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FINE-TUNING A LIMITED SET OF PARAMETERS
IN A DEEP CODING SYSTEM FOR IMAGES

TECHNICAL FIELD

At least one of the present embodiments generally relates to neural network-based

image compression and more particularly to the fine-tuning of parameters of a deep decoder.

BACKGROUND

Image and video compression is a fundamental task in image processing, which has
become crucial in the time of pandemic and increasing video streaming. Thanks to the
community’s huge efforts for decades, traditional methods have reached current state of the art
rate-distortion performance and dominate current industrial codecs solutions. End-to-end
trainable deep models have recently emerged as an alternative, with promising results. They
now beat the best traditional compressing method (VVC, versatile video coding) even in terms

of peak signal-to-noise ratio for single image compression.

SUMMARY

A novel deep neural network-based coding system for images to be encoded proposes
to determine update parameters of a deep neural network model for decoding the encoded
image. These parameters are determined by the encoder and provided to the decoder to update
the model of the decoder before decoding the image. This provides structural sparsity by fine-

tuning only some parameters of the neural decoder.

According to a first aspect of at least one embodiment, a method for encoding an image
comprises determining an embedding representative of the input image using a deep neural
network based on a first model comprising a set of parameters, determining parameters updates
to fine-tune a second model based on the first model, wherein the fine-tuning is based on the
input image and a decoded version of the embedding as decoded using a deep neural network
based on the second model, and generating encoded data comprising at least an encoding of a
quantized embedding and an encoding of a quantized parameters update, wherein the

parameters are limited to a selected set of parameters.

According to a second aspect of at least one embodiment, a method for decoding an

image comprises obtaining decoded embedding and parameters update from the encoded data,
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updating parameters of a model of a deep neural network by the obtained parameters update,
and determining a decoded image based on the obtained decoded embedding using the deep

neural network with the updated parameters.

According to a third aspect of at least one embodiment, an apparatus comprises an
encoder for encoding an image, the encoder being configured to determine an embedding
representative of the input image using a deep neural network based on a first model comprising
a set of parameters, determine parameters updates to fine-tune a second model based on the
first model, wherein the fine-tuning is based on the input image and a decoded version of the
embedding as decoded using a deep neural network based on the second model, and generate
encoded data comprising at least an encoding of a quantized embedding and an encoding of a

quantized parameters update, wherein the parameters are limited to a selected set of parameters.

According to a fourth aspect of at least one embodiment, an apparatus comprises a
decoder for decoding an image, the decoder being configured to obtain decoded embedding
and parameters update from the encoded data, update parameters of a model of a deep neural
network by the obtained parameters update, and determine a decoded image based on the

obtained decoded embedding using the deep neural network with the updated parameters

According to a fifth aspect of at least one embodiment, a computer program comprising
program code instructions executable by a processor is presented, the computer program
implementing the steps of a method according to at least the first or second aspect when

executed on a processor.

According to a sixth aspect of at least one embodiment, a non-transitory computer
readable medium comprising program code instructions executable by a processor is presented,
the instructions implementing the steps of a method according to at least the first or second

aspect when executed on a processor.

In a variant of first and third aspects, the selected set of parameters is independent from
the input image. In a further variant of first and third aspects, the selected set of parameters is
selected based on the input image and wherein the encoded data further comprises information
representative of the selection. In variants of first and third aspects, the quantization of the
parameters update is performed based on a trained quantization with quantization parameters,
and wherein the encoded data further comprises information representative of the quantization

parameters. In variants of first and third aspects, the fine-tuning is based on a loss function to
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minimize a measure of a distortion between the input image and an image reconstructed using

a deep neural network based on the second model with updated parameters.

In variants of first, second, third and fourth aspects, the parameters are selected among
a set comprising a bias, a weight, parameters of a non-linear function of the model, a subset of
layers of the model, a specific layer of the model, the bias of a specific layer of the model, and

a subset of neurons of the model.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an example of an example of end-to-end neural network based

compression system for encoding an image using a deep neural network.

Figure 2 illustrates an example of image encoder according to at least one embodiment

using identical structural sparsity for any image.

Figure 3 illustrates an example of image decoder according to at least one embodiment

using identical structural sparsity for any image.

Figure 4 illustrates an example of flowchart for an image encoder according to at least

one embodiment using identical structural sparsity for any image.

Figure S illustrates an example of flowchart for image decoder according to at least one

embodiment using identical structural sparsity for any image.

Figure 6 illustrates an example of image encoder according to at least one embodiment

using image-specific structural sparsity.

Figure 7 illustrates an example of image decoder according to at least one embodiment

using image-specific structural sparsity.

Figure 8 illustrates an example of flowchart for an image encoder according to at least

one embodiment using image-specific structural sparsity.

Figure 9 illustrates an example of flowchart for image decoder according to at least one

embodiment using image-specific structural sparsity.

Figure 10 illustrates a block diagram of an example of a system in which various aspects

and embodiments are implemented.
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Figure 11 illustrates an example of format for describing the weight update quantization

according to at least one embodiment.
Figure 12 illustrates the impact of the value of the number of last layers to be updated.
Figure 13 illustrates average performance for different values of k.

Figure 14 illustrates the performance achieved when using the best value of k for each

baseline model M.

Figure 15 illustrates the PSNR vs bit per pixel of our approach on two different

baselines, with six trained models each.

Figure 16 illustrates the impact of the new training procedure (new loss vs old loss) and
of the trainable weight quantization (learnable Q vs non learnable Q), on the 14" image of the

test set and with one quality.

DETAILED DESCRIPTION

Figure 1 illustrates an example of end-to-end neural network based compression
system for encoding an image using a deep neural network. In such system 100, an input image
to be compressed, x, is first processed in an encoding device 110 by a deep neural network
encoder (hereafter identified as deep encoder or encoder). The output of the encoder, y, is
called the embedding of the image. This embedding is converted into a bitstream 120 by going
through a quantizer Q, and then through an arithmetic encoder AE. The resulting bitstream 120
is provided to a decoding device 130 and is decoded by going through an arithmetic decoder
AD to reconstruct the quantized embedding y. The reconstructed quantized embedding y is
then processed by a deep neural network decoder (hereafter identified as deep decoder or

decoder) to obtain the decompressed image X.

