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USE OF RECURRENT COPY NUMBER VARIATIONS IN CONSTITUTIONAL
HUMAN GENOME FOR PREDICTION OF PREDISPOSITION TO CANCER

BACKGROUND

[0001] The present invention relates to a method of using recurrent copy number variations
(“CNV?”) in the constitutional, viz. germline, genome of a human subject to predict the subject’s
predisposition to cancer. This method identifies the recurrent constitutional CNVs in a collection of
DNA samples comprising both the DNA of noncancerous tissues of individuals without experience
of cancer (referred to as “Noncancer DNA” samples) and the DNA of noncancerous tissues of
cancer patients (referred to as “Cancer DNA” samples”), and selects from this collection using
machine learning procedures a set of diagnostic recurrent CNV features comprising some of the
CNVs that are enriched in individuals without experience of cancer relative to cancer patients,
along with some of the CNVs that are enriched in cancer patients relative to individuals without
experience of cancer, all of the same ethnic group. The usefulness of such a set of diagnostic
recurrent CNV features as classifier between known “Noncancer DNA” samples and “Cancer
DNA” samples is tested. Upon confirmation of usefulness, the CNVs found in the constitutional
DNA of any test subject from the same ethnic group as the sources of the “Noncancer DNA” and
“Cancer DNA” can be analyzed to determine the presence or absence of the various CNVs
contained in the set of diagnostic recurrent CNV features, and thereby arrive at a prediction of the

level of predisposition of the test subject to cancer.

[0002] The CNVs present in the DNA of the constitutional genome in noncancerous tissues
of any noncancer individual, cancer patient or test subject can be determined from single nucleotide
polymorphism (SNP) microarrays of human genomic DNA, qPCR, whole-genome sequencing of
the person’s genome, or from DNA sequencing of a subset of sequences amplified from the genome

exemplified by an “AluScan” sequence subset containing inter-Alu and/or Alu-proximal genomic
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sequences that have been amplified by polymerase chain reaction (“PCR”) employing PCR primers
the sequences of which are based on the consensus sequences of Alu-insertion elements in the
human genome. The CNVs that are found in any collection of DNA samples can be identified as
“recurrent” CNVs or “rare” CNVs based on their frequencies and statistical criteria. Hitherto
although various “rare” CNVs have been correlated with different specific types of cancer, no
correlation between recurrent constitutional CNV and cancer has been obtained and employed as a

basis for the prediction of predisposition to cancer.

[0003] In the present method, the prediction of the predisposition to cancer of test subjects
requires a set of diagnostic recurrent CNV features selected from the recurrent CNVs that are
present in a collection of “Noncancer DNA” samples and “Cancer DNA” samples from the
constitutional genomes in the noncancerous tissues of individuals without experience of cancer and
cancer patients respectively. For this purpose, machine learning-assisted selection is performed
using statistical selection methods exemplified by, and not limited to, the following: (I) Correlation-
based Feature Selection (CSF) Method; this can be used to generate CFS-based CNV-features that
are highly correlated with the recurrent CNVs in either the “Noncancer DNA” class or the “Cancer
DNA” class yet uncorrelated with one another, for example using CfsSubsetEval from the Weka
machine learning package together with the BestFirst method (Hall MA and Smith LA, Feature
subset selection: A correlation based filter approach. Infernational Conference on Neural
Information  Processing and Intelligent Information Systems. New Zealand; 1997: 8555-858;
Dagliyan O et al., Optimization based tumor classification from microarray gene expression data.
PLoS One 2011, 6:€14579); (1) Frequency-based Method; in this method, a CNV-feature is
selected by virtue of its frequency in the “Noncancer DNA” samples being significantly different
from its frequency in the “Cancer DNA” samples; and (III) Classifier-based Method; in this method,
CNV-features are selected by use of a classifier, for example the ClassifierSubsetEval attribute
evaluator in the Weka machine learning package together with the BestFirst method (Hall MA, et

al.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 2009; 11: 10-18.)
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[0004] The usefulness of a diagnostic set of recurrent CNV features as a classification tool
to classify DNA samples between the “Noncancer DNA” and “Cancer DNA” classes can be
assessed by machine learning implementation of the Naive Bayes classification method, and
receiver operating characteristic (ROC) analysis which was originally introduced to distinguish
between meaningful radar signals and noise, and has since found important application in diverse
fields of clinical medicine (Zweig MH and Campbell G: Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 1993, 39:561-577;

Zhou X Statistical Methods in Diagnostic Medicine. New York, USA: Wiley & Sons; 2002).

[0005] Once a set of diagnostic recurrent CNV features selected from the recurrent CNVs
found in a collection of “Noncancer DNA” and “Cancer DNA” samples from an ethnic population
is found to yield an ROC-AUC (ROC-area under the curve) greater than 0.5, and therefore useful as
a classification tool for classifying DNA samples between the “Noncancer DNA” and “Cancer
DNA” classes, it can be employed to predict the predisposition to cancer of the constitutional DNA

samples from test subjects belonging to the same ethnic population.

