Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages.

Rayner, M., "Abductive Equivalential Translation and its Application to Natural Language Database Interfacing", Dissertation Paper, SRI International, Sep. 1993, 162 pages.

Rayner et al., "Adapting the Core Language Engine to French and Spanish", Cornell University Library, available at http://arxiv.org/ abs/cmp-lg/9605015>, May 10, 1996, 9 pages.

Rayner et al., "Deriving Database Queries from Logical Forms by Abductive Definition Expansion", Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8

Rayner, Manny, "Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles", SRI International, Cambridge, 1993, 11 pages.

Rayner et al., "Spoken Language Translation with Mid-90's Technology: A Case Study", Eurospeech, ISCA, Available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.

8608>, 1993, 4 pages.
Remde et al., "SuperBook: An Automatic Tool for Information Exploration-Hypertext?", In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages.

Reynolds, C. F., "On-Line Reviews: A New Application of the HICOM Conferencing System", IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.

Rice et al., "Monthly Program: Nov. 14, 1995", The San Francisco Bay Area Chapter of ACM SIGCHI, available at http://www.available at <a href="http://www.available at , Nov. 14, 1995, 2 pages.

Rice et al., "Using the Web Instead of a Window System", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14.

Rigoll, G., "Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models", International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages.

Riley, M D., "Tree-Based Modelling of Segmental Durations", Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15

Rivlin et al., "Maestro: Conductor of Multimedia Analysis Technologies", SRI International, 1999, 7 pages.

Rivoira et al., "Syntax and Semantics in a Word-Sequence Recognition System", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'79), Apr. 1979, 5 pages. Roddy et al., "Communication and Collaboration in a Landscape of B2B eMarketplaces", VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages.

Rosenfeld, R., "A Maximum Entropy Approach to Adaptive Statistical Language Modelling", Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.

Roszkiewicz, A., "Extending your Apple", Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2,

No. 2, Feb. 1984, 5 pages.
Rudnicky et al., "Creating Natural Dialogs in the Carnegie Mellon Communicator System", Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534.

Russell et al., "Artificial Intelligence, A Modern Approach", Prentice Hall, Inc., 1995, 121 pages.

Sacerdoti et al., "A Ladder User's Guide (Revised)", SRI International Artificial Intelligence Center, Mar. 1980, 39 pages

Sagalowicz, D., "AD-Ladder User's Guide", SRI International, Sep. 1980, 42 pages.

Sakoe et al., "Dynamic Programming Algorithm Optimization for Spoken Word Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8

Salton et al., "On the Application of Syntactic Methodologies in Automatic Text Analysis", Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages. Sameshima et al., "Authorization with Security Attributes and

Privilege Delegation Access control beyond the ACL", Computer Communications, vol. 20, 1997, 9 pages.

San-Segundo et al., "Confidence Measures for Dialogue Management in the CU Communicator System", Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages.

Sato, H., "A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database", Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages.

Savoy, J., "Searching Information in Hypertext Systems Using Multiple Sources of Evidence", International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1996, 15 pages.

Scagliola, C., "Language Models and Search Algorithms for Real-Time Speech Recognition", International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.

Schmandt et al., "Augmenting a Window System with Speech Input", IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages.

Schnelle, Dirk, "Context Aware Voice User Interfaces for Workflow Support", Dissertation paper, Aug. 27, 2007, 254 pages

Schütze, H., "Dimensions of Meaning", Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages.

Seneff et al., "A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains", Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages.

Sharoff et al., "Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases", Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages.

Sheth et al., "Evolving Agents for Personalized Information Filtering", Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages.

Sheth et al., "Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships", Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38.

Shikano et al., "Speaker Adaptation through Vector Quantization", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.

* cited by examiner

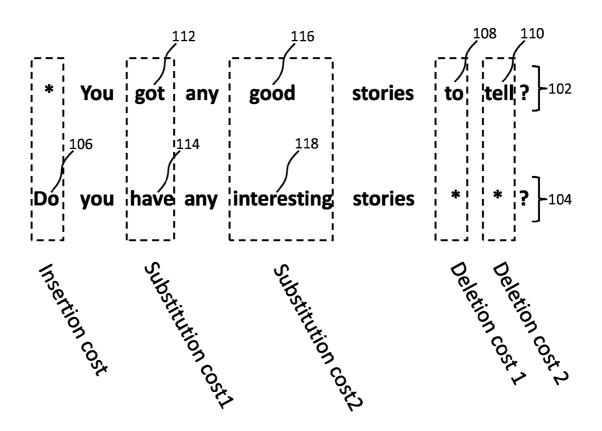


FIG. 1

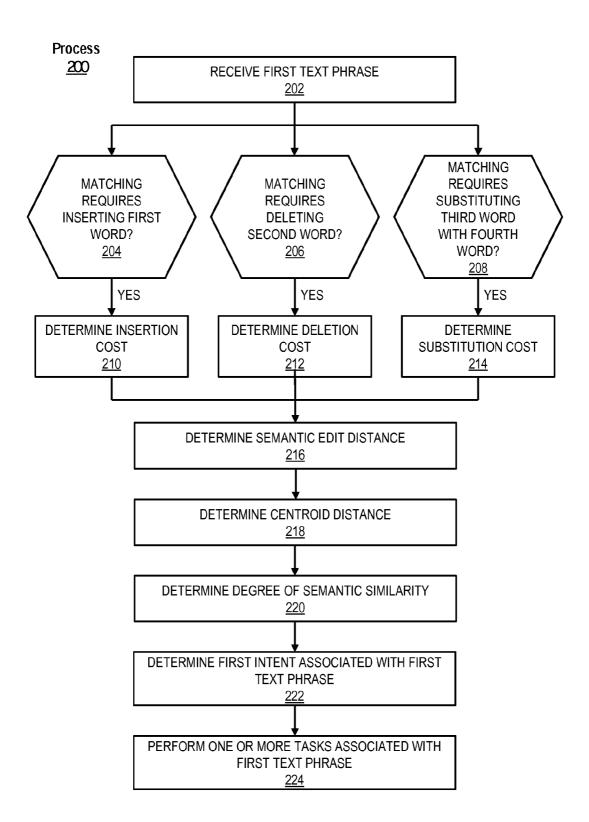


FIG. 2

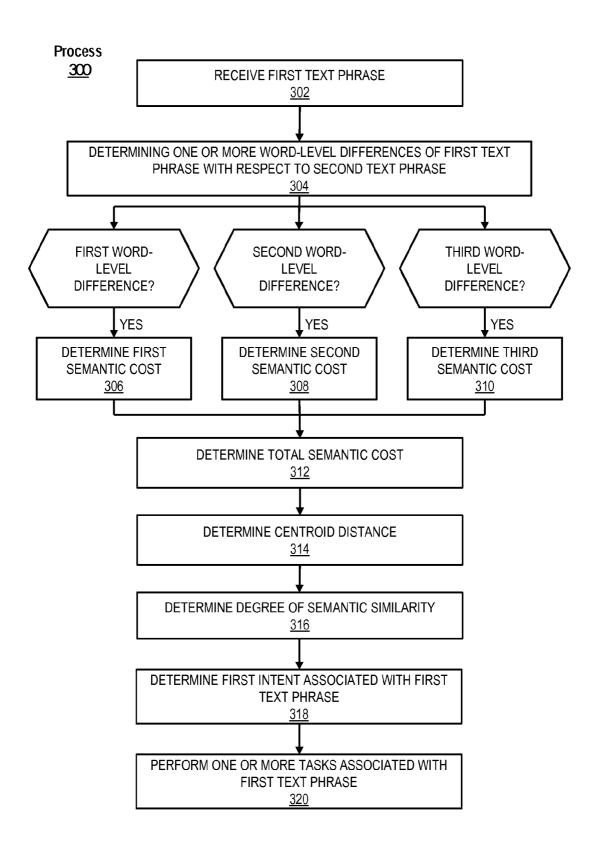


FIG. 3

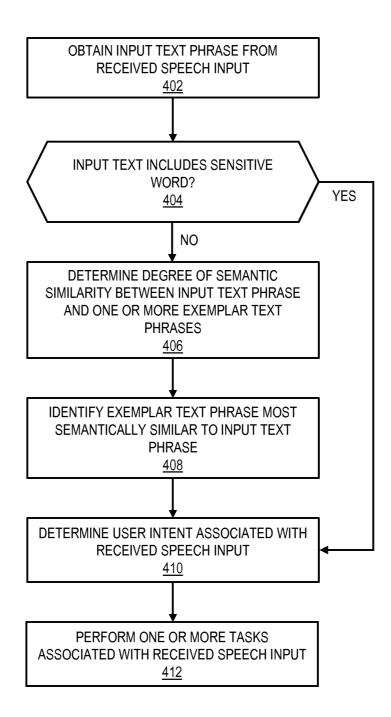
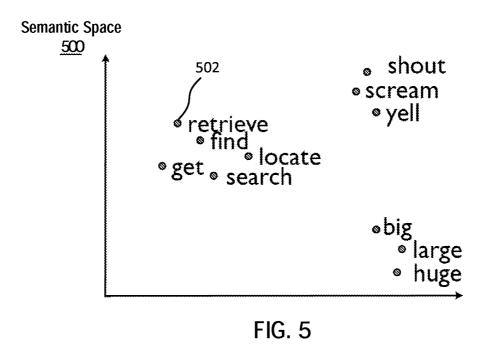