The deep encoder and decoder are composed of multiple neural layers, such as
convolutional layers. Each neural layer can be described as a function that first multiplies the
input by a tensor, adds a vector called the bias and then applies a nonlinear function on the
resulting values. The characteristics of the tensor and the type of non-linear functions are called
the architecture of the network. The values of the tensor and the bias are denoted by the term
“weights”. The weights and, if applicable, the parameters of the non-linear functions, are called
the parameters of the network. The architecture and the parameters define a “model”.

Typically, the encoder and decoder are fixed, based on a predetermined model supposed to be



10

15

20

25

30

WO 2024/002884 PCT/EP2023/067073
5

known when encoding and decoding. The layers of the decoder are denoted as 4, ... [;, ..., [,
and the parameters of the decoder are denoted by 8. The encoder and the decoder models are
for example trained simultaneously so that they are compatible. Together, they are sometimes
called an “autoencoder”, a model that encodes an input and then reconstructs it. The
architecture of the decoder is typically mostly the reverse of the encoder, although some layers

or their ordering can be slightly different.

Many end-to-end architectures have been proposed. Typically, they are more complex
than the one illustrated in Figure 1, but they all retain the deep encoder and decoder. State of
the art models can compete with traditional video codecs such as Versatile Video Coding

(VVC) in terms of rate-distortion tradeoffs.

A model M must be trained on massive databases D of images to learn the weights of
the encoder and decoder. Typically, the weights are optimized to minimize a training loss, for

example expressed as:

Lr(M, D) = Ey_p[~log(pu(9)) + Ad(x, D)1,

where pj, denotes the probability of the quantized embedding according to M (thus this
term is the theoretical lower bound on bitstream size for the encoded quantized embeddings),
d(.,.) a measure of the distortion between the original and the reconstructed image (for
example the mean square error, Multi-Scale Structural Similarity Index Measure (MS-SSIM),
Information Weighted Structural Similarity Index Measure (IWSSIM), Video Multimethod
Assessment Fusion (VMAF), Visual Information Fidelity (VIF), Peak Signal to Noise Ratio
Human Visual System Modified (PSNR-HVS-M), Normalized Laplacian Pyramid Distance
(NLPD) or Feature Similarity Index Measure (FSIM) ) and A a parameter controlling the trade-
off between the rate (r) and distortion (d) terms.

Typically, an architecture is trained several times, using different values for 4, to yield
a set of models {M;} with different rate/distortion (r/d) trade-offs. Usually, different
architectures yield models with different r/d points. To compare these architectures, the r/d
points of each architecture are interpolated, resulting in a function d(r) for each architecture

that provides a distortion estimate for any rate value.

The deep decoder as proposed in figure 1 can decode any type of image. In other words,
it performs well on average for all images, but it is likely to be suboptimal for any single image.
It is possible to improve the rate-distortion trade-off for a single video by retraining the decoder

specifically for this video and by transmitting weight updates § for the decoder in addition to
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the quantized embeddings for intra frames of the video. Before decoding the quantized
embedding, § is added to 8. Such technique is denoted as fine-tuning. The weight updates §
are determined by a fine-tuning algorithm that minimizes a loss function that can for example

be:
LFT(MI 6) X') = - log(pA(6)) + ﬁ d(x' f(6)):

where pa(.) denotes a probability density over weight updates, £(8) the image
reconstructed by the decoder whose weights have been updated by § and £ a trade-off between

the two losses.

However, this approach does not achieve rate distortion improvements for single
images because of the increased code size due to the inclusion of the weights updates. In an
example implementation, an additional term may be added to the loss to enforce a global
sparsity constraint on &, so that a lot of weight updates have the same value (0), to make

encoding more efficient.

The current approach of fine-tuning the decoder with a global sparsity constraint leads
to an improved performance in terms of rate-distortion for encoding a video. However, this
approach is not suitable for single images because of the increased code size due to the
inclusion of the weight updates, even with the global sparsity constraint. Furthermore, fine
tuning the decoder requires optimizing the value of . This might cause several fine-tunings

of the decoder, an expensive procedure.

Embodiments described hereafter have been designed with the foregoing in mind and
are based on enforcing structural sparsity of a deep neural network used in an image
compression system, in other words, fine-tuning only some parameters of the neural decoder,
thus reducing the number of updates that need to be encoded. This results in a better coding
efficiency even for single images thanks to a reduction of the amount of data representing the

encoded image. The principle applies also to an image (i.e., frame) of a video sequence.

In embodiments, a deep neural network based coding system for images determines
selected update parameters of a deep neural network model for an image to be encoded. These
parameters are provided to the decoder to update the model of the decoder before decoding the

image. This provides structural sparsity by fine-tuning only a selected subset of parameters of
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the neural decoder. In this context, fine-tuning refers to a training algorithm that is adapted to
train, on a small set of data points, a machine learning model that was already trained on a
typically much larger data set. In this particular case, the decoder (previously trained on a large
data set) is fine-tuned for a single image (the small data set). Fine-tuning is for example
performed by minimizing a loss function. In at least one embodiment, the update of the model
is done on a selected set of parameters independently of the image to be encoded, for example
the bias of the last five convolutional layers of the model. In such embodiment, the structural
sparsity is identical for all images. In at least one embodiment, the set of parameters to update
the model is selected based on the image to be encoded. In such embodiment, the structural

sparsity is image specific.

At least one embodiment proposes to use a training procedure for fine-tuning an end-
to-end decoder that avoids optimizing hyperparameters and guarantees a better r/d performance

by explicitly maximizing bitrate saving.

At least one embodiment proposes an application of trainable quantization to weight
updates in an end-to-end decoder fine-tuning and the inclusion of these trained parameters in

the bitstream, leading to improved performance.