[0006] The principle of the prediction method referred to in [0005] consists of the assembly
of a Learning Band of labeled DNA samples (viz. wherein the identities of the DNA samples are
known to belong to either the “Noncancer DNA” or the “Cancer DNA” class), selection of a set of
diagnostic recurrent CNV-features from all the DNA samples in the Learning Band, and confirming
that the set of diagnostic recurrent CNV-features selected is useful as a classifier tool for classifying
unlabeled DNA samples (viz. wherein it is not known which DNA samples belong to the
“Noncancer DNA” class and which to the “Cancer DNA” class) into the “Noncancer DNA” and
“Cancer DNA” classes. Once usefulness is confirmed, the CNVs occurring in each constituent
DNA sample in the Learning Band are examined to determine the presence or absence of the
different CNVs of the set of diagnostic recurrent CNV features in that constituent sample. The

results obtained enable the estimation of the B-value for that constituent sample on the basis of Eqn.
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1, and the relative B-values of all the labeled constituent samples in the Learning Band can be

ranked on a B-value scale:

Pr (feature;|cancer) % Pr{cancer)
Pr( feature,)

n
Pricancer|features) = Z
i=1

n

Pr(noncancer|featuras) = Z
i=1

Pr (feature|noncancer) ¥ Pr({noncancer)

Pr{featurs,)

Pr{cancer|features)
B =log

Pr{noncancer|features)

1 ( (X7, Pr (feature;|lcancer])) x Pr{cancer) )

(X7, Pr (featurey|noncancer)) X Pr{noncancer)

Eqn 1

in which B is the log of the ratio between Pr(cancer|feature) viz. the Bayesian posterior probability
of membership in the Cancer class given the CNV data of the constituent sample, and
Pr(noncancerl|feature) viz. the Bayesian posterior probability of membership in the Noncancer
class given the CNV data of the constituent sample; Pr(features|cancer) is the likelihood function of
the CNV data given membership in the Cancer class; Pr(features/noncancer) is the likelihood
function of the CNV data given membership in the Noncancer class; Pr(cancer) and Pr(Noncancer)
are the prior distributions of Cancer and Noncancer samples respectively in the Learning Band. The
expected classification for any test sample is ‘Cancer’ if B >0, ‘Noncancer’ if B <0, or
indeterminate if B = 0. Accordingly, when the different samples in the Learning Band are ranked
according to their B-values, the “Noncancer DNA” samples will tend to have low rankings,

whereas the “Cancer DNA” samples will tend to have high rankings, on the B-value scale.
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The B-value scale constructed from all the labeled Learning Band samples provides a standard B5-
value scale for DNA samples for the ethnic population from which the “Noncancer DNA” samples
and “Cancer DNA” samples are derived. Having this standard B-value scale, the CNVs detected in
the constitutional DNA of any test subject from the same ethnic population can be analyzed to
determine the presence or absence of various CNV features contained in the set of diagnostic
recurrent CNV features employed to construct the B-value scale, and thereupon a B-value for the
test subject on the basis of Eqn. 1. By comparing the B-value of the test subject to the B-values for
various constituent “Noncancer DNA” and “Cancer DNA” samples in the Learning Band, the
subject’s predisposition to cancer will be revealed as high (i.e. if the subject’s B-value is high on the
B-value scale), intermediate (i.e. if the subject’s B-value is intermediate-positioned on the B-value

scale), or low (i.e. if the subject’s B-value is low on the B-value scale).

SUMMARY

[0007] The present invention relates to a method using the copy number variations
(“CNV?”) in the constitutional genome of a human subject to predict the subject’s predisposition to
cancer. This method identifies the recurrent constitutional CNVs in a collection of DNA samples
comprising both the DNA of noncancerous tissues of individuals without cancer or previous
experience of cancer (referred to as “Noncancer DNA” samples) and the DNA of noncancerous
tissues of cancer patients (referred to as “Cancer DNA” samples™), and selects from this collection
by means of machine learning procedures a set of diagnostic recurrent CNV features comprising
some of the recurrent CN'Vs that are enriched in individuals without any experience of cancer
relative to cancer patients, along with some of the CNVs that are enriched in cancer patients
relative to individuals without any experience of cancer, all from the same ethnic group. The
usefulness of such a set of diagnostic recurrent CNV features as classifier between “Noncancer
DNA” samples and the “Cancer DNA” samples is tested. Upon confirmation of usefulness, the

CNVs found in the constitutional DNA of any test subject from the same ethnic group as the
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sources of the “Noncancer DNA:” and “Cancer DNA” samples can be analyzed to determine the
presence or absence of the various CNVs contained in the set of diagnostic recurrent CNV features,

and thereby arrive at a prediction of the level of predisposition of the test subject to cancer.

[0008] The selection of a set of diagnostic recurrent CNV features comprising recurrent
CNVs referred to in [0007] is performed employing machine learning methods exemplified by, but
not limited to, the following methods: (I) Correlation-based Feature Selection (CSF) Method; (1)
Frequency-based Method; and (III) Classifier-based Method. The usefulness of the set of
diagnostic recurrent CNV features selected is tested by employing the set of features as
classification tool to classify known “Noncancer DNA” and “Cancer DNA” samples into the
“Noncancer DNA” and “Cancer DNA” classes using the Naive Bayes classification method, and
evaluating the accuracy of the classification achieved by means of

. receiver-operating characteristic (ROC) analysis.