FIG. 4

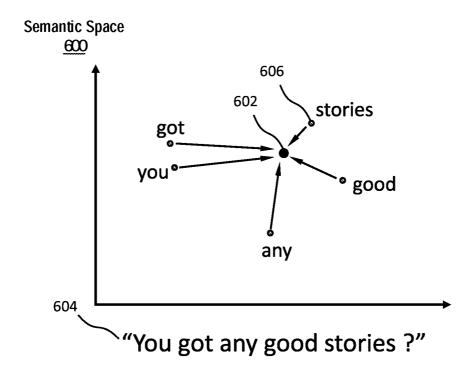


FIG. 6

System 700

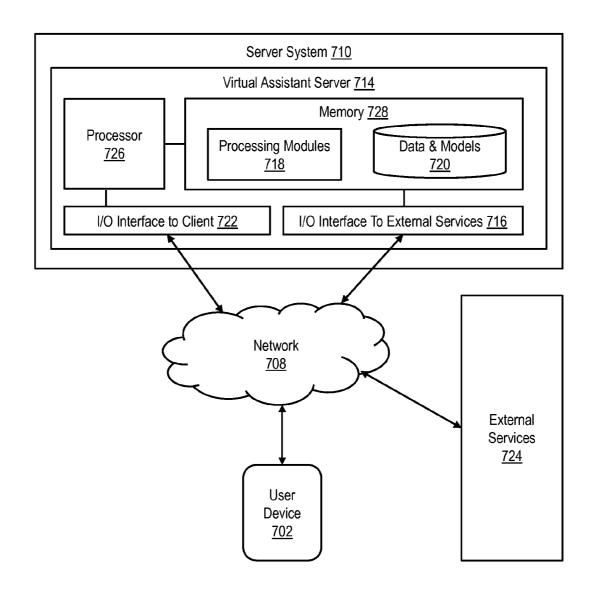


FIG. 7

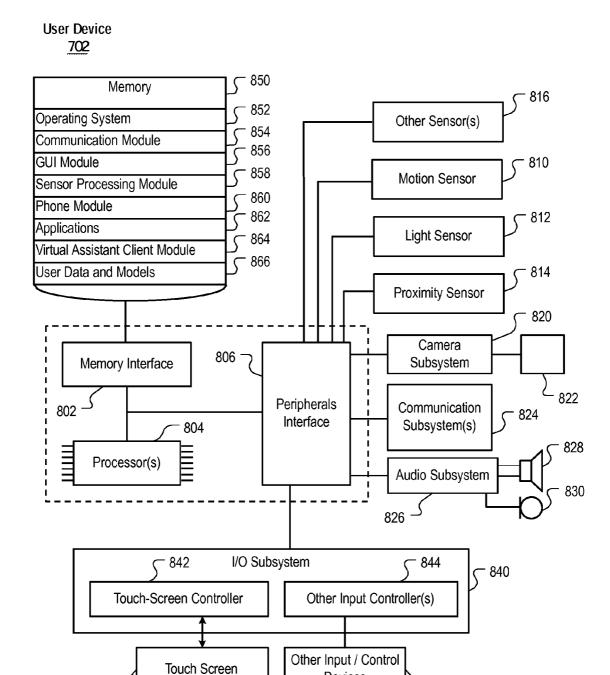


FIG. 8

Devices

848

Electronic Device 900

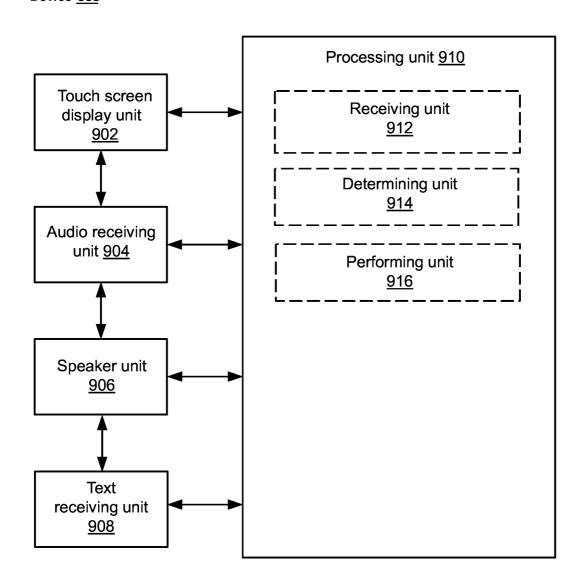


FIG. 9

Electronic Device 1000

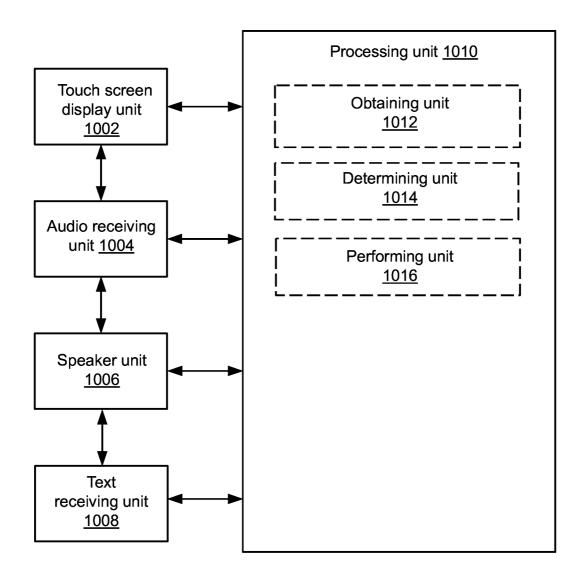


FIG. 10

Electronic Device 1100

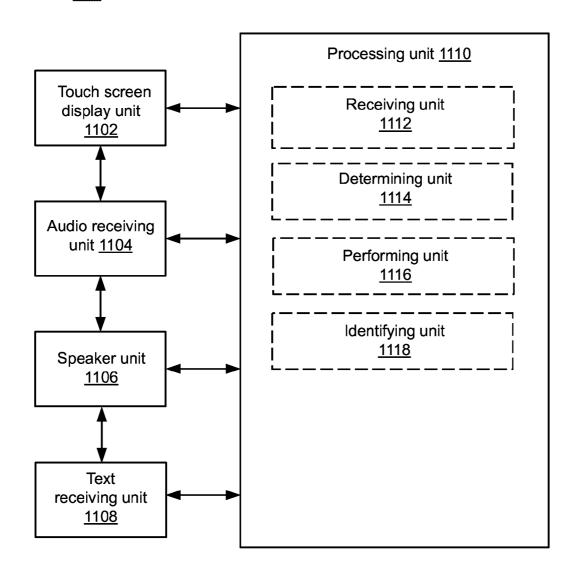


FIG. 11

EXEMPLAR-BASED NATURAL LANGUAGE **PROCESSING**

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Ser. No. 62/005,786, filed on May 30, 2014, entitled EXEM-PLAR-BASED NATURAL LANGUAGE PROCESSING, which is hereby incorporated by reference in its entirety for 10 all purposes.

FIELD

more specifically, to exemplar-based natural language processing.

BACKGROUND

Natural language input can be written or spoken input (e.g., speech or text) that is in a natural form used by a person when speaking or writing to another person. Natural language input can permit a user to easily interact with an a virtual assistant operating on an electronic device can enable a user to access various services of the electronic device through natural language input to the virtual assistant. The virtual assistant can perform natural language processing on the natural language input to determine user 30 intent from the natural language input. The determined user intent can then be operationalized into tasks that are executed by the virtual assistant.

Natural language processing can be implemented by words in the natural language input to determine the user intent associated with the input. However, due to the complex and shifting "rules" of human natural language, the overall meaning of a natural language input can be missed separately. In addition, a given user intent can be expressed in many unanticipated ways using natural language. According, determining user intent by recognizing small portions of natural language input separately can yield inaccurate or incomplete results.

SUMMARY

Systems and processes for exemplar-based natural language processing are provided. In one example process, a 50 first text phrase can be received. It can be determined whether editing the first text phrase to match a second text phrase requires one or more of inserting a first word into the first text phrase, deleting a second word from the first text phrase, and substituting a third word of the first text phrase 55 with a fourth word. The second text phrase can include the first word, the first text phrase can include the second word, and the second text phrase can include the fourth word. In response to determining that editing the first text phrase to match the second text phrase requires one or more of 60 inserting the first word into the first text phrase, deleting the second word from the first text phrase, and substituting the third word of the first text phrase with the fourth word, one or more of an insertion cost, a deletion cost, and a substitution cost can be determined. It can be determined, based on 65 the one or more of the insertion cost, the deletion cost, and the substitution cost, a semantic edit distance between the

2

first text phrase and the second text phrase in a semantic space. A degree of semantic similarity between the first text phrase and the second text phrase can be based on the semantic edit distance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the comparison of an example first text phrase to an example second text phrase for exemplar-based natural language processing according to various examples.

FIG. 2 illustrates an exemplary process for exemplarbased natural language processing according to various examples.

FIG. 3 illustrates an exemplary process for exemplar-This relates generally to natural language processing and, 15 based natural language processing according to various examples.

FIG. 4 illustrates an exemplary process for exemplarbased natural language processing of speech according to various examples.

FIG. 5 illustrates an exemplar semantic space according to various examples.

FIG. 6 illustrates a centroid position of an exemplar text phrase in a semantic space according to various examples.

FIG. 7 illustrates an exemplary system and environment electronic device using well-known language. For example, 25 for carrying out aspects of exemplar-based natural language processing according to various examples.

> FIG. 8 illustrates an exemplary user device for carrying out aspects of exemplar-based natural language processing according to various examples.

> FIG. 9 illustrates a functional block diagram of an exemplary electronic device according to various examples.

> FIG. 10 illustrates a functional block diagram of an exemplary electronic device according to various examples.

FIG. 11 illustrates a functional block diagram of an parsing and recognizing individual words or groups of 35 exemplary electronic device according to various examples.

DETAILED DESCRIPTION

In the following description of examples, reference is by recognizing small portions of natural language input 40 made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.

The present disclosure relates to exemplar-based natural language processing. According to various examples described herein, exemplar-based natural language processing can be used to determine a user intent associated with an input text phrase by matching the input text phrase to a set of exemplar text phrases that are each associated with a predetermined intent. For example, the exemplar text phrase, "Where can I get money?" can be associated with the predetermined intent of finding a bank or an automatic teller machine (ATM). The input text phrase, "Where can I get some cash?" can be matched to the exemplar text phrase. Thus, the user intent associated with the input text phrase can be determined to be similar or identical to the predetermined intent associated with the exemplar text phrase.

In one example process, an input text phrase can be matched to the exemplar-text phrase by determining a degree of semantic similarity between the input text phrase and the exemplar text phrase. In this example, the input text phrase can be received. It can be determined whether editing the input text phrase to match an exemplar text phrase requires one or more of inserting a first word into the input text phrase, deleting a second word from the input text phrase, and substituting a third word of the input text phrase ______

with a fourth word. The exemplar text phrase can include the first word, the input text phrase can include the second word, and the exemplar text phrase can include the fourth word. In response to determining that editing the input text phrase to match the exemplar text phrase requires one or more of 5 inserting the first word into the input text phrase, deleting the second word from the input text phrase, and substituting the third word of the input text phrase with the fourth word, one or more of an insertion cost, a deletion cost, and a substitution cost can be determined. A semantic edit distance 10 between the input text phrase and the exemplar text phrase in a semantic space can be determined based on one or more of the insertion cost, the deletion cost, and the substitution cost. The degree of semantic similarity between the input text phrase and the exemplar text phrase can be based on the 15 semantic edit distance.

1. Exemplar-based Natural Language Processes

FIG. 1 illustrates the comparison of first text phrase 102 to second text phrase 104 for exemplar-based natural language processing according to various examples. FIG. 2 20 illustrates process 200 for exemplar-based natural language processing according to various examples. Process 200, can be described with simultaneous reference to FIGS. 1 and 2.

At block 202 of process 200, first text phrase 102 can be received. First text phrase can be natural language text and 25 can include a string of words. In this example, as shown in FIG. 1, first text phrase 102 can include the question, "You got any good stories to tell?" In other examples, the first text phrase can be any request, statement, exclamation, question, or the like. In some examples, the first text phrase can be less 30 than 150 characters. First text phrase 102 can include a first intent that can be determined using exemplar-based natural language processing.