Figure 2 illustrates an example of image encoder according to at least one embodiment
using identical structural sparsity for any image. Such encoder 200 is for example implemented
in the device 1000 of figure 10. In this embodiment, the structural sparsity is enforced by fine-
tuning only a limited set of selected parameters 67, C 6 of the decoder. 6y, is identical for all
images; in other words, the same subset of parameters is fine-tuned for all images. For example,
this limited set may comprise the bias and/or the weights and/or the parameters of the non-
linear functions and/or any other parameter of the decoder and/or any subset of these elements.
Such a subset may for example be defined as a subset of the layers, such as the last k layers, or
the bias of the last k layers, or a subset of the neurons. In at least one embodiment, the set of
selected parameters 0Oy, is predetermined. The description below and the figures use the

example of weight update, but the same principles apply to the other parameters of the model.

An input image x in first encoded using the deep encoder 210, to obtain an
embedding y. This embedding is then quantized for example by a quantizer 211 and encoded
for example by an arithmetic encoder 212 or another encoder, resulting in the encoded

quantized embedding 231.
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The weight updates are optimized by a fine-tuning algorithm 220, based on the input
image x and the quantized embedding y. The fine-tuning algorithm iterates on different
updates &y, for the selected parameters 65, to jointly minimize a measure of the distortion
between the original and the reconstructed image (with updated parameters) and the code

length of these updates. For that purpose, the fine-tuning loss function can be for example:

Ler(M, 8¢, x) = —log (pa(8fe ) + B d(x, 2(87.)).
image X being the image as decoded with an updated decoder using the updated fine-

tuning parameters &y, for the selected parameters 67,

The loss may also contain additional terms, for example a term inducing a constraint

on the weights such as a sparsity constraint.

These weight updates might then be quantized, for example by a quantizer 221. We
denote these quantized weight updates by Sft. Finally, the weight updates Sft are encoded for

example using an arithmetic encoder 222 or another encoder.

The encoded data is then aggregated together, for example in the form of a bitstream,
and comprises at least the quantized embedding y 231 and the weight updates Sft 232 for

example encoded by an arithmetic encoder or another encoder.

The quantization and encoding of the weight updates depend on parameters that might
either be the same for all images or some/all could be fine-tuned for each image. In the latter
case, the encoded data also include the values of these parameters 233, denoted by C in the
figure. Figure 11 proposes an example of format for carrying C and discussed the underlying

principles.

The person skilled in the art will understand that these elements 231, 232, 233 may be

arranged in any order or even interleaved in a bitstream.

In a variant of this embodiment, the quantized embedding y can be fine-tuned jointly

with &y, In that case, the bitstream remains the same but the loss may be:

Ler(M, 87 ,x) = —log (pa(8fe ) — log(pu()) + B d(x, 2(57)).

Figure 3 illustrates an example of image decoder according to at least one embodiment

using identical structural sparsity for any image. This decoder 300 is for example implemented
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in the device 1000 of figure 10 and is adapted to decode data encoded by the encoder 200 of
figure 2, for example arranged as a bitstream 230, comprising encoded quantized
embedding 231, weight updates 232 and optionally encoding information C 233. If present, the
encoding information C 233 is extracted from the bitstream. The quantized embeddings are
decoded, for example by an arithmetic decoder 311, into ¥ and the quantized weight updates
are decoded, for example by an arithmetic 312, into &5, (optionally based on the encoding
information C). Then the deep decoder 320 is updated based on the quantized weight updates.
Finally, the image ¥ is decoded from the quantized embeddings ¥y by the updated deep decoder
330, in other words the deep decoder for which a selected subset of the parameters (for example

weights) have been updated according to &y

The figure represents a system where invertible operations related to quantization of
the weight updates are also inverted in the AD block 312. The same system could be described
using an additional block (placed between 312 and 320) called for example “dequantization”
or “inverse quantization” to perform these operations. An example of such an invertible
operation is the scaling of the weight updates prior to quantization, to change the quantization

resolution.

Figure 4 illustrates an example of flowchart for an image encoder according to at least
one embodiment using identical structural sparsity for any image. This flowchart is operated
by the encoder 200 of figure 2 and for example implemented in the device 1000 of figure 10.
In step 410, the device obtains an input image. In step 420, the device determines the
corresponding embedding by using the deep encoder. In step 430, the embedding is quantized
and encoded. In step 440, the device determines parameter updates for a selected subset of
parameters of the deep decoder, such as described above in relation with figure 3. In step 450,
the parameter updates are quantized and encoded. In step 460, the encoded data - comprising
at least the quantized encoded embedding and the quantized and encoded parameter updates -
is aggregated for example into a bitstream adapted to be provided to another device or to be

stored on a storage medium.

As described above, the parameters for the update may comprise the bias and/or the
weights and/or the parameters of the non-linear functions and/or any other parameter of the
decoder and/or any subset of these elements and may be defined as a subset of the layers, for

example the last k layers.
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Optionally, encoding information is determined and encoded in order to be embedded

into the encoded data with the other data.

Figure 5 illustrates an example of flowchart for image decoder according to at least
one embodiment using identical structural sparsity for any image. This flowchart is operated
by the decoder 300 of figure 3 and for example implemented in the device 1000 of figure 10.
In step 510, the device obtains encoded data aggregated together for example into a bitstream
received from another device or read from a storage medium and decodes the encoded data.
The encoded data comprises at least the quantized encoded embedding and the quantized and
encoded parameter update. As a result of the decoding, the decoded data comprises at least the
quantized embedding and the parameter update. In step 520, the device updates the deep
decoder by updating the values of a selected subset of parameters based on the parameter
update. In step 530, the device determines the image from the embedding and the updated deep
decoder. Thanks to the update, the difference between the original input image and the decoded

image is reduced compared to what it would be if decoded with a non-updated decoder.

