wO 2021/061998 A1 | I 000 KA 000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
01 April 2021 (01.04.2021)

(10) International Publication Number

WO 2021/061998 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

(74)

@81)

International Patent Classification:
HO4N 19/593 (2014.01) HO4N 19/50 (2014.01)

International Application Number:
PCT/US2020/052509

International Filing Date:
24 September 2020 (24.09.2020)

Filing Language: English
Publication Language: English
Priority Data:

62/905,105 24 September 2019 (24.09.2019) US
17/029,767 23 September 2020 (23.09.2020) US

Applicant: QUALCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse Dri-
ve, San Diego, California 92121-1714 (US).

Inventors: CHAOQO, Yung-Hsuan, 5775 Morchouse Dri-
ve, San Diego, California 92121-1714 (US). HSIEH,
Cheng-Teh; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). KARCZEWICZ, Marta;, 5775 More-
house Drive, San Diego, California 92121-1714 (US).

Agent: ROSENBERG, Brian M.; Shumaker & Sieffert,
P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
55125 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

84

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SIMPLIFIED PALETTE PREDICTOR UPDATE FOR VIDEO CODING

Wx H
(~)
Input palette predictor
1002 a b ¢
Y /
Updated palette predictor
1004 a|b e
FIG. 10 New colors 1006

(57) Abstract: An example device includes a memory configured to store at least a portion of an encoded video bitstream; and one or
more processors that are implemented in circuitry and configured to: determine, based on a parameter of a first block of video data,
a maximum number of entries to be used for palette-mode coding of the current block; generate, based on the determined maximum
number of entries and based on a palette predictor, a palette for the first block of video data, the palette including one or more entries
each including a palette index that is associated with a color value; decode, from the encoded video bitstream and for the first block
of video data, index values for samples of the first block that identify entries in the palette; and reconstruct, based on the index values,
the samples of the first block.

WO 2021/061998 PCT/US2020/052509

SIMPLIFIED PALETTE PREDICTOR
UPDATE FOR VIDEO CODING

[0001] This application claims priority to U.S. Application No. 17/029,767, filed
September 23, 2020 which claims the benefit of U.S. Provisional Application No.
62/905,1085, filed September 24, 2019, the entire contents of each of which are

incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and video decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast systems,
personal digital assistants (PDAs), laptop or desktop computers, tablet computers, e-book
readers, digital cameras, digital recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio telephones, so-called “smart
phones,” video teleconferencing devices, video streaming devices, and the like. Digital
video devices implement video coding techniques, such as those described in the
standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), ITU-T H.265/High Efficiency Video Coding (HEVC),
and extensions of such standards. The video devices may transmit, receive, encode,
decode, and/or store digital video information more efficiently by implementing such
video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or temporal
(inter-picture) prediction to reduce or remove redundancy inherent in video sequences.
For block-based video coding, a video slice (e.g., a video picture or a portion of a video
picture) may be partitioned into video blocks, which may also be referred to as coding
tree units (CTUs), coding units (CUs) and/or coding nodes. Video blocks in an intra-
coded (1) slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or
B) slice of a picture may use spatial prediction with respect to reference samples in

neighboring blocks in the same picture or temporal prediction with respect to reference

WO 2021/061998 PCT/US2020/052509

samples in other reference pictures. Pictures may be referred to as frames, and reference

pictures may be referred to as reference frames.

SUMMARY

[0005] In general this disclosure describes techniques for palette mode coding of video
data. Performing palette mode coding of video data may involve copying of entries
between palettes, such as copying entries from a first palette to a second palette. For
instance, a video coder may copy entries from a predictor palette to a palette for a current
block of video data. Each copy operation may consume system resources such as
memory, processing power, and battery life in the case of a mobile or other battery-
powered device. As such, it may be desirable to reduce the number of copy operations
performed. The number of copy operations may be positively related to a number of
entries in a palette. As such, reducing the number of entries in a palette may reduce the
number of copy operations performed. However, reducing a maximum number of entries
in a palette may reduce the efficiency of palette-mode coding, which may not be desirable.
[0006] In accordance with one or more techniques of this disclosure, a video coder may
dynamically adjust a maximum number of entries to be used for palette-mode coding.
For instance, based on a parameter of a first block of video data, a video coder may
determine a number of entries to be used for palette-mode coding of the current block.
As one specific example, the video coder may restrict the maximum number of entries to
a first value (e.g., 16) based on the parameter having a first value or to a second value
(e.g., 32) based on the parameter having a second value. Hence, in some examples, the
second value is greater than the first value. In this way, the video coder may reduce the
amount of system resources used for palette-mode coding. For instance, the video coder
may reduce the number of copy operations without unduly reducing the efficiency of
palette-mode coding.

[0007] In one example, a device includes a memory configured to store at least a portion
of an encoded video bitstream; and one or more processors that are implemented in
circuitry and configured to: determine, based on a parameter of a first block of video data,
a maximum number of entries to be used for palette-mode coding of the current block;
generate, based on the determined maximum number of entries and based on a palette
predictor, a palette for the first block of video data, the palette including one or more

entries each including a palette index that is associated with a color value; decode, from

WO 2021/061998 PCT/US2020/052509

the encoded video bitstream and for the first block of video data, index values for samples
of the first block that identify entries in the palette; and reconstruct, based on the index
values, the samples of the first block.

[0008] In another example, a method includes determining, based on a parameter of a
first block of video data, a maximum number of entries to be used for palette-mode coding
of the current block; generating, based on the determined maximum number of entries
and based on a palette predictor, a palette for the first block of video data, the palette
including one or more entries each including a palette index that is associated with a color
value; decoding, from an encoded video bitstream and for the first block of video data,
index values for samples of the first block that identify entries in the palette; and
reconstructing, based on the index values, the samples of the first block.

[0009] In another example, a device includes a memory configured to store at least a
portion of an encoded video bitstream; and one or more processors that are implemented
in circuitry and configured to: determine, based on a parameter of a first block of video
data, a maximum number of entries to be used for palette-mode coding of the current
block; generate, based on the determined maximum number of entries and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value; and
encode, in the encoded video bitstream and for the first block of video data, index values
for samples of the first block that identify entries in the palette.

[0010] In another example, a method includes determining, based on a parameter of a
first block of video data, a maximum number of entries to be used for palette-mode coding
of the current block; generating, based on the determined maximum number of entries
and based on a palette predictor, a palette for the first block of video data, the palette
including one or more entries each including a palette index that is associated with a color
value; and encoding, in an encoded video bitstream and for the first block of video data,
index values for samples of the first block that identify entries in the palette.

[0011] In another example, a computer-readable storage medium stores instructions that,
when executed, cause one or more processors of a video encoder to: determine, based on
a parameter of a first block of video data, a maximum number of entries to be used for
palette-mode coding of the current block; generate, based on the determined maximum
number of entries and based on a palette predictor, a palette for the first block of video
data, the palette including one or more entries each including a palette index that is

associated with a color value; and encode, in an encoded video bitstream and for the first

WO 2021/061998 PCT/US2020/052509

block of video data, index values for samples of the first block that identify entries in the
palette.

[0012] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages of the disclosure will

be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may perform the techniques of this disclosure.

[0014] FIGS. 2A and 2B are conceptual diagrams illustrating an example quadtree binary
tree (QTBT) structure, and a corresponding coding tree unit (CTU).

[0015] FIG. 3 is a block diagram illustrating an example video encoder that may perform
the techniques of this disclosure.

[0016] FIG. 4 is a block diagram illustrating an example video decoder that may perform
the techniques of this disclosure.

[0017] FIG. 5 is a conceptual diagram illustrating an example of determining a palette for
coding video data, consistent with techniques of this disclosure.

[0018] FIG. 6 is a conceptual diagram illustrating an example of determining indices to
a palette for a block of pixels, consistent with techniques of this disclosure.

[0019] FIG. 7 is a conceptual diagram illustrating example coding of indices using
horizontal and vertical traverse scans.

[0020] FIGS. 8 and 9 are conceptual diagrams illustrating palette table derivation and
updating of a palette predictor.

[0021] FIG. 10 is a conceptual diagram illustrating an example of using only the first
WxH entries in a palette predictor for predicting the palette predictor.

[0022] FIG. 11 is a conceptual diagram illustrating an example of using only the first
WxH entries in a palette predictor for predicting the palette predictor where stuffing is
restricted to the first WxH elements.

[0023] FIG. 12 is a flowchart illustrating an example method for decoding a current block
of video data.

[0024] FIG. 13 is a flowchart illustrating an example method for decoding a current block

of video data.

WO 2021/061998 PCT/US2020/052509

[0025] FIG. 14 is a flowchart illustrating an example method for coding a block using

palette-mode compression, in accordance with one or more techniques of this disclosure.

DETAILED DESCRIPTION

[0026] This disclosure describes techniques for video coding and compression. In
particular, this disclosure describes techniques for palette-based coding of video data. For
instance, this disclosure describes techniques to support coding of video content,
especially screen content with palette coding, such as techniques for improved palette
construction, and techniques for signaling for palette coding.

[0027] In traditional video coding, images are assumed to be continuous-tone and
spatially smooth. Based on these assumptions, various tools have been developed such
as block-based transform, filtering, etc., and such tools have shown good performance for
natural content videos.

[0028] However, in applications like remote desktop, collaborative work and wireless
display, computer generated screen content may be the dominant content to be
compressed. This type of content tends to have discrete-tone and feature sharp lines, and
high contrast object boundaries. The assumption of continuous-tone and smoothness may
no longer apply and thus traditional video coding techniques may not be efficient ways
to compress video data.

[0029] Based on the characteristics of screen content video, palette coding is introduced
to improve screen content coding (SCC) efficiency as proposed in Guo et al., “Palette
Mode for Screen Content Coding,” Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Incheon, KR,
1826 Apr. 2013, Document: JCTVC-MO0323, available at http://phenix.it-
sudparis.eu/jct/doc_end user/documents/13 Incheon/wgl1/JCTVC-MO0323-v3.zip,
(hereinafter “JCTVC-M0323). Specifically, palette coding introduces a lookup table,
i.e., a color palette, to compress repetitive pixel values based on the fact that in SCC,
colors within one CU usually concentrate on a few peak values. Given a palette for a
specific CU, pixels within the CU are mapped to palette indices. In the second stage, an
effective copy from left run length method is proposed to effectively compress the index
block’s repetitive pattern. In some examples, the palette index coding mode may be
generalized to both copy from left and copy from above with run length coding. Note

that, in some examples, no transformation process may be invoked for palette coding to

WO 2021/061998 PCT/US2020/052509

avoid blurring sharp edges which can have a huge negative impact on visual quality of
screen contents.

[0030] As discussed above, this disclosure describes palette-based coding, which may be
particularly suitable for screen generated content coding. For example, assume a
particular area of video data has a relatively small number of colors. A video coder (a
video encoder or video decoder) may code a so-called “palette” as a table of colors for
representing the video data of the particular area (e.g., a given block). Each pixel may be
associated with an entry in the palette that represents the color of the pixel. For example,
the video coder may code an index that maps the pixel value to the appropriate value in
the palette.

[0031] In the example above, a video encoder may encode a block of video data by
determining a palette for the block, locating an entry in the palette to represent the color
value of each pixel, and encoding the palette with index values for the pixels mapping the
pixel value to the palette. A video decoder may obtain, from an encoded bitstream, a
palette for a block, as well as index values for the pixels of the block. The video decoder
may map the index values of the pixels to entries of the palette to reconstruct the luma
and chroma pixel values of the block.

[0032] The example above is intended to provide a general description of palette-based
coding. In various examples, the techniques described in this disclosure may include
techniques for various combinations of one or more of signaling palette-based coding
modes, transmitting palettes, predicting palettes, deriving palettes, and transmitting
palette-based coding maps and other syntax elements. Such techniques may improve
video coding efficiency, e.g., requiring fewer bits to represent screen generated content.
[0033] For example, according to aspects of this disclosure, a video coder (video encoder
or video decoder) may code one or more syntax elements for each block that is coded
using a palette coding mode. For example, the video coder may code a palette mode flag
to indicate whether a palette-based coding mode is to be used for coding a particular
block. In this example, a video encoder may encode a palette mode flag with a value
that is equal to one to specify that the block currently being encoded (“current block™) is
encoded using a palette mode. In this case, a video decoder may obtain the
palette mode flag from the encoded bitstream and apply the palette-based coding mode
to decode the block. In instances in which there is more than one palette-based coding

mode available (e.g., there is more than one palette-based technique available for coding),

WO 2021/061998 PCT/US2020/052509

one or more syntax elements may indicate one of a plurality of different palette modes
for the block.

[0034] In some instances, the video encoder may encode a palette mode flag with a
value that is equal to zero to specify that the current block is not encoded using a palette
mode. In such instances, the video encoder may encode the block using any of a variety
of inter-predictive, intra-predictive, or other coding modes. When the palette mode flag
is equal to zero, the video encoder may encode additional information (e.g., syntax
elements) to indicate the specific mode that is used for encoding the respective block. In
some examples, as described below, the mode may be an HEVC coding mode. The use
of the palette mode flag is described for purposes of example. In other examples, other
syntax elements such as multi-bit codes may be used to indicate whether the palette-based
coding mode is to be used for one or more blocks, or to indicate which of a plurality of
modes are to be used.

[0035] When a palette-based coding mode is used, a palette may be transmitted by an
encoder in the encoded video data bitstream for use by a decoder. A palette may be
transmitted for each block or may be shared among a number of blocks in a picture or
slice. The palette may refer to a number of pixel values that are dominant and/or
representative for the block, including, e.g., a luma value and two chroma values.

[0036] In some examples, a syntax element, such as a transpose flag, may be coded to
indicate whether a transpose process is applied to palette indices of a current palette. If
the transpose flag is zero, the palette indices for samples may be coded in a horizontal
traverse scan. Similarly, if the transpose flag is one, the palette indices for samples may
be coded in a vertical traverse scan. This can be thought of as decoding the index values
assuming horizontal traverse scan and then transposing the block (rows to columns).
[0037] As discussed above, palette coding is designed to handle the clustering colours for
screen contents. Palette coding employs base colours and an index map to represent the
input image block. A flag may be transmitted for each Coding unit (CU) to signal whether
the palette mode is used in the current CU. If the palette mode is utilized, the pixels
values in the CU are represented by a small set of representative color values. The set is
referred to as the palette. For pixels with values close to the palette colors, the palette
indices are signalled. For pixels with values outside the palette, the pixel is denoted with
an escape symbol and the quantized pixel values are signaled directly.

[0038] To decode a palette encoded block, the decoder needs to decode palette colors and

indices. Palette colors are described by a palette table and encoded by palette table coding

WO 2021/061998 PCT/US2020/052509

tools. An escape flag is signaled for each CU to indicate if escape symbols are present in
the current CU. If escape symbols are present, the palette table is augmented by one and
the last index is assigned to the escape mode. Palette indices of all pixels in a CU form a
palette index map and are encoded by palette index map coding tools.

[0039] For coding the palette index map, the video coder may code the indices using
horizontal and vertical traverse scans. FIG. 7 is a conceptual diagram illustrating example
coding of indices using horizontal and vertical traverse scans.

[0040] The palette indices are coded using two main palette sample modes: 'TNDEX' and
'COPY_ABOVE'. The mode is signalled using a flag except for the top row when
horizontal scan is used, the first column when the vertical scan is used, or when the
previous mode was 'COPY_ABOVE'. In the 'COPY_ ABOVE' mode, the palette index
of the sample in the row above is copied. In the 'INDEX' mode, the palette index is
explicitly signalled. For both 'INDEX' and 'COPY_ABOVE' modes, a run value is
signalled which specifies the number pixels that are coded using the same mode.