First text phrase 102 can be received via an interface of a user device (e.g., touch screen 846 or other input/control 35 devices 848 of user device 702, described below). The interface can be any suitable device for inputting text. For example, the interface can be a keyboard/keypad, a touch screen implementing a virtual keyboard or a handwriting recognition interface, a remote control (e.g., television 40 remote control), a scroll wheel interface, or the like. In some examples, first text phrase 102 can be received from a speech-to-text converter. In these examples, at least a portion of a received speech input can be transcribed into text via the speech-to-text converter. First text phrase 102 can 45 include the transcribed text.

At blocks 204, 206, and 208 of process 200, it can be determined whether editing first text phrase 102 to match second text phrase 104 requires one or more of: a) inserting a first word into the first text phrase, b) deleting a second 50 word from the first text phrase, and c) substituting a third word of the first text phrase with a fourth word. Second text phrase 104 can include the first word, first text phrase 102 can include the second word, and second text phrase 104 can include the fourth word.

Second text phrase 104 can be a predetermined text phrase. For example, second text phrase 104 can be an exemplar text phrase stored on the user device or a remote system and can be associated with a predetermined intent and/or a predetermined task to be performed. In this 60 example, second text phrase 104 can be the predetermined question, "Do you have any interesting stories?" In this example, second text phrase 104 can be associated with the predetermined intent of requesting a story and/or the predetermined task of retrieving a story. In other examples, 65 second text phrase 104 can be any predetermined natural language text that includes a string of words. Like first text

phrase 102, second text phrase 104 can be any request, statement, exclamation, question or the like. In some cases, second text phrase 104 can also be less than 150 characters.

First text phrase 102 can be compared to second text phrase 104 to determine the types of edits that would be required in order for first text phrase 102 to match with second text phrase. In this example, second text phrase 104 can include first word "do" 106 for which first text phrase 102 does not include any corresponding word. Thus, at block 204, it can be determined that editing first text phrase 102 to match second text phrase 104 would require inserting first word "do" 106 into first text phrase 102.

In addition, first text phrase 102 can include second word "to" 108 for which second text phrase 104 does not include any corresponding word. Further, in this example, first text phrase 102 can include the word "tell" 110 for which second text phrase 104 does not include any corresponding word. Thus, at block 206, it can be determined that editing first text phrase 102 to match second text phrase 104 would require deleting second word 108 "to" and the word "tell" 110 from first text phrase 102.

Further, first text phrase 102 can include third word "got" 112 that is different from corresponding fourth word "have" 114 of second text phrase 104. Similarly, first text phrase 102 can include the word "good" 116 that is different from corresponding word "interesting" 118 of second text phrase 104. Thus, at block 208, it can be determined that editing first text phrase 102 to match second text phrase 104 would require substituting third word "got" 112 with fourth word "have" 114 and substituting the word "good" 116 with the word "interesting" 118.

At block 210 of process 200, an insertion cost associated with inserting first word "do" 106 into first text phrase 102 can be determined in response to determining that editing first text phrase 102 to match second text phrase 104 requires inserting first word "do" 106 into first text phrase 102. The insertion cost can be determined based on a first predetermined semantic cost and a salience of the first word. For example, the insertion cost, cost_{ins}("do")=i*salience("do"), where i denotes the first predetermined semantic cost and salience("do") denotes the salience of the word "do." Functions for deriving the salience of a given word, salience(w), are explained in greater detail below.

At block 212 of process 200, a first deletion cost associated with deleting second word "to" 108 from first text phrase 102 can be determined in response to determining that editing first text phrase 102 to match second text phrase 104 requires deleting second word "to" 108 from first text phrase 102. The first deletion cost can be determined based on a second predetermined semantic cost and a salience of second word "to" 106. For example, the first deletion cost, cost_{del}("to")=d*salience("to"), where d denotes the second predetermined semantic cost and salience("to") denotes the salience of the word "to." In some examples, the first 55 predetermined semantic cost is greater than the second predetermined semantic cost. This can be because inserting an additional word to a text phrase typically changes the semantics of the text phrase significantly. Therefore, the cost associated with inserting a word should be greater than the cost associated with deleting a word.

Further, a second deletion cost associated with deleting the word "tell" 110 from first text phrase 102 can be determined in response to determining that editing first text phrase 102 to match second text phrase 104 requires deleting the word "tell" 110 from first text phrase 102. The second deletion cost can be determined in a similar or identical manner as the first deletion cost. For example, the second

5 $\label{eq:cost_del} \mbox{deletion} \quad \mbox{cost}, \quad \mbox{cost}_{\textit{del}}\mbox{("tell")=d*salience("tell")}, \quad \mbox{where}$ salience("tell") denotes the salience of the word 'tell."

At block 214 of process 200, a first substitution cost associated with substituting third word "got" 112 of first text phrase 102 with fourth word "have" 114 can be determined 5 in response to determining that editing first text phrase 102 to match second text phrase 104 requires substituting third word "got" 112 of first text phrase 102 with fourth word "have" 114. The first substitution cost can be determined based on a salience of third word "got" 112, a salience of fourth word "have" 114, a semantic similarity between third word "got" 112 and fourth word "have" 114 in a semantic space, the first predetermined semantic cost, and the second predetermined semantic cost. For example, the first substitution cost:

$$cost_{sub}$$
("got", "have")= $(cost_{del}$ ("got")+ $cost_{ins}$
("have"))(1-similarity("got", "have"))

where cost_{del} ("got") denotes the deletion cost associated with deleting third word "got" 112 from first phrase 102, 20 cost, "have") denotes the insertion cost associated with inserting fourth word "have" 114 into first phrase 102, and similarity("got", "have") denotes the semantic similarity between third word "got" 112 and fourth word "have" 114. Cost_{del} ("got") can be determined in a similar or identical 25 manner as cost_{del} ("tell") described above at block 212 and can be based on the second predetermined semantic cost and the salience of third word "got" 112. Cost_{ins} ("have") can be determined in a similar or identical manner as cost_{ins} ("do") described above at block 210 and can be based on the first 30 predetermined semantic cost and the salience of fourth word "have" 114. A detailed description for determining the semantic similarity between two words (e.g., "got" and "have") in a semantic space is provided below.

Further, a second substitution cost associated with sub- 35 stituting the word "good" 116 of first text phrase 102 with the word "interesting" 118 is determined in response to determining that editing first text phrase 102 to match second text phrase 104 requires substituting the word "good" 116 of first text phrase 102 with the word "interest- 40 ing" 118. The second substitution cost can be determined in a similar or identical manner as the first substitution cost. For example, the second substitution cost:

It should be recognized that various modifications can be made for determining the insertion cost, the deletion cost, and the substitution cost. For example, various weighting factors can be included to adjust the relative cost associated 50 with inserting, deleting, and substituting.

At block 216 of process 200, a semantic edit distance between first text phrase 102 and second text phrase 104 in a semantic space can be determined. The semantic edit distance can be determined based on one or more of the 55 insertion cost, the deletion cost, and the substitution cost determined at blocks 210, 212, and 214. For example, the semantic edit distance can be a linear combination of the insertion cost, the first deletion cost, the second deletion cost, the first substitution cost, and the second substitution 60 cost. Appropriate weighting factors can be applied to the various costs in determining the semantic edit distance. Further, the semantic space can be the same semantic space used to determine the semantic similarity between two words, described below.

At block 218 of process 200, a centroid distance between a centroid position of first text phrase 102 in the semantic

6

space and a centroid position of second text phrase 104 in the semantic space can be determined. The semantic space can be the same semantic space used to determine semantic similarity between third word 112 and fourth word 114 at block 214. The centroid position of a text phrase can be determined based on the semantic position of one or more words of the text phrase in the semantic space. Further, the centroid position of the text phrase can be determined based on a salience of one or more words of the text phrase. For example, the centroid position of first text phrase 102 can be determined based on a weighted semantic position of one or more words of first text phrase 102 in the semantic space where the semantic position of the one or more words of first text phrase 102 is weighted by a salience of the one or more words of first text phrase 102. Additional details for determining centroid position of a text phrase are provided below.

At block 220 of process 200, a degree of semantic similarity between first text phrase 102 and second text phrase 104 can be determined. In some examples, the degree of semantic similarity between first text phrase 102 and second text phrase 104 can be determined based on the semantic edit distance of block 216 and/or the centroid distance of block 218. In one example, the degree of semantic similarity between first text phrase 102 and second text phrase 104 can be based on a linear combination of the semantic edit distance and the centroid distance. Various weighting factors can be applied to the linear combination of the semantic edit distance and the centroid distance.

At block 222 of process 200, a first intent associated with first text phrase 102 can be determined based on the degree of semantic similarity. For example, blocks 204 through 220 can be repeated to determine the degree of semantic similarity between first text phrase 102 and a plurality of text phrases. The plurality of text phrases can include the second text phrase. Further, the plurality of text phrases can be associated with a plurality of predetermined intents. In one example, it can be determined at block 222 that first text phrase 102 is most semantically similar to second text phrase 104 among the plurality of text phrases. In particular, the degree of semantic similarity can be based on the semantic edit distance and it can be determined that second text phrase 104 is associated with the lowest semantic edit distance among the plurality of text phrase. In this example, the first intent can be determined to be similar or identical to 45 the predetermined intent associated with second text phrase 104. Specifically, the first intent can be determined to be similar or identical to the predetermined intent of requesting

At block 224 of process 200, one or more tasks associated with first text phrase 102 can be performed based on the first intent. For example, the tasks of searching for a story on the Internet or a database and displaying a retrieved story can be performed based on the first intent of requesting a story.

Although blocks 202 through 224 of process 200 are shown in a particular order in FIG. 2, it should be appreciated that these blocks can be performed in any order. For instance, in some examples, block 218 can be performed prior to block 216. In addition, although process 200 is described above with reference to blocks 202 through 224, it should be appreciated that in some cases, process 200 can include additional blocks. For instance, in some examples, process 200 can include determining whether first text phrase 102 includes a fifth word that second text phrase 104 does not include and determining whether a predetermined list of keywords includes the fifth word. The predetermined list of keywords can include words that are highly salient and thus strongly influence the semantics of a given text

phrase. For example, the predetermined list of keywords can include profane words. Accordingly, the degree of semantic similarity at block 220 can be based on whether first text phrase 102 includes a fifth word that second text phrase 104 does not include and whether a predetermined list of keywords includes the fifth word. For example, the degree of semantic similarity between first text phrase 102 and second text phrase 104 can be determined to be poor in response to determining that first text phrase 102 includes a profane word that second text phrase 104 does not include and a 10 predetermined list of keywords includes the profane word.

