I*I Innovation, Sciences et Innovation, Science and CA 3083562 A1 2019/05/31
Développement économique Canada Economic Development Canada
en 3 083 562

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépo6t PCT/PCT Filing Date: 2018/11/27 (51) ClLInt./Int.Cl. GO6F 16/00(2019.01)
(87) Date publication PCT/PCT Publication Date: 2019/05/31 (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2020/05/26 SNOWFLAKE INC., US
o —r . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2018/062652 HUANG, JIANSHENG, US:
(87) N° publication PCT/PCT Publication No.: 2019/104338 LIANG, JIAXING, US;

(30) Priorité/Priority: 2017/11/27 (US62/591,118) ZIEGLER, SCOTT, US;
YU, HAOWEI, US;

DAGEVILLE, BENOIT, US;
GANESH, VARUN, US

(74) Agent: SMART & BIGGAR LLP

(54) Titre : IMPORTATION PAR LOTS DE DONNEES DANS DES SYSTEMES DE BASE DE DONNEES
(54) Title: BATCH DATA INGESTION IN DATABASE SYSTEMS

REST Layer l AP| Gateway
104 l 110

C"em@;@wm [Object Resolution Rate Limiting l
102 108 112

100-1 IF""'""""'""' i"'"'"'"“"'""'"""""
|

[Request Routing | Authentication
108

Core Engine Token

120 Managsment
Queue Management

1

Task Executor Exeoution
124 e Platform

132

e File Management
o 128

Load History
120

|
| 1
I Warehouse Management |
I 126 |

(57) Abrégé/Abstract:
Systems, methods, and devices for batch ingestion of data into a table of a database. A method includes determining a notification
indicating a presence of a user file received from a client account to be ingested into a database. The method includes identifying

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

CA 3083562 A1 2019/05/31

ey 3 083 562
(13 A1

(57) Abrégé(suite)/Abstract(continued):

data in the user file and identifying a target table of the database to receive the data in the user file. The method includes generating
an ingest task indicating the data and the target table. The method includes assigning the ingest task to an execution node of an
execution platform, wherein the execution platform comprises a plurality of execution nodes operating independent of a plurality of
shared storage devices collectively storing database data. The method includes registering metadata concerning the target table in
a metadata store after the data has been fully committed to the target table by the execution node.

wo 20197104338 A1 |0 0000 0000 YOO 0

CA 03083562 2020-05-26

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
31 May 2019 (31.05.2019)

‘O 00010 0 0 A
(10) International Publication Number

WO 2019/104338 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 16/00 (2019.01)

(21) International Application Number:
PCT/US2018/062652

(22) International Filing Date:
27 November 2018 (27.11.2018)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/591,118 27 November 2017 (27.11.2017) US

(71) Applicant: SNOWFLAKE COMPUTING INC
[US/US]; 101 S Ellsworth Ave #350, San Mateo, CA 94401
USs).

Inventors: HUANG, Jiansheng; 101 S Ellsworth Ave
#350, San Mateo, CA 94401 (US). LIANG, Jiaxing, 101
S Ellsworth Ave #350, San Mateo, CA 94401 (US). ZIE-
GLER, Scott; 101 S Ellsworth Ave #350, San Mateo, CA
94401 (US). YU, Haowei; 101 S Ellworth Ave #350, San
Mateo, CA 94401 (US). DAGEVILLE, Benoit; 101 S Ell-
worth Ave #350, San Mateo, CA 94401 (US). GANESH,
Varun; 101 S Ellworth Ave #350, San Mateo, CA 94401
(US).

(72)

(74) Agent: STEVENS, David, R.; Stevens Law Group, 1754
Technology Drive, Suite 226, San Jose, CA 95110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
with international search report (Art. 21(3))

(54) Title: BATCH DATA INGESTION IN DATABASE SYSTEMS

(57) Abstract: Systems, methods, and devices for batch ingestion of data into
atable of a database. A method includes determining a notification indicating a
presence of a user file received from a client account to be ingested into a data-

100 — i
1 REST Layer AP] Gateway

Object Resolutien Rete Limiting |

i Request Roufing
108

Cignt Account
102

Authentication
s

L__i__

Management
146

Core Engire
. o

Queue Management
1Rz

Exacution
Platform
132

Task Executor
124

Warshouse Managonant
128

File Maragement
128

] Load Hisiory
120

base. The method includes identifying data in the user file and identifying a tar-
get table of the database to receive the data in the user file. The method includes
generating an ingest task indicating the data and the target table. The method
includes assigning the ingest task to an execution node of an execution platform,
wherein the execution platform comprises a plurality of execution nodes oper-
ating independent of a plurality of shared storage devices collectively storing
database data. The method includes registering metadata concerning the target
table in a metadata store after the data has been fully committed to the target
table by the execution node.

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

BATCH DATA INGESTION IN DATABASE SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Serial No.
62/591,118 filed November 27, 2017 titled “SYSTEMS, METHODS, AND DEVICES FOR
BATCH DATA INGESTION,” which is incorporated herein by reference in its entirety, including
but not limited to those portions that specifically appear hereinafter, the incorporation by reference
being made with the following exception: In the event that any portion of the above-referenced
application is inconsistent with this application, this application supersedes the above-referenced

application.

TECHNICAL FIELD

[0002] The present disclosure relates to databases and more particularly relates to incremental

ingestion of data in a database or table.

BACKGROUND

[0003] Databases are widely used for data storage and access in computing applications.
Databases may include one or more tables that include or reference data that can be read, modified,
or deleted using queries. Databases can store anywhere from small to extremely large sets of data
within one or more tables. This data can be accessed by various users in an organization or even be
used to service public users, such as via a website or an application program interface (API). Both
computing and storage resources, as well as their underlying architecture, can play a significant role

in achieving desirable database performance.

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0004] Data may be ingested from a data bucket into one or more tables of a database. A variety
of systems have been developed, described, and are widely known for uploading and storing data
in a database or table. For example, in a shared-disk system, all data is stored on a shared storage
device that is accessible from all processing nodes in a data cluster. In this type of system, all data
changes are written to the shared storage device to ensure that all processing nodes in the data
cluster access a consistent version of the data. As the number of processing nodes increases in a
shared-disk system, the shared storage device (and the communication links between the processing
nodes and the shared storage device) becomes a bottleneck slowing data read and data write
operation. This bottleneck is further aggravated with the addition of more processing nodes. Thus,
existing shared-disk systems have limited scalability due to this bottleneck problem.

[0005] Another existing data storage and retrieval system is referred to as a “shared-nothing
architecture.” In this architecture, data is distributed across multiple processing nodes such that
each node stores a subset of the data in the entire database. When a new processing node is added
or removed, the shared-nothing architecture must rearrange data across the multiple processing
nodes. This rearrangement of data can be time-consuming and disruptive to data read and write
operations executed during the data rearrangement. And, the affinity of data to a particular node
can create “hot spots” on the data cluster for popular data. Further, since each processing node
performs also the storage function, this architecture requires at least one processing node to store
data. Thus, the shared-nothing architecture fails to store data if all processing nodes are removed.
Additionally, management of data in a shared-nothing architecture is complex due to the
distribution of data across many different processing nodes.

[0006] Existing systems and methods for data ingestion use a single command with a

one/nothing statement that may cause files to be lost. For example, in existing systems, a file

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

ingestion may fail partway through ingestion of a table and cause all previously ingested data to be
lost. Further in conventional data ingest, a user may be required to allocate a warehouse and issue
commands, and data updates may not be captured until the user has issued a specific command.

[0007] The systems and methods described herein provide an improved approach to data
storage, data ingesting, and data retrieval that alleviates the above-identified limitations of existing

systems.

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Non-limiting and non-exhaustive implementations of the present disclosure are
described with reference to the following figures, wherein like reference numerals refer to like or
similar parts throughout the various views unless otherwise specified. Advantages of the present
disclosure will become better understood with regard to the following description and
accompanying drawings where:

[0009] FIG. 1 is a block diagram architecture model of a system for automated data ingestion
in accordance with the teachings and principles of the disclosure;

[0010] FIG. 2is ablock diagram of a process of ingesting data in accordance with the teachings
and principles of the disclosure;

[0011] FIG. 3 is a block diagram of components of a retrieval and data storage system in
accordance with the teachings and principles of the disclosure;

[0012] FIG. 4 is a block diagram of an embodiment of a resource manager in accordance with
the teachings and principles of the disclosure;

[0013] FIG. 5 is a block diagram of an embodiment of an execution platform in accordance
with the teachings and principles of the disclosure;

[0014] FIG. 6 is a block diagram illustrating components of an operating environment in
accordance with the teachings and principles of the disclosure;

[0015] FIG. 7 is a block diagram of a batch data ingestion system in accordance with the
teachings and principles of the disclosure;

[0016] FIG. 8 is a schematic flow chart diagram of a method for batch data ingestion to a

database in accordance with the teachings and principles of the disclosure; and

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0017] FIG. 9 is a block diagram of an example computing device consistent with the enabling

disclosure of the computer processes taught herein.

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

DETAILED DESCRIPTION

[0018] Systems, methods, and devices for batch data ingestion to a database or table are
disclosed. In traditional database systems known in the art, user files may be inserted into a
database table by way of a copy command. This necessitates the use of a running warehouse that
is allocated to data ingestion and it is executed as a synchronous operation. Further in this
traditional approach, the use of a database table for querying or other operations may be blocked
when new data is inserted into the table during the data ingestion operation. Further, any updates
made to the table or any new data received from a client account will not be captured by the
database until a user again manually reissues a copy command to insert the new user file. When
data is ingested by way of a single command, such as a copy command that is manually initiated
by a user, some or all of the data may be lost if an ingestion task fails. In such traditional systems
known in the art, a data ingestion operation may fail partway through and therefore necessitate that
the entire data ingestion operation be repeated.

[0019] Improved systems, methods, and devices for data ingestion into a database are
disclosed herein. Such improved systems, methods, and devices lower the burdens on database
systems that arise due to frequent data loading and simplify the processes for data ingestion for a
user of a client account. In the systems, methods, and devices disclosed herein, data from user files
is incrementally committed to micro-partitions of a database table such that the data already
ingested is not lost even in the event of a system failure. The data may be partitioned and inserted
into the database partition-by-partition such that, in the event of a system failure, the ingestion
operation may continue from the point when the failure occurred.

[0020] Additionally, processing resources for the systems, methods, and devices disclosed

herein may be scaled up or down as needed. As such, a warehouse is not required in the systems

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

as disclosed herein, in contrast with the traditional database ingestion systems known in the art.
The systems, methods, and devices disclosed herein provide for asynchronous and serverless data
ingestion of user files. Changes made to a client data bucket, such as one or more new user files
being added to the client data bucket, are detected and such new files are automatically loaded into
an appropriate database table without requiring a specific command from a user of the client
account. Further, the target table for data of one or more user files is automatically determined,
and such user files are assigned to an appropriate instance of a resource manager that is assigned
to manage the ingestion of new data into particular tables of the database.

[0021] The systems, methods, and devices disclosed herein further include generating and
maintaining metadata concerning what data and what user files have been successfully committed
to the database. The metadata further indicates, for example, in which micro-partition and in which
table the data was inserted, whether the data was successfully inserted, when the data was inserted,
the size of the data that was inserted, and so forth. Such metadata may be shared across an
execution platform and across a plurality of shared storage devices collectively storing database.
The metadata may be stored separately from the plurality of shared storage devices or it may be
stored within the plurality of shared storage devices. Further the metadata may be stored as a
separate micro-partition within a database table or may be stored within a micro-partition that
comprises database data.

[0022] In an embodiment of the disclosure, a system for incremental ingest of data into a
database is disclosed. The system includes means for determining a notification indicating a
presence of a user file received from a client account to be ingested into a database. The system
includes means for identifying data in the user file and means for identifying a target table of the

database to receive the data in the user file. The system includes means for generating an ingest

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

task indicating the data and the target table. The system includes means for assigning the ingest
task to an execution node of an execution platform, wherein the execution platform comprises a
plurality of execution nodes operating independent of a plurality of shared storage devices
collectively storing database data. The system includes means for registering metadata concerning
the target table in a metadata store after the data has been fully committed to the target table by
the execution node.