[0041] The encoding order for index map may be as follows: First, the number of index
values for the CU is signalled. This is followed by signalling of the actual index values
for the entire CU using truncated binary coding. Both the number of indices as well as the
index values are coded in bypass mode. This groups the index-related bypass bins
together. Then the palette mode (INDEX or COPY_ ABOVE) and run are signalled in an
interleaved manner. Finally, the component escape values corresponding to the escape
samples for the entire CU are grouped together and coded in bypass mode. An additional
syntax element (e.g., last run_type flag) may be signalled after signalling the index
values. This syntax element, in conjunction with the number of indices, may eliminate
the need to signal the run value corresponding to the last run in the block.

[0042] In the 15th JVET meeting in Gothenburg, Sweden, palette mode was adopted into
Versatile Video coding (VVC) for YUV4:4:4 format. The palette mode syntax is the
same as in HEVC SCM (see e.g., R. Joshi, J. Xu, R. Cohen, S. Liu, Y. Ye, “Screen Content
Coding Test Model 7 Encoder Description (SCM 7)”, JCTVC-W1014, 2016; and R.
Joshi, S. Liu, G. J. Sullivan, Y.-K. Wang, J. Xu, Y. Ye, “HEVC Screen Content Coding
Draft Text 67, JCTVC-W1005, 2016) with modification of palette mode signaling and
with inclusion of separated palette mode (separated palette predictor/table/syntax parsing
for luma coding tree and chroma coding tree) for slices using dual tree for luma and

chroma components.

WO 2021/061998 PCT/US2020/052509

[0043] In palette mode, the video coder (e.g., video encoder 200 and/or video decoder
300 as described below, e.g., with reference to FIGS. 1, 3 and 4) may code a flag for each
CU to signal whether the palette mode is used in the current CU (e.g., palette_ mode flag).
The maximum CU size allowed for palette mode is size 64x64 (maximum CU size in
HEVC). If the palette mode is utilized, the pixels values in the CU are represented by a
small set of representative color values. The set may be referred to as the palette. The
video coder may signal palette indices for pixels with values close to the palette colors.
The video coder may denote pixels with values outside the palette with an escape symbol,
and may signal the quantized pixel values directly.

[0044] To decode a palette encoded block, the decoder may decode palette colors and
indices. Palette colors are described by a palette table and encoded by palette table coding
tools. The video coder may signal an escape flag for each CU to indicate if escape
symbols are present in the current CU. If escape symbols are present, the video coder
may augment the palette table by one and assign the last index to the escape mode. Palette
indices of all pixels in a CU form a palette index map and are encoded by palette index
map coding tools.

[0045] The video coder may maintain a palette predictor for coding of the palette table.
The video coder may periodically initialize the palette predictor. For instance, the video
coder may initialize the palette predictor at the beginning of each slice. In some examples,
to initialize the palette predictor, the video coder may reset the palette predictor to 0. The
video coder may signal a reuse flag for each entry in the palette predictor to indicate
whether it is part of the current palette. In some examples, the video coder may code the
reuse flags using run-length coding of zeros. The video coder may signal the number of
new palette entries using an exponential Golomb code of order 0. The video coder may
signal the component values for the new palette entries. After encoding the current CU,
the video coder may update the palette predictor using the current palette. In some
examples, the video coder may add entries from the previous palette predictor which are
not reused in the current palette at the end of a new palette predictor until the maximum
size allowed is reached. The adding of entries from the previous palette predictor may be
referred to as palette stuffing.

[0046] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 100 that may perform the techniques of this disclosure. The techniques of this
disclosure are generally directed to coding (encoding and/or decoding) video data. In

general, video data includes any data for processing a video. Thus, video data may

WO 2021/061998 PCT/US2020/052509
10

include raw, uncoded video, encoded video, decoded (e.g., reconstructed) video, and
video metadata, such as signaling data.

[0047] As shown in FIG. 1, system 100 includes a source device 102 that provides
encoded video data to be decoded and displayed by a destination device 116, in this
example. In particular, source device 102 provides the video data to destination device
116 via a computer-readable medium 110. Source device 102 and destination device 116
may comprise any of a wide range of devices, including desktop computers, notebook
(i.e., laptop) computers, tablet computers, set-top boxes, telephone handsets such
smartphones, televisions, cameras, display devices, digital media players, video gaming
consoles, video streaming device, or the like. In some cases, source device 102 and
destination device 116 may be equipped for wireless communication, and thus may be
referred to as wireless communication devices.

[0048] In the example of FIG. 1, source device 102 includes video source 104, memory
106, video encoder 200, and output interface 108. Destination device 116 includes input
interface 122, video decoder 300, memory 120, and display device 118. In accordance
with this disclosure, video encoder 200 of source device 102 and video decoder 300 of
destination device 116 may be configured to apply the techniques for palette mode coding.
Thus, source device 102 represents an example of a video encoding device, while
destination device 116 represents an example of a video decoding device. In other
examples, a source device and a destination device may include other components or
arrangements. For example, source device 102 may receive video data from an external
video source, such as an external camera. Likewise, destination device 116 may interface
with an external display device, rather than including an integrated display device.
[0049] System 100 as shown in FIG. 1 is merely one example. In general, any digital
video encoding and/or decoding device may perform techniques for palette mode coding.
Source device 102 and destination device 116 are merely examples of such coding devices
in which source device 102 generates coded video data for transmission to destination
device 116. This disclosure refers to a “coding” device as a device that performs coding
(encoding and/or decoding) of data. Thus, video encoder 200 and video decoder 300
represent examples of coding devices, in particular, a video encoder and a video decoder,
respectively. In some examples, devices 102, 116 may operate in a substantially
symmetrical manner such that each of devices 102, 116 include video encoding and

decoding components. Hence, system 100 may support one-way or two-way video

WO 2021/061998 PCT/US2020/052509
11

transmission between video devices 102, 116, e.g., for video streaming, video playback,
video broadcasting, or video telephony.

[0050] In general, video source 104 represents a source of video data (i.e., raw, uncoded
video data) and provides a sequential series of pictures (also referred to as “frames”) of
the video data to video encoder 200, which encodes data for the pictures. Video source
104 of source device 102 may include a video capture device, such as a video camera, a
video archive containing previously captured raw video, and/or a video feed interface to
receive video from a video content provider. As a further alternative, video source 104
may generate computer graphics-based data as the source video, or a combination of live
video, archived video, and computer-generated video. In each case, video encoder 200
encodes the captured, pre-captured, or computer-generated video data. Video encoder
200 may rearrange the pictures from the received order (sometimes referred to as “display
order”) into a coding order for coding. Video encoder 200 may generate a bitstream
including encoded video data. Source device 102 may then output the encoded video data
via output interface 108 onto computer-readable medium 110 for reception and/or
retrieval by, e.g., input interface 122 of destination device 116.

[0051] Memory 106 of source device 102 and memory 120 of destination device 116
represent general purpose memories. In some example, memories 106, 120 may store
raw video data, e.g., raw video from video source 104 and raw, decoded video data from
video decoder 300. Additionally or alternatively, memories 106, 120 may store software
instructions executable by, e.g., video encoder 200 and video decoder 300, respectively.
Although shown separately from video encoder 200 and video decoder 300 in this
example, it should be understood that video encoder 200 and video decoder 300 may also
include internal memories for functionally similar or equivalent purposes. Furthermore,
memories 106, 120 may store encoded video data, e.g., output from video encoder 200
and input to video decoder 300. In some examples, portions of memories 106, 120 may
be allocated as one or more video buffers, e.g., to store raw, decoded, and/or encoded
video data.

[0052] Computer-readable medium 110 may represent any type of medium or device
capable of transporting the encoded video data from source device 102 to destination
device 116. In one example, computer-readable medium 110 represents a communication
medium to enable source device 102 to transmit encoded video data directly to destination
device 116 in real-time, e.g., via a radio frequency network or computer-based network.

Output interface 108 may modulate a transmission signal including the encoded video

WO 2021/061998 PCT/US2020/052509
12

data, and input interface 122 may modulate the received transmission signal, according
to a communication standard, such as a wireless communication protocol. The
communication medium may comprise any wireless or wired communication medium,
such as a radio frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 102 to
destination device 116.

[0053] In some examples, source device 102 may output encoded data from output
interface 108 to storage device 116. Similarly, destination device 116 may access
encoded data from storage device 116 via input interface 122. Storage device 116 may
include any of a variety of distributed or locally accessed data storage media such as a
hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or non-volatile
memory, or any other suitable digital storage media for storing encoded video data.
[0054] In some examples, source device 102 may output encoded video data to file server
114 or another intermediate storage device that may store the encoded video generated
by source device 102. Destination device 116 may access stored video data from file
server 114 via streaming or download. File server 114 may be any type of server device
capable of storing encoded video data and transmitting that encoded video data to the
destination device 116. File server 114 may represent a web server (e.g., for a website),
a File Transfer Protocol (FTP) server, a content delivery network device, or a network
attached storage (NAS) device. Destination device 116 may access encoded video data
from file server 114 through any standard data connection, including an Internet
connection. This may include a wireless channel (e.g., a Wi-Fi connection), a wired
connection (e.g., DSL, cable modem, etc.), or a combination of both that is suitable for
accessing encoded video data stored on file server 114. File server 114 and input interface
122 may be configured to operate according to a streaming transmission protocol, a
download transmission protocol, or a combination thereof.

[0055] Output interface 108 and input interface 122 may represent wireless
transmitters/receiver, modems, wired networking components (e.g., Ethernet cards),
wireless communication components that operate according to any of a variety of IEEE
802.11 standards, or other physical components. In examples where output interface 108

and input interface 122 comprise wireless components, output interface 108 and input

WO 2021/061998 PCT/US2020/052509
13

interface 122 may be configured to transfer data, such as encoded video data, according
to a cellular communication standard, such as 4G, 4G-LTE (Long-Term Evolution), LTE
Advanced, 5G, or the like. In some examples where output interface 108 comprises a
wireless transmitter, output interface 108 and input interface 122 may be configured to
transfer data, such as encoded video data, according to other wireless standards, such as
an IEEE 802.11 specification, an IEEE 802.15 specification (e.g., ZigBee™), a
Bluetooth™ standard, or the like. In some examples, source device 102 and/or destination
device 116 may include respective system-on-a-chip (SoC) devices. For example, source
device 102 may include an SoC device to perform the functionality attributed to video
encoder 200 and/or output interface 108, and destination device 116 may include an SoC
device to perform the functionality attributed to video decoder 300 and/or input interface
122.

[0056] The techniques of this disclosure may be applied to video coding in support of any
of a variety of multimedia applications, such as over-the-air television broadcasts, cable
television transmissions, satellite television transmissions, Internet streaming video
transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital video that
is encoded onto a data storage medium, decoding of digital video stored on a data storage
medium, or other applications.

[0057] Input interface 122 of destination device 116 receives an encoded video bitstream
from computer-readable medium 110 (e.g., storage device 112, file server 114, or the like).
The encoded video bitstream computer-readable medium 110 may include signaling
information defined by video encoder 200, which is also used by video decoder 300, such
as syntax elements having values that describe characteristics and/or processing of video
blocks or other coded units (e.g., slices, pictures, groups of pictures, sequences, or the
like). Display device 118 displays decoded pictures of the decoded video data to a user.
Display device 118 may represent any of a variety of display devices such as a cathode
ray tube (CRT), aliquid crystal display (LCD), a plasma display, an organic light emitting
diode (OLED) display, or another type of display device.

[0058] Although not shown in FIG. 1, in some examples, video encoder 200 and video
decoder 300 may each be integrated with an audio encoder and/or audio decoder, and may
include appropriate MUX-DEMUX units, or other hardware and/or software, to handle
multiplexed streams including both audio and video in a common data stream. If
applicable, MUX-DEMUX units may conform to the ITU H.223 multiplexer protocol, or

other protocols such as the user datagram protocol (UDP).

WO 2021/061998 PCT/US2020/052509
14

[0059] Video encoder 200 and video decoder 300 each may be implemented as any of a
variety of suitable encoder and/or decoder circuitry, such as one or more microprocessors,
digital signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any
combinations thereof. When the techniques are implemented partially in software, a
device may store instructions for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware using one or more processors
to perform the techniques of this disclosure. Each of video encoder 200 and video decoder
300 may be included in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC) in a respective device. A
device including video encoder 200 and/or video decoder 300 may comprise an integrated
circuit, a microprocessor, and/or a wireless communication device, such as a cellular
telephone.

[0060] Video encoder 200 and video decoder 300 may operate according to a video
coding standard, such as ITU-T H.265, also referred to as High Efficiency Video Coding
(HEVC) or extensions thereto, such as the multi-view and/or scalable video coding
extensions. Alternatively, video encoder 200 and video decoder 300 may operate
according to other proprietary or industry standards, such as the Joint Exploration Test
Model (JEM) or ITU-T H.266, also referred to as Versatile Video Coding (VVC). A
recent draft of the VVC standard is described in Bross, et al. “Versatile Video Coding
(Draft 6),” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/SC 29/WG 11, 15" Meeting: Gothenburg, SE, 3-12 July 2019, JVET-02001-v14
(hereinafter “VVC Draft 6”). The techniques of this disclosure, however, are not limited
to any particular coding standard.

[0061] In general, video encoder 200 and video decoder 300 may perform block-based
coding of pictures. The term “block” generally refers to a structure including data to be
processed (e.g., encoded, decoded, or otherwise used in the encoding and/or decoding
process). For example, a block may include a two-dimensional matrix of samples of
luminance and/or chrominance data. In general, video encoder 200 and video decoder
300 may code video data represented in a YUV (e.g., Y, Cb, Cr) format. That is, rather
than coding red, green, and blue (RGB) data for samples of a picture, video encoder 200
and video decoder 300 may code luminance and chrominance components, where the
chrominance components may include both red hue and blue hue chrominance

components. In some examples, video encoder 200 converts received RGB formatted

WO 2021/061998 PCT/US2020/052509
15

data to a YUV representation prior to encoding, and video decoder 300 converts the YUV
representation to the RGB format. Alternatively, pre- and post-processing units (not
shown) may perform these conversions.

[0062] This disclosure may generally refer to coding (e.g., encoding and decoding) of
pictures to include the process of encoding or decoding data of the picture. Similarly, this
disclosure may refer to coding of blocks of a picture to include the process of encoding
or decoding data for the blocks, e.g., prediction and/or residual coding. An encoded video
bitstream generally includes a series of values for syntax elements representative of
coding decisions (e.g., coding modes) and partitioning of pictures into blocks. Thus,
references to coding a picture or a block should generally be understood as coding values
for syntax elements forming the picture or block.

[0063] HEVC defines various blocks, including coding units (CUs), prediction units
(PUs), and transform units (TUs). According to HEVC, a video coder (such as video
encoder 200) partitions a coding tree unit (CTU) into CUs according to a quadtree
structure. That is, the video coder partitions CTUs and CUs into four equal, non-
overlapping squares, and each node of the quadtree has either zero or four child nodes.
Nodes without child nodes may be referred to as “leaf nodes,” and CUs of such leaf nodes
may include one or more PUs and/or one or more TUs. The video coder may further
partition PUs and TUs. For example, in HEVC, a residual quadtree (RQT) represents
partitioning of TUs. In HEVC, PUs represent inter-prediction data, while TUs represent
residual data. CUs that are intra-predicted include intra-prediction information, such as
an intra-mode indication.

[0064] As another example, video encoder 200 and video decoder 300 may be configured
to operate according to JEM or VVC. According to JEM or VVC, a video coder (such as
video encoder 200) partitions a picture into a plurality of coding tree units (CTUs). Video
encoder 200 may partition a CTU according to a tree structure, such as a quadtree-binary
tree (QTBT) structure or Multi-Type Tree (MTT) structure. The QTBT structure removes
the concepts of multiple partition types, such as the separation between CUs, PUs, and
TUs of HEVC. A QTBT structure includes two levels: a first level partitioned according
to quadtree partitioning, and a second level partitioned according to binary tree
partitioning. A root node of the QTBT structure corresponds to a CTU. Leaf nodes of
the binary trees correspond to coding units (CUs).