[0009] Once a set of diagnostic recurrent CNV features is found to be useful, yielding an
ROC-AUC (ROC area under the curve) value greater than 0.5, the set of features can be employed
to predict the predisposition to cancer of any test subject from the same ethnic population as the
sources of the “Noncancer DNA” and “Cancer DNA” samples that give rise to the set of diagnostic

recurrent CNV features on the basis of Bayesian posterior probability analysis.

[0010] Because the CNV features in a set of diagnostic recurrent constitutional CNV
features are typically distributed with different frequencies among the “Cancer DNA” samples
from patients bearing different types of cancer, the present invention can be employed not only to
identify test subjects with enhanced predisposition to cancer in general, but also subjects with

enhanced predispositions to specific types of cancer.

BRIEF DESCRIPTION OF DRAWINGS
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[0011] The following drawings form part of the present specification and are included to
further demonstrate certain aspects of the present invention. The invention may be better
understood by reference to one or more of these drawings in combination with the detailed

description of specific embodiments presented herein.

[0012] Figure 1 shows recurrent CNVs identified from noncancerous white blood cell DNAs,
using Aftymetrix SNP6.0 arrays, of (A) a Caucasian cohort of Noncancer subjects and Cancer
patients; and (B) a Korean cohort of Noncancer subjects and Cancer patients. In these examples,
only significantly recurrent regions with lengths greater than 1kb and less than 10Mb, and with a q-
value <0.25 were included in the analysis. Upper panel of the figure shows q values of copy number
gains (“CNV-gains”), and lower panel shows q values of copy number losses (“CNV-losses”). The
q values were generated by GISTIC2.0 such that a high “-log q-value” indicated a highly non-
random event. The CNV-gains (marked as A-series) and CNV-losses (marked as D-series) selected
for inclusion in the CFS-based diagnostic CNV-features for the Caucasian and Korean cohorts are

shown in Figure 2 and Figure 3 respectively.

[0013] Figure 2 shows a set of CFS-based diagnostic recurrent CNV-features selected from
the noncancerous white blood cell DNAs of a Caucasian cohort of Noncancer and Cancer subjects
analyzed by Affymetrix SNP6.0 array. “Cancer Freq” indicates frequency of the CNV-feature
among “Cancer DNA” samples, “Control Freq” indicates frequency of the CNV-feature among
control “Noncancer DNA” samples, and “Can/Con ratio” refers to their ratios. CNVG = CNV-gain;
CNVL = CNV-loss. The A-series and D-series ID numbers are added to facilitate location of the

various CNV features in Figure 1(A).

[0014] Figure 3 shows a set of CFS-based diagnostic recurrent CNV-features selected from
the noncancerous white blood cell DNAs of a Korean cohort of Noncancer and Cancer subjects
analyzed by Affymetrix SNP6.0 array. “Cancer Freq” indicates frequency of the CNV-feature
among “Cancer DNA” samples, “Control Freq” indicates frequency of the CNV-feature among

control “Noncancer DNA” samples, and “Can/Con ratio” refers to their ratios. CNVG = CNV-gain;
7
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CNVL = CNV-loss. The A-series and D-series ID numbers are added to facilitate location of the

various CNV features in Figure 1(B).

[0015] Figure 4 shows the frequencies of occurrence of recurrent CNV-features selected by
the CFS-, Frequency- and Classifier-based methods among the cancer patients and noncancer
controls of (A) Caucasian cohort and (B) Korean cohort. Solid triangle, CNV-feature selected by
both CFS and Frequency methods; solid circle, ones selected only by CFS method; open triangle,
selected only by Frequency method; solid triangle plus solid inverted triangle, selected by CFS
method, Frequency method and Classifier method; open triangle plus open inverted triangle,
selected by Frequency method and Classifier method; open circle, not selected by any of the three
methods. Chi-square based probability P of Cancer and Control frequencies being equal is >0.05
between the two dashed lines representing P = 0.05, and <0.05 outside these two dashed lines. The
two solid lines representing P’= 0.05, where P’ stands for P value after Bonferroni correction,

likewise separate the in-between region of P’>0.05 and the outer regions of P’<0.05.

[0016] Figure 5 shows a table of ROC-AUC values for Caucasian and Korean samples
attained with the sets of recurrent CNV-features obtained using three different CNV feature-

selection methods.

[0017] Figure 6 shows the prediction accuracies of cancer occurrence in (A) Caucasian
cohort, and (B) Korean cohort, using CFS-based CNV-features. For each of the cohorts, the DNA
samples were randomly separated into a Learning Band and a Test Band containing the same or
approximately the same number of Noncancer DNA samples, as well as the same or
approximately the same number of Cancer DNA samples. CFS-based CNV-features were selected
from the Learning Band, and employed to predict the classification of each sample in the Test Band
into the Noncancer and Cancer classes based on the value of B in Eqn. 1 as given in [0006]. The
classification would be ‘Cancer’ if B >0, ‘Noncancer’ if B <0, or indeterminate if B = 0. By

repeating the random separation of samples into Learning Band and Test Band 1,000 times, and
8
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each time making predictions on every sample in the Test Band and estimating the Accuracy of

prediction using Eqn. 2, 1,000 Accuracy estimates were obtained from the 1,000 runs:

[Terue pradiction ofwoen-cancer]+[Trus pradiction of cancer]

x108% Eqn 2

Aecuracy = : - —— - ~
- fIotal prediction of non-cancerd +f{Total pradiction of mancer]

The distributions of the 1,000 Accuracy estimates obtained for the Caucasian and Korean cohorts
together with the Average accuracy in each case for the 1,000 runs, are indicated on graphs (A) and

(B) respectively.