[0023] In an embodiment of the disclosure, a method for batch data ingestion into a database
is disclosed. The method includes determining a notification indicating a presence of a user file
received from a client account to be ingested into a database. The method includes identifying data
in the user file and identifying a target table of the database to receive the data in the user file. The
method includes generating an ingest task indicating the data and the target table. The method
includes assigning the ingest task to an execution node of an execution platform, wherein the
execution platform comprises a plurality of execution nodes operating independent of a plurality
of shared storage devices collectively storing database data. The method includes registering
metadata concerning the target table in a metadata store after the data has been fully committed to
the target table by the execution node. In an embodiment, the method is performed by a resource
manager (see e.g. 302) of a database system.

[0024] A database table may store data in a plurality of micro-partitions, wherein the micro-
partitions are immutable storage devices. When a transaction is executed on a such a table, all
impacted micro-partitions are recreated to generate new micro-partitions that reflect the
modifications of the transaction. After a transaction is fully executed, any original micro-partitions
that were recreated may then be removed from the database. A new version of the table is generated

after each transaction that is executed on the table. The table may undergo many versions over a

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

time period if the data in the table undergoes many changes, such as inserts, deletes, updates,
and/or merges. Each version of the table may include metadata indicating what transaction
generated the table, when the transaction was ordered, when the transaction was fully executed,
and how the transaction altered one or more rows in the table. The disclosed systems, methods,
and devices for low-cost table versioning may be leveraged to provide an efficient means for
triggering tasks to be executed on database data in response to a modification made to the data.
[0025] Change tracking information can be stored as metadata in a database. This metadata
describes the data that is stored in database tables of customers but is not actually the stored table
data. Metadata can get very large, especially if there are large database tables of many customers.
Current database systems have severe limitations handling large amounts of metadata. Current
database systems store metadata in mutable storage devices and services, including main memory,
file systems, and key-value stores. These devices and services allow the metadata to be updated
data in-place. If a data record changes, it may be updated with the new information and the old
information is overwritten. This allows databases to easily maintain mutable metadata by updating
metadata in-place.

[0026] However, these mutable storage devices and services have limitations. The limitations
are at least two-fold. First, mutable storage devices such as main memory and file systems have a
hard limit in terms of storage capacity. If the size of the metadata exceeds these limits, it is
impossible to store more metadata there. Second, mutable storage services such as key-value stores
perform poorly when reading large volumes of metadata. Reading data is performed using range
scans, which take a long time to finish. In practice, range scans can take many minutes or even

approach an hour to complete in large scale deployments.

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0027] These limitations make it impossible to store large amounts of metadata in existing
mutable storage devices and services. Systems, methods, and devices disclosed herein provide for
improved metadata storage and management that includes storing metadata in immutable (non-
mutable) storage such as micro-partitions. As used herein, immutable or non-mutable storage
includes storage where data cannot or is not permitted to be overwritten or updated in-place. For
example, changes to data that is located in a cell or region of storage media may be stored as a new
file in a different, time-stamped, cell or region of the storage media. Mutable storage may include
storage where data is permitted to be overwritten or updated in-place. For example, data in a given
cell or region of the storage media can be overwritten when there are changes to the data relevant
to that cell or region of the storage media.

[0028] In one embodiment, metadata is stored and maintained on non-mutable storage services
in the cloud. These storage services may include, for example, Amazon S3 ®, Microsoft Azure
Blob Storage ®, and Google Cloud Storage ®. Many of these services do not allow to update data
in-place (i.e., are non-mutable or immutable). Data files may only be added or deleted, but never
updated. In one embodiment, storing and maintaining metadata on these services requires that, for
every change in metadata, a metadata file is added to the storage service. These metadata files may
be periodically consolidated into larger “compacted” or consolidated metadata files in the
background.

[0029] In an embodiment, all data in tables is automatically divided into an immutable storage
device referred to as a micro-partition. The micro-partition may be considered a batch unit where
each micro-partition has contiguous units of storage. By way of example, each micro-partition may
contain between 50 MB and 1000 MB of uncompressed data (note that the actual size in storage

may be smaller because data may be stored compressed). Groups of rows in tables may be mapped

10

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

into individual micro-partitions organized in a columnar fashion. This size and structure allow for
extremely granular pruning of very large tables, which can be comprised of millions, or even
hundreds of millions, of micro-partitions. Metadata may be automatically gathered about all rows
stored in a micro-partition, including: the range of values for each of the columns in the micro-
partition; the number of distinct values; and/or additional properties used for both optimization
and efficient query processing. In one embodiment, micro-partitioning may be automatically
performed on all tables. For example, tables may be transparently partitioned using the ordering
that occurs when the data is inserted/loaded.

[0030] In an embodiment, file metadata is stored within metadata storage. The file metadata
contains table versions and information about each table data file. The metadata storage may
include mutable storage (storage that can be over written or written in-place), such as a local file
system, system, memory, or the like. In one embodiment, the micro-partition metadata consists of
two data sets: table versions and file information. The table versions data set includes a mapping
of table versions to lists of added files and removed files. File information consists of information
about each micro-partition, including micro-partition path, micro-partition size, micro-partition
key 1d, and summaries of all rows and columns that are stored in the micro-partition, for example.
Each modification of the table creates new micro-partitions and new micro-partition metadata.
Inserts into the table create new micro-partitions. Deletes from the table remove micro-partitions
and potentially add new micro-partitions with the remaining rows in a table if not all rows in a
micro-partition were deleted. Updates remove micro-partitions and replace them with new micro-
partitions with rows containing the updated records.

[0031] In one embodiment, metadata, including a change tracking column, may be stored in

metadata micro-partitions in immutable storage. In one embodiment, a system may write metadata

11

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

micro-partitions to cloud storage for every modification of a database table. In one embodiment, a
system may download and read metadata micro-partitions to compute the scan set. The metadata
micro-partitions may be downloaded in parallel and read as they are received to improve scan set
computation. In one embodiment, a system may periodically consolidate metadata micro-partitions
in the background. In one embodiment, performance improvements, including pre-fetching,
caching, columnar layout and the like may be included. Furthermore, security improvements,
including encryption and integrity checking, are also possible with metadata files with a columnar
layout.

[0032] Databases may include a plurality of tables that may each further include immutable
storage devices such as micro-partitions. User files may be incrementally ingested into a database
table in the form of immutable micro-partitions such that data in the user file is not lost. Data from
one or more user files may be ingested in incremental portions of data that must be fully and
successfully committed to a database table before the user file is deemed to have been ingested
into the database.

[0033] A client account to a database system may provide one or more user files containing
data. The user file may be committed to a client account queue and data may be identified in the
user file. The user file may be assigned to an execution node of an execution platform such that
the execution platform may generate a micro-partition or other immutable storage device to be
inserted into the target table of the database that includes the data in the user file.

[0034] For example, this new system may operate without a customer or third-party warehouse
or server and may simplify data transfer for a client account. In an embodiment, data ingestion is
completed incrementally where files are committed to the database in batches such that a system

failure does not cause the data to be lost. In an embodiment, the system detects changes to files

12

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

and automatically loads the changes into the database without requiring a specific command from
a user. In an embodiment, the system ingests batches of data and tracks the process during data
pulling and data commitment such that the system may continue data ingestion at the same place
if a failure occurs during data ingestion.

[0035] An embodiment of the present disclosure provides a system for data ingestion having
increased elasticity over existing systems. In an embodiment, the system includes a plurality of
computing resources and virtual warehouses, and data is autonomously ingested incrementally
using available resources. Computing capacity is dynamically adapted by altering the use of
computing resources and varying the workload on the system. In an embodiment, a pool of
common resources is provided for a plurality of client accounts and the use of computing cores is
completely dynamic and flexible across all client accounts.

[0036] An embodiment of the present disclosure provides a system for data ingestion having
increased granularity over existing systems. In an embodiment, the system inputs and commits
data incrementally and protects data ingestion against potential network failure. In an embodiment,
one user file or a fraction of a user file is ingested at one time. In an embodiment, once a threshold
number of user files has been received, the user files will automatically be committed to a database
table. The user files may be committed to the database table in the form of immutable micro-
partitions that cannot be altered in-place. In an embodiment, the status of database data, such as
the contents of a database table, is stored in metadata such that the system may recover precisely
what user file has been ingested and at which position.

[0037] In the following description of the disclosure, reference is made to the accompanying
drawings, which form a part hereof, and in which is shown by way of illustration specific

implementations in which the disclosure may be practices. It is understood that other

13

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

implementation may be utilized, and structural changes may be made without departing from the
scope of the disclosure.

[0038] In describing and claiming the disclosure, the following terminology will be used in
accordance with the definitions set out below.

[0039] It must be noted that, as used in this specification and the appended claims, the singular

2%

forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.

29 CC

[0040] Reference throughout this specification to “one embodiment,” “an embodiment,” “one

29 <C 2%

implementation,” “an implementation,” “one example,” or “an example” means that a particular
feature, structure, or characteristic described in connection with the embodiment, implementation,
or example is included in at least one embodiment of the present disclosure. Thus, appearances of
the above-identified phrases in various places throughout this specification are not necessarily all
referring to the same embodiment, implementation, or example. In addition, it should be
appreciated that the figures provided herewith are for explanation purposes to persons ordinarily
skilled in the art.

EE AN

[0041] As used herein, the terms “comprising,” “including,

2%

containing,” and grammatical
equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited
elements or method steps.

[0042] As used herein, “table” is defined as a collection of records (rows). Each record
contains a collection of values of table attributes (columns). Tables are typically physically stored
in multiple smaller (varying size or fixed size) storage units, e.g. files or blocks.

[0043] Embodiments in accordance with the present disclosure may be embodied as an
apparatus, method or computer program product. Accordingly, the present disclosure may take the

form of an entirely hardware-comprised embodiment, an entirely software-comprised embodiment

14

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

(including firmware, resident software, micro-code, etc.) or an embodiment combining software

29 LC

and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, embodiments of the present disclosure may take the form of a computer
program product embodied in any tangible medium of expression having computer-usable
program code embodied in the medium.

[0044] Any combination of one or more computer-usable or computer-readable media may be
utilized. For example, a computer-readable medium may include one or more of a portable
computer diskette, a hard disk, a random-access memory (RAM) device, a read-only memory
(ROM) device, an erasable programmable read-only memory (EPROM or Flash memory) device,
a portable compact disc read-only memory (CDROM), an optical storage device, and a magnetic
storage device. Computer program code for carrying out operations of the present disclosure may
be written in any combination of one or more programming languages. Such code may be compiled
from source code to computer-readable assembly language or machine code suitable for the device
or computer on which the code will be executed.

[0045] Embodiments may also be implemented in cloud computing environments. In this
description and the following claims, “cloud computing” may be defined as a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned via virtualization and released with minimal management effort or service provider
interaction and then scaled accordingly. A cloud model can be composed of various characteristics
(e.g., on-demand self-service, broad network access, resource pooling, rapid elasticity, and

measured service), service models (e.g., Software as a Service (“SaaS”), Platform as a Service

15

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

(“PaaS”), and Infrastructure as a Service (“IaaS”)), and deployment models (e.g., private cloud,
community cloud, public cloud, and hybrid cloud).

[0046] The flow diagrams and block diagrams in the attached figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present disclosure. In this regard, each
block in the flow diagrams or block diagrams may represent a module, segment, or portion of code,
which comprises one or more executable instructions for implementing the specified logical
function(s). It will also be noted that each block of the block diagrams and/or flow diagrams, and
combinations of blocks in the block diagrams and/or flow diagrams, may be implemented by
special purpose hardware-based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer instructions. These computer program
instructions may also be stored in a computer-readable medium that can direct a computer or other
programmable data processing apparatus to function in a particular manner, such that the
instructions stored in the computer-readable medium produce an article of manufacture including
instruction means which implement the function/act specified in the flow diagram and/or block
diagram block or blocks.