[0065] In an MTT partitioning structure, blocks may be partitioned using a quadtree (QT)
partition, a binary tree (BT) partition, and one or more types of triple tree (TT) partitions.

WO 2021/061998 PCT/US2020/052509
16

A triple tree partition is a partition where a block is split into three sub-blocks. In some
examples, a triple tree partition divides a block into three sub-blocks without dividing the
original block through the center. The partitioning types in MTT (e.g., QT, BT, and TT),
may be symmetrical or asymmetrical.

[0066] In some examples, video encoder 200 and video decoder 300 may use a single
QTBT or MTT structure to represent each of the luminance and chrominance
components, while in other examples, video encoder 200 and video decoder 300 may use
two or more QTBT or MTT structures, such as one QTBT/MTT structure for the
luminance component and another QTBT/MTT structure for both chrominance
components (or two QTBT/MTT structures for respective chrominance components).
[0067] Video encoder 200 and video decoder 300 may be configured to use quadtree
partitioning per HEVC, QTBT partitioning, MTT partitioning, or other partitioning
structures. For purposes of explanation, the description of the techniques of this
disclosure is presented with respect to QTBT partitioning. However, it should be
understood that the techniques of this disclosure may also be applied to video coders
configured to use quadtree partitioning, or other types of partitioning as well.

[0068] This disclosure may use “NxN” and “N by N” interchangeably to refer to the
sample dimensions of a block (such as a CU or other video block) in terms of vertical and
horizontal dimensions, e.g., 16x16 samples or 16 by 16 samples. In general, a 16x16 CU
will have 16 samples in a vertical direction (y = 16) and 16 samples in a horizontal
direction (x = 16). Likewise, an NxN CU generally has N samples in a vertical direction
and N samples in a horizontal direction, where N represents a nonnegative integer value.
The samples in a CU may be arranged in rows and columns. Moreover, CUs need not
necessarily have the same number of samples in the horizontal direction as in the vertical
direction. For example, CUs may comprise NxM samples, where M is not necessarily
equal to N.

[0069] Video encoder 200 encodes video data for CUs representing prediction and/or
residual information, and other information. The prediction information indicates how
the CU is to be predicted in order to form a prediction block for the CU. The residual
information generally represents sample-by-sample differences between samples of the
CU prior to encoding and the prediction block.

[0070] To predict a CU, video encoder 200 may generally form a prediction block for the
CU through inter-prediction or intra-prediction. Inter-prediction generally refers to

predicting the CU from data of a previously coded picture, whereas intra-prediction

WO 2021/061998 PCT/US2020/052509
17

generally refers to predicting the CU from previously coded data of the same picture. To
perform inter-prediction, video encoder 200 may generate the prediction block using one
or more motion vectors. Video encoder 200 may generally perform a motion search to
identify a reference block that closely matches the CU, e.g., in terms of differences
between the CU and the reference block. Video encoder 200 may calculate a difference
metric using a sum of absolute difference (SAD), sum of squared differences (SSD), mean
absolute difference (MAD), mean squared differences (MSD), or other such difference
calculations to determine whether a reference block closely matches the current CU. In
some examples, video encoder 200 may predict the current CU using uni-directional
prediction or bi-directional prediction.

[0071] Some examples of JEM and VVC also provide an affine motion compensation
mode, which may be considered an inter-prediction mode. In affine motion compensation
mode, video encoder 200 may determine two or more motion vectors that represent non-
translational motion, such as zoom in or out, rotation, perspective motion, or other
irregular motion types.

[0072] To perform intra-prediction, video encoder 200 may select an intra-prediction
mode to generate the prediction block. Some examples of JEM and VVC provide sixty-
seven intra-prediction modes, including various directional modes, as well as planar mode
and DC mode. In general, video encoder 200 selects an intra-prediction mode that
describes neighboring samples to a current block (e.g., a block of a CU) from which to
predict samples of the current block. Such samples may generally be above, above and
to the left, or to the left of the current block in the same picture as the current block,
assuming video encoder 200 codes CTUs and CUs in raster scan order (left to right, top
to bottom).

[0073] Video encoder 200 encodes data representing the prediction mode for a current
block. For example, for inter-prediction modes, video encoder 200 may encode data
representing which of the various available inter-prediction modes is used, as well as
motion information for the corresponding mode. For uni-directional or bi-directional
inter-prediction, for example, video encoder 200 may encode motion vectors using
advanced motion vector prediction (AMVP) or merge mode. Video encoder 200 may use
similar modes to encode motion vectors for affine motion compensation mode.

[0074] Following prediction, such as intra-prediction or inter-prediction of a block, video
encoder 200 may calculate residual data for the block. The residual data, such as a

residual block, represents sample by sample differences between the block and a

WO 2021/061998 PCT/US2020/052509
18

prediction block for the block, formed using the corresponding prediction mode. Video
encoder 200 may apply one or more transforms to the residual block, to produce
transformed data in a transform domain instead of the sample domain. For example, video
encoder 200 may apply a discrete cosine transform (DCT), an integer transform, a wavelet
transform, or a conceptually similar transform to residual video data. Additionally, video
encoder 200 may apply a secondary transform following the first transform, such as a
mode-dependent non-separable secondary transform (MDNSST), a signal dependent
transform, a Karhunen-Loeve transform (KLT), or the like. Video encoder 200 produces
transform coefficients following application of the one or more transforms.

[0075] As noted above, following any transforms to produce transform coefficients, video
encoder 200 may perform quantization of the transform coefficients. Quantization
generally refers to a process in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. By performing the quantization process, video encoder 200 may reduce the
bit depth associated with some or all of the coefficients. For example, video encoder 200
may round an n-bit value down to an m-bit value during quantization, where » is greater
than m. In some examples, to perform quantization, video encoder 200 may perform a
bitwise right-shift of the value to be quantized.

[0076] Following quantization, video encoder 200 may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefticients at the front of the vector and to place lower energy
(and therefore higher frequency) transform coefficients at the back of the vector. In some
examples, video encoder 200 may utilize a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector, and then entropy encode the
quantized transform coefficients of the vector. In other examples, video encoder 200 may
perform an adaptive scan. After scanning the quantized transform coefficients to form
the one-dimensional vector, video encoder 200 may entropy encode the one-dimensional
vector, e.g., according to context-adaptive binary arithmetic coding (CABAC). Video
encoder 200 may also entropy encode values for syntax elements describing metadata
associated with the encoded video data for use by video decoder 300 in decoding the
video data.

[0077] To perform CABAC, video encoder 200 may assign a context within a context

model to a symbol to be transmitted. The context may relate to, for example, whether

WO 2021/061998 PCT/US2020/052509
19

neighboring values of the symbol are zero-valued or not. The probability determination
may be based on a context assigned to the symbol.

[0078] Video encoder 200 may further generate syntax data, such as block-based syntax
data, picture-based syntax data, and sequence-based syntax data, to video decoder 300,
e.g., in a picture header, a block header, a slice header, or other syntax data, such as a
sequence parameter set (SPS), picture parameter set (PPS), or video parameter set (VPS).
Video decoder 300 may likewise decode such syntax data to determine how to decode
corresponding video data.

[0079] In this manner, video encoder 200 may generate a bitstream including encoded
video data, e.g., syntax elements describing partitioning of a picture into blocks (e.g.,
CUs) and prediction and/or residual information for the blocks. Ultimately, video decoder
300 may receive the bitstream and decode the encoded video data.

[0080] In general, video decoder 300 performs a reciprocal process to that performed by
video encoder 200 to decode the encoded video data of the bitstream. For example, video
decoder 300 may decode values for syntax elements of the bitstream using CABAC in a
manner substantially similar to, albeit reciprocal to, the CABAC encoding process of
video encoder 200. The syntax elements may define partitioning information of a picture
into CTUs, and partitioning of each CTU according to a corresponding partition structure,
such as a QTBT structure, to define CUs of the CTU. The syntax elements may further
define prediction and residual information for blocks (e.g., CUs) of video data.

[0081] The residual information may be represented by, for example, quantized transform
coefficients. Video decoder 300 may inverse quantize and inverse transform the
quantized transform coefficients of a block to reproduce a residual block for the block.
Video decoder 300 uses a signaled prediction mode (intra- or inter-prediction) and related
prediction information (e.g., motion information for inter-prediction) to form a prediction
block for the block. Video decoder 300 may then combine the prediction block and the
residual block (on a sample-by-sample basis) to reproduce the original block. Video
decoder 300 may perform additional processing, such as performing a deblocking process
to reduce visual artifacts along boundaries of the block.

[0082] This disclosure may generally refer to “signaling” certain information, such as
syntax elements. The term “signaling” may generally refer to the communication of
values syntax elements and/or other data used to decode encoded video data. That is,
video encoder 200 may signal values for syntax elements in the bitstream. In general,

signaling refers to generating a value in the bitstream. As noted above, source device 102

WO 2021/061998 PCT/US2020/052509
20

may transport the bitstream to destination device 116 substantially in real time, or not in
real time, such as might occur when storing syntax elements to storage device 112 for
later retrieval by destination device 116.

[0083] FIGS. 2A and 2B are conceptual diagram illustrating an example quadtree binary
tree (QTBT) structure 130, and a corresponding coding tree unit (CTU) 132. The solid
lines represent quadtree splitting, and dotted lines indicate binary tree splitting. In each
split (i.e., non-leaf) node of the binary tree, one flag is signaled to indicate which splitting
type (i.e., horizontal or vertical) is used, where O indicates horizontal splitting and 1
indicates vertical splitting in this example. For the quadtree splitting, there is no need to
indicate the splitting type, since quadtree nodes split a block horizontally and vertically
into 4 sub-blocks with equal size. Accordingly, video encoder 200 may encode, and video
decoder 300 may decode, syntax elements (such as splitting information) for a region tree
level of QTBT structure 130 (i.e., the solid lines) and syntax elements (such as splitting
information) for a prediction tree level of QTBT structure 130 (i.e., the dashed lines).
Video encoder 200 may encode, and video decoder 300 may decode, video data, such as
prediction and transform data, for CUs represented by terminal leaf nodes of QTBT
structure 130.

[0084] In general, CTU 132 of FIG. 2B may be associated with parameters defining sizes
of blocks corresponding to nodes of QTBT structure 130 at the first and second levels.
These parameters may include a CTU size (representing a size of CTU 132 in samples),
a minimum quadtree size (MinQTSize, representing a minimum allowed quadtree leaf
node size), a maximum binary tree size (MaxBTSize, representing a maximum allowed
binary tree root node size), a maximum binary tree depth (MaxBTDepth, representing a
maximum allowed binary tree depth), and a minimum binary tree size (MinBTSize,
representing the minimum allowed binary tree leaf node size).

[0085] The root node of a QTBT structure corresponding to a CTU may have four child
nodes at the first level of the QTBT structure, each of which may be partitioned according
to quadtree partitioning. That is, nodes of the first level are either leaf nodes (having no
child nodes) or have four child nodes. The example of QTBT structure 130 represents
such nodes as including the parent node and child nodes having solid lines for branches.
If nodes of the first level are not larger than the maximum allowed binary tree root node
size (MaxBTSize), they can be further partitioned by respective binary trees. The binary
tree splitting of one node can be iterated until the nodes resulting from the split reach the

minimum allowed binary tree leaf node size (MinBTSize) or the maximum allowed

WO 2021/061998 PCT/US2020/052509
21

binary tree depth (MaxBTDepth). The example of QTBT structure 130 represents such
nodes as having dashed lines for branches. The binary tree leaf node is referred to as a
coding unit (CU), which is used for prediction (e.g., intra-picture or inter-picture
prediction) and transform, without any further partitioning. As discussed above, CUs
may also be referred to as “video blocks” or “blocks.”

[0086] In one example of the QTBT partitioning structure, the CTU size is set as 128x128
(luma samples and two corresponding 64x64 chroma samples), the MinQTSize is set as
16x16, the MaxBTSize is set as 64x64, the MinBTSize (for both width and height) is set
as 4, and the MaxBTDepth is set as 4. The quadtree partitioning is applied to the CTU
first to generate quad-tree leaf nodes. The quadtree leaf nodes may have a size from
16x16 (i.e., the MinQTSize) to 128x128 (i.e., the CTU size). If the leaf quadtree node is
128x128, it will not be further split by the binary tree, since the size exceeds the
MaxBTSize (i.e., 64x64, in this example). Otherwise, the leaf quadtree node will be
further partitioned by the binary tree. Therefore, the quadtree leaf node is also the root
node for the binary tree and has the binary tree depth as 0. When the binary tree depth
reaches MaxBTDepth (4, in this example), no further splitting is permitted. When the
binary tree node has width equal to MinBTSize (4, in this example), it implies no further
horizontal splitting is permitted. Similarly, a binary tree node having a height equal to
MinBTSize implies no further vertical splitting is permitted for that binary tree node. As
noted above, leaf nodes of the binary tree are referred to as CUs, and are further processed
according to prediction and transform without further partitioning.

[0087] FIG. 3 is a block diagram illustrating an example video encoder 200 that may
perform the techniques of this disclosure. FIG. 3 is provided for purposes of explanation
and should not be considered limiting of the techniques as broadly exemplified and
described in this disclosure. For purposes of explanation, this disclosure describes video
encoder 200 in the context of video coding standards such as the HEVC video coding
standard and the H.266 video coding standard in development. However, the techniques
of this disclosure are not limited to these video coding standards, and are applicable
generally to video encoding and decoding.

[0088] In the example of FIG. 3, video encoder 200 includes video data memory 230,
mode selection unit 202, residual generation unit 204, transform processing unit 206,
quantization unit 208, inverse quantization unit 210, inverse transform processing unit
212, reconstruction unit 214, filter unit 216, decoded picture buffer (DPB) 218, and

entropy encoding unit 220. Any or all of video data memory 230, mode selection unit

WO 2021/061998 PCT/US2020/052509
22

202, residual generation unit 204, transform processing unit 206, quantization unit 208,
inverse quantization unit 210, inverse transform processing unit 212, reconstruction unit
214, filter unit 216, DPB 218, and entropy encoding unit 220 may be implemented in one
Or more processors or in processing circuitry. Moreover, video encoder 200 may include
additional or alternative processors or processing circuitry to perform these and other
functions.

[0089] Video data memory 230 may store video data to be encoded by the components
of video encoder 200. Video encoder 200 may receive the video data stored in video data
memory 230 from, for example, video source 104 (FIG. 1). DPB 218 may act as a
reference picture memory that stores reference video data for use in prediction of
subsequent video data by video encoder 200. Video data memory 230 and DPB 218 may
be formed by any of a variety of memory devices, such as dynamic random access
memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive RAM
(MRAM), resistive RAM (RRAM), or other types of memory devices. Video data
memory 230 and DPB 218 may be provided by the same memory device or separate
memory devices. In various examples, video data memory 230 may be on-chip with other
components of video encoder 200, as illustrated, or off-chip relative to those components.
[0090] In this disclosure, reference to video data memory 230 should not be interpreted
as being limited to memory internal to video encoder 200, unless specifically described
as such, or memory external to video encoder 200, unless specifically described as such.
Rather, reference to video data memory 230 should be understood as reference memory
that stores video data that video encoder 200 receives for encoding (e.g., video data for a
current block that is to be encoded). Memory 106 of FIG. 1 may also provide temporary
storage of outputs from the various units of video encoder 200.