Figure 6 illustrates an example of image encoder according to at least one embodiment
using image-specific structural sparsity. Such encoder 600 is for example implemented in the
device 1000 of figure 10. While fine-tuning a fixed subset of parameters 8¢, as described
above improves the rate-distortion tradeoff for single images, this specific structural sparsity
constraint might not be optimal for every image. In this embodiment, an image-specific
structural sparsity constraint is used. In other words, the subset of parameters to be fine-tuned
may be different for each image and the subset of parameters is selected based on the input

image to be encoded.

However, allowing the fine-tuning algorithm to choose any subset of parameters might
be counterproductive. Indeed, in that case, the bitstream must also contain information
identifying this subset. As an example, one could include this information by including the
indexes of the weights that are optimized. This would significantly increase the bitstream size

and lead to a worse rate-distortion tradeoff.

Therefore, in this embodiment, the fine-tuning algorithm freedom in optimizing 6y, for
each image is limited to a subset of parameters. Let 04, ..., 8,, € 8 denote a set of non-
overlapping subsets of 8 and let §y, ..., §,, denote associated parameter updates. For each

image x, the fine-tuning algorithm can fine-tune any combination of the parameters 04, ..., O;,.
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The fine-tuning algorithm thus tries to solve the following combinatorial optimization problem

to select the subset of weights to be fine-tuned:

w* =argmaxLgr(M, 6, %),
wE

where (0 denotes the set of all combinations of 6, ..., 8,, . The updates 6, of the

weights in w* are then computed as in the previous section.

The input image x in first encoded using the deep encoder 610, to obtain the
embedding y. This embedding is then quantized, for example by a quantizer 611 and encoded,
for example by an arithmetic encoder 612 or another encoder, resulting in the encoded

quantized embedding 641.

A selection block 620 selects the weight subset w” to be optimized according to the
combinatorial optimization problem described above. The weight subset w® may be
represented using different techniques. For example, the subset may be represented by the
index of w* in Q or by the set of indexes of the 64, ..., 8,, included in w*. The parameters
corresponding to the selected subset w” are then optimized by the fine-tuning algorithm 630,
based on the input image and the quantized embedding ¥, resulting in the weight updates &,,+.
The fine-tuning uses the same mechanism as described previously for the encoder 200 of
figure 2, with the difference that the set of parameters has been previously selected by the
selection block 620. Note that these two steps could happen at the same time, i.e., performing

both optimizations at the same time.

These weight updates §,,+ are also quantized, for example by a quantizer 631. The result
is denoted by 8. The selection of the weights is then encoded, for example by an arithmetic
encoder 622 as well as the quantized weight updates, for example by an arithmetic encoder 632.

These elements may be encoded by an arithmetic encoder or another type of encoder.

The encoded data is then aggregated, for example in the form of a bitstream 640, and

comprises at least the quantized embedding y 641, the weight subset w* 642 and the weight
updates 8, 643.

Quantizing and encoding 6, may optionally involve parameters optimized for each
image. In this case, encoded data also includes encoding information 644 (denoted by C)

representing the values of these parameters.
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As in the previous section with reference to figures 2, 3, 4 and 5, these elements may
be arranged in any order or even interleaved in the bitstream and the quantized embeddings ¥

can be fine-tuned jointly with §,,+.

As an example, each subset 8; could be defined as the biases of layer [; of the decoder.

In that case, ) is the combinations of all integers 1, ..., n. The identifier of w*could be the

indexes of the layers whose biases have been fine-tuned.

Figure 7 illustrates an example of image decoder according to at least one embodiment
using image-specific structural sparsity. Such decoder 700 is for example implemented in the
device 1000 of figure 10 and is adapted to decode data encoded by the encoder 600 of figure 7,

for example arranged as a bitstream 640, and comprises at least the quantized embedding y 641,

weight subset w*, the weight updates &,,+ 643 and optionally the encoding information C 644.

The quantized embeddings are decoded into y, for example by an arithmetic
decoder 711. The weight subset w” is decoded, for example by an arithmetic decoder 712 and
the quantized weight updates are decoded into &, (optionally based on the encoding
information C 644 is present in the encoded data) for example by an arithmetic decoder 713.
This information allows to perform an update 720 of the decoder, based on the weight subset w”*
and the quantized weight updates §,+. Then the image £ is decoded from the quantized
embeddings ¥ by the updated deep decoder 730; in other words, the deep decoder for which

some of the parameters have been updated according to 8.

Figure 8 illustrates an example of flowchart for an image encoder according to at least
one embodiment using image-specific structural sparsity. This flowchart is operated by the

encoder 600 of figure 6 and for example implemented in the device 1000 of figure 10.

In step 810, the device obtains an input image. In step 820, the device determines the
corresponding embedding by using the deep encoder. In step 830, the embedding is quantized
and encoded. In step 835, the device determines a selected subset of parameters according to
the input image. In step 840, the device determines parameter updates for the selected subset
of parameters of the deep decoder, such as described above in relation with figure 6. In step
850, the parameter updates are quantized and encoded. In step 860, the encoded data -

comprising at least the quantized encoded embedding, an encoded information representative
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of the selected subset of parameters and the quantized and encoded parameter update - is
aggregated for example into a bitstream adapted to be provided to another device or to be stored

on a storage medium.

As described above, the parameters for the update may comprise the bias and/or the
weights and/or the parameters of the non-linear functions and/or any other parameter of the
decoder and/or any subset of these elements and may be defined as a subset of the layers, for

example the last k layers.

Optionally, encoding information is determined and encoded in order to be embedded

into the encoded data with the other data.

In addition to the encoding and decoding methods and devices described above, at least
one embodiment relates to a new training procedure for fine tuning the decoder. The key part
of this training procedure is the use of a new fine-tuning loss that does not involve optimizing
the hyperparameter 5. Rather than optimizing the rate distortion tradeoft directly, it is proposed
to use a loss that forces the fine-tuned algorithm to improve over the baseline model M,,. This
loss can be used for any decoder fine-tuning algorithm that optimizes a set of weight updates &,

including the embodiments discussed above.