[0018] Figure 7 shows the distribution of CFS-based diagnostic recurrent CNV-features in
the non-tumor white blood cell DNA of (A) Caucasian cancer patients, where the CFS-based
diagnostic recurrent CNV-features are those described in Figure 2; and (B) Korean cancer patients,
bearing different types of cancers, where the CFS-based diagnostic recurrent CNV-features are
those described in Figure 3. In each instance, K-means clustering was employed to cluster the
different types of cancer-patient DNAs according to their contents of CFS-based CNV-features
using the kmean package in R (Suzuki R, Shimodaira H. Pvclust: an R package for assessing the
uncertainty in hierarchical clustering. Bioinformatics 2006, 22:1540-1542). Since the number of
CFS-based CNV-features was greater than two, the CLUSPLOT function in the cluster package in
R (Pison G, et al. Dispalying a clustering with CLUSPLOT. Comput Stat Data An 1999, 30:381-
392) was used to reduce the dimensions of the data by principal component analysis (PCA) to
produce the graphical output in terms of only the first two principal components. Different types of
cancer patients included patients of colorectal cancers (green circles), gliomas (blue triangles),
myelomas (red squares), gastric cancers (blue squares) and hepatocellular carcinomas (HCC, red

triangles).

[0019] Figure 8 shows a Table of CFS-based recurrent CNV-features selected from the

noncancerous white blood cell DNAs of a Chinese cohort of noncancer controls and cancer patients

9
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analyzed by AluScan sequencing. “Cancer Freq” indicates frequency of the CNV-feature among
“Cancer DNA” samples, “Control Freq” indicates frequency of the CNV-feature among control
“Noncancer DNA” samples, and “Can/Con ratio” refers to their ratios. CNVG = CNV-gain; CNVL

= CNV-loss.

[0020] Figure 9 shows the frequencies of occurrence of the recurrent CNV-features selected
by CFS-based method among the noncancer controls and cancer patients of a Chinese cohort. The
selected recurrent CNV-features, as indicated in Figure 8, are represented by solid triangles. The

unselected recurrent CNVs are represented by open circles.

[0021] Figure 10 shows the prediction accuracies of cancer occurrence in the Chinese cohort
determined through random separation of the Noncancer and Cancer DNA samples into a Learning
Band a Test Band; thereupon the CFS-based method was used to select recurrent CNV-features
from the Learning Band for predicting the classification of each sample in the Test Band into the
Noncancer and Cancer classes, as described in Figure 6. The distributions of the Accuracy
estimates obtained from 100 rounds of this procedure of randomized Learning-Test Band
separation, selection of diagnostic recurrent CNV features from the Learning Band, and making
prediction of cancer predisposition on the samples in the Test Band, together with the Average

accuracy for the 100 runs, are indicated on the graph.

[0022] Figure 11 shows a summary of the procedure in the present invention for predicting

predisposition to cancer. N represents constitutional DNA samples from the noncancerous tissues

of Noncancer subjects, and C represents constitutional DNA samples from the noncancerous

tissues of Cancer patients.

DETAILED DESCRIPTION

10
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[0023] It will be readily apparent to one skilled in the art that various substitutions and
modifications may be made in the invention disclosed herein without departing from the scope and

spirit of the invention.

Terms:

[0024] The term "a" or "an" as used herein in the specification may mean one or more. As
used herein in the claim(s) the words "a" or "an" may mean one or more than one. As used herein

“another” may mean at least a second or more.

[0025] The term “copy number variation”, or CNV, refers to variation from the standard
human genome where the DNAs in the autosomal chromosomes, and in the X chromosome in
females, are present in two copies (viz. “diploidal”), such that any DNA segment present in more
than or less than two copies represents a CNV. The standard DNAs in the X and Y chromosomes in
males are present in a single copy (viz. “haploidal”), such that any DNA segment present in more or
less than one copy represents a CNV. Any CNV containing more than the standard number of
copies constitutes a CNV-gain, and any CNV containing less than the standard number of copies

constitutes a CNV-loss.

[0026] The term “recurrent CNV” refers to CNVs that are not too rare in occurrence, so that
they can provide a useful basis for prediction purpose. Methods for identifying recurrent CNVs may
be obtained from standard reviews such as Rueda, O.M. & Diaz-Uriarte, R. Finding Recurrent
Regions of Copy Number Variation, Collection of Biostatistics Research Archive 2008, Paper 42,
The Berkeley Electronic Press, which lists the MSA, GISTIC, RAE, MAR, CMAR, cghMCR,
CGHregions, Master HMMs, STAC, Interval Scores, CoCoA, KC SMART, SIRAC, GEAR and

Markers methods and their associated softwares.