[0091] The various units of FIG. 3 are illustrated to assist with understanding the
operations performed by video encoder 200. The units may be implemented as fixed-
function circuits, programmable circuits, or a combination thereof. Fixed-function
circuits refer to circuits that provide particular functionality, and are preset on the
operations that can be performed. Programmable circuits refer to circuits that can
programmed to perform various tasks, and provide flexible functionality in the operations
that can be performed. For instance, programmable circuits may execute software or
firmware that cause the programmable circuits to operate in the manner defined by
instructions of the software or firmware. Fixed-function circuits may execute software

instructions (e.g., to receive parameters or output parameters), but the types of operations

WO 2021/061998 PCT/US2020/052509
23

that the fixed-function circuits perform are generally immutable. In some examples, the
one or more of the units may be distinct circuit blocks (fixed-function or programmable),
and in some examples, the one or more units may be integrated circuits.

[0092] Video encoder 200 may include arithmetic logic units (ALUs), elementary
function units (EFUs), digital circuits, analog circuits, and/or programmable cores,
formed from programmable circuits. In examples where the operations of video encoder
200 are performed using software executed by the programmable circuits, memory 106
(FIG. 1) may store the object code of the software that video encoder 200 receives and
executes, or another memory within video encoder 200 (not shown) may store such
instructions.

[0093] Video data memory 230 is configured to store received video data. Video encoder
200 may retrieve a picture of the video data from video data memory 230 and provide the
video data to residual generation unit 204 and mode selection unit 202. Video data in
video data memory 230 may be raw video data that is to be encoded.

[0094] Mode selection unit 202 includes a motion estimation unit 222, motion
compensation unit 224, and an intra-prediction unit 226. Mode selection unit 202 may
include additional functional units to perform video prediction in accordance with other
prediction modes. As examples, mode selection unit 202 may include a palette unit, an
intra-block copy unit (which may be part of motion estimation unit 222 and/or motion
compensation unit 224), an affine unit, a linear model (LM) unit, or the like.

[0095] Mode selection unit 202 generally coordinates multiple encoding passes to test
combinations of encoding parameters and resulting rate-distortion values for such
combinations. The encoding parameters may include partitioning of CTUs into CUs,
prediction modes for the CUs, transform types for residual data of the CUs, quantization
parameters for residual data of the CUs, and so on. Mode selection unit 202 may
ultimately select the combination of encoding parameters having rate-distortion values
that are better than the other tested combinations.

[0096] Video encoder 200 may partition a picture retrieved from video data memory 230
into a series of CTUs, and encapsulate one or more CTUs within a slice. Mode selection
unit 202 may partition a CTU of the picture in accordance with a tree structure, such as
the QTBT structure or the quad-tree structure of HEVC described above. As described
above, video encoder 200 may form one or more CUs from partitioning a CTU according
to the tree structure. Such a CU may also be referred to generally as a “video block™ or

“block.”

WO 2021/061998 PCT/US2020/052509
24

[0097] In general, mode selection unit 202 also controls the components thereof (e.g.,
motion estimation unit 222, motion compensation unit 224, and intra-prediction unit 226)
to generate a prediction block for a current block (e.g., a current CU, or in HEVC, the
overlapping portion of a PU and a TU). For inter-prediction of a current block, motion
estimation unit 222 may perform a motion search to identify one or more closely matching
reference blocks in one or more reference pictures (e.g., one or more previously coded
pictures stored in DPB 218). In particular, motion estimation unit 222 may calculate a
value representative of how similar a potential reference block is to the current block,
e.g., according to sum of absolute difference (SAD), sum of squared differences (SSD),
mean absolute difference (MAD), mean squared differences (MSD), or the like. Motion
estimation unit 222 may generally perform these calculations using sample-by-sample
differences between the current block and the reference block being considered. Motion
estimation unit 222 may identify a reference block having a lowest value resulting from
these calculations, indicating a reference block that most closely matches the current
block.

[0098] Motion estimation unit 222 may form one or more motion vectors (MVs) that
defines the positions of the reference blocks in the reference pictures relative to the
position of the current block in a current picture. Motion estimation unit 222 may then
provide the motion vectors to motion compensation unit 224, For example, for uni-
directional inter-prediction, motion estimation unit 222 may provide a single motion
vector, whereas for bi-directional inter-prediction, motion estimation unit 222 may
provide two motion vectors. Motion compensation unit 224 may then generate a
prediction block using the motion vectors. For example, motion compensation unit 224
may retrieve data of the reference block using the motion vector. As another example, if
the motion vector has fractional sample precision, motion compensation unit 224 may
interpolate values for the prediction block according to one or more interpolation filters.
Moreover, for bi-directional inter-prediction, motion compensation unit 224 may retrieve
data for two reference blocks identified by respective motion vectors and combine the
retrieved data, e.g., through sample-by-sample averaging or weighted averaging.

[0099] As another example, for intra-prediction, or intra-prediction coding, intra-
prediction unit 226 may generate the prediction block from samples neighboring the
current block. For example, for directional modes, intra-prediction unit 226 may
generally mathematically combine values of neighboring samples and populate these

calculated values in the defined direction across the current block to produce the

WO 2021/061998 PCT/US2020/052509
25

prediction block. As another example, for DC mode, intra-prediction unit 226 may
calculate an average of the neighboring samples to the current block and generate the
prediction block to include this resulting average for each sample of the prediction block.
[0100] Mode selection unit 202 provides the prediction block to residual generation unit
204. Residual generation unit 204 receives a raw, uncoded version of the current block
from video data memory 230 and the prediction block from mode selection unit 202.
Residual generation unit 204 calculates sample-by-sample differences between the
current block and the prediction block. The resulting sample-by-sample differences
define a residual block for the current block. In some examples, residual generation unit
204 may also determine differences between sample values in the residual block to
generate a residual block using residual differential pulse code modulation (RDPCM). In
some examples, residual generation unit 204 may be formed using one or more subtractor
circuits that perform binary subtraction.

[0101] In examples where mode selection unit 202 partitions CUs into PUs, each PU may
be associated with a luma prediction unit and corresponding chroma prediction units.
Video encoder 200 and video decoder 300 may support PUs having various sizes. As
indicated above, the size of a CU may refer to the size of the luma coding block of the
CU and the size of a PU may refer to the size of a luma prediction unit of the PU.
Assuming that the size of a particular CU is 2Nx2N, video encoder 200 may support PU
sizes of 2Nx2N or NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN,
Nx2N, NxN, or similar for inter prediction. Video encoder 200 and video decoder 300
may also support asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and
nRx2N for inter prediction.

[0102] In examples where mode selection unit does not further partition a CU into PUs,
each CU may be associated with a luma coding block and corresponding chroma coding
blocks. As above, the size of a CU may refer to the size of the luma coding block of the
CU. The video encoder 200 and video decoder 300 may support CU sizes of 2Nx2N,
2NxN, or Nx2N.

[0103] For other video coding techniques such as an intra-block copy mode coding, an
affine-mode coding, and linear model (LM) mode coding, as few examples, mode
selection unit 202, via respective units associated with the coding techniques, generates a
prediction block for the current block being encoded. In some examples, such as palette
mode coding, mode selection unit 202 may not generate a prediction block, and instead

generate syntax elements that indicate the manner in which to reconstruct the block based

WO 2021/061998 PCT/US2020/052509
26

on a selected palette. In such modes, mode selection unit 202 may provide these syntax
elements to entropy encoding unit 220 to be encoded.

[0104] As described above, residual generation unit 204 receives the video data for the
current block and the corresponding prediction block. Residual generation unit 204 then
generates a residual block for the current block. To generate the residual block, residual
generation unit 204 calculates sample-by-sample differences between the prediction
block and the current block.

[0105] Transform processing unit 206 applies one or more transforms to the residual
block to generate a block of transform coefficients (referred to herein as a “transform
coefficient block™). Transform processing unit 206 may apply various transforms to a
residual block to form the transform coefficient block. For example, transform processing
unit 206 may apply a discrete cosine transform (DCT), a directional transform, a
Karhunen-Loeve transform (KLT), or a conceptually similar transform to a residual
block. In some examples, transform processing unit 206 may perform multiple
transforms to a residual block, e.g., a primary transform and a secondary transform, such
as a rotational transform. In some examples, transform processing unit 206 does not apply
transforms to a residual block.

[0106] Quantization unit 208 may quantize the transform coefficients in a transform
coefficient block, to produce a quantized transform coefficient block. Quantization unit
208 may quantize transform coefficients of a transform coefficient block according to a
quantization parameter (QP) value associated with the current block. Video encoder 200
(e.g., via mode selection unit 202) may adjust the degree of quantization applied to the
coefficient blocks associated with the current block by adjusting the QP value associated
with the CU. Quantization may introduce loss of information, and thus, quantized
transform coefficients may have lower precision than the original transform coefficients
produced by transform processing unit 206.

[0107] Inverse quantization unit 210 and inverse transform processing unit 212 may
apply inverse quantization and inverse transforms to a quantized transform coefficient
block, respectively, to reconstruct a residual block from the transform coefficient block.
Reconstruction unit 214 may produce a reconstructed block corresponding to the current
block (albeit potentially with some degree of distortion) based on the reconstructed
residual block and a prediction block generated by mode selection unit 202. For example,

reconstruction unit 214 may add samples of the reconstructed residual block to

WO 2021/061998 PCT/US2020/052509
27

corresponding samples from the prediction block generated by mode selection unit 202
to produce the reconstructed block.

[0108] Filter unit 216 may perform one or more filter operations on reconstructed blocks.
For example, filter unit 216 may perform deblocking operations to reduce blockiness
artifacts along edges of CUs. Operations of filter unit 216 may be skipped, in some
examples.

[0109] Video encoder 200 stores reconstructed blocks in DPB 218. For instance, in
examples where operations of filter unit 216 are not needed, reconstruction unit 214 may
store reconstructed blocks to DPB 218. In examples where operations of filter unit 216
are needed, filter unit 216 may store the filtered reconstructed blocks to DPB 218. Motion
estimation unit 222 and motion compensation unit 224 may retrieve a reference picture
from DPB 218, formed from the reconstructed (and potentially filtered) blocks, to inter-
predict blocks of subsequently encoded pictures. In addition, intra-prediction unit 226
may use reconstructed blocks in DPB 218 of a current picture to intra-predict other blocks
in the current picture.

[0110] In general, entropy encoding unit 220 may entropy encode syntax elements
received from other functional components of video encoder 200. For example, entropy
encoding unit 220 may entropy encode quantized transform coefficient blocks from
quantization unit 208. As another example, entropy encoding unit 220 may entropy
encode prediction syntax elements (e.g., motion information for inter-prediction or intra-
mode information for intra-prediction) from mode selection unit 202. Entropy encoding
unit 220 may perform one or more entropy encoding operations on the syntax elements,
which are another example of video data, to generate entropy-encoded data. For example,
entropy encoding unit 220 may perform a context-adaptive variable length coding
(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation, a
Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
In some examples, entropy encoding unit 220 may operate in bypass mode where syntax
elements are not entropy encoded.

[0111] Video encoder 200 may output a bitstream that includes the entropy encoded
syntax elements needed to reconstruct blocks of a slice or picture. In particular, entropy

encoding unit 220 may output the bitstream.

WO 2021/061998 PCT/US2020/052509
28

[0112] The operations described above are described with respect to a block. Such
description should be understood as being operations for a luma coding block and/or
chroma coding blocks. As described above, in some examples, the luma coding block
and chroma coding blocks are luma and chroma components of a CU. In some examples,
the luma coding block and the chroma coding blocks are luma and chroma components
of a PU.

[0113] In some examples, operations performed with respect to a luma coding block need
not be repeated for the chroma coding blocks. As one example, operations to identify a
motion vector (MV) and reference picture for a luma coding block need not be repeated
for identifying a MV and reference picture for the chroma blocks. Rather, the MV for the
luma coding block may be scaled to determine the MV for the chroma blocks, and the
reference picture may be the same. As another example, the intra-prediction process may
be the same for the luma coding blocks and the chroma coding blocks.

[0114] As shown in FIG. 3, mode selection unit 202 may include a palette prediction unit
227, which may be configured to perform video compression using palette-mode
encoding. To code a current block of video data using palette-mode encoding, palette
prediction unit 227 may generate a palette for the current block. The palette may include
entries with color values that correspond to the mostly commonly used colors in the
current block (e.g., determined using a histogram). Palette prediction unit 227 may
encode a representation of the palette and index values for samples of the current block
that map to entries in the palette.

[0115] In accordance with one or more techniques of this disclosure, palette prediction
unit 227 may dynamically adjust a maximum number of entries to be used for palette-
mode coding. For instance, based on a parameter of a first block of video data, palette
prediction unit 227 may determine a number of entries to be used for palette-mode coding
of the current block. As one specific example, palette prediction unit 227 may restrict the
maximum number of entries to a first value (e.g., 16) based on the parameter having a
first value or to a second value (e.g., 32), different that the first value, based on the
parameter having a second value. Hence, in some examples, the second value is greater
than the first value. In other words, palette prediction unit 227 may restrict the maximum
number of entries to be either 16 or 32. In this way, palette prediction unit 227 may
reduce the amount of system resources used for palette-mode coding.

[0116] Video encoder 200 represents an example of a device configured to encode video

data including a memory configured to store video data, and one or more processing units

WO 2021/061998 PCT/US2020/052509
29

implemented in circuitry and configured to determine, based on a parameter of a first
block of video data, a maximum number of entries to be used for palette-mode coding of
the current block; generate, based on the determined maximum size and based on a palette
predictor, a palette for the first block of video data, the palette including one or more
entries each including a palette index that is associated with a color value; decode, from
a coded video bitstream and for the first block of video data, index values for samples of
the first block that identify entries in the palette; and reconstruct, based on the index
values, the samples of the first block.

[0117] FIG. 4 is a block diagram illustrating an example video decoder 300 that may
perform the techniques of this disclosure. FIG. 4 is provided for purposes of explanation
and is not limiting on the techniques as broadly exemplified and described in this
disclosure. For purposes of explanation, this disclosure describes video decoder 300 is
described according to the techniques of JEM, VVC, and HEVC. However, the
techniques of this disclosure may be performed by video coding devices that are
configured to other video coding standards.

[0118] In the example of FIG. 4, video decoder 300 includes coded picture buffer (CPB)
memory 320, entropy decoding unit 302, prediction processing unit 304, inverse
quantization unit 306, inverse transform processing unit 308, reconstruction unit 310,
filter unit 312, and decoded picture buffer (DPB) 314. Any or all of CPB memory 320,
entropy decoding unit 302, prediction processing unit 304, inverse quantization unit 300,
inverse transform processing unit 308, reconstruction unit 310, filter unit 312, and DPB
314 may be implemented in one or more processors or in processing circuitry. Moreover,
video decoder 300 may include additional or alternative processors or processing circuitry
to perform these and other functions.

[0119] Prediction processing unit 304 includes motion compensation unit 316 and intra-
prediction unit 318. Prediction processing unit 304 may include addition units to perform
prediction in accordance with other prediction modes. As examples, prediction
processing unit 304 may include a palette unit, an intra-block copy unit (which may form
part of motion compensation unit 316), an affine unit, a linear model (LM) unit, or the
like. In other examples, video decoder 300 may include more, fewer, or different
functional components.

[0120] CPB memory 320 may store video data, such as an encoded video bitstream, to
be decoded by the components of video decoder 300. The video data stored in CPB

memory 320 may be obtained, for example, from computer-readable medium 110 (FIG.