[0047] The systems and methods described herein provide a flexible and scalable data
warehouse using a new data processing platform. In some embodiments, the described systems
and methods leverage a cloud infrastructure that supports cloud-based storage resources,
computing resources, and the like. Example cloud-based storage resources offer significant storage
capacity available on-demand at a low cost. Further, these cloud-based storage resources may be
fault-tolerant and highly scalable, which can be costly to achieve in private data storage systems.

Example cloud-based computing resources are available on-demand and may be priced based on

16

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

actual usage levels of the resources. Typically, the cloud infrastructure is dynamically deployed,
reconfigured, and decommissioned in a rapid manner.

[0048] In the described systems and methods, a data storage system utilizes an SQL
(Structured Query Language)-based relational database. However, these systems and methods are
applicable to any type of database, and any type of data storage and retrieval platform, using any
data storage architecture and using any language to store and retrieve data within the data storage
and retrieval platform. The systems and methods described herein further provide a multi-tenant
system that supports isolation of computing resources and data between different customers/clients
and between different users within the same customer/client.

[0049] In an embodiment of the disclosure, systems, methods, and devices for a batch data
ingestion service are described. The batch data ingestion service may reduce the burden on a data
storage vendor caused by frequent data loading. The service may further make it more convenient
for a data storage client to load data with the data storage vendor.

[0050] In an embodiment of the disclosure, a batch data ingestion service is a Representational
State Transfer (REST) service with language-specific wrapping Application Program Interfaces
(APIs). An embodiment of the service is asynchronous such that the loading of data into files
occurs at a later time after files are submitted for loading. An embodiment of the service is durable
such that file names are committed to persistent storage before the REST call returns. An
embodiment of the service provides clients with the ability to insert data without writing a SQL
command and avoids a multi-step process of posting and copying data into the database.

[0051] Referring now to the figures, FIG. 1 is a schematic block diagram of a system 100 for
batch data ingestion and for storing database data in one or more tables by way of a data pipeline

system. FIG. 1 is not a representation of the flow of data or control. The system 100 includes a

17

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

client account 102 that may be in communication with a database system. Such client account 102
may provide new data or update data to be committed to a database. The system 100 includes
REST (Representational State Transfer) layer 104 that includes object resolution 106 and request
routing 108 systems. The system 100 includes an API (Application Program Interface) gateway
110 that includes rate limiting 112 and authentication 114 systems. The system 100 includes token
management 116 protocol. The system includes a core engine 120 in communication with the
REST layer 104. The core engine 120 includes systems or protocols responsible for queue
management 122, task execution 124, warehouse management 126, file management 128, and load
history 130. The core engine 120 is in communication with an execution platform 132 that is
configured to execute one or more tasks, such as data ingestion tasks.

[0052] The client account 102 is in communication, either directly or indirectly, with a
resource manager (see e.g. 204, 302) of a database system. The REST layer 104 may be a
component of the resource manager 302. The client account 102 provides user files to be ingested
into a database. The user files may be uploaded to a vendor service, such as Amazon Web
Services™ or other suitable cloud computing service. The resource manager 302 may receive a
notification that a user file has been added to the client account that should be ingested into the
database, or that some data within the database should be updated. In various implementations, the
resource manager 302 may receive such notification automatically or it may periodically poll a
data bucket associated with the client account 102 to determine whether any user files have been
added.

[0053] The REST layer 104 includes a thin outer layer capable of handling payload translation
into internal format and is further capable of handling simple validation. In an embodiment, the

REST layer 104 exists inside a resource manager (see e.g. 204, 302). The REST layer 104 includes

18

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

object resolution 106 responsible for transitioning from a scoped table name to a table
identification (may be referred to herein as TableID). The REST layer 104 further includes request
routing 108 responsible for routing a request to the proper instance of a resource manager 302 for
a destination table of a user file received from the client account 102. In an embodiment, request
routing 108 occurs after object resolution 106. Request routing 108 may use consistent hashing
with virtual nodes to manage which GS instance owns which table.

[0054] In an embodiment, when a vendor account (such as a third-party account responsible
for receiving user files) receives one or more names of user files, the object resolution 106 protocol
resolves those names of the user files to internal names. The internal names for the user files are
cached.

[0055] In an embodiment, the request routing 108 protocol of the REST layer 104 of the
resource manager 302 is configured to receive user files from the client account 102 and route
those user files to one or more execution nodes of an execution platform for ingesting and
processing. In an embodiment, the vendor account (that is, a third-party account responsible for
receiving user files directly or indirectly from a client account 102 and providing those user files
to, for example, the resource manager 302) may use consistent hashing with virtual nodes to
manage which resource manager 302 owns a particular database table. The vendor account may
hash on a table identification and an identification for a particular resource manager 302 to find a
match between a user file and a resource manager 302. The hash space is divided into equally sized
partitions. Given a number of resource manager 302 instances, each resource manager 302 takes a
number of partitions. When the resource manager 302 adds an execution node to an execution
platform (such as the core engine 120), the resource manager 302 will pull random partitions from

each execution node to preserve the ratio of partition rations. Similarly, when an execution node

19

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

fails, the ration of partitions are spread out among remaining execution nodes. This mapping may
be maintained by a vendor account.

[0056] In an embodiment, a database record including all virtual node mappings is
transactionally modified every time a virtual node assignment is changed. A value associated with
the virtual node will be stored in memory with an object that is processing requests for a given
table of the database. The value may be passed back and forth with every interaction between the
resource manager 302 and an execution platform 132. The value may be used to detect stale state
or requests which may be discarded.

[0057] In an embodiment, a tableList slice is used during recovery situations to communicate
with the vendor account. The tableList slice may indicate what database tables are managed by a
given virtual node. The tableList slice may be added to or amended as needed and may be cleaned
up on a best effort basis when the vendor account notice for a table has been deleted or is no longer
active.

[0058] In an embodiment, the entire virtual node table may be cached in memory on each
resource manager 302. Each resource manager 302 may watch for changes to a database table and
poll the database table periodically as a backup measure. In an embodiment, when a request to
ingest new user files must be routed by the request routing 108 protocol, the vendor account may
hash the tableld and determine the virtual node containing the hash, and then the vendor account
may lookup the virtual node in the table and route to a particular resource manager 302.

[0059] The API gateway 110 includes a thin layer to guard access to the core engine 120. The
API gateway 110 includes rate limiting 112 responsible for basic limits to prevent a large influx
of data ingestion requests. The API gateway 110 includes authentication 114 responsible for

validating the API token passed in a REST request.

20

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0060] In an embodiment, the authentication 114 protocol comprises a set of down-scoped
credentials. The down-scoped credentials may be used to create an API token scoped to a particular
table. The token may have the TableID baked into it and may be created programmatically. The
token may have a short lifetime (in an embodiment the token may expire in 30 minutes, one hour,
two hours, three hours, and so forth). In an embodiment a client account 102 may dictate the
expiration of the token and/or receive a new token programmatically. In an embodiment, the
system 100 receives the token, validates the token, and validates whether the TableID specified in
the token matches the name of the table specified in the REST request. In an implementation where
the TableID and the table specified in the REST request do not match, the caller will receive a
particular error response that will request a new token. In an embodiment, the system 100 requires
a new token to every time a table is modified.

[0061] Token management 116 is responsible for generating new tokens and revoking prior
tokens on demand. The core engine 120 is a core logic that manages the processing of incoming
data. The core engine 120 includes queue management 122 responsible for managing queues of
incoming files, including adding or removing files from the queue. The task executor 124 begins
and manages the execution platform jobs for loading files, including interactions with a compiler.
The warehouse management 126 manages a loading warehouse, including scaling up and down on
demand. The file management 128 is responsible for handling the ingest version of registering
native binary files and capturing errors. The load history 130 tracks the history of the loads and
errors for a given table. The load history 130 may further purge load history after a period or after
a maximum number of entries has been reached.

[0062] In an embodiment, the task executor 124 knows the current total number of active tasks

and the desired number of active tasks. The task executor 124 communicates the desired number

21

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

of active tasks to a resource manager 302 that will strive to keep the size of the warehouse at the
desired number of active tasks. The resource manager 302 may accomplish that by smoothing the
demand over time by way of a moving average over some time period that is a fraction of the
desired latency. The resource manager 302 may further accomplish that by keeping the size of the
warehouse slightly larger than the actual need to accommodate temporary spikes. The resource
manager 302 may further accomplish that by carefully releasing execution nodes and/or assigning
work to one or more execution nodes in such a way as to compact the usage to permit reasonable
freeing of execution nodes when needed.

[0063] In an embodiment, the task executor 124 generates the execution plan of the ingest task.
The execution plan may be similar to the plan of copy command. The task executor 124 may create
a code change in copy option including an internal Boolean option “ingest mode” to current copy
command. The execution plan may compile from the SQL text “copy into T ingest mode=true” to
disable certain functions. The task executor 124 may further include a code change in scansset,
including a Boolean property “dynamic_scanset” that may be true if the copy is in ingest mode.
[0064] In an embodiment, warehouse management 126 manages the warehouse for data
ingestion. The warehouse management 126 may control scaling up and down based on demand,
assign work to execution nodes, track states of tasks on the warehouse to allow correct
assignments, and track failed servers and respond accordingly. In an embodiment, the warehouse
management 126 is incorporated in a resource manager 302. It should be noted that because the
ingest task is single threaded, there will be assigned one task per core on one warehouse node. For
each warehouse node, the number of running tasks is tracked. The task executor 124 may schedule

anew task, ask the warehouse management 126 for a server to use, and the warehouse management

22

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

126 will choose already busy servers to make it easier to free execution nodes when the load
decreases. The task executor 124 must inform warehouse management 128 about task completion.
[0065] In an embodiment, load history 130 monitors the loading result and keeps track of
whether files or data have successfully been ingested into the database. The ingest history may
further be stored in a metadata store within the database or separate from the database and
accessible by a resource manager 302. The ingest history includes, for example, the file name,
TablelD, file size, row count, status, and first error. In an embodiment, the error management of
the data loading will be a separated project.

[0066] FIG. 2 is a schematic block diagram of a process 200 of ingesting data into a database.
The process 200 begins and a client account 102 sends an ingest request at 202. The client account
102 may directly or indirectly communicate with the database system to send in the ingest request.
In an embodiment, the ingest request is a notification provided by a third-party vendor storage
account, or the ingest request may arise from a resource manager 302 polling a data lake associated
with the client account 102 to determine whether any user files have been added to the client
account 102 that have not yet been ingested into the database. The notification includes a list of
user files to insert into a table of the database. The user files are persisted in a queue specific to
the receiving table of the database.

[0067] The ingest request is received by a resource manager 204 (see also 302). The resource
manager 204 identifies at 206 a user file to ingest, assigns at 208 the user file to one or more
execution nodes, and registers at 210 micro-partition metadata associated with a database table
after the user file is ingested into a micro-partition of the database table. The resource manager
204 provisions one or more execution nodes 214, 218 of an execution platform 212 to perform one

or more tasks associated with ingesting the user file. Such ingest tasks 216a, 216b, 220a, 220b

23

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

include, for example, cutting a user file into one or more partitions, generating a new micro-
partition based on the user file, and/or inserting the new micro-partition in a table of the database.
[0068] The system 200 begins an IngestTask that will run on a warehouse. The IngestTask will
pull user files from the queue for a database table until it is told to stop doing so. The IngestTask
will periodically cut a new user file and add it to the database table. In one embodiment, the ingest
process is “serverless” in that it is an integrated service provided by the database or resource
manager 204. That is, a user associated with the client account 102 need not provision its own
warehouse or a third-party warehouse in order to perform the ingestion process. For example, the
database or database provided (e.g., via instances of the resource manager 204) may maintain the
ingest warehouse that then services one or more or all accounts/customers of the database provider.
[0069] It should be appreciated that there may be more than one IngestTask pulling from a
queue for a given table, and this might be necessary to keep up with the rate of incoming data. In
an embodiment, the IngestTask may decide the time to cut a new file to increase the chances of
getting an ideal sized file and avoid “odd sized” files that would result if the file size was line up
with one or more user files. This may come at the cost of added complexity as the track line number
of the files consumed must be tracked.