11
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[0027] The term “diagnostic recurrent CNV features” in the present invention refers to
constitutional recurrent CNVs selected from the recurrent CNVs identified from a collection of
genomic DNAs of both the noncancerous tissue samples of Noncancer (viz. noncancer individuals)
subjects and the noncancerous tissue samples of Cancer (viz. cancer patients) subjects belonging to
the same ethnic group. These CNV features are typically enriched in Noncancer DNAs relative to
Cancer DNAs, or enriched in Cancer DNAs relative to Noncancer DNAs, such that a prediction
regarding the extent of predisposition toward cancer of any test subject of the same ethnic
population can be made based on the presence or absence of the various constituent diagnostic
recurrent CNV features in the test subject’s constitutional DNA. Selection of CNV features can be
conducted using various statistical methods including but not limited to the following methods: (I)
Correlation-based Feature Selection (CSF) Method, (II) Frequency-based Method, and (III)
Classifier-based Method. Each of the methods gives rise to a set of diagnostic recurrent CNV
features, and the utility of any set of diagnostic recurrent CNV features can be tested by employing
it to classify individual samples in a sample collection comprising both labeled Noncancer DNA
samples and labeled Cancer DNA samples using a probabilistic classifier such as Fisher’s linear
discriminant, Logistic regression, Naive Bayes classifier, decision trees, neural networks etc. Once
a set of diagnostic recurrent CNV features is found to be diagnostically useful, i.e. yielding an
ROC-AUC value in excess of 0.5, it can be employed as the basis for predicting the extent of
predisposition to cancer of test genomes belonging to the same ethnic population as the Noncancer

and Cancer DNA samples that generated the particular set of CNV features.

[0028] In one embodiment of the present invention, single nucleotide polymorphism (SNP)
array data on whole blood samples from 51 Caucasian cancer patients and 47 ethnically-matched
noncancer controls obtained using the high resolution Affymetrix SNP6.0 array platform were

retrieved from the Gene Expression Omnibus (GEO) [http://www.ncbi.nlm.nih.gov/geo/]

database. The program apt-copynumber-workflow with default settings from Affymetrix Power

Tools (http./fwww atfvmeiric conyvpartners programs/programs/developer fAools/powertoos atfy)

12
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was employed to generate CNV callings for these Cancer and Noncancer samples using a reference
template generated from the averaged microarray data for 270 HapMap samples acquired using the
Affymetrix SNP6.0 platform and processed with apt-copynumber-workflow. Segmentation of
neighboring copy number variations into CNV-gain segments and CNV-loss segments was
performed based on the copy number values using Circular Binary Segmentation (CBS) with
default parameters in DNACopy in R program (Olshen AB et al. Circular binary segmentation for
the analysis of array-based DNA copy number data. Biostatistics 2004, 5:557-572). The genomic
coordinates employed in the present study referred to human reference genome version
hg19/GRCh37, and the annotation file used with the SNP6.0 platform was release version 32. To
identify significantly recurrent CNVs, the GISTIC2.0 method (Mermel C.H. et al, Genome Biol.
12(4):R41, 2011) was employed with the options “-smallmem 1-broad 1 —brlen 0.5—conf 0.9-ta
0.2-td 0.2-twosides 1—genegistic 17. CNVs with a log2 ratio change of either > 0.2 or <-0.2 are
regarded as recurrent CNVs (Ding, X. et al. Application of machine learning to development of
copy number variation-based prediction of cancer risk. Genomics Insights 2014:7, 1-10). The

recurrent CN'Vs identified are shown in Figure 1(A).

[0029] In this embodiment of the present invention, each of the Correlation-based Feature
Selection (CSF) Method, Frequency-based Method, and Classifier-based Method was employed to
generate three sets of diagnostic recurrent CNV features from the Caucasian Cancer and Noncancer

DNA microarray data described in [0028]. To assess the capability of each of these three sets of
diagnostic recurrent CNV features as a basis for classifying samples between the Cancer and
Noncancer classes, the Naive Bayes classification method from the Weka package was employed to
generate a training model incorporating one of the CNV-feature sets, which was tested with 1,000
iterations of twofold cross validation. To test the robustness of the model, 10,000 permutated
datasets were generated by randomly shuffling the group labels (‘Noncancer’ vs. ‘Cancer’) for each
sample within the original dataset, and the whole classification process was repeated for each

permutated dataset. The significance of the original classification was calculated based on the

13



WO 2015/139652 PCT/CN2015/074606

distribution of correct prediction percentage from the 10,000 permutations. The results of Naive
Bayes classification obtained using the three training models incorporating the three different CNV-
feature sets to make decisions on sample classification into the “Noncancer’ and ‘Cancer’ classes
are shown in Figure 5, where the CNV-feature sets based on the CFS method, Frequency-based
method and Classifier-based method yielded ROC-AUV values of 0.99640.001, 0.9910.007,
and 0.986+0.014 respectively for the Caucasian samples. These high ROC-AUC values showed
that all three CNV-feature ensembles are capable of classifying samples into the “Noncancer DNA”
and “Cancer DNA” classes with a high level of accuracy. Each of these CNV-feature sets therefore
provide a useful basis for predicting the predisposition of Caucasian test subjects to cancer. The
basis for the usefulness of the sets of selected CNV-features as classifiers for the Caucasian samples
is demonstrated in Figure 4(A). The CNV features selected all displayed a highly biased distribution,
occurring either frequently in the Cancer DNA samples but infrequently in the control Noncancer
DNA samples, or frequently in the control Nnoncancer DNA samples but infrequently in the Cancer
DNA samples. As a result, they are endowed with the ability to serve as markers for Cancer DNA,
or as markers for control Noncancer DNA.