More specifically, this training procedure will minimize the ratio L between the two

To

rates: the rate of the fine-tuned model, 77, and the rate of the original architecture, 7,, at the

distortion df, achieved by the fine-tuned model. In other words, the following loss is proposed:

L _ rre(dre)
FT new To (dft) .

Unfortunately, as discussed above, the rate of the original architecture is not available
for every distortion. However, the function d,(r) can be inverted to obtain a rate estimation

function for the original architecture, 7, (d).
So that loss becomes:

L _ Treldge) _ To(d(x%))-logpa (8 )+len(C)
FT.new = 5. 5q 0y To (d(x,a?(c? £t )))

The denominator is the estimated rate of the original architecture, at the distortion value

of the image reconstructed by the fine-tuned encoder. The numerator is the actual rate of the
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fine-tuned decoder. The first term is the rate ro(d(x, f)) of the model M used as a baseline for
fine-tuning. It corresponds to the encoding of the quantized embeddings. Hence, 7, (d(x, f)) =
—log(py (7)) . The second term, — log pA(6ft ), correspond to the encoding of the weight

updates and len(C) to the size of the characteristics of the weight update quantizer and encoded

that need to be transmitted.

This loss is advantageous because it does not contain any hyperparameter such as 8
that must be optimized. Therefore, it speeds up the fine-tuning process. The downside is that it
requires the function 7, (d), so at least two trained models from the original architecture. This

is typically not a problem, as multiple models are trained for different operating points.

As an example, the estimated rate 7, (d (x,f(csft ))) can be approximated using a

linear interpolation between the baseline model M, and a model M,, from the same set of
models {M;} than M,but with a different r/d trade-off (for example, M, is the model with the

closest rate to M,,, or the model with the next higher quality). In this case:

d(x, (M) } — 1,(d(x, %)
" (d (. 2(8;: ))) = 1 (d(x,2) + <d (x.2(57.)) - dCx, 9?)) x 2 ( igxxf(,;pz)) m ;(Ec, ;)C 2

where Q(Mp) denotes the image encoded/decoded by model My,. ¥ = X(M,)

Any interpolation method can be used, for example polynomial interpolation of any

order or approximation by a machine learning model.

Figure 9 illustrates an example of flowchart for image decoder according to at least
one embodiment using image-specific structural sparsity. This flowchart is operated by the

decoder 700 of figure 7 and for example implemented in the device 1000 of figure 10.

In step 910, the device obtains encoded data aggregated together for example into a
bitstream received from another device or read from a storage medium and decodes the encoded
data. As a result of the decoding, the decoded data comprises at least the quantized embedding,
an information representative of the selected subset of parameters and the quantized parameters
update. In step 920, the device updates the deep decoder by selecting a set of parameters of the
deep decoder based on the information representative of the selected subset of parameters and

updating the values of the selected parameters based on the parameters update, resulting in an
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updated deep decoder. In step 930, the device determines the image from the received

embedding and the updated deep decoder.

Figure 10 illustrates a block diagram of an example of a system in which various
aspects and embodiments are implemented. System 1000 can be embodied as a device
including the various components described below and may be configured to perform one or
more of the aspects described in this application such as the encoder 200 of figure 2, the decoder
300 of figure 3, the encoder 600 of figure 6 or the decoder 700 of figure 7. Examples of such
devices include, but are not limited to, various electronic devices such as personal computers,
laptop computers, smartphones, tablet computers, digital multimedia set top boxes, digital
television receivers, personal video recording systems, connected home appliances, encoders,
transcoders, and servers. Elements of system 1000, singly or in combination, can be embodied
in a single integrated circuit, multiple ICs, and/or discrete components. For example, in at least
one embodiment, the processing and encoder/decoder elements of system 1000 are distributed
across multiple ICs and/or discrete components. In various embodiments, the system 1000 is
communicatively coupled to other similar systems, or to other electronic devices, via, for
example, a communications bus or through dedicated input and/or output ports. In various
embodiments, the system 1000 is configured to implement one or more of the aspects described

in this document.

The system 1000 includes at least one processor 1010 configured to execute instructions
loaded therein for implementing, for example, the various aspects described in this document.
Processor 1010 can include embedded memory, input output interface, and various other
circuitries as known in the art. The system 1000 includes at least one memory 1020 (e.g., a
volatile memory device, and/or a non-volatile memory device). System 1000 includes a storage
device 1040, which can include non-volatile memory and/or volatile memory, including, but
not limited to, EEPROM, ROM, PROM, RAM, DRAM, SRAM, flash, magnetic disk drive,
and/or optical disk drive. The storage device 1040 can include an internal storage device, an

attached storage device, and/or a network accessible storage device, as non-limiting examples.

System 1000 includes an encoder/decoder module 1030 configured, for example, to
process data to provide an encoded video or decoded video, and the encoder/decoder module
1030 can include its own processor and memory. The encoder/decoder module 1030 represents

module(s) that can be included in a device to perform the encoding and/or decoding functions.
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As 1s known, a device can include one or both of the encoding and decoding modules.
Additionally, encoder/decoder module 1030 can be implemented as a separate element of
system 1000 or can be incorporated within processor 1010 as a combination of hardware and

software as known to those skilled in the art.

Program code to be loaded onto processor 1010 or encoder/decoder 1030 to perform
the various aspects described in this document can be stored in storage device 1040 and
subsequently loaded onto memory 1020 for execution by processor 1010. In accordance with
various embodiments, one or more of processor 1010, memory 1020, storage device 1040, and
encoder/decoder module 1030 can store one or more of various items during the performance
of the processes described in this document. Such stored items can include, but are not limited
to, the input video, the decoded video, or portions of the decoded video, the bitstream, matrices,
variables, and intermediate or final results from the processing of equations, formulas,

operations, and operational logic.