[0070] In an embodiment, all requests for a particular table will be routed to a single instance
of the resource manager 204. Each instance of the resource manager 204 may be responsible for a
set of database tables. In an embodiment, this is accomplished by using consistent hashing with
virtual nodes that permits a node to be treated as a write-through cache for the queue, eliminating
the need to read the items in the queue from the metadata store.

[0071] Referring now to FIG. 3, a data processing platform 300 is illustrated for running the

methods disclosed herein. As shown in FIG. 3, resource manager 302 may be coupled to multiple

24

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

client accounts 314a, 314b, and 314n. In particular implementations, resource manager 302 can
support any number of client accounts desiring access to the execution platform 304 and/or or
shared database storage 308. Client accounts 314a, 314b, and 314n may include, for example, end
users providing user files to be ingested into the database, data storage and retrieval requests,
system administrators managing the systems and methods described herein, and other
components/devices that interact with resource manager 302.

[0072] Resource manager 302 provides various services and functions that support the
operation of all systems and components within data processing platform 300. Resource manager
302 may be coupled to shared metadata 312, which is associated with the entirety of data stored
throughout data processing platform 300. In some embodiments, shared metadata 312 may include
a summary of data stored in remote data storage systems as well as data available from a local
cache. Additionally, shared metadata 312 may include information regarding how data is
organized in the remote data storage systems and the local caches. Shared metadata 312 may allow
systems and services to determine whether a piece of data needs to be processed without loading
or accessing the actual data from a storage device.

[0073] Resource manager 302 may be further coupled to the execution platform 304, which
provides multiple computing resources that execute various data storage and data retrieval tasks,
as discussed in greater detail below. The execution platform 304 includes a plurality of execution
nodes 306a, 306b, 306¢, and 306n configured to process various tasks associated with the database,
including ingesting new user files and generating one or more micro-partitions for a table of a
database based on the new user files. Execution platform 304 may be coupled to shared database
storage 308 including multiple data storage devices 310a, 310b, 310c, and 310n. In some

embodiments, the shared database storage 308 includes cloud-based storage devices located in one

25

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

or more geographic locations. For example, the shared database storage 308 may be part of a public
cloud infrastructure or a private cloud infrastructure. The shared database storage 308 may include
hard disk drives (HDDs), solid state drives (SSDs), storage clusters or any other data storage
technology. Additionally, shared database storage 308 may include distributed file systems (such
as Hadoop Distributed File Systems (HDFS)), object storage systems, and the like. It should be
appreciated that the shared database storage 308 may be accessible by one or more instances of
the resource manager 302 but may not be accessible by all client accounts 314a-314n. In an
embodiment, a single instance of the resource manager 302 is shared by a plurality of client
accounts 314a-314n. In an embodiment, each client account 314a-314n has its own resource
manager and/or its own shared database storage 308 that is shared amongst a plurality of execution
nodes 306a-306n of the execution platform 304. In an embodiment, the resource manager 302 is
responsible for providing a particular client account 314a-314n access to particular data within the
shared database storage 308.

[0074] In particular embodiments, the communication links between resource manager 302
and client accounts 314a-314n, shared metadata 312, and execution platform 304 are implemented
via one or more data communication networks. Similarly, the communication links between
execution platform 304 and shared database storage 308 are implemented via one or more data
communication networks. These data communication networks may utilize any communication
protocol and any type of communication medium. In some embodiments, the data communication
networks are a combination of two or more data communication networks (or sub-networks)
coupled to one another. In alternate embodiments, these communication links are implemented

using any type of communication medium and any communication protocol.

26

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0075] As shown in FIG. 3, data storage devices 310a-310n are decoupled from the computing
resources associated with execution platform 304. This architecture supports dynamic changes to
data processing platform 300 based on the changing data storage/retrieval needs as well as the
changing needs of the users and systems accessing data processing platform 300. The support of
dynamic changes allows data processing platform 300 to scale quickly in response to changing
demands on the systems and components within data processing platform 300. The decoupling of
the computing resources from the data storage devices supports the storage of large amounts of
data without requiring a corresponding large amount of computing resources. Similarly, this
decoupling of resources supports a significant increase in the computing resources utilized at a
particular time without requiring a corresponding increase in the available data storage resources.
[0076] Resource manager 302, shared metadata 312, execution platform 304, and shared
database storage 308 are shown in FIG. 3 as individual components. However, each of resource
manager 302, shared metadata 312, execution platform 304, and shared database storage 308 may
be implemented as a distributed system (e.g., distributed across multiple systems/platforms at
multiple geographic locations). Additionally, each of resource manager 302, shared metadata 312,
execution platform 304, and shared database storage 308 can be scaled up or down (independently
of one another) depending on changes to the requests received from client accounts 314a-314n and
the changing needs of data processing platform 300. Thus, data processing platform 300 is
dynamic and supports regular changes to meet the current data processing needs.

[0077] FIG. 4 is a block diagram depicting an embodiment of resource manager 302. As shown
in FIG. 4, resource manager 302 includes an access manager 402 and a key manager 404 coupled
to a data storage device 406. Access manager 402 may handle authentication and authorization

tasks for the systems described herein. Key manager 404 may manage storage and authentication

27

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

of keys used during authentication and authorization tasks. A request processing service 408
manages received data storage requests and data retrieval requests. A management console service
410 supports access to various systems and processes by administrators and other system
managers.

[0078] Resource manager 302 may also include a job compiler 412, a job optimizer 414 and a
job executor 416. Job compiler 412 parses tasks, such as ingest tasks, and generates the execution
code for the ingestion of user files. Job optimizer 414 determines the best method to execute ingest
tasks based on the data that needs to be processed and/or ingested. Job executor 416 executes code
for ingest tasks received by resource manager 302. A job scheduler and coordinator 418 may send
received user files to the appropriate services or systems for compilation, optimization, and
dispatch to the execution platform 304. A virtual warehouse manager 420 manages the operation
of multiple virtual warehouses implemented in an execution platform.

[0079] Additionally, resource manager 302 includes a configuration and metadata manager
422, which manages the information related to the data stored in the remote data storage devices
and in the local caches. A monitor and workload analyzer 424 oversees the processes performed
by resource manager 302 and manages the distribution of tasks (e.g., workload) across the virtual
warehouses and execution nodes in the execution platform. Configuration and metadata manager
422 and monitor and workload analyzer 424 are coupled to a data storage device 426.

[0080] FIG. 5 is a block diagram depicting an embodiment of an execution platform 304. As
shown in FIG. 5, execution platform 304 includes multiple virtual warehouses, including virtual
warehouse 1, virtual warehouse 2, and virtual warehouse n. Each virtual warehouse includes
multiple execution nodes that each include a data cache and a processor. The virtual warehouses

can execute multiple tasks in parallel by using the multiple execution nodes. As discussed herein,

28

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

execution platform 304 can add new virtual warehouses and drop existing virtual warehouses in
real-time based on the current processing needs of the systems and users. This flexibility allows
the execution platform 304 to quickly deploy large amounts of computing resources when needed
without being forced to continue paying for those computing resources when they are no longer
needed. All virtual warehouses can access data from any data storage device (e.g., any storage
device in shared database storage 308). Although each virtual warehouse shown in FIG. 5 includes
three execution nodes, a particular virtual warehouse may include any number of execution nodes.
Further, the number of execution nodes in a virtual warehouse is dynamic, such that new execution
nodes are created when additional demand is present, and existing execution nodes are deleted
when they are no longer necessary.

[0081] Each virtual warehouse is capable of accessing any of the data storage devices 310a-
310n shown in FIG. 3. Thus, the virtual warehouses are not necessarily assigned to a specific data
storage device and, instead, can access data from any of the data storage devices 310a-310n within
the shared database storage 308. Similarly, each of the execution nodes shown in FIG. 5 can access
data from any of the data storage devices 310a-310n. In some embodiments, a particular virtual
warehouse or a particular execution node may be temporarily assigned to a specific data storage
device, but the virtual warehouse or execution node may later access data from any other data
storage device.

[0082] In the example of FIG. 5, virtual warehouse 1 includes three execution nodes 502a,
502b, and 502n. Execution node 502a includes a cache 504b and a processor 506a. Execution node
502b includes a cache 504b and a processor 506b. Execution node 502n includes a cache 504n and
a processor 506n. Each execution node 502a, 502b, and 502n is associated with processing one or

more data storage and/or data retrieval tasks. For example, a virtual warehouse may handle data

29

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

storage and data retrieval tasks associated with an internal service, such as a clustering service, a
materialized view refresh service, a file compaction service, a storage procedure service, or a file
upgrade service. In other implementations, a particular virtual warehouse may handle data storage
and data retrieval tasks associated with a particular data storage system or a particular category of
data.

[0083] Similar to virtual warehouse 1 discussed above, virtual warehouse 2 includes three
execution nodes 512a, 512b, and 512n. Execution node 512a includes a cache 514a and a processor
516a. Execution node 512b includes a cache 514b and a processor 516b. Execution node 512n
includes a cache 514n and a processor 516n. Additionally, virtual warehouse 3 includes three
execution nodes 522a, 522b, and 522n. Execution node 522a includes a cache 524a and a processor
526a. Execution node 522b includes a cache 524b and a processor 526b. Execution node 522n
includes a cache 524n and a processor 526n.

[0084] In some embodiments, the execution nodes shown in FIG. 5 are stateless with respect
to the data the execution nodes are caching. For example, these execution nodes do not store or
otherwise maintain state information about the execution node or the data being cached by a
particular execution node. Thus, in the event of an execution node failure, the failed node can be
transparently replaced by another node. Since there is no state information associated with the
failed execution node, the new (replacement) execution node can easily replace the failed node
without concern for recreating a particular state.

[0085] Although the execution nodes shown in FIG. 5 each include one data cache and one
processor, alternate embodiments may include execution nodes containing any number of
processors and any number of caches. Additionally, the caches may vary in size among the

different execution nodes. The caches shown in FIG. 5 store, in the local execution node, data that

30

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

was retrieved from one or more data storage devices in the shared database storage 308. Thus, the
caches reduce or eliminate the bottleneck problems occurring in platforms that consistently
retrieve data from remote storage systems. Instead of repeatedly accessing data from the remote
storage devices, the systems and methods described herein access data from the caches in the
execution nodes which is significantly faster and avoids the bottleneck problem discussed above.
In some embodiments, the caches are implemented using high-speed memory devices that provide
fast access to the cached data. Each cache can store data from any of the storage devices in the
shared database storage 308.

[0086] Further, the cache resources and computing resources may vary between different
execution nodes. For example, one execution node may contain significant computing resources
and minimal cache resources, making the execution node useful for tasks that require significant
computing resources. Another execution node may contain significant cache resources and
minimal computing resources, making this execution node useful for tasks that require caching of
large amounts of data. Yet another execution node may contain cache resources providing faster
input-output operations, useful for tasks that require fast scanning of large amounts of data. In
some embodiments, the cache resources and computing resources associated with a particular
execution node are determined when the execution node is created, based on the expected tasks to
be performed by the execution node.

[0087] Additionally, the cache resources and computing resources associated with a particular
execution node may change over time based on changing tasks performed by the execution node.
For example, an execution node may be assigned more processing resources if the tasks performed

by the execution node become more processor-intensive. Similarly, an execution node may be

31

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

assigned more cache resources if the tasks performed by the execution node require a larger cache
capacity.

[0088] Although virtual warehouses 1, 2, and n are associated with the same execution
platform 304, the virtual warehouses may be implemented using multiple computing systems at
multiple geographic locations. For example, virtual warehouse 1 can be implemented by a
computing system at a first geographic location, while virtual warehouses 2 and n are implemented
by another computing system at a second geographic location. In some embodiments, these
different computing systems are cloud-based computing systems maintained by one or more
different entities.