WO 2021/061998 PCT/US2020/052509
30

1). CPB memory 320 may include a CPB that stores encoded video data (e.g., syntax
elements) from an encoded video bitstream. Also, CPB memory 320 may store video
data other than syntax elements of a coded picture, such as temporary data representing
outputs from the various units of video decoder 300. DPB 314 generally stores decoded
pictures, which video decoder 300 may output and/or use as reference video data when
decoding subsequent data or pictures of the encoded video bitstream. CPB memory 320
and DPB 314 may be formed by any of a variety of memory devices, such as dynamic
random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. CPB memory 320 and DPB 314 may be provided by the same memory device
or separate memory devices. In various examples, CPB memory 320 may be on-chip
with other components of video decoder 300, or off-chip relative to those components.
[0121] Additionally or alternatively, in some examples, video decoder 300 may retrieve
coded video data from memory 120 (FIG. 1). That is, memory 120 may store data as
discussed above with CPB memory 320. Likewise, memory 120 may store instructions
to be executed by video decoder 300, when some or all of the functionality of video
decoder 300 is implemented in software to executed by processing circuitry of video
decoder 300.

[0122] The various units shown in FIG. 4 are illustrated to assist with understanding the
operations performed by video decoder 300. The units may be implemented as fixed-
function circuits, programmable circuits, or a combination thereof. Similar to FIG. 3,
fixed-function circuits refer to circuits that provide particular functionality, and are preset
on the operations that can be performed. Programmable circuits refer to circuits that can
programmed to perform various tasks, and provide flexible functionality in the operations
that can be performed. For instance, programmable circuits may execute software or
firmware that cause the programmable circuits to operate in the manner defined by
instructions of the software or firmware. Fixed-function circuits may execute software
instructions (e.g., to receive parameters or output parameters), but the types of operations
that the fixed-function circuits perform are generally immutable. In some examples, the
one or more of the units may be distinct circuit blocks (fixed-function or programmable),
and in some examples, the one or more units may be integrated circuits.

[0123] Video decoder 300 may include ALUs, EFUs, digital circuits, analog circuits,
and/or programmable cores formed from programmable circuits. In examples where the

operations of video decoder 300 are performed by software executing on the

WO 2021/061998 PCT/US2020/052509
31

programmable circuits, on-chip or off-chip memory may store instructions (e.g., object
code) of the software that video decoder 300 receives and executes.

[0124] Entropy decoding unit 302 may receive encoded video data from the CPB and
entropy decode the video data to reproduce syntax elements. Prediction processing unit
304, inverse quantization unit 306, inverse transform processing unit 308, reconstruction
unit 310, and filter unit 312 may generate decoded video data based on the syntax
elements extracted from the bitstream.

[0125] In general, video decoder 300 reconstructs a picture on a block-by-block basis.
Video decoder 300 may perform a reconstruction operation on each block individually
(where the block currently being reconstructed, i.e., decoded, may be referred to as a
“current block™).

[0126] Entropy decoding unit 302 may entropy decode syntax elements defining
quantized transform coefficients of a quantized transform coefficient block, as well as
transform information, such as a quantization parameter (QP) and/or transform mode
indication(s). Inverse quantization unit 306 may use the QP associated with the quantized
transform coefficient block to determine a degree of quantization and, likewise, a degree
of inverse quantization for inverse quantization unit 306 to apply. Inverse quantization
unit 306 may, for example, perform a bitwise left-shift operation to inverse quantize the
quantized transform coefficients. Inverse quantization unit 306 may thereby form a
transform coefficient block including transform coefficients.

[0127] After inverse quantization unit 306 forms the transform coefficient block, inverse
transform processing unit 308 may apply one or more inverse transforms to the transform
coefficient block to generate a residual block associated with the current block. For
example, inverse transform processing unit 308 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational
transform, an inverse directional transform, or another inverse transform to the coefficient
block.

[0128] Furthermore, prediction processing unit 304 generates a prediction block
according to prediction information syntax elements that were entropy decoded by
entropy decoding unit 302. For example, if the prediction information syntax elements
indicate that the current block is inter-predicted, motion compensation unit 316 may
generate the prediction block. In this case, the prediction information syntax elements
may indicate a reference picture in DPB 314 from which to retrieve a reference block, as

well as a motion vector identifying a location of the reference block in the reference

WO 2021/061998 PCT/US2020/052509
32

picture relative to the location of the current block in the current picture. Motion
compensation unit 316 may generally perform the inter-prediction process in a manner
that is substantially similar to that described with respect to motion compensation unit
224 (FIG. 3).

[0129] As another example, if the prediction information syntax elements indicate that
the current block is intra-predicted, intra-prediction unit 318 may generate the prediction
block according to an intra-prediction mode indicated by the prediction information
syntax elements. Again, intra-prediction unit 318 may generally perform the intra-
prediction process in a manner that is substantially similar to that described with respect
to intra-prediction unit 226 (FIG. 3). Intra-prediction unit 318 may retrieve data of
neighboring samples to the current block from DPB 314.

[0130] Reconstruction unit 310 may reconstruct the current block using the prediction
block and the residual block. For example, reconstruction unit 310 may add samples of
the residual block to corresponding samples of the prediction block to reconstruct the
current block.

[0131] Filter unit 312 may perform one or more filter operations on reconstructed blocks.
For example, filter unit 312 may perform deblocking operations to reduce blockiness
artifacts along edges of the reconstructed blocks. Operations of filter unit 312 are not
necessarily performed in all examples.

[0132] Video decoder 300 may store the reconstructed blocks in DPB 314. As discussed
above, DPB 314 may provide reference information, such as samples of a current picture
for intra-prediction and previously decoded pictures for subsequent motion
compensation, to prediction processing unit 304. Moreover, video decoder 300 may
output decoded pictures from DPB for subsequent presentation on a display device, such
as display device 118 of FIG. 1.

[0133] As shown in FIG. 4, prediction processing unit 304 may include a palette
prediction unit 319, which may be configured to perform video compression using
palette-mode decoding. To decode a current block of video data using palette-mode
encoding, palette prediction unit 319 may generate a palette for the current block. The
palette may include entries with color values that correspond to the mostly commonly
used colors in the current block (e.g., determined using a histogram). Palette prediction
unit 319 may decode a representation of index values for samples of the current block that

map to entries in the palette. Palette prediction unit 319 may reconstruct the samples of

WO 2021/061998 PCT/US2020/052509
33

the current block based on the index values (e.g., and any separately signalled escape
samples).

[0134] In accordance with one or more techniques of this disclosure, palette prediction
unit 319 may dynamically adjust a maximum number of entries to be used for palette-
mode coding. For instance, based on a parameter of a first block of video data, palette
prediction unit 319 may determine a number of entries to be used for palette-mode coding
of the current block. As one specific example, palette prediction unit 319 may restrict the
maximum number of entries to a first value (e.g., 16) based on the parameter having a
first value or to a second value (e.g., 32), different than the first value, based on the
parameter having a second value. In other words, palette prediction unit 319 may restrict
the maximum number of entries to be either 16 or 32. Hence, in some examples, the
second value is greater than the first value. In this way, palette prediction unit 319 may
reduce the amount of system resources used for palette-mode coding.

[0135] In this manner, video decoder 300 represents an example of a video decoding
device including a memory configured to store video data, and one or more processing
units implemented in circuitry and configured to determine, based on a parameter of a
first block of video data, a maximum number of entries to be used for palette-mode coding
of the current block; generate, based on the determined maximum size and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value; decode,
from a coded video bitstream and for the first block of video data, index values for
samples of the first block that identify entries in the palette; and reconstruct, based on the
index values, the samples of the first block.

[0136] FIG. 5 is a conceptual diagram illustrating an example of determining a palette for
coding video data, consistent with techniques of this disclosure. The example of FIG. 5
includes a picture 1780 having a first coding unit (CU) 1800 that is associated with first
palettes 1840 and a second CU 1880 that is associated with second palettes 1920. As
described in greater detail below and in accordance with the techniques of this disclosure,
second palettes 1920 are based on first palettes 1840. Picture 1780 also includes block
1960 coded with an intra-prediction coding mode and block 2000 that is coded with an
inter-prediction coding mode.

[0137] The techniques of FIG. 5 are described in the context of video encoder 200 (FIG.
1 and FIG. 2) and video decoder 300 (FIG. 1 and FIG. 4) and with respect to the HEVC

Standard for purposes of explanation. However, it should be understood that the

WO 2021/061998 PCT/US2020/052509
34

techniques of this disclosure are not limited in this way, and may be applied by other
video coding processors and/or devices in other video coding processes and/or standards
(e.g., VVO).

[0138] In general, a palette refers to a number of pixel values that are dominant and/or
representative for a CU currently being coded, such as CU 1880 in the example of FIG. 5.
First palettes 1840 and second palettes 1920 are shown as including multiple palettes. In
some examples, a video coder (such as video encoder 200 or video decoder 300) may
code palettes separately for each color component of a CU. For example, video encoder
200 may encode a palette for a luma (Y) component of a CU, another palette for a chroma
(U) component of the CU, and yet another palette for the chroma (V) component of the
CU. In this example, entries of the Y palette may represent Y values of pixels of the CU,
entries of the U palette may represent U values of pixels of the CU, and entries of the V
palette may represent V values of pixels of the CU. In another example, video encoder
20 may encode a palette for a luma (Y) component of a CU, and another palette for two
components (U, V) of the CU. In this example, entries of the Y palette may represent Y
values of pixels of the CU, and entries of the U-V palette may represent U-V value pairs
of pixels of the CU.

[0139] In other examples, video encoder 200 may encode a single palette for all color
components of a CU. In this example, video encoder 200 may encode a palette having an
i-th entry that is a triple value, including Y1, Ui, and Vi. In this case, the palette includes
values for each of the components of the pixels. Accordingly, the representation of
palettes 1840 and 1920 as a set of palettes having multiple individual palettes is merely
one example and not intended to be limiting.

[0140] In the example of FIG. 5, first palettes 1840 includes three entries 2020-2060
having entry index value 1, entry index value 2, and entry index value 3, respectively.
Entries 2020-2060 relate the index values to pixel values including pixel value A, pixel
value B, and pixel value C, respectively. As described herein, rather than coding the
actual pixel values of first CU 180, a video coder (such as video encoder 200 or video
decoder 300) may use palette-based coding to code the pixels of the block using the
indices 1-3. That is, for each pixel position of first CU 1800, video encoder 200 may
encode an index value for the pixel, where the index value is associated with a pixel value
in one or more of first palettes 1840. Video decoder 300 may obtain the index values
from a bitstream and reconstruct the pixel values using the index values and one or more

of first palettes 1840. Thus, first palettes 1840 are transmitted by video encoder 200 in

WO 2021/061998 PCT/US2020/052509
35

an encoded video data bitstream for use by video decoder 300 in palette-based decoding.
In general, one or more palettes may be transmitted for each CU or may be shared among
different CUs.

[0141] Video encoder 200 and video decoder 300 may determine second palettes 1920
based on first palettes 1840. For example, video encoder 200 may encode a
pred palette flag for each CU (including, as an example, second CU 1880) to indicate
whether the palette for the CU is predicted from one or more palettes associated with one
or more other CUs, such as neighboring CUs (spatially or based on scan order) or the
most frequent samples of a causal neighbor. For example, when the value of such a flag
is equal to one, video decoder 300 may determine that second palettes 1920 for second
CU 1880 are predicted from one or more already decoded palettes and therefore no new
palettes for second CU 1880 are included in a bitstream containing the pred palette flag.
When such a flag is equal to zero, video decoder 300 may determine that palette 1920 for
second CU 1880 is included in the bitstream as a new palette. In some examples,
pred palette flag may be separately coded for each different color component of a CU
(e.g., three flags, one for Y, one for U, and one for V, for a CU in YUV video). In other
examples, a single pred_palette flag may be coded for all color components of a CU.
[0142] In the example above, the pred palette flag is signaled per-CU to indicate
whether any of the entries of the palette for the current block are predicted. In some
examples, one or more syntax elements may be signaled on a per-entry basis. That is, a
flag may be signaled for each entry of a palette predictor to indicate whether that entry is
present in the current palette. Asnoted above, if a palette entry is not predicted, the palette
entry may be explicitly signaled.

[0143] When determining second palettes 1920 relative to first palettes 1840 (e.g.,
pred palette flag is equal to one), video encoder 200 and/or video decoder 300 may
locate one or more blocks from which the predictive palettes, in this example first palettes
1840, are determined. The predictive palettes may be associated with one or more
neighboring CUs of the CU currently being coded (e.g., such as neighboring CUs
(spatially or based on scan order) or the most frequent samples of a causal neighbor), i.e.,
second CU 1880. The palettes of the one or more neighboring CUs may be associated
with a predictor palette. In some examples, such as the example illustrated in FIG. 5,
video encoder 200 and/or video decoder 300 may locate a left neighboring CU, first CU

1800, when determining a predictive palette for second CU 1880. In other examples,

WO 2021/061998 PCT/US2020/052509
36

video encoder 200 and/or video decoder 300 may locate one or more CUs in other
positions relative to second CU 1880, such as an upper CU, CU 1960.

[0144] Video encoder 200 and/or video decoder 300 may determine a CU for palette
prediction based on a hierarchy. For example, video encoder 200 and/or video decoder
300 may initially identify the left neighboring CU, first CU 1800, for palette prediction.
If the left neighboring CU is not available for prediction (e.g., the left neighboring CU is
coded with a mode other than a palette-based coding mode, such as an intra-prediction
more or intra-prediction mode, or is located at the left-most edge of a picture or slice)
video encoder 200 and/or video decoder 300 may identify the upper neighboring CU, CU
1960. Video encoder 200 and/or video decoder 300 may continue searching for an
available CU according to a predetermined order of locations until locating a CU having
a palette available for palette prediction. In some examples, video encoder 200 and/or
video decoder 300 may determine a predictive palette based on multiple blocks and/or
reconstructed samples of a neighboring block.

[0145] While the example of FIG. 5 illustrates first palettes 1840 as predictive palettes
from a single CU, first CU 1800, in other examples, video encoder 200 and/or video
decoder 300 may locate palettes for prediction from a combination of neighboring CUs.
For example, video encoder 200 and/or video decoder may apply one or more formulas,
functions, rules or the like to generate a palette based on palettes of one or a combination
of a plurality of neighboring CUs.

[0146] In still other examples, video encoder 200 and/or video decoder 300 may construct
a candidate list including a number of potential candidates for palette prediction. A
pruning process may be applied at both video encoder 200 and video decoder 300 to
remove duplicated candidates in the list. In such examples, video encoder 200 may
encode an index to the candidate list to indicate the candidate CU in the list from which
the current CU used for palette prediction is selected (e.g., copies the palette). Video
decoder 300 may construct the candidate list in the same manner, decode the index, and
use the decoded index to select the palette of the corresponding CU for use with the
current CU.

[0147] In an example for purposes of illustration, video encoder 200 and video decoder
300 may construct a candidate list that includes one CU that is positioned above the CU
currently being coded and one CU that is positioned to the left of the CU currently being
coded. In this example, video encoder 200 may encode one or more syntax elements to

indicate the candidate selection. For example, video encoder 200 may encode a flag

WO 2021/061998 PCT/US2020/052509
37

having a value of zero to indicate that the palette for the current CU is copied from the
CU positioned to the left of the current CU. Video encoder 200 may encode the flag
having a value of one to indicate that the palette for the current CU is copied from the CU
positioned above the current CU. Video decoder 300 decodes the flag and selects the
appropriate CU for palette prediction.

[0148] In still other examples, video encoder 200 and/or video decoder 300 determine the
palette for the CU currently being coded based on the frequency with which sample values
included in one or more other palettes occur in one or more neighboring CUs. For
example, video encoder 200 and/or video decoder 300 may track the colors associated
with the most frequently used index values during coding of a predetermined number of
CUs. Video encoder 200 and/or video decoder 300 may include the most frequently used
colors in the palette for the CU currently being coded.