In several embodiments, memory inside of the processor 1010 and/or the
encoder/decoder module 1030 is used to store instructions and to provide working memory for
processing that is needed during encoding or decoding. In other embodiments, however, a
memory external to the processing device (for example, the processing device can be either the
processor 1010 or the encoder/decoder module 1030) 1s used for one or more of these functions.
The external memory can be the memory 1020 and/or the storage device 1040, for example, a
dynamic volatile memory and/or a non-volatile flash memory. In several embodiments, an
external non-volatile flash memory is used to store the operating system of a television. In at
least one embodiment, a fast external dynamic volatile memory such as a RAM is used as
working memory for video coding and decoding operations, such as for MPEG-2, HEVC, or
VVC (Versatile Video Coding).

The input to the elements of system 1000 can be provided through various input devices
as indicated in block 1130. Such input devices include, but are not limited to, (1) an RF portion
that receives an RF signal transmitted, for example, over the air by a broadcaster, (ii) a

Composite input terminal, (ii1) a USB input terminal, and/or (iv) an HDMI input terminal.

In various embodiments, the input devices of block 1130 have associated respective
input processing elements as known in the art. For example, the RF portion can be associated
with elements necessary for (i) selecting a desired frequency (also referred to as selecting a

signal, or band-limiting a signal to a band of frequencies), (ii) down-converting the selected
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signal, (ii1) band-limiting again to a narrower band of frequencies to select (for example) a
signal frequency band which can be referred to as a channel in certain embodiments, (iv)
demodulating the down-converted and band-limited signal, (v) performing error correction,
and (vi) demultiplexing to select the desired stream of data packets. The RF portion of various
embodiments includes one or more elements to perform these functions, for example,
frequency selectors, signal selectors, band-limiters, channel selectors, filters, downconverters,
demodulators, error correctors, and demultiplexers. The RF portion can include a tuner that
performs various of these functions, including, for example, down-converting the received
signal to a lower frequency (for example, an intermediate frequency or a near-baseband
frequency) or to baseband. In one set-top box embodiment, the RF portion and its associated
input processing element receives an RF signal transmitted over a wired (for example, cable)
medium, and performs frequency selection by filtering, down-converting, and filtering again
to a desired frequency band. Various embodiments rearrange the order of the above-described
(and other) elements, remove some of these elements, and/or add other elements performing
similar or different functions. Adding elements can include inserting elements in between
existing elements, such as, for example, inserting amplifiers and an analog-to-digital converter.

In various embodiments, the RF portion includes an antenna.

Additionally, the USB and/or HDMI terminals can include respective interface
processors for connecting system 1000 to other electronic devices across USB and/or HDMI
connections. Itistobeunderstood that various aspects of input processing, for example, Reed-
Solomon error correction, can be implemented, for example, within a separate input processing
IC or within processor 1010 as necessary. Similarly, aspects of USB or HDMI interface
processing can be implemented within separate interface ICs or within processor 1010 as
necessary. The demodulated, error corrected, and demultiplexed stream is provided to various
processing elements, including, for example, processor 1010, and encoder/decoder 1030
operating in combination with the memory and storage elements to process the data stream as

necessary for presentation on an output device.

Various elements of system 1000 can be provided within an integrated housing, Within
the integrated housing, the various elements can be interconnected and transmit data
therebetween using suitable connection arrangement, for example, an internal bus as known in

the art, including the 12C bus, wiring, and printed circuit boards.
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The system 1000 includes communication interface 1050 that enables communication
with other devices via communication channel 1060. The communication interface 1050 can
include, but is not limited to, a transceiver configured to transmit and to receive data over
communication channel 1060. The communication interface 1050 can include, but is not
limited to, a modem or network card and the communication channel 1060 can be implemented,

for example, within a wired and/or a wireless medium.

Data is streamed to the system 1000, in various embodiments, using a Wi-Fi network
such as IEEE 802.11. The Wi-Fi signal of these embodiments is received over the
communications channel 1060 and the communications interface 1050 which are adapted for
Wi-Fi communications. The communications channel 1060 of these embodiments is typically
connected to an access point or router that provides access to outside networks including the
Internet for allowing streaming applications and other over-the-top communications. Other
embodiments provide streamed data to the system 1000 using a set-top box that delivers the
data over the HDMI connection of the input block 1130. Still other embodiments provide
streamed data to the system 1000 using the RF connection of the input block 1130.

The system 1000 can provide an output signal to various output devices, including a
display 1100, speakers 1110, and other peripheral devices 1120. The other peripheral devices
1120 include, in various examples of embodiments, one or more of a stand-alone DVR, a disk
player, a stereo system, a lighting system, and other devices that provide a function based on
the output of the system 1000. In various embodiments, control signals are communicated
between the system 1000 and the display 1100, speakers 1110, or other peripheral devices 1120
using signaling such as AV.Link, CEC, or other communications protocols that enable device-
to-device control with or without user intervention. The output devices can be
communicatively coupled to system 1000 via dedicated connections through respective
interfaces 1070, 1080, and 1090. Alternatively, the output devices can be connected to system
1000 using the communications channel 1060 via the communications interface 1050. The
display 1100 and speakers 1110 can be integrated in a single unit with the other components
of system 1000 in an electronic device such as, for example, a television. In various
embodiments, the display interface 1070 includes a display driver, such as, for example, a

timing controller (T Con) chip.

The display 1100 and speaker 1110 can alternatively be separate from one or more of

the other components, for example, if the RF portion of input 1130 is part of a separate set-top
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box. In various embodiments in which the display 1100 and speakers 1110 are external
components, the output signal can be provided via dedicated output connections, including, for
example, HDMI ports, USB ports, or COMP outputs. The implementations described herein
may be implemented in, for example, a method or a process, an apparatus, a software program,
a data stream, or a signal. Even if only discussed in the context of a single form of
implementation (for example, discussed only as a method), the implementation of features
discussed may also be implemented in other forms (for example, an apparatus or a program).
An apparatus may be implemented in, for example, appropriate hardware, software, and
firmware. The methods may be implemented in, for example, an apparatus such as, for
example, a processor, which refers to processing devices in general, including, for example, a
computer, a microprocessor, an integrated circuit, or a programmable logic device. Processors
also include communication devices, such as, for example, computers, cell phones,
portable/personal digital assistants ("PDAs"), and other devices that facilitate communication

of information between end-users.