Further, one or more blocks of process 200 can be optional and/or one or more blocks of process 200 can be combined. For instance, in some examples, block 218 of determining a centroid distance can be optional. In other 15 examples, blocks 222 and 224 of determining a first intent and performing one or more tasks can be optional.

In some examples, blocks 204, 206, and 208 of process 200 can be combined. In these examples, it can be determined whether editing first text phrase 102 to match second 20 text phrase 104 requires one or more of: a) inserting a first word into the first text phrase, b) deleting a second word from the first text phrase, and c) substituting a third word of the first text phrase with a fourth word. In other examples, blocks 210, 212, and 214 can be combined. In these 25 examples, in response to determining that editing the first text phrase to match the second text phrase requires one or more of inserting the first word into the first text phrase, deleting the second word from the first text phrase, and substituting the third word of the first text phrase with the 30 fourth word, one or more of an insertion cost, a deletion cost, and a substitution cost can be determined.

FIG. 3 illustrates process 300 for exemplar-based natural language processing according to various examples. Process 300 can be described with simultaneous reference to FIGS. 351 and 3.

At block 302 of process 300, first text phrase 102 can be received. Block 302 can be similar or identical to block 202 of process 200 described above.

At block 304 of process 300, one or more word-level 40 differences of first text phrase 102 with respect to second text phrase 104 can be determined. Determining the one or more word-level differences can include comparing the words of first text phrase 102 to the words of second text phrase 104. Block 304 can be similar or identical to any 45 combination of block 204, 206, and 208 of process 200. The one or more word-level differences can include one or more of a first word-level difference, a second word-level difference, and a third word-level difference.

A first word-level difference can comprise second text 50 phrase 104 including a first word 106 that does not correspond to any word of first text phrase 102. For example, first word "do" 106 of second text phrase 104 does not correspond to any word of first text phrase 102. Thus, the absence of first word "do" 106 in first text phrase 102 can be 55 determined to be a first word-level difference. Determining a first word-level difference can be similar or identical to determined whether editing first text phrase 102 to match second text phrase 104 would require inserting first word 106 into first text phrase 102, as described above in block 60 204 of process 200.

A second word-level difference can comprise first text phrase 102 including a second word 108 that does not correspond to any word of second text phrase 104. For example, second word "to" 108 of first text phrase 102 does 65 not correspond to any word of second text phrase 104. Similarly, the word "tell" 110 of first text phrase 102 does

8

not correspond to any word of second text phrase 104. Thus, second word "to" and/or the word "tell" of first text phrase 102 can be determined to be second word-level differences. Determining a second word-level difference can be similar or identical to determining whether editing first text phrase 102 to match second text phrase 104 would require deleting second word 108 and/or word 110 from first text phrase 102, as described above in block 206 of process 200.

A third word-level difference can comprise first text phrase 102 including third word 112 that is different from a corresponding fourth word 114 of second text phrase 104. For example, third word "got" 112 of first text phrase 102 can be different from corresponding fourth word "have" 114 of second text phrase 104. Similarly, the word "good" 116 of first text phrase 102 can be different from the corresponding word "interesting" 118 of second text phrase 104. Thus, third word "got" and/or the word "good" of first text phrase 102 can be determined to be third word-level differences. Determining a second word-level difference can be similar or identical to determining whether editing first text phrase 102 to match second text phrase 104 would require substituting third word 112 with fourth word 114 and/or substituting word 116 with word 118, as described above in block 208 of process 200.

At block 306, in response to determining that the one or more word-level differences include the first word-level difference, a first semantic cost associated with the first word-level difference can be determined. The first semantic cost can be based on a first predetermined semantic cost and the salience of the first word. The first semantic cost can be similar or identical to the insertion cost described above in block 210 of process 200 and can be determined in a similar or identical manner as the insertion cost.

At block 308 of process 300, in response to determining that the one or more word-level differences include the second word-level difference, a second semantic cost associated with the second word-level difference can be determined. The second semantic cost can be based on a second predetermined semantic cost and the salience of the second word. The second semantic cost can be similar or identical to the deletion cost described above in block 212 of process 200 and can be determined in a similar or identical manner as the deletion cost.

At block 310 of process 300, in response to determining that the one or more word-level differences include the third word-level difference, a third semantic cost associated with the third word-level difference can be determined. The third semantic cost can be based on the salience of the third word, the salience of the fourth word, the semantic similarity between the third word and the fourth word, a first predetermined semantic cost, and a second predetermined semantic cost. The third semantic cost can be similar or identical to the substitution cost described above in block 214 of process 200 and can be determined in a similar or identical manner as the substitution cost.

At block 312 of process 300, a total semantic cost associated with the one or more word-level differences can be based on the first semantic cost, the second semantic cost, and the third semantic cost. The total semantic cost can be determined in a similar or identical manner as the semantic edit distance described above in block 216 of process 200. For example, the total semantic cost can be equal to the linear combination of the first semantic cost, the second semantic cost, and the third semantic cost. As described above, the first semantic cost, the second semantic cost, and the third semantic cost can be based on one or more of a salience of the first word, a salience of the second word, a

salience of the third word, a salience of the fourth word, and a semantic similarity between the third word and the fourth word in a semantic space.

At block 314 of process 300, a centroid distance between a centroid position of first text phrase 102 in the semantic 5 space and a centroid position of second text phrase 104 in the semantic space can be determined. Block 314 can be similar or identical to block 218 of process 200 described above.

At block 316 of process 300, a degree of semantic 10 similarity between first text phrase 102 and second text phrase 104 can be based on the total semantic cost and/or the centroid distance. For example, the degree of semantic similarity can be based on a linear combination of the total semantic cost and the centroid distance. Block 316 can be 15 similar or identical to block 220 of process 200 described

At block 318 of process 300, a first intent associated with first text phrase 102 can be determined based on the degree of semantic similarity. Block 318 can be similar or identical 20 to block 222 of process 200 described above.

At block 320 of process 300, one or more tasks associated with first text phrase 102 can be performed based on the first intent. Block 320 can be similar or identical to block 224 of process 200 described above.

Although blocks 302 through 320 of process 300 are shown in a particular order in FIG. 3, it should be appreciated that these blocks can be performed in any order and that some blocks can be combined. Further, one or more blocks of process 200 can be optional and/or one or more additional 30 blocks can be included.

In some examples, process 300 can further include determining whether first text phrase 102 includes a fifth word that second text phrase 104 does not include and determining whether a predetermined list of keywords includes the 35 fifth word. The degree of semantic similarity between first text phrase 102 and second text phrase can be based on whether first text phrase 102 includes a fifth word that second text phrase 104 does not include and whether a predetermined list of keywords includes the fifth word.

FIG. 4 illustrates process 400 for exemplar-based natural language processing of speech according to various examples. Exemplar-based natural language processing can be particularly advantageous for processing speech input for user intent. This can be because of exemplar-based natural 45 language processing is less sensitive to the word-level errors that can typically be associated with speech-to-text conversion.

At block 402 of process 400, an input text phrase can be obtained from a received speech input. For example, the 50 input text phrase can be obtained by performing speech-to-text conversion on the received speech input. Speech-to-text conversion can be performing using automatic speech recognition methods known in the art. The received speech input and the input text phrase can be in natural language 55 form. The input text phrase can be similar or identical to first text phrase described above at block 302 of process 300.

At block 404 of process 400, it can be determining whether the input text phrase includes a sensitive word of a predetermined list of sensitive words. The sensitive word 60 can be strongly associated with a particular intent. The salience of the sensitive word can thus be significant where a phrase that includes the sensitive word is likely associated with the particular intent. In some examples, the sensitive word is a profane word.

At block 406 of process 400, a degree of semantic similarity between the input text phrase and one or more

10

exemplar text phrases can be determined in response to determining that the input text phrase does not include a sensitive word of a predetermined list of sensitive words. The degree of semantic similarity between the input text phrase and an exemplar text phrase of the one or more exemplar text phrases can be determined in a similar or identical manner as determining a degree of semantic similarity between the first text phrase and the second text phrase at blocks 304 through 316 of process 300, described above. Further, the exemplar text phrase can be similar or identical to the second text phrase at block 304 of process 300.

At block 408 of process 400, an exemplar text phrase that is most semantically similar to the input text phrase among the one or more exemplar text phrases can be identified based on the determined degree of semantic similarity between the input text phrase and the one or more exemplar text phrases. In a specific example, the degree of semantic similarity can be based on the total semantic cost. It can be determined that a first exemplar text phrase is associated with the lowest total semantic cost among those of the plurality of exemplar text phrases. Therefore, in such an example, the first exemplar text phrase can be identified as most semantically similar to the input text phrase among the one or more exemplar text phases.

At block 410 of process 400, a user intent associated with the received speech input can be determined based on the degree of semantic similarity between the input text phrase and the one or more exemplar text phrases. Block 410 can be similar or identical to block 318 of process 300.

In some examples, in response to determining at block 404 that the input text phrase includes a sensitive word of a predetermined list of sensitive words, a user intent associated with the received speech input can be determined based on a predetermined intent associated with the sensitive word. In particular, the user intent can be determined to be similar or identical to the predetermined intent associated with the sensitive word.

In other examples, in response to determining at block 404 that the input text phrase does not include a sensitive word of a predetermined list of sensitive words, a user intent associated with the received speech input can be determined based on a predetermined intent associated with the exemplar text phrase that is most semantically similar to the input text phrase at block 408.

At block 412 of process 400, one or more tasks associated with the received speech input can be determined based on the user intent. Block 412 can be similar or identical to block 320 of process 300.

Although blocks **402** through **412** of process **400** are shown in a particular order in FIG. **4**, it should be appreciated that these blocks can be performed in any order and that some blocks can be combined. Further, one or more blocks of process **400** can be optional and/or one or more additional blocks can be included.

It should be recognized that the terms "first word," "second word," "third word," "fourth word," "fifth word" and the like described herein can, in some cases, refer to tokens that each represent a single word or a group of words that should be treated as a single unit. For instance, in one example, "first word" can be the single word "many". In another example, "first word" can be the group of words "a lot of."

The various processes for exemplar-based natural language processing described herein can be performed using a system implementing a client-server model, and more specifically, a system capable of implementing a virtual assistant (e.g., system 500, described below). In other examples,

the processes for exemplar-based natural language processing described herein can be performed using a stand-alone electronic device (e.g., user device **502**, described below).

2. Salience of a Word

The salience of a word can represent the influence the word has over a phrase. A highly salient word can greatly affect the semantics of a phrase. Thus, inserting, deleting, or substituting a highly salient word in a phrase can significantly change the meaning of the phrase. Conversely, a word with low salience does not greatly affect the semantics of a phrase. Thus inserting, deleting, or substituting a word with low salience in a phrase may not significantly change the meaning of the phrase.