[0149] In some examples, video encoder 200 and/or video decoder 300 may perform
entry-wise based palette prediction. For example, video encoder 200 may encode one or
more syntax elements, such as one or more flags, for each entry of a predictive palette
indicating whether the respective predictive palette entries are reused in the current palette
(e.g., whether pixel values in a palette of another CU are reused by the current palette).
In this example, video encoder 200 may encode a flag having a value equal to one for a
given entry when the entry is a predicted value from a predictive palette (e.g., a
corresponding entry of a palette associated with a neighboring CU). Video encoder 200
may encode a flag having a value equal to zero for a particular entry to indicate that the
particular entry is not predicted from a palette of another CU. In this example, video
encoder 200 may also encode additional data indicating the value of the non-predicted
palette entry.

[0150] In the example of FIG. 5, second palettes 1920 includes four entries 2080-2140
having entry index value 1, entry index value 2, entry index value 3, and entry index 4,
respectively. Entries 2080-2140 relate the index values to pixel values including pixel
value A, pixel value B, pixel value C, and pixel value D, respectively. Video encoder
200 and/or video decoder 300 may use any of the above-described techniques to locate
first CU 1800 for purposes of palette prediction and copy entries 1-3 of first palettes 184
to entries 1-3 of second palettes 1920 for coding second CU 1880. In this way, video
encoder 200 and/or video decoder 300 may determine second palettes 192 based on first
palettes 184. In addition, video encoder 200 and/or video decoder 300 may code data for

entry 4 to be included with second palettes 1920. Such information may include the

WO 2021/061998 PCT/US2020/052509
38

number of palette entries not predicted from a predictor palette and the pixel values
corresponding to those palette entries.

[0151] In some examples, according to aspects of this disclosure, one or more syntax
elements may indicate whether palettes, such as second palettes 1920, are predicted
entirely from a predictive palette (shown in FIG. 5 as first palettes 1840, but which may
be composed of entries from one or more blocks) or whether particular entries of second
palettes 1920 are predicted. For example, an initial syntax element may indicate whether
all of the entries are predicted. If the initial syntax element indicates that not all of the
entries are predicted (e.g., a flag having a value of 0), one or more additional syntax
elements may indicate which entries of second palettes 1920 are predicted from the
predictive palette.

[0152] FIG. 6 is a conceptual diagram illustrating an example of determining indices to
a palette for a block of pixels, consistent with techniques of this disclosure. For example,
FIG. 6 includes a map 2400 of index values (values 1, 2, and 3) that relate respective
positions of pixels associated with the index values to an entry of palettes 2440. Palettes
2440 may be determined in a similar manner as first palettes 1840 and second palettes
1920 described above with respect to FIG. 5.

[0153] Again, the techniques of FIG. 6 are described in the context of video encoder 200
(FIG. 1 and FIG. 3) and video decoder 300 (FIG. 1 and FIG. 4) and with respect to the
HEVC video coding standard for purposes of explanation. However, it should be
understood that the techniques of this disclosure are not limited in this way, and may be
applied by other video coding processors and/or devices in other video coding processes
and/or standards (e.g., VVC).

[0154] While map 2400 is illustrated in the example of FIG. 6 as including an index value
for each pixel position, it should be understood that in other examples, not all pixel
positions may be associated with an index value relating the pixel value to an entry of
palettes 2440. That is, as noted above, in some examples, video encoder 200 may encode
(and video decoder 300 may obtain, from an encoded bitstream) an indication of an actual
pixel value (or its quantized version) for a position in map 2400 if the pixel value is not
included in palettes 2440.

[0155] In some examples, video encoder 200 and video decoder 300 may be configured
to code an additional map indicating which pixel positions are associated with index
values. For example, assume that the (i, j) entry in the map corresponds to the (i, J)

position of a CU. Video encoder 200 may encode one or more syntax elements for each

WO 2021/061998 PCT/US2020/052509
39

entry of the map (i.e., each pixel position) indicating whether the entry has an associated
index value. For example, video encoder 200 may encode a flag having a value of one to
indicate that the pixel value at the (i, j) location in the CU is one of the values in palettes
2440. Video encoder 200 may, in such an example, also encode a palette index (shown
in the example of FIG. 6 as values 1-3) to indicate that pixel value in the palette and to
allow video decoder to reconstruct the pixel value. In instances in which palettes 2440
include a single entry and associated pixel value, video encoder 200 may skip the
signaling of the index value. Video encoder 200 may encode the flag to have a value of
zero to indicate that the pixel value at the (i,) location in the CU is not one of the values
in palettes 2440. In this example, video encoder 200 may also encode an indication of
the pixel value for use by video decoder 300 in reconstructing the pixel value. In some
instances, the pixel value may be coded in a lossy manner.

[0156] The value of a pixel in one position of a CU may provide an indication of values
of one or more other pixels in other positions of the CU. For example, there may be a
relatively high probability that neighboring pixel positions of a CU will have the same
pixel value or may be mapped to the same index value (in the case of lossy coding, in
which more than one pixel value may be mapped to a single index value).

[0157] Accordingly, video encoder 200 may encode one or more syntax elements
indicating a number of consecutive pixels or index values in a given scan order that have
the same pixel value or index value. As noted above, the string of like-valued pixel or
index values may be referred to herein as a run. In an example for purposes of illustration,
if two consecutive pixels or indices in a given scan order have different values, the run is
equal to zero. If two consecutive pixels or indices in a given scan order have the same
value but the third pixel or index in the scan order has a different value, the run is equal
to one. For three consecutive indices or pixels with the same value, the run is two, and
so forth. Video decoder 300 may obtain the syntax elements indicating a run from an
encoded bitstream and use the data to determine the number of consecutive locations that
have the same pixel or index value.

[0158] The number of indices that may be included in a run may be impacted by the scan
order. For example, consider a raster scan of lines 2660, 2680, and 2700 of map 2400.
Assuming a horizontal, left to right scan direction (such as a raster scanning order), row
2660 includes three index values of “1,” two index values of “2.” and three index values
of “3.” Row 2680 includes five index values of “1” and three index values of “3.” In this

example, for row 2660, video encoder 200 may encode syntax elements indicating that

WO 2021/061998 PCT/US2020/052509
40

the first value of row 2660 (the leftmost value of the row) is 1 with a run of 2, followed
by an index value of 2 with a run of 1, followed by an index value of 3 with a run of 2.
Following the raster scan, video encoder 200 may then begin coding row 2680 with the
leftmost value. For example, video encoder 200 may encode syntax elements indicating
that the first value of row 2680 is 1 with a run of 4, followed by an index value of 3 with
arun of 2. Video encoder 200 may proceed in the same manner with line 2700.

[0159] Hence, in the raster scan order, the first index of a current line may be scanned
directly after the last index of a previous line. However, in some examples, it may not be
desirable to scan the indices in a raster scan order. For instance, it may not be desirable
to scan the indices in a raster scan order where a first line of a block of video data (e.g.,
row 2660) includes a first pixel adjacent to a first edge of the block of video data (e.g.,
the left most pixel of row 2660, which has an index value of 1) and a last pixel adjacent
to a second edge of the block of video data (e.g., the right most pixel of row 2660, which
has an index value of 3), a second line of the block of video data (e.g., row 2680) includes
a first pixel adjacent to the first edge of the block of video data (e.g., the left most pixel
of row 2680, which has an index value of 1) and a last pixel adjacent to the second edge
of the block of video data (e.g., the right most pixel of row 2680, which has an index
value of 3), the last pixel of the first line is adjacent to the last pixel of the second line,
and the first edge and the second edge are parallel, and the last pixel in the first line has
the same index value as the last pixel in the second line, but has a different index value
from the first pixel in the second line. This situation (i.e., where the index value of last
pixel in the first line is the same as the last pixel in the second line, but different from the
first pixel in the second line) may occur more frequently in computer generated screen
content than other types of video content.

[0160] In some examples, video encoder 200 may utilize a snake scan order (e.g., a
traverse scan order) when encoding the indices of the map. For instance, video encoder
200 may scan the last pixel of the second line directly after the last pixel of the first line.
In this way, video encoder 200 may improve the efficiency of run-length coding.

[0161] For example, as opposed to using a raster scan order, video encoder 200 may use
a snake scan order to code the values of map 2400. In an example for purposes of
illustration, consider rows 2660, 2680, and 2700 of map 2400. Using a snake scan order
(such as a snake scanning order), video encoder 200 may code the values of map 2400
beginning with the left position of row 2660, proceeding through to the right most position

of row 2660, moving down to the left most position of row 2680, proceeding through to

WO 2021/061998 PCT/US2020/052509
41

the left most position of row 2680, and moving down to the left most position of row
2700. For instance, video encoder 200 may encode one or more syntax elements
indicating that the first position of row 2660 is one and that the next run of two
consecutive entries in the scan direction are the same as the first position of row 2660.
[0162] Video encoder 200 may encode one or more syntax elements indicating that the
next position of row 2660 (i.e., the fourth position, from left to right) is two and that the
next consecutive entry in the scan direction are the same as the fourth position of row
2660. Video encoder 200 may encode one or more syntax elements indicating that the
next position of row 2660 (i.e., the sixth position) is three and that the next run of five
consecutive entries in the scan direction are the same as the sixth position of row 2660.
Video encoder 200 may encode one or more syntax elements indicating that the next
position in the scan direction (i.e., the fourth position of row 268, from right to left) of
row 2680 is one and that the next run of nine consecutive entries in the scan direction are
the same as the fourth position of row 2680.

[0163] In this way, by using a snake scan order, video encoder 200 may encode longer
length runs, which may improve coding efficiency. For example, using the raster scan,
the final run of row 2660 (for the index value 3) is equal to 2. Using the snake scan,
however, the final run of row 2660 extends into row 2680 and is equal to 5.

[0164] Video decoder 300 may receive the syntax elements described above and
reconstruct rows 2660, 2680, and 2700. For example, video decoder 300 may obtain,
from an encoded bitstream, data indicating an index value for a position of map 2400
currently being coded. Video decoder 300 may also obtain data indicating the number of
consecutive positions in the scan order having the same index value.

[0165] As discussed above, the video coder may code the indices of the palette index map
using horizontal and vertical traverse scans (e.g., as shown in FIG. 7). In some examples,
the video coder may signal a syntax element that explicitly indicates the scan order (e.g.,
palette transpose flag).

[0166] The video coder may code the palette indices using two main palette sample
modes: 'INDEX' and 'COPY_ABOVE'. The video coder may signal which mode is used.
For instance, the mode is signaled using a flag except for the top row when horizontal
scan is used, the first column when the vertical scan is used, or when the previous mode
was 'COPY_ABOVE' Inthe 'COPY ABOVE' mode, the palette index of the sample in
the row above may be copied. In the 'INDEX' mode, the palette index is explicitly

WO 2021/061998 PCT/US2020/052509
42

signaled. For both 'INDEX' and 'COPY_ABOVE' modes, a run value may be signaled
which specifies the number pixels that are coded using the same mode.

[0167] The video coder may utilize a specific coding order for the index map. One
example coding order for index map is as follows: First, the number of index values for
the CU may be signaled. This may be followed by signaling of the actual index values for
the entire CU using truncated binary coding. Both the number of indices as well as the
index values may be coded in bypass mode. This groups the index-related bypass bins
together. Then the palette mode (INDEX or COPY ABOVE) and run are signaled in an
interleaved manner. Finally, the component escape values corresponding to the escape
samples for the entire CU may be grouped together and coded in bypass mode. An
additional syntax element, last run_type flag, may be signaled after signaling the index
values. This syntax element, in conjunction with the number of indices, may eliminate
the need to signal the run value corresponding to the last run in the block.

[0168] As discussed above, the video coder may maintain a palette predictor, with
maximum size equivalent to 63 in Virtual Test Model 6.0 of VVC (VIM®6.0), for coding
the palette table. After processing a palette coding unit (CU), the video coder may update
the palette predictor with the palette table of the CU, which may include the entries
predicted from the previous palette predictor and the new signaled colours, and the
predictor entries (from the previous palette predictor) which are not used to predict the
palette table will be inserted at the end of the updated predictor until the maximum
predictor size is reached. As discussed above, the latter process may be referred to as
palette stuffing. FIGS. 8 and 9 are conceptual diagrams illustrating palette table
derivation and updating of a palette predictor.

[0169] As shown in FIG. 8, palette table 804 may be derived from input palette predictor
802. For instance, a video decoder may determine a binary flag for each respective entry
of input palette predictor 802 indicating whether the respective entry is to be included in
palette table 802. In the example of FIG. 8, the video decoder may determine, based on
the flags, that the entries with diagonal fill, i.e., hatching, are to be included in palette
table 802. The video decoder may also receive values for one or more new entries to be
included in palette table 804 that are not included in input palette predictor 802. In the
example of FIG. 8, the video decoder may receive values for each of new colors 806.
[0170] As shown in FIG. 9, input palette predictor 802 may be updated based on palette
table 804 to generate updated palette predictor 902. For instance, the video decoder may
generate updated palette predictor 902 by placing the entries of palette table 804 at the

WO 2021/061998 PCT/US2020/052509
43

beginning and then “stuffing” the palette predictor with entries from input palette
predictor 802 (other than those already included in palette table 804) until a size of
updated palette predictor 902 reaches a maximum predictor size. As shown in FIG. 9, not
all entries of input palette predictor 802 may be included in updated palette predictor 902.
[0171] The palette stuffing, however, may take multiple cycles to complete because the
video coder (e.g., encoder/decoder) may need to check sequentially whether each entry
in the predictor is used to predict the palette table. After checking predictor entries, filling
in the updated color entries will also be sequential process. Since the maximum palette
predictor size currently set in Virtual Test Model 6.0 of VVC (VIM6.0) is 63 and the
predictors have to be updated before encoding/decoding the next palette coded coding
units, for small blocks such as 4x4, 4x8, or 8x4, the palette predictor update process can
be a complex, resource intensive procedure, which may result in a bottleneck and
introduce latency in the coding pipeline.

[0172] This disclosure describes several techniques for reducing the complexity of
palette-mode coding, such as palette predictor updating. These techniques may be of
particular benefit for small coding units.

[0173] In accordance with a first technique of this disclosure, a video coder may predict
a palette predictor from a restricted (e.g., limited) set of entries. For instance, the entries
in palette predictor that can be used in predicting palette table may be restricted.

[0174] In a first example of the first technique, for coding unit (CU) of size WxH, the
video coder may only use the first WxH entries in the palette predictor for predicting the
palette table in the CU. FIG. 10 is a conceptual diagram illustrating an example of using
only the first WxH entries in a palette predictor for predicting the palette predictor. As a
result, the number of predictor entries that the encoder ro decoder needs to check (whether
the element is used for prediction or not) for palette stuffing is reduced to WxH. For
predictor entries after the WxH’th position (entries with vertical striped fill, i.e., hatching,
in FIG. 10), since the entries are not used for prediction, the elements can be directly
copied until the maximum palette size is reached.

[0175] In a second example of the first technique, besides restricting the elements that
can be used for prediction, the number of elements updated in the predictor is also
restricted. For example, as shown in FIG. 11, for coding unit (CU) of size WxH, besides
restricting the palette predictor used for predicting to only the first WxH entries in the
palette predictor, same as the first example of the first technique, the number of predictor

elements allowed to be updated with palette stuffing is also restricted to the first WxH

WO 2021/061998 PCT/US2020/052509
44

elements. After the WxH’s element, the predictor stays the same as the previous one
(e.g., the same as the previous predictor).

[0176] In accordance with a second technique of this disclosure, the video coder may
restrict the maximum size of a palette, such as the palette predictor. In a first example of
the second technique, the video coder may dynamically restrict the maximum size of
palette predictor to a smaller value, e.g., 32 or 16 (smaller being relative to a default
value). In this way, the video coder may reduce the overall cycles needed to complete
palette predictor update. Also, in this way, the video coder may reduce the buffer size
needed to maintain the palette predictor. In a second example of the second technique,
the video coder may restrict the maximum size of palette predictor to a smaller value for
small coding units. For example, for block of size WxH smaller than a block size
threshold (e.g., 63), the video coder may restrict the maximum size of the updated palette
predictor to WxH. For instance, the video coder may selectively restrict the maximum
size of a palette predictor based on a block size.