Figure 11 illustrates an example of format for describing the weight update
quantization according to at least one embodiment. Many existing quantization and encoding
techniques may be used to quantize and encode the weight updates 67, of size u. The following

approach illustrates what C could be.

It is proposed to use uniform scalar quantization over scaled bias updates in the test
phase. Quantization is performed by rounding the scaled inputs to the nearest integer value by
Q(6re, q) = round (85, . q), where '.” denotes multiplication of a vector by a scalar. Since the
value of g is learned for each image, it can be used to adjust the quantization resolution.
Dequantization cancels the scaling: Q71 o Q(65t, q) = round(6s.q) /q. However, since the
rounding operator has non-informative gradients, it cannot be used in training phase. For
training, this rounding operator is relaxed using the standard technique of additive uniform

noise. Thus, in training phase, we apply quantization and dequantization as follows:
Qr(8rt,q) = 6pr.q +€

Q7' o Qr(8pe,q) = 8pc + €/,
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where € € R" is iid (independent, identically distributed) uniform noise where €; ~
U(—0.5,0.5). If the quantization scale q is learned for each image, we should include g into

the bitstream as part of C, using 16 bits.

Surprisingly, the bias updates often follow a gaussian distribution. Since we quantize
the scaled updates to the nearest integer value, the bin width of the quantization is 1. Thus,
expected probability of the given scaled and quantized update vector Sft can be calculated

during fine tuning as follows:
A 8f¢[i]+0.5
pGo=[][ ~ Newo.dx

Where Sft [i] is the i™ element of vector Sft, N(.;u, 0) is the probability density
function of gaussian distribution parameterized by u, o which are mean and standard deviation
of vector Sft as they are the closed form solution of gaussian probability model fitting on given

vector Sft. In test phase, to compress the bias's updates with entropy coding, the truncated
gaussian distribution is fit on quantized scaled bias's updates whose support is defined by
minimum symbol S;,;;, to maximum symbol S,,,,. If these parameters are trained for each
image, C must include fitted truncated gaussian parameter y, o using 16-bits for each and
Smin Smax UsINg 8-bits for each parameter in addition to 16-bits encoded quantization's scale
parameter . This 64-bit long information are the updates encoding information that we need
to add to the bitstream whose bit-length was shown by len(C) in loss function. The proposed
format 1100 of the figure illustrates one possibility for a bitstream encoding C in this specific

example.

The following figures illustrate typical experimental results of the present principles on
the Kodak Test Set. The neural network architecture used is the cheng2020-anchor architecture
as described in Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compression
with discretized gaussian mixture likelihoods and attention modules,” in CVPR, 2020. Six
different trained models M are used as baselines. Different subsets of parameters are fined-
tuned and evaluated: the bias of the last k convolutional layers of each model M, where k is
allowed to vary. Unless specified otherwise, the new training loss and trainable weight

quantization are used, and results are an average over all images in the test set.
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Figure 12 illustrates the impact of the value of the number of last layers to be updated.
More particularly, it shows the impact of k for values from 1 to 10 in terms of BD rate gain (of
our approach and with respect to a baseline M) as a function of the PSNR. Each data point
corresponds to a baseline model M. Average values of k, e.g., k = 5, are optimal in this case,
with lower values significantly worse. The baseline is represented by the line 1210. Curves

1211 to 1221 represented increasing values of k, respectively from 1to 11.

Figure 13 illustrates average performance for different values of k. It summarizes the
results of Figure 12. For each value of k (x axis), it displays the value of the area under of the
curve of that value in Figure 12. This corresponds to the average performance of each value of
k from 1 to 10 over all baseline models M. In other words, the curve represents the savings

with regards to the baseline according to an increasing number of last convolutional bias layers.

Figure 14 illustrates the performance achieved when using the best value of k for each
baseline model M. This better showcases the performance that could be achieved in practice,
where the number of layers can be chosen independently for each baseline model M. The

baseline is represented by the line 1410. The curve 1420 represents the proposed solution.

Figure 15 illustrates the PSNR vs bit per pixel of our approach on two different
baselines, with six trained models each. Curve 1510 represents a baseline based on the
cheng2020-anchor architecture and curve 1520 represents the application of the proposed
approach to this baseline. Curve 1530 represents a baseline based on the bmshj2018 factorized
architecture as described in J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational image compression with a scale hyperprior,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, 2018. The curve 1540 represents the application of the
proposed approach to this second baseline. For the proposed solution, only the best value of k
is displayed. Other values of k would lie between the proposed solution and the corresponding

baseline.

Figure 16 illustrates the impact of the new training procedure (new loss vs old loss)
and of the trainable weight quantization (learnable Q vs non-learnable Q), on the 14™ image of

the test set and with one selected quality. This quality and image were chosen as the most
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representative of the results and the values correspond to BDrate gain with respect to the
baseline for different values of k. Curve 1610 represents the old loss for non-learnable
quantization, curve 1620 represents the new loss for non-learnable quantization, curve 1630
represents the old loss for learnable quantization, and curve 1640 represents the new loss for
learnable quantization. The combination of the new loss and trainable quantization consistently
achieve best or close to best results for high values of k (x axis) but lead to slightly worse

results for k < 4.

Reference to “one embodiment” or “an embodiment” or “one implementation” or “an
implementation”, as well as other variations thereof, mean that a particular feature, structure,
characteristic, and so forth described in connection with the embodiment is included in at least
one embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an
embodiment” or “in one implementation” or “in an implementation”, as well any other
variations, appearing in various places throughout the specification are not necessarily all

referring to the same embodiment.

Additionally, this application or its claims may refer to “determining” various pieces of
information. Determining the information may include one or more of, for example, estimating
the information, calculating the information, predicting the information, or retrieving the

information from memory.