[0089] Additionally, each virtual warehouse is shown in FIG. 5 as having multiple execution
nodes. The multiple execution nodes associated with each virtual warehouse may be implemented
using multiple computing systems at multiple geographic locations. For example, an instance of
virtual warehouse 1 implements execution nodes 502a and 502b on one computing platform at a
geographic location and implements execution node 502n at a different computing platform at
another geographic location. Selecting particular computing systems to implement an execution
node may depend on various factors, such as the level of resources needed for a particular
execution node (e.g., processing resource requirements and cache requirements), the resources
available at particular computing systems, communication capabilities of networks within a
geographic location or between geographic locations, and which computing systems are already
implementing other execution nodes in the virtual warehouse.

[0090] Execution platform 304 is also fault tolerant. For example, if one virtual warehouse
fails, that virtual warehouse is quickly replaced with a different virtual warehouse at a different

geographic location.

32

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0091] A particular execution platform 304 may include any number of virtual warehouses.
Additionally, the number of virtual warehouses in a particular execution platform is dynamic, such
that new virtual warehouses are created when additional processing and/or caching resources are
needed. Similarly, existing virtual warehouses may be deleted when the resources associated with
the virtual warehouse are no longer necessary.

[0092] In some embodiments, the virtual warehouses may operate on the same data in the
shared database storage 308 but each virtual warehouse has its own execution nodes with
independent processing and caching resources. This configuration allows requests on different
virtual warehouses to be processed independently and with no interference between the requests.
This independent processing, combined with the ability to dynamically add and remove virtual
warehouses, supports the addition of new processing capacity for new users without impacting the
performance observed by the existing users.

[0093] FIG. 6 is a block diagram depicting an example operating environment 600 with the
queue 602 in communication with multiple virtual warehouses under a virtual warehouse manager
502. In environment 600, the queue 602 has access to multiple database shared storage devices
608a, 608b, 608¢c, 608d, 608e, and 608n through multiple virtual warehouses 606a, 606b, and
606n. Although not shown in FIG. 6, the queue 602 may access virtual warehouses through the
resource manager 302. In particular embodiments, databases 608a-608n are contained in the shared
database storage 308 and are accessible by any virtual warehouse implemented in the execution
platform 212. In some embodiments, the queue 602 may access one of the virtual warehouses
606a-606n using a data communication network such as the Internet. In some implementations, a
client account may specify that the queue 602 (configured for storing internal jobs to be completed)

should interact with a particular virtual warehouse 606a-606n at a particular time.

33

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0094] In an embodiment (as illustrated), each virtual warehouse 606a-606n can communicate
with all databases 608a-608n. In some embodiments, each virtual warehouse 606a-606n is
configured to communicate with a subset of all databases 608a-608n. In such an arrangement, an
individual client account associated with a set of data may send all data retrieval and data storage
requests through a single virtual warehouse and/or to a certain subset of the databases 608a-608n.
Further, where a certain virtual warehouse 606a-606n is configured to communicate with a specific
subset of databases 608a-608n, the configuration is dynamic. For example, virtual warehouse 606a
may be configured to communicate with a first subset of databases 608a-608n and may later be
reconfigured to communicate with a second subset of databases 608a-608n.

[0095] In an embodiment, the queue 602 sends data retrieval, data storage, and data processing
requests to the virtual warehouse manager 604, which routes the requests to an appropriate virtual
warehouse 606a-606n. In some implementations, the virtual warehouse manager 604 provides a
dynamic assignment of jobs to the virtual warehouses 606a-606n.

[0096] In some embodiments, fault tolerance systems create a new virtual warehouse in
response to a failure of a virtual warehouse. The new virtual warehouse may be in the same virtual
warehouse group or may be created in a different virtual warehouse group at a different geographic
location.

[0097] The systems and methods described herein allow data to be stored and accessed as a
service that is separate from computing (or processing) resources. Even if no computing resources
have been allocated from the execution platform 212, data is available to a virtual warehouse
without requiring reloading of the data from a remote data source. Thus, data is available
independently of the allocation of computing resources associated with the data. The described

systems and methods are useful with any type of data. In particular embodiments, data is stored in

34

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

a structured, optimized format. The decoupling of the data storage/access service from the
computing services also simplifies the sharing of data among different users and groups. As
discussed herein, each virtual warehouse can access any data to which it has access permissions,
even at the same time as other virtual warehouses are accessing the same data. This architecture
supports running queries without any actual data stored in the local cache. The systems and
methods described herein are capable of transparent dynamic data movement, which moves data
from a remote storage device to a local cache, as needed, in a manner that is transparent to the user
of the system. Further, this architecture supports data sharing without prior data movement since
any virtual warehouse can access any data due to the decoupling of the data storage service from
the computing service.

[0098] FIG. 7 is a block diagram architecture model of a system for automated data ingestion
700. The system 700 includes a plurality of client accounts, including for example client account
A and client account B. The client accounts may include one or more data buckets or data lakes
comprising user files. Each of the client accounts is coupled to a client account queue comprising
a listing of all user files to be ingested into a database. As illustrated in FIG. 7, client account A is
coupled to account A queue 704 and client account B is coupled to account B queue 708. In an
alternative embodiment, a plurality of client accounts may feed into one or more client account
queues. An ingest poller 706, 710 is associated with each of the client accounts. In an embodiment,
an ingest poller 706, 710 may poll a queue for one or more client accounts. As illustrated in FIG.
7, ingest poller 706 is responsible for polling account A queue 704 and ingest poller 710 is
responsible for polling account B queue 708. Each ingest poller may poll across a number of client
account queues. The ingest poller 706, 710 may inspect a notification received from a client

account queue and match the notification against all available pipes 712, 714, 716, 718, 720, 722,

35

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

724, and 726. The ingest poller 706, 710 is responsible for delivering the notification to each of
the matching pipes 712-726 such that the associated user file may be retrieved from the client
account and delivered to the appropriate pipe. The client account queues and the associated ingest
pollers are embodied within a notification channel 702.

[0099] In an embodiment the ingest poller 706, 710 conducts a polling or polled operation. In
an embodiment, the ingest poller 706, 710 is a piece of functionality existing within a resource
manager 302. The ingest poller 706, 710 may inspect each notification from a client account queue
704, 708, and for each message the ingest poller 706, 710 will match the notification against each
pipe 712-726. The ingest poller 706, 710 will deliver the notification to each of the matching pipes
712-726.

[0100] In an embodiment, the system 700 includes a plurality of client account queues
comprising a pool of Simple Queue Service™ (SQS) queues as part of an Amazon Web Services™
S3 bucket. The pool of SQS queues may be provided to client accounts to add user files to a bucket.
A notification may be automatically generated when one or more user files are added to a client
account data bucket. A plurality of customer data buckets may be provided to each client account.
The client account queues 704, 708 may handle data events (7.e. the receipt of one or more user
files) from a number of data buckets for a client account. A client account may include a plurality
of data buckets that will have one or more dedicated client account queues 704, 708 for that client
account. In an embodiment, each client account queue 704, 708 handles events from a plurality of
data buckets for a single client account that will receive user files for a plurality of pipes 712-726.
In an embodiment, each ingest poller 706, 710 polls across a number of client account queues 704,

708 and is not dedicated to a single client account queue 704, 708 as illustrated in FIG. 7.

36

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0101] In an embodiment, the creation of a pipe 712-726 occurs at either of an external stage
or an internal stage. If two pipes are created with the same matching conditions, an applicable user
file will be loaded into both pipes. In an embodiment, when a client drops a pipe 712-726, if there
are other pipes that are being auto-ingested from the same client data bucket, there will be no
output. If the pipe 712-726 being dropped is the last pipe that is being auto-ingested for the client
data bucket, then the queue configuration will be removed from the bucket notification
configuration.

[0102] In an embodiment, there exist policy limitations on the client account queue such that
the client account queue will need to be configured with a policy to accept messages from a client
data bucket. In an embodiment, for a client data bucket to be able to send a creation event to the
client account queue one of the following must be true: the client data bucket should be allowed
from the principal, or the client data bucket source must be allowed in the condition. If the client
data bucket is allowed from the principal, then all entities from that client account will be able to
do a send message on the client account queue. Thus, to restrict only the client data bucket to send
notifications, the condition may be set to point to the client data bucket name.

[0103] In an embodiment, there are multiple client account queues for a single client account.
This may be beneficial in an embodiment where having a single client account queue for all
possible client accounts would require the single client account queue to be shared across many
client data buckets and the single client account queue may not be able to handle a great plurality
of client data buckets.

[0104] In an embodiment, the system 700 maintains a pool of client account queues for each
client account. Each client account queue may service a number of stages and pipes 712-726. Each

instance of the resource manager 302 will build a token ring for one or more client account queues

37

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

and will watch that range of tokens that are assigned to the applicable client account queues, and
will further poll those client account queues.

[0105] In an embodiment, whenever a pipe 712-726 is configured to automatically ingest, the
ingest request is redirected to the instance of the resource manager 302 that is currently handling
provisioning of user files. Once the correct instance of the resource manager 302 receives the
ingest request, it may read all client account queues that it has from cache. The instance of the
resource manager 302 may further check if one of the client account queues already has an existing
ingest policy for an applicable client data bucket. If so, it may increment the reference for that
client account queue in metadata store and return that client account queue. The instance of the
resource manager 302 may further determine if no client account queue has an existing policy and
implement a client account queue selection policy to either select an existing client account queue
or create a new client account queue. This may include adding a policy to the client account queue
to provision a new client account queue for that client account under certain circumstances. It may
further increment the reference for the client account queue in metadata store and return that client
account queue.

[0106] In an embodiment, the client account queue selection policy includes grouping the
client account queues by client account. In an embodiment, this includes using just one client
account queue, but if there are multiple client account queues for a client account, the client
account queue selection policy includes selecting one client account with the least number of client
data buckets. The client account queue selection policy may further include selecting client
account queues by token range-based grouping. This may include using metrics on a token range
identifying which client account queues are seeing a lot of traffic and select one client account

queue that has been seeing the least amount of traffic. It may further include determining the

38

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

number of client data buckets that are on different client account queues and selecting one client
account queue with the least number of client data buckets.

[0107] In an embodiment, each objection creation notification message comprises the client
data bucket name and full object name providing the complete path of an object (7.e. a user file) in
a client data bucket. A single client account queue may feed into several pipes with each pipe
having a set of matching rules.

[0108] The client account queues are a message queuing service that decouples and scales
microservices, distributed systems, and serverless applications. In an embodiment, the client
account queues 704, 708 are an Amazon® Simple Queue Service (SQS) provided by Amazon Web
Services®. The SQS enables building applications from individual components that each perform
a discrete function for improving scalability and reliability. SQS can improve the cost-
effectiveness of decoupling and coordinating components of a cloud application. With SQS, a
client may send, store, and receive messages between software components at any volume, without
losing messages or requiring other services to be always available.

[0109] In an embodiment, SQS may provide two types of message queues, including a
standard queue and a FIFO queue. The standard queue offers maximum throughput, best-effort
ordering, and at-least-once-delivery of message. FIFO (First In First Out) queues are designed to
guarantee that messages are processed exactly once, in the exact order that they are sent, with
limited throughput.

[0110] FIG. 8 is a schematic flow chart diagram of a method 800 for batch data ingestion into
a database. The method 800 may be performed by any suitable computing device such as a resource
manager 302 as disclosed herein. The method 800 begins and the resource manager determines at

802 a notification indicating a presence of a user file received from a client account to be ingested

39

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

into a database. The method 800 continues and the resource manager identifies at 804 data in the
user file and identifies at 806 a target table of the database to receive the data in the user file. The
method 800 continues and the resource manager generates at 808 an ingest task indicating the data
and the target table. The method 800 continues and the resource manager assigns at 810 the ingest
task to an execution node of an execution platform, wherein the execution platform comprises a
plurality of execution nodes operating independent of a plurality of shared storage devices
collectively storing database data. The method 800 continues and the resource manager register at
812 metadata concerning the target table in a metadata store after the data has been fully committed
to the target table by the execution node.