[0030] To confirm the expectation that CNV-feature sets can provide a valid basis for
predicting predisposition to cancer, the Noncancer control DNA samples (N) in the Caucasian
cohort were randomly divided in a trial run into two groupings that were equal in number when
there were an even number of samples; or, when there were an odd number of samples, an extra
sample was randomly allocated to one of the two groupings so that they differed in size by only a
single sample. One of the groupings was randomly assigned to the Learning Band, and the other
grouping to the Test Band. Similarly, for the cancer patients (C), the DNA samples from the
colorectal cancer patients were randomly divided into two groupings that were either equal in size
or different by only one sample; again one grouping was randomly assigned to the Learning Band,
and the other to the Test Band. The glioma patient samples and the myeloma patient samples were
treated the same way to finally yield an [N + C] Learning Band and an [N + C] Test Band

containing an equal or near-equal number of N and C samples. Thereupon a set of CFS-based CNV-
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features were derived from the CNVs included in the Learning Band. Applying this set of learnt
CFS-based CNV-features to each and every individual sample in the Test Band using Eqn. 1
yielded either a ‘true’ or ‘not true’ allocation of the individual into the Noncancer or Cancer class;
altogether the predictions pertaining to all the individuals in the Test Band would yield an Accuracy

estimate for this trial run based on Eqn. 2:

[True predivton ofnoa-cancer] +[Tros predicton of canesr) s
~x10085 Eqn. 2

fTotal pradiction cfnon-cancer +{Tixral pradiction of cancer]

Srcuracy =

By repeating this random partition of the sample into Learning Band and Test Band 1,000 times,
1,000 estimates of accuracy were obtained. The distribution of these 1,000 accuracy estimates is
shown in Figure 6(A), and their Average value of 93.6% confirmed the valid use of diagnostic

recurrent CNV features to predict the predisposition of Caucasian test subjects to cancer..

[0031] In another embodiment of the present invention, single nucleotide polymorphism
array data on whole blood samples from 347 Korean cancer patients and 195 ethnically-matched
Noncancer controls obtained using the high resolution Affymetrix SNP6.0 platform were retrieved
from the Gene Expression Omnibus (GEO) [http://www.ncbi.nlm.nih.gov/geo/] and caArray

databases [https://array.nci.nih.gov/caarray/]. Using the same procedures as those described in

[0028] and [0029], recurrent CN'Vs comprising both CNV-gains and CNV-losses were called

from the Noncancer and Cancer samples, and the Correlation-based Feature Selection (CSF)
Method, Frequency-based Method, and Classifier-based Method were employed to generate three
different CNV feature sets from the Noncancer and Cancer and DNA array data. The

Naive Bayes classification method was employed to generate three training model incorporating
the three different CN'V-feature sets, making decisions in each case on sample classification into the
“Noncancer DNA” or “Cancer DNA” classes. As shown in Figure 5, the CNV-feature sets using
the CFS method, Frequency-based method and Classifier-based method yielded ROC-AUYV values

of 0.97510.002, 0.958+0.009, and 0.86710.016 respectively for the Korean samples. These high
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ROC-AUC values showed that all three CNV-feature ensembles are capable of classifying samples
into the Noncancer and Cancer classes with a high level of accuracy, and therefore provide a useful
basis for predicting the predisposition of Korean test subjects to cancer. The basis for the
usefulness of the sets of selected CNV-features as classifiers for the Korean samples is
demonstrated in Figure 4(B). The CNV features selected all displayed a highly biased distribution,
occurring either frequently in the Cancer DNA samples but infrequently in the control Noncancer
DNA samples, or frequently in the control Nnoncancer DNA samples but infrequently in the Cancer
DNA samples. As a result, they are endowed with the ability to serve as markers for Cancer DNA,

or as markers for control Noncancer DNA.

[0032] In addition, when the various Noncancer control subjects and cancer subjects in the
Korean cohort were randomly partitioned into a Learning Band and a Test Band 1,000 times as
described in [0030] for the Caucasian cohort, followed by estimation of the accuracy of predictions
made each time on samples in the Test Band using recurrent CNV features selected from the
Learning Band by means of the CSF-based method, the distribution of the 1,000 accuracy estimates
is shown in Figure 6(B), and their Average value of 86.5% confirmed the valid use of recurrent

CNV features to predict the predisposition of Korean test subjects to cancer.

[0033] The Caucasian cancer patient samples described in [0028] came from patients
inflicted variously with three types of cancers: glioma, myeloma and colorectal cancer. Figure 7A
shows that the CNV-feature contents in the three types of cancer-patient constituent genomes were
dissimilar. It follows that, when carrying out the selection of diagnostic recurrent CNV features, one
can employ DNAs from the noncancerous tissues of noncancer subjects, together with DNAs from
the noncancerous tissues of cancer patients inflicted with one (or a restricted number of) cancer type
instead of multiple cancer types, in order to focus prediction on cancer predisposition to that one (or
a restricted number of) cancer type instead of predisposition to cancer in general. Likewise, the

Korean cancer patient samples described in [0031] also came from patients inflicted variously with

16



WO 2015/139652 PCT/CN2015/074606

three types of cancer: gastric cancer, hepatocellular carcinoma (HCC) and colorectal cancer. As
shown in Figure 7B, the CNV-feature contents in the three types of cancer-patient constituent
genomes were also dissimilar. Therefore, again one can employ DNA samples from the
noncancerous tissues of noncancer subjects, together with DNA samples from the noncancerous
tissues of patients inflicted with one (or a restricted number of) cancer type instead of multiple
cancer types for selection of diagnostic recurrent CNV features, in order to focus prediction on
cancer predisposition to that one (or a restricted number of) cancer type instead of predisposition to
cancer in general. These examples indicate that the use of diagnostic recurrent CNV features to
predict predisposition to cancer applies to either predisposition to cancer in general, or

predisposition to one (or a restricted number of) type of cancer in particular.