Further, this application or its claims may refer to “accessing” various pieces of
information. Accessing the information may include one or more of, for example, receiving
the information, retrieving the information (for example, from memory), storing the
information, moving the information, copying the information, calculating the information,

predicting the information, or estimating the information.

Additionally, this application or its claims may refer to “receiving” various pieces of
information. Receiving is, as with “accessing”, intended to be a broad term. Receiving the
information may include one or more of, for example, accessing the information, or retrieving
the information (for example, from memory or optical media storage). Further, “receiving” is
typically involved, in one way or another, during operations such as, for example, storing the
information, processing the information, transmitting the information, moving the information,
copying the information, erasing the information, calculating the information, determining the

information, predicting the information, or estimating the information.
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It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least
one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is
intended to encompass the selection of the first listed option (A) only, or the selection of the
second listed option (B) only, or the selection of both options (A and B). As a further example,
in the cases of “A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to
encompass the selection of the first listed option (A) only, or the selection of the second listed
option (B) only, or the selection of the third listed option (C) only, or the selection of the first
and the second listed options (A and B) only, or the selection of the first and third listed options
(A and C) only, or the selection of the second and third listed options (B and C) only, or the
selection of all three options (A and B and C). This may be extended, as readily apparent by

one of ordinary skill in this and related arts, for as many items listed.

As will be evident to one of skill in the art, implementations may produce a variety of
signals formatted to carry information that may be, for example, stored or transmitted. The
information may include, for example, instructions for performing a method, or data produced
by one of the described implementations. For example, a signal may be formatted to carry the
bitstream of a described embodiment. Such a signal may be formatted, for example, as an
electromagnetic wave (for example, using a radio frequency portion of spectrum) or as a
baseband signal. The formatting may include, for example, encoding a data stream and
modulating a carrier with the encoded data stream. The information that the signal carries may
be, for example, analog or digital information. The signal may be transmitted over a variety of
different wired or wireless links, as is known. The signal may be stored on a processor-readable

medium.
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CLAIMS

1. A method for encoding an input image, the method comprising:

- determining, using a deep neural network based on a first model comprising a selected subset

of parameters, an embedding representative of the input image;

- determining parameter updates to fine-tune a second model based on the first model, wherein
the fine-tuning is based on the input image and a decoded version of the embedding as decoded

using a deep neural network based on the second model; and

- generating encoded data comprising at least an encoded quantized embedding and an encoded

quantized parameter update.

2. The method of claim 1, wherein the selected subset of parameters is independent of the input

image.

3. The method of claim 1, wherein the selected subset of parameters is selected based on the
input image and wherein the encoded data further comprises information representative of the

selection.

4. The method of any of the preceding claims, further comprising quantizing the parameters
update based on a trained quantization with quantization parameters, and wherein the encoded

data further comprises information representative of the quantization parameters.

5. The method of any of the preceding claims, wherein the fine-tuning is based on a loss
function to minimize a measure of a distortion between the input image and an image

reconstructed using a deep neural network based on the second model with updated parameters.

6. The method of any of the preceding claims, wherein the selected subset of parameters are
selected among a set comprising a bias, a weight, parameters of a non-linear function of the
model, a subset of layers of the model, a specific layer of the model, the bias of a specific layer

of the model, and a subset of neurons of the model.
7. A method for decoding an image represented by encoded data, the method comprising:

- obtaining a decoded embedding and a decoded parameters update from the encoded data;

- updating parameters of a model of a deep neural network by the obtained parameters update;

and
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- determining, using the deep neural network with the updated parameters, a decoded image

based on the obtained decoded embedding.

8. The method of claim 7, wherein the selected subset of parameters are comprised in a set
comprising a bias, a weight, parameters of a non-linear function of the model, a subset of layers
of the model, a specific layer of the model, the bias of a specific layer of the model, and a

subset of neurons of the model.

9. An apparatus, comprising an encoder for encoding an image, the encoder being configured

to:

- determine, using a deep neural network based on a first model comprising a selected subset

of parameters, an embedding representative of the input image;

- determine parameter updates to fine-tune a second model based on the first model, wherein
the fine-tuning is based on the input image and a decoded version of the embedding as decoded

using a deep neural network based on the second model; and

- generate encoded data comprising at least an encoded quantized embedding and an encoded

quantized parameter update.

10. The apparatus of claim 9, wherein the selected subset of parameters is independent from

the input image.

11. The apparatus of claim 9, wherein the selected subset of parameters is selected based on
the input image and wherein the encoded data further comprises information representative of

the selection.

12. The apparatus of any of the claims 9 to 11, further comprising quantizing the parameters
update based on a trained quantization with quantization parameters, and wherein the encoded

data further comprises information representative of the quantization parameters.

13. The apparatus of any of the claims 9 to 12, wherein the fine-tuning is based on a loss
function to minimize a measure of a distortion between the input image and an image

reconstructed using a deep neural network based on the second model with updated parameters.

14. The apparatus of any of the claims 9 to 13, wherein the selected subset of parameters are

selected among a set comprising a bias, a weight, parameters of a non-linear function of the
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model, a subset of layers of the model, a specific layer of the model, the bias of a specific layer

of the model, and a subset of neurons of the model.

15. An apparatus, comprising a decoder for decoding an image, the decoder being configured

to
- obtain a decoded embedding and a decoded parameters update from the encoded data;

- update parameters of a model of a deep neural network by the obtained parameters update;

and

- determine, using the deep neural network with updated parameters, a decoded image based

on the obtained decoded embedding.

16. The apparatus of claim 15, wherein the selected subset of parameters are comprised in a set
comprising a bias, a weight, parameters of a non-linear function of the model, a subset of layers
of the model, a specific layer of the model, the bias of a specific layer of the model, and a

subset of neurons of the model.

17. Computer program comprising program code instructions for implementing the method

according to at least one of claims 1 to 8 when executed by a processor.

18. Non-transitory computer readable medium comprising program code instructions for
implementing the method according to at least one of claims 1 to 8 when executed by a

processor.
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