[0111] The method 800 may be executed autonomously without user intervention. The method
800 may include the execution of multiple ingest tasks asynchronously across the execution
platform such that the multiple ingest tasks are executed substantially in parallel.

[0112] FIG. 9 is a block diagram depicting an example computing device 900. In some
embodiments, computing device 900 is used to implement one or more of the systems and
components discussed herein. For example, computing device 900 may allow a user or
administrator to access the resource manager 902. Further, computing device 900 may interact
with any of the systems and components described herein. Accordingly, computing device 900
may be used to perform various procedures and tasks, such as those discussed herein. Computing
device 900 can function as a server, a client or any other computing entity. Computing device 900
can be any of a wide variety of computing devices, such as a desktop computer, a notebook
computer, a server computer, a handheld computer, a tablet, and the like.

[0113] Computing device 900 includes one or more processor(s) 902, one or more memory

device(s) 904, one or more interface(s) 906, one or more mass storage device(s) 908, and one or

40

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

more Input/Output (I/0) device(s) 910, all of which are coupled to a bus 912. Processor(s) 902
include one or more processors or controllers that execute instructions stored in memory device(s)
904 and/or mass storage device(s) 908. Processor(s) 902 may also include various types of
computer-readable media, such as cache memory.

[0114] Memory device(s) 904 include various computer-readable media, such as volatile
memory (e.g., random access memory (RAM)) and/or nonvolatile memory (e.g., read-only
memory (ROM)). Memory device(s) 904 may also include rewritable ROM, such as Flash
memory.

[0115] Mass storage device(s) 908 include various computer readable media, such as magnetic
tapes, magnetic disks, optical disks, solid state memory (e.g., Flash memory), and so forth. Various
drives may also be included in mass storage device(s) 908 to enable reading from and/or writing
to the various computer readable media. Mass storage device(s) 908 include removable media
and/or non-removable media.

[0116] I/O device(s) 910 include various devices that allow data and/or other information to
be input to or retrieved from computing device 900. Example I/O device(s) 910 include cursor
control devices, keyboards, keypads, microphones, monitors or other display devices, speakers,
printers, network interface cards, modems, lenses, CCDs or other image capture devices, and the
like.

[0117] Interface(s) 906 include various interfaces that allow computing device 900 to interact
with other systems, devices, or computing environments. Example interface(s) 906 include any
number of different network interfaces, such as interfaces to local area networks (LANs), wide

area networks (WANS5), wireless networks, and the Internet.

41

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0118] Bus 912 allows processor(s) 902, memory device(s) 904, interface(s) 906, mass storage
device(s) 908, and I/O device(s) 910 to communicate with one another, as well as other devices or
components coupled to bus 912. Bus 912 represents one or more of several types of bus structures,
such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so forth.

[0119] For purposes of illustration, programs and other executable program components are
shown herein as discrete blocks, although it is understood that such programs and components may
reside at various times in different storage components of computing device 900, and are executed
by processor(s) 902. Alternatively, the systems and procedures described herein can be
implemented in hardware, or a combination of hardware, software, and/or firmware. For example,
one or more application specific integrated circuits (ASICs) can be programmed to carry out one
or more of the systems and procedures described herein. As used herein, the term “module” is
intended convey the implementation apparatus for accomplishing a process, such as by hardware,
or a combination of hardware, software, and/or firmware, for the purposes of performing all or
parts of query operations.

[0120] The systems and methods described herein allow data to be stored and accessed as a
service that is separate from computing (or processing) resources. Even if no computing resources
have been allocated from the execution platform, data is available to a virtual warehouse without
requiring reloading of the data from a remote data source. Thus, data is available independently of
the allocation of computing resources associated with the data. The described systems and methods
are useful with any type of data. In particular embodiments, data is stored in a structured, optimized
format. The decoupling of the data storage/access service from the computing services also
simplifies the sharing of data among different users and groups. As discussed herein, each virtual

warehouse can access any data to which it has access permissions, even at the same time as other

42

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

virtual warehouses are accessing the same data. This architecture supports running queries without
any actual data stored in the local cache. The systems and methods described herein are capable
of transparent dynamic data movement, which moves data from a remote storage device to a local
cache, as needed, in a manner that is transparent to the user of the system. Further, this architecture
supports data sharing without prior data movement since any virtual warehouse can access any
data due to the decoupling of the data storage service from the computing service.

[0121] Although the present disclosure is described in terms of certain preferred embodiments,
other embodiments will be apparent to those of ordinary skill in the art, given the benefit of this
disclosure, including embodiments that do not provide all of the benefits and features set forth
herein, which are also within the scope of this disclosure. It is to be understood that other

embodiments may be utilized, without departing from the scope of the present disclosure.

Examples

[0122] The following Examples pertain to further embodiments:

[0123] Example 1 is a system for batch data ingestion into a database, the system including
means for determining a notification indicating a presence of a user file received from a client
account to be ingested into a database. The system further includes means for identifying data in
the user file and means for identifying a target table of the database to receive the data in the user
file. The system includes means for generating an ingest task indicating the data and the target
table. The system includes means for assigning the ingest task to an execution node of an execution
platform, wherein the execution platform comprises a plurality of execution nodes operating
independent of a plurality of shared storage devices collectively storing database data. The system
includes means for registering metadata concerning the target table in a metadata store after the

data has been fully committed to the target table by the execution node.

43

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0124] Example 2 is a system as in Example 1, further comprising means for committing the
user file to a client account queue, and wherein the means for determining the notification
indicating the presence of the user file comprises determining by polling the client account queue
to determine whether any new user files have been committed to the client account queue since a
last time the client account queue was polled.

[0125] Example 3 is a system as in any of Examples 1-2, wherein the means for determining
the notification indicating the presence of the user file is configured to determine by receiving a
notification from a data lake indicating the user file has been added.

[0126] Example 4 is a system as in any of Examples 1-3, further comprising: means for
identifying a current total number of active ingest tasks and a desired number of active ingest tasks;
and means for managing the plurality of execution nodes of the execution platform such that the
current total number of active ingest tasks is equal to or approaches the desired number of active
ingest tasks by one or more of: smoothing demand for the plurality of execution nodes over time
by way of a moving average; or maintaining an execution platform having more than a required
number of active execution nodes for processing the current total number of active ingest tasks.
[0127] Example 5 is a system as in any of Examples 1-4, further comprising means for
generating an ingest history comprising an indication of whether data from one or more user files
is successfully stored in the database, wherein the ingest history is stored in a metadata store, and
wherein the ingest history comprises one or more of a file name, a table identification, a file size,
a row count, or an ingest error code.

[0128] Example 6 is a system as in any of Examples 1-5, further comprising means for
assigning the user file to an instance of a resource manager based on consistent hashing, wherein

a hash of the consistent hashing is associated with a table identification of the target table, and

44

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

wherein the instance of the resource manager is assigned to manage processes for the hash
associated with the target table.

[0129] Example 7 is a system as in any of Examples 1-6, further comprising means for adding
a new instance of a resource manager, wherein adding the new instance of the resource manager
comprises dividing a plurality of hashes of the consistent hashing and assigning each of the
plurality of hashes to a plurality of instances of resource managers such that each instance of the
plurality of instances is assigned an equal or nearly equal number of tables.

[0130] Example 8 is a system as in any of Examples 1-7, further comprising means for
committing the user file to a client account queue, and wherein the means for generating the ingest
task is configured to generate one or more ingest tasks based on an amount of work in the client
account queue, wherein the amount of work in the client account queue is determined based on
one or more of: an approximate size of the user file based on an average size of recently ingested
user files from the client account; a number of user files in the client account queue; or a size of
the user file as indicated by the client account.

[0131] Example 9 is a system as in any of Examples 1-8, wherein the data is committed to the
target table by generating a new micro-partition for the target table, wherein the new micro-
partition is stored in the plurality of shared storage devices only after the data is fully and
successfully inserted.

[0132] Example 10 is a system as in any of Examples 1-9, wherein the means for assigning
the task to the execution node of the execution platform is configured to manage a total number of
tasks being processed by the execution platform by on one or more of: delaying assigning the
ingest task to the execution node when a threshold number of tasks are already being processed by

the execution platform; building optimally sized micro-partitions by delaying assigning the ingest

45

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

task to the execution node until a threshold number of new user files has been committed to a client
account queue; minimizing latency by assigning the ingest task to the execution node as soon as
the user files is committed to the client account queue; or minimizing processing overhead of
starting and stopping ingest tasks by delaying assigning the ingest task to the execution node until
a threshold number of new user files has been committed to the client account queue.

[0133] Example 11 is a system as in any of Examples 1-10, wherein managing the total number
of tasks being processed by the execution platform comprises balancing a plurality of latency
factors to ensure customer latency remains below a threshold level while the total number of tasks
is minimized.

[0134] Example 12 is a method for batch data ingestion into a database. The method includes
determining a notification indicating a presence of a user file received from a client account to be
ingested into a database. The method includes identifying data in the user file and identifying a
target table of the database to receive the data in the user file. The method includes generating an
ingest task indicating the data and the target table. The method includes assigning the ingest task
to an execution node of an execution platform, wherein the execution platform comprises a
plurality of execution nodes operating independent of a plurality of shared storage devices
collectively storing database data. The method includes registering metadata concerning the target
table in a metadata store after the data has been fully committed to the target table by the execution
node.

[0135] Example 13 is a method as in Example 12, further comprising committing the user file
to a client account queue, and wherein determining the notification indicating the presence of the

user file comprises determining by polling the client account queue to determine whether any new

46

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

user files have been committed to the client account queue since a last time the client account
queue was polled.

[0136] Example 14 is a method as in any of Examples 12-13, wherein determining the
notification indicating the presence of the user file is configured to determine by receiving a
notification from a data lake indicating the user file has been added.

[0137] Example 15 is a method as in any of Examples 12-14, further comprising: identifying
a current total number of active ingest tasks and a desired number of active ingest tasks; and
managing the plurality of execution nodes of the execution platform such that the current total
number of active ingest tasks is equal to or approaches the desired number of active ingest tasks
by one or more of: smoothing demand for the plurality of execution nodes over time by way of a
moving average; or maintaining an execution platform having more than a required number of
active execution nodes for processing the current total number of active ingest tasks.

[0138] Example 16 is a method as in any of Examples 12-15, further comprising generating
an ingest history comprising an indication of whether data from one or more user files is
successfully stored in the database, wherein the ingest history is stored in a micro-partition of a
table of the database, and wherein the ingest history comprises one or more of a file name, a table
identification, a file size, a row count, or an ingest error code.

[0139] Example 17 is a method as in any of Examples 12-16, further comprising assigning the
user file to an instance of a resource manager based on consistent hashing, wherein a hash of the
consistent hashing is associated with the user file and the target table, and wherein the instance of
the resource manager is assigned to manage processes for the hash associated with the target table.
[0140] Example 18 is a method as in any of Examples 12-17, further comprising adding a new

execution node to the execution platform, wherein adding the new execution node comprises

47

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

dividing a plurality of hashes of the consistent hashing and assigning each of the plurality of hashes
to the plurality of execution nodes such that each execution node of the plurality of execution
nodes is assigned an equal or nearly equal number of tables based on the consistent hashing.
[0141] Example 19 is a method as in any of Examples 12-18, further comprising committing
the user file to a client account queue, and wherein generating the ingest task comprises generating
one or more ingest tasks based on an amount of work in the client account queue, wherein the
amount of work in the client account queue is determined based on one or more of’ an approximate
size of the user file based on an average size of recently ingested user files from the client account;
or a size of the user file as indicated by the client account.

[0142] Example 20 is a method as in any of Examples 12-19, wherein the data is committed
to the target table by generating a new micro-partition for the target table, wherein the new micro-
partition is stored in the plurality of shared storage devices only after the data is fully and
successfully inserted.