The salience of a word can be determined based on the frequency of occurrence of the word in a corpus of text. For example, the salience of a word can be expressed by term frequency-inverse document frequency (tf-idf) or a variant thereof. In one example, a corpus of text can include multiple categories of text phrases that each includes a multiple text phrases. A category of text phrases can represent a particular context of text phrases or a particular topic of text phrases. For example, a category of text phrases can include text phrases associated with a particular intent. The salience of a word can be based on a proportion of the plurality of categories that include the word. This can be expressed as:

salience(w) =
$$1 - \frac{|\{c \in \text{categories} \mid w \in c\}|}{|\text{categories}|}$$

where salience(w) denotes a salience of a particular word, categories denotes the various categories in the corpus, c denotes a particular category in categories, and w denotes 35 the word. In a specific example, if there are 100 categories in a corpus and a first word appears in 99 of the categories, the salience of the first word, salience(first word), can be equal to 1–(99/100)=0.01. Thus, words that appear in a large proportion of categories in the corpus can have low salience 40 while words that appear in a small proportion of categories in the corpus can have high salience.

In other examples, the salience of a word can be determined based on a function representing the indexing power of a word. For example, the salience of a word can be 45 determined based on the normalized entropy of the word in a corpus. In particular,

$$salience(w) = 1 - \frac{1}{\log N} \sum_{c \in categories} p(c \mid w) \log p(c \mid w)$$

where N is the number of categories and p(c|w) is the probability that a word w is part of a phrase for the particular 55 category c as opposed to other categories.

In yet other examples, the salience of a word can be arbitrarily determined. For example, the salience of a word in a predetermined list of sensitive words can be assigned an arbitrary value. In a specific example, a predetermined list of 60 sensitive words can include a profane word and the salience of the profane word can be arbitrarily assigned a high salience.

3. Semantic Space, Semantic Similar, and Centroid Distance The semantic similarity between two words (e.g., between third word 112 and fourth word 114, described above in block 208) can be determined using a semantic space. The **12**

semantic space can be an n-dimensional semantic space that is based on distributional semantics. Each word can be represented by a semantic position in the semantic space. The semantic position of a word can be expressed as a vector

 \vec{v}_{w} . The semantics of words can be compared based on the semantic distance between their vectors. For example, the semantic distance between the vector of a third word and the vector of a fourth word can represent the semantic similarity between the third word and the fourth word in the semantic space. In some examples, the semantic similarity between the third word and the fourth word in a semantic space can refer to the semantic distance between the vector of the third word and the vector of the fourth word in the semantic space. The semantic distance between vectors can be determined by taking an inner product of the semantic vectors. For example, the semantic distance (e.g., semantic similarity) between word w_1 and word w_2 can be determined as follows:

similarity_{word}
$$(w_1, w_2) = \overrightarrow{v}_{w1} \cdot \overrightarrow{v}_{w2}$$

where \overrightarrow{v}_{w1} denotes the vector representing word \overrightarrow{w}_1 in the semantic space and \overrightarrow{v}_{w2} denotes the vector representing word \overrightarrow{w}_2 in the semantic space.

FIG. 5 illustrates semantic space 500 according to various examples. A plurality of points 502 are disposed in semantic space 500. Each point represents a semantic position of a word in semantic space 500. Words associated with points that are closer together in semantic space 500 are more semantically similar. Conversely, words associated with points that are further apart from each other are less semantically similar. For example, the semantic distance between the words "find" and "search" is less than the semantic distance between the words "find" and "shout." Accordingly, the word "find" is more semantically similar to the word "search" than to the word "shout."

Semantic space 500 can be derived from the distributions of words (e.g., a corpus) in a large body of unannotated text. In some examples, semantic space 500 can be derived from a corpus that includes a plurality of text phrases where each text phrase of the plurality of text phrases includes less than 150 characters. By using shorter text phrases to derive semantic space 500, semantic space 500 can be more suitable for virtual assistant applications where input texts can typically be short questions, requests, or statements that can be less than 150 characters.

A semantic space can also be used to determine the semantic similarity between text phrases. For example, the semantic similarity between a first text phrase and a second text phrase can be represented by a centroid distance in a semantic space. The centroid distance can be the distance between a centroid position of the first text phrase in the semantic space and a centroid position of the second text phrase in the semantic space. The centroid position of a text phrase can represent the semantics of the text phrase in the semantic space. The centroid position of a text phrase can be expressed as a vector $\vec{r}(s)$ in the semantic space. For example, FIG. 6 illustrates centroid position 602 of text phrase 604 in semantic space 600 according to various examples. Semantic space 600 can be similar or identical to semantic space 500. Centroid position 602 of text phrase 604 can be determined based on a semantic position of one or more words of text phrase 602 in the semantic space.

As shown in FIG. 6, each word of text phrase 602 can be represented by a semantic position. For example, the word "stories" can be represented by semantic position 606. In some examples, centroid position 602 can be determined by

combining the vectors \overrightarrow{v}_w of the words in text phrase 604. Further, in some examples, centroid position 602 of text phrase 604 can be determined based on a salience of one or more words of text phrase 604. For example, the vector \overrightarrow{v}_w 5 of each word of text phrase 604 can be weighted by the salience of the word and the weighted vectors salience(w) \overrightarrow{v}_w can be combined to determine centroid position 602. In particular,

$$\vec{r}(s) = \sum_{w \in s} \text{salience}(w) \cdot \vec{v}_w$$

where $\vec{r}(s)$ denotes centroid position 602 of text phrase 604, salience(w) denotes the salience of a word of text phrase 604, \vec{v}_w the semantic position of a word of text phrase 604, s denotes text phrase 604, and w denotes a word of text phrase 604.

In some examples, the centroid distance between a centroid position of a first text phrase in the semantic space and a centroid position of a second text phrase in the semantic space can be determined by L^2 normalizing the centroid 25 position of the first text phrase and the centroid position of the second text phrase. For example:

$$similarity_{centroid}(s_1, s_2) = \frac{\vec{r}(s_1) \cdot \vec{r}(s_2)}{\|\vec{r}(s_1)\| \|\vec{r}(s_2)\|}$$

where similarity_{centroid}(s_1 , s_2) denotes the centroid distance between the centroid position $\vec{r}(s_1)$ of the first text phase s_1 and the centroid position $\vec{r}(s_2)$ of the second text phrase s_2 .

4. System and Environment

FIG. 7 illustrates system 700 for carrying out various 40 aspects of exemplar-based natural language processing according to various examples. In some examples, system 700 can implement a virtual assistant. The terms "virtual assistant," "digital assistant," "intelligent automated assistant," or "automatic digital assistant," can refer to any 45 information processing system (e.g., system 700) that can interpret natural language input in spoken and/or textual form to infer user intent, and perform actions based on the inferred user intent.

The virtual assistant can be capable of processing natural language input. For example, virtual assistant can be capable of performing speech recognition on a spoken input in order to obtain a textual representation of the spoken input. The textual representation can be analyzed to infer user intent. The virtual assistant can then act on the inferred user intent by performing one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent; inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.

An example of a virtual assistant is described in Applicants' U.S. Utility application Ser. No. 12/987,982 for "Intelligent Automated Assistant," filed Jan. 10, 2011, the 65 entire disclosure of which is incorporated herein by reference

14

As shown in FIG. 7, in some examples, a virtual assistant can be implemented according to a client-server model. The virtual assistant can include a client-side portion executed on user device 702, and a server-side portion executed on server system 710. User device 702 can include any electronic device, such as a mobile phone, tablet computer, portable media player, desktop computer, laptop computer, PDA, television, television set-top box, wearable electronic device, or the like, and can communicate with server system 10 710 through one or more networks 708, which can include the Internet, an intranet, or any other wired or wireless public or private network. A detailed description of user device 702 is provided below with reference to FIG. 8. The client-side portion executed on user device 702 can provide client-side functionalities, such as user-facing input and output processing and communications with server system 710. Server system 710 can provide server-side functionalities for any number of clients residing on a respective user device 702

Server system 710 can include one or more virtual assistant servers 714. As shown in FIG. 7, virtual assistant server 714 includes memory 728, one or more processors 726, client-facing I/O interface 722, and I/O interface to external services 716. The various components of virtual assistant server 714 can be coupled together by one or more communication buses or signal lines. Memory 728, or the computer-readable storage media of memory 728, can include one or more processing modules 718 and data and model storage 720. The one or more processing modules 718 30 can include various programs and instructions. The one or more processors 726 can execute the programs and instructions of the one or more processing modules 728 and read/write to/from data and model storage 720. In the context of this document, a "non-transitory computer-readable storage medium" can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.

In some examples, the one or more processing modules 718 can include various programs and instructions for performing various aspects of exemplar-based natural language processing (e.g., processes 200, 300, or 400, described above). In some examples, the one or more processing modules 718 can include a speech-to-text processing module, a natural language processing module, a task flow processing module, and a service processing module. The speech-to-text processing module can include instructions for transcribing a speech utterance in an audio input. The natural language processing module can include instructions for inferring user intent from the transcribed speech utterance. For example, the natural language processing model can include various instructions for exemplarbased natural language processing (e.g., processes 200, 300, or 400). The task flow processing module and the service processing module can include instructions for identifying a task flow to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow, executing the task flow, and outputting relevant responses to the speech utterance. For example, the task flow processing module and the service processing module can include instructions for performing one or more task associated with the natural language input (e.g., blocks 224, 320, and 412, described above). Data and models 720 can include various user data and models that can be accessed or referenced when performing various aspects of exemplarbased natural language processing. For example, data and models 720 can include speech models, language models, task flow models, and service models.

In some examples, virtual assistant server **714** can communicate with external services **724**, such as telephony services, calendar services, information services, messaging services, navigation services, and the like, through network(s) **708** for task completion or information acquisition. The I/O interface to external services **716** can facilitate such communications.

Server system 710 can be implemented on one or more standalone data processing devices or a distributed network of computers. In some examples, server system 710 can 10 employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 710.

Although the functionality of the virtual assistant is 15 shown in FIG. 7 as including both a client-side portion and a server-side portion, in some examples, the functions of the assistant can be implemented as a standalone application installed on a user device (e.g., user device 702). In addition, the division of functionalities between the client and server 20 portions of the virtual assistant can vary in different examples. For instance, in some examples, one or more processing modules 718 and data and models 720 can be stored in the memory of user device 702 to enable user device to perform a greater proportion or all of the func- 25 tionalities associated with the virtual assistant. In other examples, the client executed on user device 702 can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the virtual assistant to a backend server.

5. User Device

FIG. 8 is a block diagram of a user-device 702 according to various examples. As shown, user device 702 can include a memory interface 802, one or more processors 804, and a peripherals interface 806. The various components in user 35 device 702 can be together coupled by one or more communication buses or signal lines. User device 702 can further include various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 806. The sensors, subsystems, and peripheral devices gather information 40 and/or facilitate various functionalities of user device 702.