[0177] In accordance with a third technique of this disclosure, a video coder may omit or
bypass palette predictor stuffing for small coding units. As a first example of the third
technique, the video coder may not update the palette predictor for coding units (CUs) of
size smaller than the maximum palette predictor size (currently 63 in VIM®6.0) or for CUs
of size smaller than the current palette predictor size. When the palette predictor is not
updated before coding a current CU, the video coder may utilize the same palette predictor
as for a previous CU. As a second example of the third technique, the video coder may
update the palette predictor to be the palette table of the CU for coding units of size
smaller than the maximum palette predictor size (currently 63 in VIM6.0) the palette
predictor.

[0178] FIG. 12 is a flowchart illustrating an example method for encoding a current
block. The current block may comprise a current CU. Although described with respect
to video encoder 200 (FIGS. 1 and 3), it should be understood that other devices may be
configured to perform a method similar to that of FIG. 12.

[0179] In this example, video encoder 200 initially predicts the current block (350). For
example, video encoder 200 may form a prediction block for the current block. Video
encoder 200 may then calculate a residual block for the current block (352). To calculate
the residual block, video encoder 200 may calculate a difference between the original,
uncoded block and the prediction block for the current block. Video encoder 200 may

then transform and quantize coefficients of the residual block (354). Next, video encoder

WO 2021/061998 PCT/US2020/052509
45

200 may scan the quantized transform coefficients of the residual block (356). During
the scan, or following the scan, video encoder 200 may entropy encode the coefficients
(358). For example, video encoder 200 may encode the coefficients using CAVLC or
CABAC. Video encoder 200 may then output the entropy coded data of the block (360).
[0180] FIG. 13 is a flowchart illustrating an example method for decoding a current block
of video data. The current block may comprise a current CU. Although described with
respect to video decoder 300 (FIGS. 1 and 4), it should be understood that other devices
may be configured to perform a method similar to that of FIG. 13.

[0181] Video decoder 300 may receive entropy coded data for the current block, such as
entropy coded prediction information and entropy coded data for coefficients of a residual
block corresponding to the current block (370). Video decoder 300 may entropy decode
the entropy coded data to determine prediction information for the current block and to
reproduce coefficients of the residual block (372). Video decoder 300 may predict the
current block (374), e.g., using an intra- or inter-prediction mode as indicated by the
prediction information for the current block, to calculate a prediction block for the current
block. Video decoder 300 may then inverse scan the reproduced coefficients (376), to
create a block of quantized transform coefficients. Video decoder 300 may then inverse
quantize and inverse transform the coefficients to produce a residual block (378). Video
decoder 300 may ultimately decode the current block by combining the prediction block
and the residual block (380).

[0182] FIG. 14 is a flowchart illustrating an example method for coding a block using
palette-mode compression, in accordance with one or more techniques of this disclosure.
Although described with respect to video decoder 300 (FIGS. 1 and 4), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 14. For instance, video encoder 200 may perform the method of FIG. 14.

[0183] Video decoder 300 may determine, based on a parameter of a first block of video
data, a maximum number of entries to be used for palette-mode coding of the current
block (1402). For instance, palette prediction unit 319 of video decoder 300 may
determine, based on a value of the parameter, whether to restrict the maximum number of
entries to be 16 or 32. In some examples, the parameter may be representative of a size
of the first block, e.g., as signaled by an encoder in the encoded bitstream. For instance,
palette prediction unit 319 may restrict the maximum number of entries to be WxH where
W is a width of the first block and H is a height of the first block. As such, where the first

block is 4x4, palette prediction unit 319 may restrict the maximum number of entries to

WO 2021/061998 PCT/US2020/052509
46

be 16. Similarly, where the first block is 4x8, palette prediction unit 319 may restrict the
maximum number of entries to be 32. The determined maximum number of entries may
be a maximum number of entries in a palette constructed for the first block, a palette
predictor used to construct the palette, or any other palette used for coding of the first
block.

[0184] Video decoder 300 may generate, based on the determined maximum number of
entries and based on a palette predictor, a palette for the first block of video data (1404).
The generated palette may include one or more entries each including a palette index that
is associated with a color value. To generate the palette based on the determined
maximum number of entries, palette prediction unit 319 may limit a number of entries in
the palette to the determined maximum number or generate the palette from a palette
predictor that includes a number of entries that is limited to the determined maximum
number. By limiting the number of entries in the palette to the determined maximum
number, the palette may have a number of entries that is less than or equal to the
determined maximum number. Similarly, where the palette is generated from a palette
predictor that includes a number of entries that is limited to the determined maximum
number, the palette predictor may have a number of entries that is less than or equal to
the determined maximum number.

[0185] Video decoder 300 may decode, from a coded video bitstream and for the first
block of video data, index values for samples of the first block that identify entries in the
palette (1406). For instance, entropy decoding unit 302 may decode from the encoded
video bitstream, and provide to palette prediction unit 319, an array of index values.
[0186] Video decoder 300 may reconstruct, based on the index values, the samples of the
first block (1408). For instance, palette prediction unit 319 may use the generated palette
as a look-up table to translate the index values into color values (e.g., as discussed above
with reference to FIGS. 5-7) for respective samples.

[0187] Video decoder 300 may update, based on the generated palette, the input palette
predictor to generate an updated palette predictor. For instance, palette prediction unit
319 may generate the updated palette predictor as discussed above with reference to FIGS.
8-11. As one example, palette prediction unit 319 may copy, to the updated palette
predictor, entries from the palette for the first block; and copy, to the updated palette
predictor and at a position that is after the entries from the palette for the first block,
entries from a restricted portion of the input palette predictor that are not included in the

palette for the first block. In this example, palette prediction unit 319 may copy, to the

WO 2021/061998 PCT/US2020/052509
47

updated palette predictor and at a position that is after the entries from the restricted
portion of the input palette predictor, entries from an unrestricted portion of the input
palette predictor until a maximum size of the updated palette predictor is reached.
Copying entries from the restriction portion may include copying a limited number of
entries from the restricted portion.

[0188] As another example, palette prediction unit 319 may copy, to the updated palette
predictor, entries from the palette for the first block; and stuff the updated palette predictor
with entries of the input palette predictor that are not included in the palette for the first
block. In some examples, to stuff the palette, palette prediction unit 319 may stuff the
updated palette predictor in response to determining that a size of the first block is greater
than a threshold size. Similarly, palette prediction unit 319 may refrain from stuffing the
updated palette predictor in response to determining that the size of the first block is less
than the threshold size.

[0189] Video decoder 300 may generate, based on the updated palette predictor, a palette
for a second block of video data. For instance, video decoder 300 may copy one or more
entries from the updated palette predictor into the palette for the second block of video
data.

[0190] The following numbered examples may illustrate one or more aspects of the
disclosure:

[0191] Example 1. A method of coding video data, the method comprising: obtaining
an input palette predictor; generating, based on the input palette predictor, a palette for a
first block of video data; updating, based on the generated palette, the input palette
predictor to generate an updated palette predictor, wherein updating the input palette
predictor comprises: copying, to the updated palette predictor, entries from the palette for
the first block; and copying, to the updated palette predictor and at a position that is after
the entries from the palette for the first block, entries from a restricted portion of the input
palette predictor that are not included in the palette for the first block; and generating,
based on the updated palette predictor, a palette for a second block of video data.

[0192] Example 2. The method of example 1, wherein updating the input palette
predictor further comprises: copying, to the updated palette predictor and at a position
that is after the entries from the restricted portion of the input palette predictor, entries
from an unrestricted portion of the input palette predictor until a maximum size of the

updated palette predictor is reached.

WO 2021/061998 PCT/US2020/052509
48

[0193] Example 3. The method of any of examples 1 or 2, wherein the entries from
the restricted portion comprises: copying a limited number of entries from the restricted
portion.

[0194] Example 4. A method of coding video data, the method comprising: obtaining
an input palette predictor, wherein a size of the input palette predictor is restricted to a
value less than 63; generating, based on the input palette predictor, a palette for a first
block of video data; updating, based on the generated palette, the input palette predictor
to generate an updated palette predictor; and generating, based on the updated palette
predictor, a palette for a second block of video data.

[0195] Example 5. The method of example 4, wherein the value is 32.

[0196] Example 6. The method of example 4, wherein the value is 16.

[0197] Example 7. The method of any of examples 4-6, further comprising: restricting
the size of the input palette predictor responsive to determining that a size of the first
block is less than a threshold block size.

[0198] Example 8. The method of example 7, wherein restricting the size of the input
palette predictor comprises restricting the size of the input palette predictor to a size equal
to a length times a width of the first block.

[0199] Example 9. A method of coding video data, the method comprising: obtaining
an input palette predictor; generating, based on the input palette predictor, a palette for a
first block of video data; updating, based on the generated palette, the input palette
predictor to generate an updated palette predictor, wherein updating the input palette
predictor comprises: copying, to the updated palette predictor, entries from the palette for
the first block; and stuffing the updated palette predictor with entries of the input palette
predictor that are not included in the palette for the first block; and generating, based on
the updated palette predictor, a palette for a second block of video data.

[0200] Example 10. The method of example 9, wherein stuffing the palette comprises
stuffing the updated palette predictor in response to determining that a size of the first
block is greater than a threshold size.

[0201] Example 11. The method of example 10, further comprising not stuffing the
updated palette predictor in response to determining that the size of the first block is less
than the threshold size.

[0202] Example 12. A method comprising the method of any of examples 1-11.
[0203] Example 13. The method of any of examples 1-12, wherein the first block is a
first coding unit (CU) of video data.

WO 2021/061998 PCT/US2020/052509
49

[0204] Example 14. The method of any of examples 1-13, wherein coding comprises
decoding.

[0205] Example 15. The method of any of examples 1-14, wherein coding comprises
encoding.

[0206] Example 16. A device for coding video data, the device comprising one or more
means for performing the method of any of examples 1-15.

[0207] Example 17. The device of example 16, wherein the one or more means
comprise one or more processors implemented in circuitry.

[0208] Example 18. The device of any of examples 16 and 17, further comprising a
memory to store the video data.

[0209] Example 19. The device of any of examples 16—18, further comprising a display
configured to display decoded video data.

[0210] Example 20. The device of any of examples 16—19, wherein the device
comprises one or more of a camera, a computer, a mobile device, a broadcast receiver
device, or a set-top box.

[0211] Example 21. The device of any of examples 16-20, wherein the device
comprises a video decoder.

[0212] Example 22. The device of any of examples 16-21, wherein the device
comprises a video encoder.

[0213] Example 23. A computer-readable storage medium having stored thereon
instructions that, when executed, cause one or more processors to perform the method of
any of examples 1-15.

[0214] It is to be recognized that depending on the example, certain acts or events of any
of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may be
performed concurrently, e.g., through multi-threaded processing, interrupt processing, or
multiple processors, rather than sequentially.

[0215] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code on
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

WO 2021/061998 PCT/US2020/052509
50

including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-readable
media generally may correspond to (1) tangible computer-readable storage media which
is non-transitory or (2) a communication medium such as a signal or carrier wave. Data
storage media may be any available media that can be accessed by one or more computers
or one or more processors to retrieve instructions, code and/or data structures for
implementation of the techniques described in this disclosure. A computer program
product may include a computer-readable medium.

[0216] By way of example, and not limitation, such computer-readable storage media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk
storage, or other magnetic storage devices, flash memory, or any other medium that can
be used to store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Also, any connection is properly termed a computer-
readable medium. For example, if instructions are transmitted from a website, server, or
other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber
line (DSL), or wireless technologies such as infrared, radio, and microwave, then the
coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as
infrared, radio, and microwave are included in the definition of medium. It should be
understood, however, that computer-readable storage media and data storage media do
not include connections, carrier waves, signals, or other transitory media, but are instead
directed to non-transitory, tangible storage media. Disk and disc, as used herein, includes
compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and
Blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also be included within the scope
of computer-readable media.

[0217] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other equivalent
integrated or discrete logic circuitry. Accordingly, the terms “processor” and “processing
circuity,” as used herein may refer to any of the foregoing structures or any other structure
suitable for implementation of the techniques described herein. In addition, in some
aspects, the functionality described herein may be provided within dedicated hardware

and/or software modules configured for encoding and decoding, or incorporated in a

WO 2021/061998 PCT/US2020/052509
51

combined codec. Also, the techniques could be fully implemented in one or more circuits
or logic elements.

[0218] The techniques of this disclosure may be implemented in a wide variety of devices
or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are described in this disclosure to
emphasize functional aspects of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hardware units. Rather, as described
above, various units may be combined in a codec hardware unit or provided by a
collection of interoperative hardware units, including one or more processors as described
above, in conjunction with suitable software and/or firmware.

[0219] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2021/061998 PCT/US2020/052509
52

WHAT IS CLAIMED IS:

1. A device for decoding video data, the device comprising
a memory configured to store at least a portion of an encoded video bitstream;
and
one or more processors that are implemented in circuitry and configured to:
determine, based on a parameter of a first block of video data, a
maximum number of entries to be used for palette-mode coding of the current
block;
generate, based on the determined maximum number of entries and based
on a palette predictor, a palette for the first block of video data, the palette
including one or more entries each including a palette index that is associated
with a color value;
decode, from the encoded video bitstream and for the first block of video
data, index values for samples of the first block that identify entries in the
palette; and

reconstruct, based on the index values, the samples of the first block.

2. The device of claim 1, wherein the maximum number of entries is restricted to a

value less than 63.

3. The device of claim 2, wherein, to determine the maximum number of entries,
the one or more processors are configured to:

restrict the maximum number of entries to be 16 responsive to the parameter
having a first value; and

restrict the maximum number of entries to be 32 responsive to the parameter

having a second value different than the first value.

4. The device of claim 1, wherein the one or more processors are further
configured to:

obtain an input palette predictor, wherein, to generate the palette, the one or
more processors are configured to generate the palette based on the input palette

predictor;

WO 2021/061998 PCT/US2020/052509
53

update, based on the generated palette, the input palette predictor to generate an
updated palette predictor, wherein, to update the input palette predictor, the one or more
processors are configured to:
copy, to the updated palette predictor, entries from the palette for the first
block; and
copy, to the updated palette predictor and at a position that is after the
entries from the palette for the first block, entries from a restricted portion of the
input palette predictor that are not included in the palette for the first block; and
generate, based on the updated palette predictor, a palette for a second block of

video data.

5. The device of claim 4, wherein, to update the input palette predictor, the one or
more processors are configured to:

copy, to the updated palette predictor and at a position that is after the entries
from the restricted portion of the input palette predictor, entries from an unrestricted
portion of the input palette predictor until a maximum size of the updated palette

predictor is reached.

6. The device of claim 5, wherein, to copy the entries from the restricted portion,
the one or more processors are configured to:

copy a limited number of entries from the restricted portion.

7. The device of claim 1, wherein the one or more processors are further
configured to:
obtain an input palette predictor, wherein, to generate the palette, the one or
more processors are configured to generate the palette based on the input palette
predictor;
update, based on the generated palette, the input palette predictor to generate an
updated palette predictor, wherein, to update the input palette predictor, the one or more
processors are configured to:
copy, to the updated palette predictor, entries from the palette for the first
block; and
stuff the updated palette predictor with entries of the input palette
predictor that are not included in the palette for the first block; and

WO 2021/061998 PCT/US2020/052509
54

generate, based on the updated palette predictor, a palette for a second block of

video data.

8. The device of claim 7, wherein, to stuff the palette, the one or more processors
are configured to stuff the updated palette predictor in response to determining that a

size of the first block is greater than a threshold size.