[0143] Example 21 is a method as in any of Examples 12-20, wherein assigning the task to the
execution node of the execution platform further comprises managing a total number of tasks being
processed by the execution platform by on one or more of: delaying assigning the ingest task to
the execution node when a threshold number of tasks are already being processed by the execution
platform; building optimally sized micro-partitions by delaying assigning the ingest task to the
execution node until a threshold number of new user files has been committed to a client account
queue; minimizing latency by assigning the ingest task to the execution node as soon as the user
files is committed to the client account queue; or minimizing processing overhead of starting and
stopping ingest tasks by delaying assigning the ingest task to the execution node until a threshold

number of new user files has been committed to the client account queue.

48

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0144] Example 22 is a method as in any of Examples 12-21, wherein managing the total
number of tasks being processed by the execution platform comprises balancing a plurality of
latency factors to ensure customer latency remains above a threshold level while the total number
of tasks is minimized.

[0145] Example 23 is a processor that is programmable to execute instructions stored in non-
transitory computer readable storage media. The instructions include determining a notification
indicating a presence of a user file received from a client account to be ingested into a database.
The instructions include identifying data in the user file and identifying a target table of the
database to receive the data in the user file. The instructions include generating an ingest task
indicating the data and the target table. The instructions include assigning the ingest task to an
execution node of an execution platform, wherein the execution platform comprises a plurality of
execution nodes operating independent of a plurality of shared storage devices collectively storing
database data. The instructions include registering metadata concerning the target table in a
metadata store after the data has been fully committed to the target table by the execution node.
[0146] Example 24 is a processor as in Example 23, wherein the instructions further comprise
committing the user file to a client account queue, and wherein determining the notification
indicating the presence of the user file comprises determining by polling the client account queue
to determine whether any new user files have been committed to the client account queue since a
last time the client account queue was polled.

[0147] Example 25 is a processor as in any of Examples 23-24, wherein determining the
notification indicating the presence of the user file is configured to determine by receiving a

notification from a data lake indicating the user file has been added.

49

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0148] Example 26 is a processor as in any of Examples 23-25, wherein the instructions further
comprise: identifying a current total number of active ingest tasks and a desired number of active
ingest tasks; and managing the plurality of execution nodes of the execution platform such that the
current total number of active ingest tasks is equal to or approaches the desired number of active
ingest tasks by one or more of: smoothing demand for the plurality of execution nodes over time
by way of a moving average, or maintaining an execution platform having more than a required
number of active execution nodes for processing the current total number of active ingest tasks.
[0149] Example 27 is a processor as in any of Examples 23-26, wherein the instructions further
comprise generating an ingest history comprising an indication of whether data from one or more
user files is successfully stored in the database, wherein the ingest history is stored in a micro-
partition of a table of the database, and wherein the ingest history comprises one or more of a file
name, a table identification, a file size, a row count, or an ingest error code.

[0150] Example 28 is a processor as in any of Examples 23-27, wherein the instructions further
comprise assigning the user file to an instance of a resource manager based on consistent hashing,
wherein a hash of the consistent hashing is associated with the user file and the target table, and
wherein the instance of the resource manager is assigned to manage processes for the hash
associated with the target table.

[0151] Example 29 is a processor as in any of Examples 23-28, wherein the instructions further
comprise adding a new execution node to the execution platform, wherein adding the new
execution node comprises dividing a plurality of hashes of the consistent hashing and assigning
each of the plurality of hashes to the plurality of execution nodes such that each execution node of
the plurality of execution nodes is assigned an equal or nearly equal number of tables based on the

consistent hashing.

50

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

[0152] Example 30 is a processor as in any of Examples 23-29, wherein the instructions further
comprise committing the user file to a client account queue, and wherein generating the ingest task
comprises generating one or more ingest tasks based on an amount of work in the client account
queue, wherein the amount of work in the client account queue is determined based on one or more
of: an approximate size of the user file based on an average size of recently ingested user files
from the client account; or a size of the user file as indicated by the client account.

[0153] Example 31 is a processor as in any of Examples 23-30, wherein the data is committed
to the target table by generating a new micro-partition for the target table, wherein the new micro-
partition is stored in the plurality of shared storage devices only after the data is fully and
successfully inserted.

[0154] Example 32 is a processor as in any of Examples 23-31, wherein assigning the task to
the execution node of the execution platform further comprises managing a total number of tasks
being processed by the execution platform by on one or more of: delaying assigning the ingest task
to the execution node when a threshold number of tasks are already being processed by the
execution platform; building optimally sized micro-partitions by delaying assigning the ingest task
to the execution node until a threshold number of new user files has been committed to a client
account queue; minimizing latency by assigning the ingest task to the execution node as soon as
the user files is committed to the client account queue; or minimizing processing overhead of
starting and stopping ingest tasks by delaying assigning the ingest task to the execution node until
a threshold number of new user files has been committed to the client account queue.

[0155] Example 33 is a processor as in any of Examples 23-32, wherein managing the total

number of tasks being processed by the execution platform comprises balancing a plurality of

51

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

latency factors to ensure customer latency remains above a threshold level while the total number
of tasks is minimized.

[0156] In an embodiment of the disclosure, a system provides continuous data ingestion to a
database or table. In such an embodiment, the system includes a client account comprising a data
bucket. The client account may be attached to an S3 bucket that may be in communication with an
SQS queue. The SQS queue may be in communication with a plurality of pipes. The system may
receive a notification that an alteration has been made to the client data housed within the client’s
data bucket. The system may scale computing resources up and down as needed to accommodate
the alteration made to the client data bucket. The system may automatically pull in data changes
and ingest the data into the client’s database or table. In an embodiment, the system automatically
ingests data changes without receiving a specific command from a client account.

[0157] In an embodiment, the system automatically tracks data that has previously been
ingested into a database table. The system may receive a notification from an S3 data bucket when
a data file changes and compare that notification against data that has previously been ingested.
[0158] In an embodiment, the system provides for incremental data ingestion that protects
against data loss if execution fails. In an embodiment, data is incrementally loaded such that data
is automatically committed to the database after a certain number of native binary files has been
reached. The system may store the status of data in metadata such that the system stores data
concerning exactly what file has been ingested and at which position. In the event of execution
failure, the system may restart from the file and position left off from previous ingestion and avoid
re-ingesting data the system would do if a client account used an SQL command that failed

midway, and the system may thereby avoid re-ingesting data.

52

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

CLAIMS

1. A system for batch data ingestion into a database, the system comprising:

means for determining a notification indicating a presence of a user file received from a
client account to be ingested into a database;
means for identifying data in the user file;
means for identifying a target table of the database to receive the data in the user file;

means for generating an ingest task indicating the data and the target table;

means for assigning the ingest task to an execution node of an execution platform, wherein
the execution platform comprises a plurality of execution nodes operating independent of a
plurality of shared storage devices collectively storing database data; and

means for registering metadata concerning the target table in a metadata store after the data

has been fully committed to the target table by the execution node.

2. The system of claim 1, further comprising means for committing the user file to a client
account queue, and wherein the means for determining the notification indicating the presence of
the user file comprises determining by polling the client account queue to determine whether any
new user files have been committed to the client account queue since a last time the client account

queue was polled.

3. The system of claim 1, wherein the means for determining the notification indicating the
presence of the user file is configured to determine by receiving a notification from a data lake

indicating the user file has been added.

53

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

4. The system of claim 1, further comprising:
means for identifying a current total number of active ingest tasks and a desired number of
active ingest tasks; and
means for managing the plurality of execution nodes of the execution platform such that
the current total number of active ingest tasks is equal to or approaches the desired number of
active ingest tasks by one or more of’
smoothing demand for the plurality of execution nodes over time by way of a
moving average; or
maintaining an execution platform having more than a required number of active

execution nodes for processing the current total number of active ingest tasks.

5. The system of claim 1, further comprising means for generating an ingest history
comprising an indication of whether data from one or more user files is successfully stored in the
database, wherein the ingest history is stored in a metadata store, and wherein the ingest history
comprises one or more of a file name, a table identification, a file size, a row count, or an ingest

error code.

6. The system of claim 1, further comprising means for assigning the user file to an instance
of a resource manager based on consistent hashing, wherein a hash of the consistent hashing is
associated with a table identification of the target table, and wherein the instance of the resource

manager is assigned to manage processes for the hash associated with the target table.

54

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

7. The system of claim 6, further comprising means for adding a new instance of a resource
manager, wherein adding the new instance of the resource manager comprises dividing a plurality
of hashes of the consistent hashing and assigning each of the plurality of hashes to a plurality of
instances of resource managers such that each instance of the plurality of instances is assigned an

equal or nearly equal number of tables.

8. The system of claim 1, further comprising means for committing the user file to a client
account queue, and wherein the means for generating the ingest task is configured to generate one
or more ingest tasks based on an amount of work in the client account queue, wherein the amount
of work in the client account queue is determined based on one or more of:

an approximate size of the user file based on an average size of recently ingested user files
from the client account;

a number of user files in the client account queue; or

a size of the user file as indicated by the client account.

9. The system of claim 1, wherein the data is committed to the target table by generating a
new micro-partition for the target table, wherein the new micro-partition is stored in the plurality

of shared storage devices only after the data is fully and successfully inserted.

10. The system of claim 1, wherein the means for assigning the task to the execution node of

the execution platform is configured to manage a total number of tasks being processed by the

execution platform by on one or more of:

55

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

delaying assigning the ingest task to the execution node when a threshold number of tasks
are already being processed by the execution platform;

building optimally sized micro-partitions by delaying assigning the ingest task to the
execution node until a threshold number of new user files has been committed to a client account
queue;

minimizing latency by assigning the ingest task to the execution node as soon as the user
files is committed to the client account queue; or

minimizing processing overhead of starting and stopping ingest tasks by delaying assigning
the ingest task to the execution node until a threshold number of new user files has been committed

to the client account queue.

11. The system of claim 10, wherein managing the total number of tasks being processed by
the execution platform comprises balancing a plurality of latency factors to ensure customer

latency remains below a threshold level while the total number of tasks is minimized.

12. A method for batch data ingestion into a database, the method comprising:

determining a notification indicating a presence of a user file received from a client account
to be ingested into a database;

identifying data in the user file;

identifying a target table of the database to receive the data in the user file;

generating an ingest task indicating the data and the target table;

56

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

assigning the ingest task to an execution node of an execution platform, wherein the
execution platform comprises a plurality of execution nodes operating independent of a plurality
of shared storage devices collectively storing database data; and

registering metadata concerning the target table in a metadata store after the data has been

fully committed to the target table by the execution node.

13. The method of claim 12, further comprising committing the user file to a client account
queue, and wherein determining the notification indicating the presence of the user file comprises
determining by polling the client account queue to determine whether any new user files have been

committed to the client account queue since a last time the client account queue was polled.

14. The method of claim 12, wherein determining the notification indicating the presence of
the user file is configured to determine by receiving a notification from a data lake indicating the

user file has been added.

15. The method of claim 12, further comprising:
identifying a current total number of active ingest tasks and a desired number of active
ingest tasks; and
managing the plurality of execution nodes of the execution platform such that the current
total number of active ingest tasks is equal to or approaches the desired number of active ingest
tasks by one or more of:
smoothing demand for the plurality of execution nodes over time by way of a

moving average; or

57

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

maintaining an execution platform having more than a required number of active

execution nodes for processing the current total number of active ingest tasks.

16. The method of claim 12, further comprising generating an ingest history comprising an
indication of whether data from one or more user files is successfully stored in the database,
wherein the ingest history is stored in a metadata store, and wherein the ingest history comprises

one or more of a file name, a table identification, a file size, a row count, or an ingest error code.

17. The method of claim 12, further comprising assigning the user file to an instance of a
resource manager based on consistent hashing, wherein a hash of the consistent hashing is
associated with a table identification of the target table, and wherein the instance of the resource

manager is assigned to manage processes for the hash associated with the target table.