For example, user device **702** can include a motion sensor **810**, a light sensor **812**, and a proximity sensor **814** coupled to peripherals interface **806** to facilitate orientation, light, and proximity sensing functions. One or more other sensors 45 **816**, such as a positioning system (e.g., a GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, a compass, an accelerometer, and the like, are also connected to peripherals interface **806**, to facilitate related functionalities.

In some examples, a camera subsystem 820 and an optical sensor 822 can be utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions can be facilitated through one or more wired and/or wireless communication subsystems 824, 55 which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 826 can be coupled to speakers 828 and a microphone 830 to facilitate audio-enabled functions, such as voice recognition, omusic recognition, voice replication, digital recording, and telephony functions. For example, user-device 702 can receive speech input (e.g., received speech input at block 402) via microphone 830.

In some examples, user device 702 can further include an 65 I/O subsystem 840 coupled to peripherals interface 806. I/O subsystem 840 can include a touch screen controller 842

16

and/or other input controller(s) 844. Touch-screen controller 842 can be coupled to a touch screen 846. Touch screen 846 and the touch screen controller 842 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, surface acoustic wave technologies, proximity sensor arrays, and the like. Other input controller(s) 844 can be coupled to other input/control devices 848, such as one or more buttons, rocker switches, keyboard, a thumb-wheel, an infrared port, a USB port, and/or a pointer device such as a stylus. In some examples, text input (e.g., block 202 and 302) can be received via a text inputting interface displayed on touch screen 846 or other input/control devices 848.

In some examples, user device 702 can further include a memory interface 802 coupled to memory 850. Memory 850 can include any electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such as CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like. In some examples, a non-transitory computer-readable storage medium of memory 850 can be used to store instructions (e.g., for performing processes 200, 300, or 400, described above) for use by or in connection with an instruction execution system, apparatus, or device, such as a computerbased system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing process 200, 300, or 400, described above) can be stored on a non-transitory computer-readable storage medium of server system 710, or can be divided between the non-transitory computer-readable storage medium of memory 850 and the non-transitory computer-readable storage medium of server system 710.

In some examples, the memory 850 can store an operating system 852, a communication module 854, a graphical user interface module 856, a sensor processing module 858, a phone module 860, and applications 862. Operating system 852 can include instructions for handling basic system services and for performing hardware dependent tasks. Communication module 854 can facilitate communicating with one or more additional devices, one or more computers and/or one or more servers. Graphical user interface module 856 can facilitate graphic user interface processing. Sensor processing module 858 can facilitate sensor related processing and functions. Phone module 860 can facilitate phonerelated processes and functions. Application module 862 can facilitate various functionalities of user applications, such as electronic-messaging, web browsing, media processing, navigation, imaging and/or other processes and functions.

As described herein, memory **850** can also store client-side virtual assistant instructions (e.g., in a virtual assistant client module **864**) and various user data and models **866** to provide the client-side functionalities of the virtual assistant. The virtual assistant client module **864** can include modules, instructions, and programs for performing various aspects of processes **200**, **300**, or **400** described above. In some cases, the instructions for performing various aspects of process **100** can be stored in a separate module in memory **850**. User data and models **866** can include user-specific vocabulary data, preference data, and/or other data such as the user's

electronic address book, to-do lists, shopping lists, and the like. In addition, user data and models 866 can include speech models, language models, task flow models, and service models.

In various examples, virtual assistant client module 864 5 can include instructions for accepting natural language input (e.g., speech and/or text), touch input, and/or gestural input through various user interfaces (e.g., I/O subsystem 840, audio subsystem 826, or the like) of user device 702. Virtual assistant client module 864 can also include instructions for 10 providing output in audio (e.g., speech and/or music output), visual, and/or tactile forms. For example, output can be provided as voice, music, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, 15 user device 702 can communicate with the virtual assistant server using communication subsystems 824 to perform the functionalities associated with the virtual assistant.

In various examples, memory 850 can include additional instructions or fewer instructions. Furthermore, various 20 functions of user device 702 can be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits. 6. Electronic Device

FIG. 9 shows a functional block diagram of an electronic 25 device 900 configured in accordance with the principles of the various described examples. The functional blocks of the device can be, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is 30 understood by persons of skill in the art that the functional blocks described in FIG. 9 can be, optionally, combined, or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, sepa- 35 ration, or further definition of the functional blocks described herein.

As shown in FIG. 9, electronic device 900 can include touch screen display unit 902 configured to display a user 904 configured to receive speech input. In some examples, electronic device 900 can include speaker unit 906 configured to generate sound and text receiving unit 908 configured to receive text. Electronic device 900 can further include processing unit 910 coupled to touch screen display 45 unit 902 and audio receiving unit 904 (and, optionally, coupled to speaker unit 906 and text input receiving unit 908). In some examples, processing unit 910 can include receiving unit 912, determining unit 914, and performing unit 916.

Processing unit 910 can be configured to receive a first text phrase (e.g., from text receiving unit 908 or touch screen display unit 902 and using receiving unit 912). Processing unit 910 can be configured to determine (e.g., using determining unit 914) whether editing the first text phrase to 55 match a second text phrase requires one or more of inserting a first word into the first text phrase, deleting a second word from the first text phrase, and substituting a third word of the first text phrase with a fourth word. The second text phrase includes the first word, the first text phrase includes the 60 second word, and the second text phrase includes the fourth word. Processing unit 910 can be configured to determine (e.g., using determining unit 914) one or more of an insertion cost, a deletion cost, and a substitution cost in response to determining that editing the first text phrase to match the 65 second text phrase requires one or more of inserting the first word into the first text phrase, deleting the second word from

18

the first text phrase, and substituting the third word of the first text phrase with the fourth word. The insertion cost is associated with inserting the first word into the first text phrase, the deletion cost is associated with deleting the second word from the first text phrase, and the substitution cost is associated with substituting the third word of the first text phrase with the fourth word. Processing unit 910 can be configured to determine (e.g., using determining unit 914), based on the one or more of the insertion cost, the deletion cost, and the substitution cost, a semantic edit distance between the first text phrase and the second text phrase in a semantic space. A degree of semantic similarity between the first text phrase and the second text phrase is based on the semantic edit distance.

In some examples, processing unit 910 can be configured to determine (e.g., using determining unit 914), based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase. In some examples, processing unit 910 can be configured to perform (e.g., using performing unit 914), based on the first intent, a task associated with the first text phrase.

In some examples, processing unit 910 can be configured to determine (e.g., using determining unit 914) the insertion cost associated with inserting the first word into the first text phrase in response to determining that editing the first text phrase to match the second text phrase requires inserting the first word into the first text phrase. The insertion cost is determined based on a first predetermined semantic cost and a salience of the first word.

In some examples, processing unit 910 can be configured to determine (e.g., using determining unit 914) the deletion cost associated with deleting the second word from the first text phrase in response to determining that editing the first text phrase to match the second text phrase requires deleting the second word from the first text phrase. The deletion cost is determined based on a second predetermined semantic cost and a salience of the second word.

In some examples, processing unit 910 can be configured interface and to receive touch input, and audio receiving unit 40 to determine (e.g., using determining unit 914) the substitution cost associated with substituting the third word of the first text phrase with the fourth word in response to determining that editing the first text phrase to match the second text phrase requires substituting the third word of the first text phrase with the fourth word. The substitution cost is determined based on a salience of the third word, a salience of the fourth word, a semantic similarity between the third word and the fourth word in the semantic space, a first predetermined semantic cost, and a second predetermined 50 semantic cost.

> In some examples, the first predetermined semantic cost is higher than the second predetermined semantic cost.

> In some examples, the salience of the first word is based on a frequency of occurrence of the first word in a first corpus. In some examples, the salience of the second word is based on a frequency of occurrence of the second word in the first corpus. In some examples, the salience of the third word is based on a frequency of occurrence of the third word in the first corpus. In some examples, the salience of the fourth word is based on a frequency of occurrence of the fourth word in the first corpus.

> In some examples, the first corpus comprises a plurality of categories that includes a plurality of text phrases. The salience of the first word is based on a proportion of the plurality of categories that include the first word. The salience of the second word is based on a proportion of the plurality of categories that include the second word. The

salience of the third word is based on a proportion of the plurality of categories that include the third word. The salience of the fourth word is based on a proportion of the plurality of categories that include the fourth word.

In some examples, the salience of the first word is based 5 on a normalized entropy of the first word in a second corpus. The salience of the second word is based on a normalized entropy of the second word in the second corpus. The salience of the third word is based on a normalized entropy of the third word in the second corpus. The salience of the 10 fourth word is based on a normalized entropy of the fourth word in the second corpus.

In some examples, the salience of the first word is based on whether a first predetermined list of sensitive words includes the first word. The salience of the second word is 15 based on whether a second predetermined list of sensitive words includes the second word. The salience of the third word is based on whether a third predetermined list of sensitive words includes the third word. The salience of the fourth word is based on whether a fourth predetermined list 20 of sensitive words includes the fourth word.

In some examples, processing unit 910 can be configured to determine (e.g., using determining unit 914) a centroid distance between a centroid position of the first text phrase in the semantic space and a centroid position of the second 25 text phrase in the semantic space. The degree of semantic similarity between the first text phrase and the second text phrase is based on the centroid distance.

In some example, the centroid position of the first text phrase is determined based on a semantic position of one or 30 more words of the first text phrase in the semantic space and the centroid position of the second text phrase is determined based on a semantic position of one or more words of the second text phrase in the semantic space.

In some examples, the centroid position of the first text 35 phrase is determined based on a salience of one or more words of the first text phrase and the centroid position of the second text phrase is determined based on a salience of one or more words of the second text phrase.

In some examples, the degree of semantic similarity is 40 based on a linear combination of the semantic edit distance and the centroid distance.

In some examples, the degree of semantic similarity is based on whether the first text phrase includes a fifth word that the second text phrase does not include and whether a 45 predetermined list of keywords includes the fifth word.

In some examples, the semantic space is derived from a second corpus that includes a plurality of text phrases, and wherein each text phrase of the plurality of text phrases includes less than 150 characters.

FIG. 10 shows a functional block diagram of an electronic device 900 configured in accordance with the principles of the various described examples. The functional blocks of the device can be, optionally, implemented by hardware, software, or a combination of hardware and software to carry 55 out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 10 can be, optionally, combined, or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description 60 is higher than the second predetermined semantic cost. herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.