9. The device of claim 8, wherein, to stuff the palette, the one or more processors
are configured to not stuff the updated palette predictor in response to determining that

the size of the first block is less than the threshold size.

10. The device of claim 1, further comprising a display configured to output the

reconstructed first block of video data.

11. A method of decoding video data, the method comprising:

determining, based on a parameter of a first block of video data, a maximum
number of entries to be used for palette-mode coding of the current block;

generating, based on the determined maximum number of entries and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value;

decoding, from an encoded video bitstream and for the first block of video data,
index values for samples of the first block that identify entries in the palette; and

reconstructing, based on the index values, the samples of the first block.

12. The method of claim 11, wherein the maximum number of entries is restricted to

a value less than 63.

13. The method of claim 12, wherein determining the maximum number of entries

comprises selectively restricting the maximum number of entries to be either 16 or 32.

WO 2021/061998 PCT/US2020/052509
55

14. The method of claim 11, further comprising:
obtaining an input palette predictor, wherein generating the palette comprises
generating the palette based on the input palette predictor;
updating, based on the generated palette, the input palette predictor to generate
an updated palette predictor, wherein updating the input palette predictor comprises:
copying, to the updated palette predictor, entries from the palette for the
first block; and
copying, to the updated palette predictor and at a position that is after the
entries from the palette for the first block, entries from a restricted portion of the
input palette predictor that are not included in the palette for the first block; and
generating, based on the updated palette predictor, a palette for a second block of

video data.

15. The method of claim 14, wherein updating the input palette predictor further
comprises:

copying, to the updated palette predictor and at a position that is after the entries
from the restricted portion of the input palette predictor, entries from an unrestricted
portion of the input palette predictor until a maximum size of the updated palette

predictor is reached.

16. The method of claim 15, wherein copying the entries from the restricted portion
comprises:

copying a limited number of entries from the restricted portion.

17. The method of claim 11, further comprising:
obtaining an input palette predictor, wherein generating the palette comprises
generating the palette based on the input palette predictor;
updating, based on the generated palette, the input palette predictor to generate
an updated palette predictor, wherein updating the input palette predictor comprises:
copying, to the updated palette predictor, entries from the palette for the
first block; and
stuffing the updated palette predictor with entries of the input palette
predictor that are not included in the palette for the first block; and

WO 2021/061998 PCT/US2020/052509
56

generating, based on the updated palette predictor, a palette for a second block of

video data.

18. The method of claim 17, wherein stuffing the palette comprises stuffing the
updated palette predictor in response to determining that a size of the first block is

greater than a threshold size.

19. The method of claim 18, further comprising not stuffing the updated palette
predictor in response to determining that the size of the first block is less than the

threshold size.

20. A device for encoding video data, the device comprising
a memory configured to store at least a portion of an encoded video bitstream;
and
one or more processors that are implemented in circuitry and configured to:
determine, based on a parameter of a first block of video data, a
maximum number of entries to be used for palette-mode coding of the current
block;
generate, based on the determined maximum number of entries and based
on a palette predictor, a palette for the first block of video data, the palette
including one or more entries each including a palette index that is associated
with a color value; and
encode, in the encoded video bitstream and for the first block of video
data, index values for samples of the first block that identify entries in the

palette.

21. The device of claim 20, wherein the maximum number of entries is restricted to

a value less than 63.

22. The device of claim 21, wherein, to determine the maximum number of entries,
the one or more processors are configured to:
restrict the maximum number of entries to be 16 responsive to the parameter

having a first value; and

WO 2021/061998 PCT/US2020/052509
57

restrict the maximum number of entries to be 32 responsive to the parameter

having a second value.

23. A method of encoding video data, the method comprising:

determining, based on a parameter of a first block of video data, a maximum
number of entries to be used for palette-mode coding of the current block;

generating, based on the determined maximum number of entries and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value; and

encoding, in an encoded video bitstream and for the first block of video data,

index values for samples of the first block that identify entries in the palette.

24. The method of claim 23, wherein the maximum number of entries is restricted to

a value less than 63.

25. The method of claim 24, wherein determining the maximum number of entries

comprises selectively restricting the maximum number of entries to be either 16 or 32.

26. A computer-readable storage medium having stored thereon instructions that,
when executed, cause one or more processors of a video decoder to:

determine, based on a parameter of a first block of video data, a maximum
number of entries to be used for palette-mode coding of the current block;

generate, based on the determined maximum number of entries and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value;

decode, from an encoded video bitstream and for the first block of video data,
index values for samples of the first block that identify entries in the palette; and

reconstruct, based on the index values, the samples of the first block.

WO 2021/061998 PCT/US2020/052509
58

27. A computer-readable storage medium having stored thereon instructions that,
when executed, cause one or more processors of a video encoder to:

determine, based on a parameter of a first block of video data, a maximum
number of entries to be used for palette-mode coding of the current block;

generate, based on the determined maximum number of entries and based on a
palette predictor, a palette for the first block of video data, the palette including one or
more entries each including a palette index that is associated with a color value; and

encode, in an encoded video bitstream and for the first block of video data, index

values for samples of the first block that identify entries in the palette.

WO 2021/061998

SOURCE DEVICE
102

VIDEO SOURCE
104

!

MEMORY
106

'

VIDEO
ENCODER
200

l

OUTPUT
INTERFACE
108

FIG. 1

N

1/12

100

>

\ I
-
-
N

|—————————
- _ _ _

PCT/US2020/052509

DESTINATION DEVICE
116

DISPLAY DEVICE
118

T

MEMORY
120

i

VIDEO
DECODER
300

INPUT
INTERFACE
122

WO 2021/061998 PCT/US2020/052509

2/12

-+ ——— -

FIG. 2B

PCT/US2020/052509

WO 2021/061998

3/12

€

OId

NVI™LSlig

0cc
LINN
ONIQOON3
AdO¥1NS

e

8lc
¥344n9
FANLOId
a3aood3a

LlINN
NOILOId3¥d
> 31131vd

i

9¢cc
LlINN

91c
LINN {31714

NOILOId3¥d
-VLNI

vee

(1]¥4
1INN

NOILVZILNVND
JASAUIANI

[4%4
LINN
—» ONISS3O0¥Ud
WHO4SNVYL

80C

LINN <
NOILVZILNVND

.. €

SLN3IN3T3 XVLNAS

902 v0¢

LINA
ONISS300ud | +

NHO4SNVIL

ISHIANI 1424 1INN
1 NOILVINILST

1INN
NOILVSN3IdINOD
NOILON
7y
444

NOILOW

F{114
1INN
NOILD313S IAON

(1]%4

00¢
¥J3dOON3 O3dIN

AYON3IN
Vviva o3din v.ilva o3diA

¢

PCT/US2020/052509

WO 2021/061998

-

¥ "OId

O3dIA
a3aoo3a

4/12

vic
add

cig
1INN
- ENNIE

G5

oLe

A

80¢
1INN
ONISS300¥d
NHO4SNVIL
JASAUIANI

90¢
LINN
NOILVZILNVND
JSYUIANI

-

¥3d0J33d O3AIA

61¢
LINN
NOILOIa3¥d
31131vd

(153
LINN
NOILOId3¥d
-VLNI

91¢
LINN
NOILVSN3dINOD
NOILOW

voe
LINN ONISS3D0¥d
NOILOIa3¥d

A

20¢
LINN

ONIaOo23a
AdO¥1NS

q

0ce
AYON3IN
gdd

NVI™Lslig

O3dIN d3AOON3

PCT/US2020/052509

WO 2021/061998

5/12

(&]

a3aniva

2 3IANTVA

I()

g 3aNIvA

[m

vV INIVA

l

| «

ANTVA
13Xid

X3ANI

AYLNd

ovic

ocic

00l¢c

080¢

FAN™ "1 ™|

— FANS =S A = | —

0261 \

0881 0081
1vd 1vd
0961 000¢
VYLNI A3LNI

G 'Old

BEELWZA ¢
BEERVA A
g
I4 v anva L
— aniva | xaani
7axid | AWLN3
— FAN™ " ™| —

— FANS =S B = |

ov8l \

090¢

1) 4174

0c0¢

WO 2021/061998

2440 \

6/12

II I:ll'l'n\ll
ENTRY
‘NDEx | VALUE | |
N
1 VALUEA | |
:)
2 VALUEB | |
3 VALUEC“_
RASTER
SCAN
2400
\‘ RUN=2 RUN=1 RUN=2
| | | |
111112121333 1 2
A 1l3ls3l3™ [
11111111 |3]|3]3 | I |
2[2]2[2]2]3]3]3 RUN =4 RUN =2
2212121213133
2212121213133
3(3]|3|3|3]3(3]3 SNAKE
3(3]|3|3|3]3(3]3 SCAN
RUN=2 RUN=1 RUN=5
2660 ~g ! | T
2680 ~¢ 1 2 3
'o' 1
{ !
\ RUN =9
2700 —a 3
| .
RUN = 5

FIG. 6

...

PCT/US2020/052509

®e

2660
2680

PCT/US2020/052509

WO 2021/061998

7712

L 'Old

0 0 0 0 GA||«

UedS 9SJOARI] [eDIJIdA

Tr7 T
(<]

ueds 9SJoAkl] [eJUOZIIOH

PCT/US2020/052509

WO 2021/061998

8712

6 Old

Z06 J10301paid apojed pajepdn

— T

208 10301paid apsjed Induj 08 2I9e} andjed

ﬂ&w_mo MaN 8 Old

9
(A

08 2Iqe) a)dled

Z08 10301paid
apojed Indu

PCT/US2020/052509

WO 2021/061998

9/12

9011 S10]02 MaN

]

e

\

900] S10]02 MaN

L1 "Old

VoLl
10)21paud apajed pajepdn

coLl
J10)o1paud aypsjed jndu|

0l '©Old

vool
10)21paud apajed pajepdn

c00l
J10)o1paud aypsjed jndu|

WO 2021/061998 PCT/US2020/052509

10/12

350
/

PREDICT CURRENT BLOCK

!

352
CALCULATE RESIDUAL BLOCK /
FOR CURRENT BLOCK

I

TRANSFORM AND QUANTIZE
RESIDUAL BLOCK

v

/356
SCAN COEFFICIENTS OF
RESIDUAL BLOCK

;

ENTROPY ENCODE 358
COEFFICIENTS

I

OUTPUT ENTROPY CODED
DATA FOR COEFFICIENTS

/354

|~ 360

FIG. 12

WO 2021/061998 PCT/US2020/052509

11/12

370
RECEIVE ENTROPY CODED /
DATA FOR CURRENT BLOCK

I

ENTROPY DECODE DATA TO /372
DETERMINE PREDICTION AND
REPRODUCE COEFFICIENTS

'

PREDICT CURRENT BLOCK

I

376
INVERSE SCAN REPRODUCED /
COEFFICIENTS

v

INVERSE QUANTIZE AND

INVERSE TRANSFORM —378

COEFFICIENTS TO PRODUCE
RESIDUAL BLOCK

v

COMBINE PREDICTED BLOCK
AND RESIDUAL BLOCK

374
/

L~ 380

FIG. 13

WO 2021/061998

FIG. 14

12/12

PCT/US2020/052509

DETERMINE, BASED ON
PARAMETER OF FIRST BLOCK,
MAXIMUM NUMBER OF ENTRIES

TO BE USED

1402

'

GENERATE, BASED ON
DETERMINED MAXIMUM
NUMBER OF ENTRIES, PALETTE
FOR FIRST BLOCK

—1404

'

DECODE, FOR FIRST BLOCK,
INDEX VALUES

1406

I

RECONSTRUCT, BASED ON
INDEX VALUES, SAMPLES OF
FIRST BLOCK

1408

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/052509

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N19/593 HO4N19/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Y-J CHANG ET AL: "Non-CEl: On maximum 1-3,
palette predictor size", 10-13,
21. JCT-VC MEETING; 20150619 - 20150626; 20-27
WARSAW; (JOINT COLLABORATIVE TEAM ON VIDEO
CODING OF ISO/IEC JTC1/S5C29/WG11 AND ITU-T
SG.16),
no. JCTYC-U0O97
12 June 2015 (2015-06-12), XP030241517,
Retrieved from the Internet:
URL:http://phenix.int-evry.fr/jct/doc_end_
user/documents/21 Warsaw/wgll/JCTVC-UOO97-
v2.zip JCTVC-U0G097rl.doc
[retrieved on 2015-06-12]
Y abstract 4-9,
Chapters 1-3 14-1
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

20 January 2021

Date of mailing of the international search report

02/02/2021

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Lindgren, Johan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/052509

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2016/037164 Al (JOSHI RAJAN LAXMAN [US]
ET AL) 4 February 2016 (2016-02-04)

abstract

paragraphs [0168], [0169], [0176]

JOSHI R ET AL: "Screen Content Coding
Test Model 7 Encoder Description (SCM 7)",
23. JCT-VC MEETING; 19-2-2016 - 26-2-2016;
SAN DIEGO; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
ITU-T SG.16); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-W1014, 23 May 2016 (2016-05-23),
XP030117933,

abstract

Chapter 3.4.3

YE (TENCENT) J ET AL: "CE8: Palette
predictor 1list enhancement (Test 8.2.6)",
13. JVET MEETING; 20190109 - 20190118;
MARRAKECH; (THE JOINT VIDEO EXPLORATION
TEAM 0; ISO/IEC JTC1/SC29/WG11 AND ITU-T
SG.16),

no. JVET-M0457

8 January 2019 (2019-01-08), XP030252779,
Retrieved from the Internet:
URL:http://phenix.int-evry.fr/jvet/doc_end
_user/documents/13 Marrakech/wgll/JVET-MO4
57-v2.zip JVET-M0457-v1.docx

[retrieved on 2019-01-08]

abstract

Chapter 1

EP 3 104 607 Al (IND TECH RES INST [TW])
14 December 2016 (2016-12-14)

paragraphs [0007] - [0013], [0049] -
[0050]

abstract

1,10,11,
20,23,
26,27

1,10,11,
20,23,
26,27

1,11,20,
23,26,27

4-9,
14-19

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2020/052503
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

m No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/052509
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2016037164 Al 04-02-2016 AU 2015301222 Al 02-02-2017
BR 112017002138 A2 21-11-2017
CN 106537916 A 22-03-2017
EP 3178226 Al 14-06-2017
JP 6571162 B2 04-09-2019
JP 2017527193 A 14-09-2017
KR 20170039176 A 10-04-2017
TW 201615012 A 16-04-2016
US 2016037164 Al 04-02-2016
US 2020267390 Al 20-08-2020
WO 2016022537 Al 11-02-2016

EP 3104607 Al 14-12-2016 CN 106254871 A 21-12-2016
EP 3104607 Al 14-12-2016
JP 2017022696 A 26-01-2017
JP 2018137796 A 30-08-2018
TW 201709730 A 01-03-2017
US 2016360205 Al 08-12-2016
US 2016360207 Al 08-12-2016

Form PCT/ISA/210 (patent family annex) (April 2005)

International Application No. PCT/ US2020/ 052509

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 2, 3, 10, 12, 13, 20-27(completely); 1, 1l(partially)

Determine a max palette predictor size based on a parameter.
Generate a palette based on said parameter and a palette
predictor.

Adaptively setting the maximum number of entries to 63, 32
or 16.

2. claims: 4-9, 14-19(completely); 1, 1l(partially)

Determine a max palette predictor size based on a parameter.
Generate a palette based on said parameter and a palette
predictor.

Update the palette predictor by copying palette entries from
the palette of a first block and, at later position, add
entries from a restricted portion of an input palette
predictor that are not part of the palette of said first
block.

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report
	Page 74 - wo-search-report
	Page 75 - wo-search-report
	Page 76 - wo-search-report