18. The method of claim 17, further comprising adding a new instance of a resource manager,
wherein adding the new instance of the resource manager comprises dividing a plurality of hashes
of the consistent hashing and assigning each of the plurality of hashes to a plurality of instances of
resource managers such that each instance of the plurality of instances is assigned an equal or

nearly equal number of tables.

19. The method of claim 12, further comprising committing the user file to a client account
queue, and wherein generating the ingest task comprises generating one or more ingest tasks based
on an amount of work in the client account queue, wherein the amount of work in the client account

queue is determined based on one or more of’

58

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

an approximate size of the user file based on an average size of recently ingested user files
from the client account;
a number of user files in the client account queue; or

a size of the user file as indicated by the client account.

20. The method of claim 12, wherein the data is committed to the target table by generating a
new micro-partition for the target table, wherein the new micro-partition is stored in the plurality

of shared storage devices only after the data is fully and successfully inserted.

21. The method of claim 12, wherein assigning the task to the execution node of the execution
platform further comprises managing a total number of tasks being processed by the execution
platform by on one or more of:

delaying assigning the ingest task to the execution node when a threshold number of tasks
are already being processed by the execution platform;

building optimally sized micro-partitions by delaying assigning the ingest task to the
execution node until a threshold number of new user files has been committed to a client account
queue;

minimizing latency by assigning the ingest task to the execution node as soon as the user
files is committed to the client account queue; or

minimizing processing overhead of starting and stopping ingest tasks by delaying assigning
the ingest task to the execution node until a threshold number of new user files has been committed

to the client account queue.

59

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

22. The method of claim 21, wherein managing the total number of tasks being processed by
the execution platform comprises balancing a plurality of latency factors to ensure customer

latency remains below a threshold level while the total number of tasks is minimized.

23. A processor that is programmable to execute instructions stored in non-transitory computer
readable storage media, the instructions comprising:

determining a notification indicating a presence of a user file received from a client account
to be ingested into a database;

identifying data in the user file;

identifying a target table of the database to receive the data in the user file;

generating an ingest task indicating the data and the target table;

assigning the ingest task to an execution node of an execution platform, wherein the
execution platform comprises a plurality of execution nodes operating independent of a plurality
of shared storage devices collectively storing database data; and

registering metadata concerning the target table in a metadata store after the data has been

fully committed to the target table by the execution node.

24. The processor of claim 23, wherein the instructions further comprise committing the user
file to a client account queue, and wherein determining the notification indicating the presence of
the user file comprises determining by polling the client account queue to determine whether any
new user files have been committed to the client account queue since a last time the client account

queue was polled.

60

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

25. The processor of claim 23, wherein determining the notification indicating the presence of
the user file is configured to determine by receiving a notification from a data lake indicating the

user file has been added.

26. The processor of claim 23, wherein the instructions further comprise:
identifying a current total number of active ingest tasks and a desired number of active
ingest tasks; and
managing the plurality of execution nodes of the execution platform such that the current
total number of active ingest tasks is equal to or approaches the desired number of active ingest
tasks by one or more of:
smoothing demand for the plurality of execution nodes over time by way of a
moving average; or
maintaining an execution platform having more than a required number of active

execution nodes for processing the current total number of active ingest tasks.

27. The processor of claim 23, wherein the instructions further comprise generating an ingest
history comprising an indication of whether data from one or more user files is successfully stored
in the database, wherein the ingest history is stored in a metadata store, and wherein the ingest
history comprises one or more of a file name, a table identification, a file size, a row count, or an

ingest error code.

28. The processor of claim 23, wherein the instructions further comprise assigning the user file

to an instance of a resource manager based on consistent hashing, wherein a hash of the consistent

61

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

hashing is associated with a table identification of the target table, and wherein the instance of the

resource manager is assigned to manage processes for the hash associated with the target table.

29. The processor of claim 28, wherein the instructions further comprise adding a new instance
of a resource manager, wherein adding the new instance of the resource manager comprises
dividing a plurality of hashes of the consistent hashing and assigning each of the plurality of hashes
to a plurality of instances of resource managers such that each instance of the plurality of instances

is assigned an equal or nearly equal number of tables.

30. The processor of claim 23, wherein the instructions further comprise committing the user
file to a client account queue, and wherein generating the ingest task comprises generating one or
more ingest tasks based on an amount of work in the client account queue, wherein the amount of
work in the client account queue is determined based on one or more of:

an approximate size of the user file based on an average size of recently ingested user files
from the client account;

a number of user files in the client account queue; or

a size of the user file as indicated by the client account.

31. The processor of claim 23, wherein the data is committed to the target table by generating

a new micro-partition for the target table, wherein the new micro-partition is stored in the plurality

of shared storage devices only after the data is fully and successfully inserted.

62

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

32. The processor of claim 23, wherein assigning the task to the execution node of the
execution platform further comprises managing a total number of tasks being processed by the
execution platform by on one or more of:

delaying assigning the ingest task to the execution node when a threshold number of tasks
are already being processed by the execution platform;

building optimally sized micro-partitions by delaying assigning the ingest task to the
execution node until a threshold number of new user files has been committed to a client account
queue;

minimizing latency by assigning the ingest task to the execution node as soon as the user
files is committed to the client account queue; or

minimizing processing overhead of starting and stopping ingest tasks by delaying assigning
the ingest task to the execution node until a threshold number of new user files has been committed

to the client account queue.

33. The processor of claim 32, wherein managing the total number of tasks being processed by

the execution platform comprises balancing a plurality of latency factors to ensure customer

latency remains below a threshold level while the total number of tasks is minimized.

63

CA 03083562 2020-05-26

126

Warehouse Management

128

File Management

130

Load History

FIG. 1

1/9

WO 2019/104338 PCT/US2018/062652
100 P I
1 REST Layer APl Gateway
104 110
Client Account : . N
{Object Resolution Rate Limiting
1% 106 * 112
Reguest Routing Authentication
108 114
Core Engine Token
190 Management
R— 116
; Queue Management
122
Execution
Task f;jcutcr - Platform
— 132

PCT/US2018/062652

CA 03083562 2020-05-26

¢ Ol
iiiiiiiii - w\iiiiiiiii

— |

goce vsel ysebuy | |
m m ¥4

BT ssel 18sbuy) | Elepeisiy
| ; LOIILB A4-CI01 J81siBay

¥4 |

SPON UORND8X] m | i

| w SOPON LIONNDOXT] SIOW de
IOy 8uD ol 84 Jesn ubissy isanbay

D

1886 spusg
UNOoY JUSHD

OGTE vse) 1sebu

BOTZ wse sebu 4

2/9

1sebuj o} 84 Josn Anuspi
vie
SpON UCINOEeX T

WO 2019/104338

. 507
olé Jabeuspy eoinosay
WLORB] 4 UOIND8xT

iiiiiiiiii -~ S o oo o oo s o o o oo AQGN

Comn snnn snnnwe annn aane SRR s

WO 2019/104338

CA 03083562 2020-05-26

PCT/US2018/062652
Client Client Client
Account Account Account
314a 314b 314n

300 'k

—

Resource Manager Shared
9 ecooooocoooooommmsocoer Metadaia
302
212
W
Execution Platform
204
Execution Execution Execution Exacution
Node Node Node Node
308a 3060 306 306n
Shared Database Storage
208
SN B S B S I NS
Data Data Data Data
Storage Storage Storage Storage
310a 310b 310c 310n
o O e n® N

FIG. 3

3/9

CA 03083562 2020-05-26

PCT/US2018/062652

WO 2019/104338

¥ Old

oy

Jabeuriy
SSNOUBIBAA [BNUIA

giy

JOIBUIRIOOD
pUE IBINPaYoS aop

T

S0F
sbeloig Bl

Ty

liii\mmmi.&\\

gy
1472 oly 5TF 45
abeioig JOIN08XT Jepdwion
Jeziundo gop
Ble qor gorf
\en!aﬂiﬂk&i:ﬂpj
Y
/ e ==
Oly 80v
S0IAOR B0IAIRG
iZz4% ooy 8jOSUOY BUISS80Id
JazAjeuy jefeuepy uswebeuryy 1senbey
DROPIOA BlRpelep pus
PUB JOHUOR uonenByucn o
08
iefeurpy 8oIN0sey

\i
— 0%
178072
Jebeuriy
Jabeueiy Aoy sse00y

4/9

CA 03083562 2020-05-26

PCT/US2018/062652

WO 2019/104338

U9Ch HOSSHD0H

U5 IHOVD

Uecs
AC0ON NOLLAOIXE

UGG HOE5d00Hd

Upcs dHOVO

Sreds]
00N NOLLNOIXE

BUCY HOS8300Ud

epeS JHOVD

BLCy
G0N NOILLNOIXE

G ol

USTT »0SS300ud

U90% HOBS3004d

UplS JHOVO

oty
400N NOLLNOFX3

UF0% 3IHOVYD

UZoy
0N NOLLAOAXKE

4915 HOSS400dd

USUS HOSSd00Hd

4 ls dHOVO

Yoty
00N NOILLND3IXd

4GP0 dHOVO

420G
JAOCN NOLLNOEX3

BOLY HOSS320Hd

005G HOSE320Hd

erlS dHOVO

EClY
00N NOLLNOIXE

gP0S JHOVO

ey
FA0ON NOILAOEXE

N ISNOHIHEVM TYNLHIA ¢ ASNOHIHYM TVNLHIA

e

LLOLB| 4 LoNoaxT

FASNOHIHYM VLA

5/9

WO 2019/104338

Virtual Warehouse
8063

Shared
Storage
&08a

R

Shared
Storage
(18510}

ot ™

CA 03083562 2020-05-26

Queue
602

Virtual Warshouse
806k

Shared
Storage
&08¢

A

FIG.

6/9

Shared
Storage
608d

oo™

6

PCT/US2018/062652

600

Virtual Warehouse

Manager
804

Shared
Storage
&08a

g

Yirtual Warehouse

2060

Shared
Storage
808n

ot

b e o oo s o o o o)

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652
- A - < N O (g% N
N~ [N~ ™ I~ N N I~
© [© © [© © [
2 2 2 e 2 2 2 2
. Q. . . Q. . . Q.

-
pooencooiio
oo
—
-
oococccffipo
-

\mw
_/

-

Ingest Polier
706
ingest Poller
]

FIG. 7

Notification Channel
7

Account B Queue

-

700 1

Client Account A
Client Account B

7/9

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

800

A

Determining A Notification Indicating A Presence Of A User File Received From A Client
Account To Be Ingested into A Database.
802

!

Identifying Data In The User File.
804

:

identifying A Target Table Of The Database To Receive The Data In The User File.
806

!

Generating An Ingest Task Indicating The Data And The Target Table.
808

!

Assigning The Ingest Task To An Execution Node Of An Execution Platform, Wherein
The Execution Platform Comprises A Plurlatiy Of Execution Nodes Operating
Independent Of A Plrualtiy Of Shared Storage Devices Collectively Storing Database
Data.

810

Y

Registering Metadata Concerning The Target Table In A Metadata Store After The Data
Has Been Fully Committed To The Target Table By The Exeacution Node.
g12

FIG. 8

8/9

CA 03083562 2020-05-26

WO 2019/104338 PCT/US2018/062652

802
I\ 912 L

PROCESSOR(S)

00

808 \

] MASS STORAGE

904 1\ DEVICE(S)
MEMORY
910 \\

DEVICE(S)
INPUT/OUTPUT (1/0)
DEVICE(S)

906 "‘z\

INTERFACE(S)

FIG. S

9/9

Warehouse Management
126

File Management
128

Load History
130

FIG. 1

100 i .
1 REST Layer APl Gateway
104 110
Client Account . . o
{Object Resolution Rate Limiting
18 106 . 112
Reguest Routing Authentication
108 114
Core Engine Token
190 Management
— 118
; Queue Management
122
Execution
Task f;jcutcr - Platform
— 132

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - CLAIMS
	Page 57 - CLAIMS
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - CLAIMS
	Page 64 - CLAIMS
	Page 65 - CLAIMS
	Page 66 - CLAIMS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - REPRESENTATIVE_DRAWING