As shown in FIG. 10, electronic device 1000 can include touch screen display unit 1002 configured to display a user 65 interface and to receive touch input, and audio receiving unit 1004 configured to receive speech input. In some examples,

20

electronic device 1000 can include speaker unit 1006 configured to generate sound and text receiving unit 1008 configured to receive text. Electronic device 1000 can further include processing unit 1010 coupled to touch screen display unit 1002 and audio receiving unit 1004 (and, optionally, coupled to speaker unit 1006 and text input receiving unit 1008). In some examples, processing unit 1010 can include receiving unit 1012, determining unit 1014, and performing unit 1016.

Processing unit 1010 can be configured to receive a first text phrase (e.g., from text receiving unit 1008 or touch screen display unit 1002 and using receiving unit 1012). Processing unit 1010 can be configured to determine (e.g., using determining unit 1014) one or more word-level differences of the first text phrase with respect to a second text phrase. The one or more word-level differences can include one or more of a first word-level difference comprising the second text phrase including a first word that does not correspond to any word of the first text phrase, a second word-level difference comprising the first text phrase including a second word that does not correspond to any word of the second text phrase, and a third word-level difference comprising the first text phrase including a third word that is different from a corresponding fourth word of the second text phrase. Processing unit 1010 can be configured to determine (e.g., using determining unit 1014) a total semantic cost associated with the one or more word-level differences based on one or more of a salience of the first word. a salience of the second word, a salience of the third word, a salience of the fourth word, and a semantic similarity between the third word and the fourth word in a semantic space. A degree of semantic similarity between the first text phrase and the second text phrase is based on the total

In some examples, processing unit 1010 can be configured to determine (e.g., using determining unit 1014), based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase. In some examples, processing unit 1010 can be configured to perform (e.g., using performing unit 1016), based on the first intent, a task associated with the first text phrase.

In some examples, processing unit 1010 can be configured to determine (e.g., using determining unit 1014), in response to determining that the one or more word-level differences include the first word-level difference, a first semantic cost associated with the first word-level difference based on a first predetermined semantic cost and the salience of the first word. The total semantic cost includes the first semantic cost.

In some examples, processing unit 1010 can be configured to determine (e.g., using determining unit 1014), in response to determining that the one or more word-level differences include the second word-level difference, a second semantic cost associated with the second word-level difference based on a second predetermined semantic cost and the salience of the second word. The total semantic cost includes the second semantic cost.

In some examples, the first predetermined semantic cost

In some examples, processing unit 1010 can be configured to determine (e.g., using determining unit 1014), in response to determining that the one or more word-level differences include the third word-level difference, a third semantic cost associated with the third word-level difference based on the salience of the third word, the salience of the fourth word, the semantic similarity between the third word

and the fourth word, a first predetermined semantic cost, and a second predetermined semantic cost. The total semantic cost includes the third semantic cost.

In some examples, the salience of the first word is based on a frequency of occurrence of the first word in a first 5 corpus. The salience of the second word is based on a frequency of occurrence of the second word in the first corpus. The salience of the third word is based on a frequency of occurrence of the third word in the first corpus. The salience of the fourth word is based on a frequency of occurrence of the fourth word in the first corpus.

In some examples, the first corpus comprises a plurality of categories that includes a plurality of text phrases. The salience of the first word is based on a proportion of the plurality of categories that include the first word. The salience of the second word is based on a proportion of the plurality of categories that include the second word. The salience of the third word is based on a proportion of the plurality of categories that include the third word. The salience of the fourth word is based on a proportion of the plurality of categories that include the fourth word.

In some examples, the salience of the first word is based on a normalized entropy of the first word in a second corpus. The salience of the second word is based on a normalized 25 entropy of the second word in the second corpus. The salience of the third word is based on a normalized entropy of the third word in the second corpus. The salience of the fourth word is based on a normalized entropy of the fourth word in the second corpus.

In some examples, the salience of the first word is based on whether a first predetermined list of sensitive words includes the first word. The salience of the second word is based on whether a second predetermined list of sensitive words includes the second word. The salience of the third 35 word is based on whether a third predetermined list of sensitive words includes the third word. The salience of the fourth word is based on whether a fourth predetermined list of sensitive words includes the fourth word.

In some examples, processing unit **1010** can be configured to determine (e.g., using determining unit **1014**) a centroid distance between a centroid position of the first text phrase in the semantic space and a centroid position of the second text phrase in the semantic space. The degree of semantic similarity between the first text phrase and the 45 second text phrase is based on the centroid distance.

In some examples, the centroid position of the first text phrase is determined based on a semantic position of one or more words of the first text phrase in the semantic space and the centroid position of the second text phrase is determined 50 based on a semantic position of one or more words of the second text phrase in the semantic space.

In some examples, the centroid position of the first text phrase is determined based on a salience of one or more words of the first text phrase and the centroid position of the 55 second text phrase is determined based on a salience of one or more words of the second text phrase.

In some examples, the degree of semantic similarity is based on a linear combination of the total semantic cost and the centroid distance.

In some examples, the degree of semantic similarity between the first text phrase and the second text phrase is based on whether the first text phrase includes a fifth word that the second text phrase does not include and whether a predetermined list of keywords includes the fifth word.

In some examples, the semantic space is derived from a third corpus that includes a plurality of text phrases, and 22

wherein each text phrase of the plurality of text phrases includes less than 150 characters.

FIG. 11 shows a functional block diagram of an electronic device 900 configured in accordance with the principles of the various described examples. The functional blocks of the device can be, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 11 can be, optionally, combined, or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.

As shown in FIG. 11, electronic device 1100 can include touch screen display unit 1102 configured to display a user interface and to receive touch input, and audio receiving unit 1104 configured to receive speech input. In some examples, electronic device 1100 can include speaker unit 1106 configured to generate sound and text receiving unit 1108 configured to receive text. Electronic device 1100 can further include processing unit 1110 coupled to touch screen display unit 1102 and audio receiving unit 1104 (and, optionally, coupled to speaker unit 1106 and text input receiving unit 1108). In some examples, processing unit 1110 can include receiving unit 1112, determining unit 1114, performing unit 1116, and identifying unit 1118.

Processing unit 1110 can be configured to obtain an input text phrase from a received speech input (e.g., from audio receiving unit 1104 and using obtaining unit 1112). Processing unit 1110 can be configured to determine (e.g., using determining unit 1114) a degree of semantic similarity between the input text phrase and one or more exemplar text phrases. Determining a degree of semantic similarity between the input text phrase and an exemplar text phrase of the one or more exemplar text phrases can comprises determining one or more word-level differences of the input text phrase with respect to the exemplar text phrase. Processing unit 1110 can be configured to determine (e.g., using determining unit 1114) one or more word-level differences of the input text phrase with respect to the exemplar text phrase. The one or more word-level differences include one or more of a first word-level difference comprising the exemplar text phrase including a first word that does not correspond to any word of the input text phrase, a second word-level difference comprising the input text phrase including a second word that does not correspond to any word of the exemplar text phrase, and a third word-level difference comprising the input text phrase including a third word that is different from a corresponding fourth word of the exemplar text phrase. Processing unit 1110 can be configured to determine (e.g., using determining unit 1114) a total semantic cost associated with the one or more word-level differences based on one or more of a salience of the first word, a salience of the second word, a salience of the third word, a salience of the fourth word, and a semantic similarity between the third word and the fourth word in a semantic space. A degree of semantic similarity between the input text phrase and the exemplar text phrase is based on the total semantic cost.

In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114), based on the degree of semantic similarity between the input text phrase and the exemplar text phrase, a user intent associated with the received speech input. In some examples, processing unit 1110 can be configured to perform (e.g., using

performing unit 1116), based on the user intent, a task associated with the received speech input.

In some examples, processing unit 1110 can be configured to identify (e.g., using identifying unit 1118), based on the determined degree of semantic similarity, an exemplar text 5 phrase that is most semantically similar to the input text phrase among the one or more exemplar text phrases. In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114) a user intent associated with the received speech input based on a predetermined intent associated with the exemplar text phrase that is most semantically similar to the input text phrase.

In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114) whether the input text phrase includes a sensitive word of a predetermined list of sensitive words. In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114), in response to determining that the input text phrase includes a sensitive word of a predetermined list of sensitive words, a user intent associated with the received speech input based on a predetermined intent associated with the sensitive word. In some examples, the degree of semantic similarity between the input text phrase and the one or more exemplar text phrases is determined in response to determining that the input text phrase does not include a 25 sensitive word of a predetermined list of sensitive words.

In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114), in response to determining that the one or more word-level differences include the first word-level difference, a first semantic cost associated with the first word-level difference based on a first predetermined semantic cost and the salience of the first word. The total semantic cost can include the first semantic cost

In some examples, processing unit **1110** can be configured 35 to determine (e.g., using determining unit **1114**), in response to determining that the one or more word-level differences include the second word-level difference, determining a second semantic cost associated with the second word-level difference based on a second predetermined semantic cost 40 and the salience of the second word. The total semantic cost can include the second semantic cost.

In some examples, the first predetermined semantic cost is higher than the second predetermined semantic cost.

In some examples, processing unit 1110 can be configured 45 to determine (e.g., using determining unit 1114), in response to determining that the one or more word-level differences include the third word-level difference, a third semantic cost associated with the third word-level difference based on the salience of the third word, the salience of the fourth word, 50 the semantic similarity between the third word and the fourth word, a first predetermined semantic cost, and a second predetermined semantic cost. The total semantic cost can include the third semantic cost.

In some examples, the salience of the first word is based 55 on a frequency of occurrence of the first word in a first corpus. The salience of the second word is based on a frequency of occurrence of the second word in the first corpus. The salience of the third word is based on a frequency of occurrence of the third word in the first corpus. 60 The salience of the fourth word is based on a frequency of occurrence of the fourth word in the first corpus.

In some examples, the first corpus comprises a plurality of categories that includes a plurality of text phrases. The salience of the first word is based on a proportion of the 65 plurality of categories that include the first word. The salience of the second word is based on a proportion of the

24

plurality of categories that include the second word. The salience of the third word is based on a proportion of the plurality of categories that include the third word. The salience of the fourth word is based on a proportion of the plurality of categories that include the fourth word.

In some examples, the salience of the first word is based on a normalized entropy of the first word in a second corpus. The salience of the second word is based on a normalized entropy of the second word in the second corpus. The salience of the third word is based on a normalized entropy of the third word in the second corpus. The salience of the fourth word is based on a normalized entropy of the fourth word in the second corpus.

In some examples, the salience of the first word is based on whether a first predetermined list of sensitive words includes the first word. The salience of the second word is based on whether a second predetermined list of sensitive words includes the second word. The salience of the third word is based on whether a third predetermined list of sensitive words includes the third word. The salience of the fourth word is based on whether a fourth predetermined list of sensitive words includes the fourth word.

In some examples, processing unit 1110 can be configured to determine (e.g., using determining unit 1114), a centroid distance between a centroid position of the input text phrase in the semantic space and a centroid position of the exemplar text phrase in the semantic space. The degree of semantic similarity between the input text phrase and the exemplar text phrase is based on the centroid distance.