[0034] In the preceding embodiments of the present invention, recurrent CNVs
comprising both CNV-gains and CNV-losses were called from human genomic data from the high
resolution Affymetrix SNP6.0 platform. In another embodiment of the present invention, recurrent
CNVs comprising both CNV-gains and CNV-losses were called from genomic data on a cohort of
28 Chinese cancer patients inflicted with 14 liver cancers, 4 gastric cancers, 3 lung cancers, 4
gliomas and 3 leukemias, and 22 ethnically-matched noncancer controls analyzed using the
AluScan next generation sequencing platform (Mei L, Ding X, Tsang SY, Pun FW, Ng SK, Yang
J, Zhao C, Li D, Wan W, Yu CH ef al: AluScan: a method for genome-wide scanning of sequence
and structure variations in the human genome. BMC genomics 2011, 12:564). From the recurrent
CNVs called from the AluScan sequence data using the AluScanCNV algortithm with 350 kb
windows (Yang, J.F. et al. Copy number variation analysis based on AluScan sequences. J Clin
Bioinformatics 4, 15, 2014), a set of diagnostic recurrent CNV features were selected by means of

the CFS-based method (Figure 8).

[0035] As shown in Figure 9, the recurrent CNVs called from the 28 Cancer DNA samples

and the 22 Noncancer DNA samples in the Chinese cohort were found to occur in various Cancer
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and Noncancer DNA samples with a wide spectrum of frequencies (open circles in Figure 9). In
contrast, the set of diagnostic recurrent CNV features selected by the CFS-based method from all
the recurrent CNVs, as shown in Figure 8, displayed strongly biased frequencies that were either
enriched in the Cancer DNA samples relative to the Noncancer DNA samples, or enriched in the
Noncancer DNA samples relative to the Cancer DNA samples (solid triangles in Figure 9). When
this selected CNV-feature set was employed to classify the 28 Cancer DNA samples and 22
Noncancer DNA samples in the Chinese cohort into the “Cancer” and “Noncancer” classes based on
Eqn. 1, the ROC-AUC value obtained was 0.993+ 0.001, showing that the selected CNV-feature set
is capable of classifying samples into the “Cancer” and “Noncancer” classes with a high level of
accuracy. This CNV-feature set therefore provides a useful basis for predicting the predisposition of
Chinese test subjects to cancer. The basis for the usefulness of the sets of selected CNV-features as
classifiers for the Chinese samples is demonstrated in Figure 9. The CNV features selected all
displayed a highly biased distribution, occurring either frequently in the Cancer DNA samples but
infrequently in the control Noncancer DNA samples, or frequently in the control Noncancer DNA
samples but infrequently in the Cancer DNA samples. As a result, they are endowed with the ability
to serve as markers for Cancer DNA, or as markers for control Noncancer DNA.
[0036] When the 28 Cancer and 22 Noncancer samples in the Chinese cohort were randomly

separated into a Learning Band and a Test Band for 100 times by means of the procedure

described in [0030] for the Caucasian cohort, followed by estimation of the accuracy of predictions
made each time on samples in the Test Band using diagnostic recurrent CNV features selected from
the Learning Band using the CSF-based method, the distribution of the 100 accuracy estimates is
shown in Figure 10, and their Average value of 83.7% confirmed the valid use of diagnostic

recurrent CNV features to predict the predisposition of Chinese test subjects to cancer.
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What is claimed is:

1.

A method of using the copy number variations (“CNV”) in the constitutional (i.e. germline)

genomic DNA of a human subject for predicting the predisposition of the subject to cancer,

based on a comparison between the CNVs in his/her DNA with a set of diagnostic recurrent

CNV features (or markers) that have been selected from the recurrent copy number

variations found in a collection of constitutional DNA samples from the noncancerous

tissues of noncancer subjects plus constitutional DNA samples from the noncancerous

tissues of cancer patients, and comprising the steps of:

(a)

(b)

(d)

Identify the recurrent copy number variations (CNV) in a collection of constitutional
DNA samples from the noncancerous tissues of subjects without experience of
cancer (designated as “Noncancer DNA” samples) plus constitutional DNA samples
from the noncancerous tissues of cancer patients (designated as “Cancer DNA”

samples), all from the same ethnic group.

Select, from the recurrent CNVs in a collection of “Noncancer DNA” samples plus
“Cancer DNA” samples, one or more sets of recurrent CNV features (or, markers)
with the capability of serving as a classifier tool to classify DNA samples between

the “Noncancer DNA” and “Cancer DNA” classes.