In some examples, the centroid position of the input text phrase is determined based on a semantic position of one or more words of the input text phrase in the semantic space and the centroid position of the exemplar text phrase is determined based on a semantic position of one or more words of the exemplar text phrase in the semantic space.

In some examples, the centroid position of the input text phrase is determined based on a salience of one or more words of the input text phrase and the centroid position of the exemplar text phrase is determined based on a salience of one or more words of the exemplar text phrase.

In some examples, the degree of semantic similarity is based on a linear combination of the total semantic cost and the centroid distance.

In some examples, the degree of semantic similarity between the input text phrase and the exemplar text phrase is based on whether the input text phrase includes a fifth word that the exemplar text phrase does not include and whether a predetermined list of keywords includes the fifth word

In some examples, the semantic space is derived from a third corpus that includes a plurality of text phrases where each text phrase of the plurality of text phrases includes less than 150 characters.

Although examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the various examples as defined by the appended claims.

In some cases, the systems, processes, and devices described above can include the gathering and use of data available from various sources to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that

in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.

The present disclosure recognizes that the use of such personal information data in connection with the systems, processes, and devices described above, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.

The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data 20 will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal infor- 25 mation data private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.

Despite the foregoing, the present disclosure also contemplates examples in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the systems and devices described above can be configured to allow users to select to "opt in" or "opt out" of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet 50 another example, users can select to not provide precise location information, but permit the transfer of location zone information.

Therefore, although the present disclosure broadly covers use of personal information data to implement one or more 55 various disclosed examples, the present disclosure also contemplates that the various examples can also be implemented without the need for accessing such personal information data. That is, the various examples disclosed herein are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publically available information.

26

What is claimed is:

1. A method for processing natural language comprising: at an electronic device:

receiving a first text phrase;

determining whether editing the first text phrase to match a second text phrase requires one or more of: inserting a first word into the first text phrase, wherein the second text phrase includes the first word:

deleting a second word from the first text phrase; wherein the first text phrase includes the second word; and

substituting a third word of the first text phrase with a fourth word, wherein the second text phrase includes the fourth word;

in response to determining that editing the first text phrase to match the second text phrase requires one or more of inserting the first word into the first text phrase, deleting the second word from the first text phrase, and substituting the third word of the first text phrase with the fourth word, determining one or more of:

an insertion cost associated with inserting the first word into the first text phrase;

- a deletion cost associated with deleting the second word from the first text phrase; and
- a substitution cost associated with substituting the third word of the first text phrase with the fourth word:

determining, based on the one or more of the insertion cost, the deletion cost, and the substitution cost, a semantic edit distance between the first text phrase and the second text phrase in a semantic space, wherein a degree of semantic similarity between the first text phrase and the second text phrase is based on the semantic edit distance;

determining, based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase; and

performing, based on the first intent, a task associated with the first text phrase.

2. The method according to claim 1, wherein:

the insertion cost associated with inserting the first word into the first text phrase is determined in response to determining that editing the first text phrase to match the second text phrase requires inserting the first word into the first text phrase; and

the insertion cost is determined based on a first predetermined semantic cost and a salience of the first word.

3. The method according to claim 1, wherein:

the deletion cost associated with deleting the second word from the first text phrase is determined in response to determining that editing the first text phrase to match the second text phrase requires deleting the second word from the first text phrase; and

the deletion cost is determined based on a second predetermined semantic cost and a salience of the second word.

4. The method according to claim 1, wherein:

the substitution cost associated with substituting the third word of the first text phrase with the fourth word is determined in response to determining that editing the first text phrase to match the second text phrase requires substituting the third word of the first text phrase with the fourth word; and

- the substitution cost is determined based on a salience of the third word, a salience of the fourth word, a semantic similarity between the third word and the fourth word in the semantic space, a first predetermined semantic cost, and a second predetermined semantic cost.
- 5. The method according to claim 1, wherein:
- the insertion cost is determined based on a first predetermined semantic cost and a salience of the first word;
- the deletion cost is determined based on a second predetermined semantic cost and a salience of the second word; and
- the first predetermined semantic cost is higher than the second predetermined semantic cost.
- 6. The method according to claim 1, wherein:
- the insertion cost is determined based on a first predetermined semantic cost and a salience of the first word;
- the deletion cost is determined based on a second predetermined semantic cost and a salience of the second word; and
- the substitution cost is determined based on a salience of the third word, a salience of the fourth word, a semantic similarity between the third word and the fourth word in the semantic space, the first predetermined semantic cost, and the second predetermined semantic cost.
- 7. The method according to claim 6, wherein:
- the salience of the first word is based on a frequency of occurrence of the first word in a first corpus;
- the salience of the second word is based on a frequency of occurrence of the second word in the first corpus; the salience of the third word is based on a frequency of occurrence of the third word in the first corpus; and the salience of the fourth word is based on a frequency of occurrence of the fourth word in the first corpus.
- **8.** The method according to claim **7**, wherein the first corpus comprises a plurality of categories that includes a plurality of text phrases, and wherein:
 - the salience of the first word is based on a proportion of the plurality of categories that include the first word; 40 the salience of the second word is based on a proportion of the plurality of categories that include the second word;
 - the salience of the third word is based on a proportion of the plurality of categories that include the third word; 45 and
 - the salience of the fourth word is based on a proportion of the plurality of categories that include the fourth word.
 - 9. The method according to claim 6, wherein:
 - the salience of the first word is based on a normalized 50 entropy of the first word in a second corpus;
 - the salience of the second word is based on a normalized entropy of the second word in the second corpus;
 - the salience of the third word is based on a normalized entropy of the third word in the second corpus; and the salience of the fourth word is based on a normalized entropy of the fourth word in the second corpus.
 - 10. The method according to claim 6, wherein:
 - the salience of the first word is based on whether a first predetermined list of sensitive words includes the first 60 word:
 - the salience of the second word is based on whether a second predetermined list of sensitive words includes the second word:
 - the salience of the third word is based on whether a third 65 predetermined list of sensitive words includes the third word; and

28

- the salience of the fourth word is based on whether a fourth predetermined list of sensitive words includes the fourth word.
- 11. The method according to claim 1, further comprising: determining a centroid distance between a centroid position of the first text phrase in the semantic space and a centroid position of the second text phrase in the semantic space, wherein the degree of semantic similarity between the first text phrase and the second text phrase is based on the centroid distance.
- 12. The method according to claim 11, wherein the centroid position of the first text phrase is determined based on a semantic position of one or more words of the first text phrase in the semantic space and the centroid position of the second text phrase is determined based on a semantic position of one or more words of the second text phrase in the semantic space.
- 13. The method according to claim 11, wherein the centroid position of the first text phrase is determined based on a salience of one or more words of the first text phrase and the centroid position of the second text phrase is determined based on a salience of one or more words of the second text phrase.
 - 14. The method according to claim 11, wherein the degree of semantic similarity is based on a linear combination of the semantic edit distance and the centroid distance.
 - 15. The method according to claim 1, wherein the degree of semantic similarity is based on whether the first text phrase includes a fifth word that the second text phrase does not include and whether a predetermined list of keywords includes the fifth word.
- 16. The method according to claim 1, wherein the semantic space is derived from a second corpus that includes a plurality of text phrases, and wherein each text phrase of the plurality of text phrases includes less than 150 characters.
 - 17. A method for processing natural language comprising: at an electronic device:
 - receiving a first text phrase;
 - determining one or more word-level differences of the first text phrase with respect to a second text phrase, wherein the one or more word-level differences include one or more of:
 - a first word-level difference comprising the second text phrase including a first word that does not correspond to any word of the first text phrase:
 - a second word-level difference comprising the first text phrase including a second word that does not correspond to any word of the second text phrase;
 - a third word-level difference comprising the first text phrase including a third word that is different from a corresponding fourth word of the second text phrase;
 - determining a total semantic cost associated with the one or more word-level differences based on one or more of:
 - a salience of the first word;
 - a salience of the second word:
 - a salience of the third word;
 - a salience of the fourth word; and
 - a semantic similarity between the third word and the fourth word in a semantic space;
 - wherein a degree of semantic similarity between the first text phrase and the second text phrase is based on the total semantic cost;

29

determining, based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase; and

performing, based on the first intent, a task associated 5 with the first text phrase.

18. A non-transitory computer-readable storage medium comprising computer-executable instructions for causing a processor to:

receive a first text phrase;

determine whether editing the first text phrase to match a second text phrase requires one or more of:

insert a first word into the first text phrase, wherein the second text phrase includes the first word;

delete a second word from the first text phrase; ¹⁵ wherein the first text phrase includes the second word: and

substitute a third word of the first text phrase with a fourth word, wherein the second text phrase includes the fourth word;

in response to determining that editing the first text phrase to match the second text phrase requires one or more of inserting the first word into the first text phrase, deleting the second word from the first text phrase, and substituting the third word of the first text text phrase with the fourth word, determining one or more of:

an insertion cost associated with inserting the first word into the first text phrase;

a deletion cost associated with deleting the second ³⁰ word from the first text phrase; and

a substitution cost associated with substituting the third word of the first text phrase with the fourth word:

determine, based on the one or more of the insertion cost, 35 the deletion cost, and the substitution cost, a semantic edit distance between the first text phrase and the second text phrase in a semantic space, wherein a degree of semantic similarity between the first text phrase and the second text phrase is based on the 40 semantic edit distance:

determine, based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase; and perform, based on the first intent, a task associated with ⁴⁵ the first text phrase.

30

19. An electronic device comprising: one or more processors;

mamagu and

memory; and

one or more programs, wherein the one or more program are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:

receiving a first text phrase;

determining whether editing the first text phrase to match a second text phrase requires one or more of: inserting a first word into the first text phrase, wherein the second text phrase includes the first word;

deleting a second word from the first text phrase; wherein the first text phrase includes the second word; and

substituting a third word of the first text phrase with a fourth word, wherein the second text phrase includes the fourth word;

in response to determining that editing the first text phrase to match the second text phrase requires one or more of inserting the first word into the first text phrase, deleting the second word from the first text phrase, and substituting the third word of the first text phrase with the fourth word, determining one or more of:

an insertion cost associated with inserting the first word into the first text phrase;

a deletion cost associated with deleting the second word from the first text phrase; and

a substitution cost associated with substituting the third word of the first text phrase with the fourth word:

determining, based on the one or more of the insertion cost, the deletion cost, and the substitution cost, a semantic edit distance between the first text phrase and the second text phrase in a semantic space, wherein a degree of semantic similarity between the first text phrase and the second text phrase is based on the semantic edit distance;

determining, based on the degree of semantic similarity between the first text phrase and the second text phrase, a first intent associated with the first text phrase; and performing, based on the first intent, a task associated with the first text phrase.

* * * * *