Testing the capability of the selected set or sets of recurrent CNV features for their
capability of serving as a classifier tool to classify DNA samples between the
“Noncancer DNA” and “Cancer DNA” classes. Once a set of recurrent CNV features
is found to be useful as a classifier tool to classify DNA samples between the
“Noncancer DNA” and “Cancer DNA” classes, it can be regarded and employed as a

diagnostic set of recurrent CNV features.

Analyze the CNVs found in the constitutional genomic DNA in the noncancerous

tissues of a test subjects belonging to the same ethnic group as the sources of the
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“Noncancer DNA” samples and “Cancer DNA” samples from which a diagnostic set
of recurrent CNV features is derived, in order to determine the presence or absence
of each and every recurrent CNV contained in the diagnostic set of recurrent CNV
features. Based on the data regarding the presence or absence of the different
recurrent CNVs contained in the diagnostic set of recurrent CNV features, prediction

on the level of the predisposition of the test subject to cancer can then be made.

The method of claim 1, wherein CNVs are identified from genomic DNA based on the use

of high resolution Affymetrix SNP array.

The method of claim 1, wherein CNVs are identified from genomic DNA based on whole

genome DNA sequencing.

The method of claim 3, wherein the whole genome sequencing is performed with a next

generation sequencing method.

The method of claim 1, wherein CNVs are identified from next generation sequencing of a

subset of genomic DNA sequences.

The method of claim 5, wherein the subset of genomic DNA sequences is obtained with the

use of an AluScan sequencing platform.

The method of claim 1, where recurrent CNVs are identified based on statistical procedures

exemplified by, and not limited to, the GISTIC2.0 algorithm.

The method of claim 1, where recurrent CNVs are identified based on statistical procedures

exemplified by, and not limited to, the AluScan algorithm.

The method of claim 6, wherein recurrent CNVs are identified based on the AluScanCNV

algorithm.
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The method of claim 1 wherein a set of recurrent CNV features is selected from the
recurrent CNVs identified in the a collection of DNA comprising both “Noncancer DNA”
samples and “Cancer DNA” samples by use of a Correlation-based feature selection (CFS)
method, where features are selected by virtue of their being highly correlated with either the

“Noncancer DNA” class or the “Cancer DNA” class but not with one another.

The method of claim 1 wherein a set of recurrent CNV features is selected from the
recurrent CNVs identified in the a collection of DNA comprising both “Noncancer DNA”
samples and “Cancer DNA” samples by use of a Frequency-based method, where a
recurrent CNV feature is selected by virtue of its frequency in “Noncancer DNA” samples

being significantly different from its frequency in “Cancer DNA” samples.

The method of claim 1 wherein a set of recurrent CNV features is selected from the
recurrent CNVs identified in the a collection of DNA comprising both “Noncancer DNA”
samples and “Cancer DNA” samples by use of a Classiifier-based method, where recurrent
CNV features are selected by use a classifier, for example the ClassifierSubsetEval attribute
evaluator from the Weka machine learning package together with the BestFirst search

method.

The method of claim 1 wherein testing the usefulness of a set of diagnostic recurrent CNV

features is performed with the use of Bayesian posterior probability analysis.

The method of claim 1 wherein estimation of the predisposition of a test subject to canc3er

is performed with the use of Bayesian posterior probability analysis.

The method of claim 1 wherein the “Cancer DNA” samples employed consist of the

constitutional genomic DNAs of patients inflicted with more than one types of cancer.

The method of claim 1 wherein the “Cancer DNA” samples employed consist of the
constitutional genomic DNAs of patients inflicted with a single type of cancer.
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17.  The method of claim 1 wherein the following recurrent CNVs are found to be individually
useful as members of a set of diagnostic recurrent CNV features for predisposition to cancer

testing for Caucasian test subjects (CNVG = CNV-gain; CNVL = CNV-loss):

GENOMIC REGION TYPE
chr 1: 17082580-17093244 CNVG
chr 1: 196790519-196801642 CNVG
chr 2: 91774012-91778756 CNVG
chr 3: 155483565-155492176 CNVG
chr 3: 178883723-178885918 CNVG
chr 7: 76303499-76309667 CNVG
chr 8: 1360723-1362790 CNVG
chr 9: 686583-694566 CNVG
chr 9: 68713481-68753608 CNVG
chr 10: 46918173-46989538 CNVG
chr 11: 1961189-2022483 CNVG
chr 12: 34467864-34523670 CNVG
chr 13: 19319636-19400859 CNVG
chr 19: 41365625-41375784 CNVG
chr 21: 11123429-11126187 CNVG
chr 21: 48069120-48129895 CNVG
chr 22: 16102481-16395149 CNVG
chr 22: 22447034-22453683 CNVG
chr 1: 152768559-152776742 CNVL
chr 3: 195422280-195429688 CNVL
chr 11: 4967240-4970264 CNVL
chr 11: 73581673-73590246 CNVL
18.  The method of claim 1 wherein the following recurrent CNVs are found to be individually

useful as members of a set of diagnostic recurrent CNV features for predisposition to cancer

testing for Korean test subjects (CNVG = CNV-gain; CNVL = CNV-loss):
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GENOMIC REGION TYPE
chrl:144008324-144013581 CNVG
chr2:132366274-132452986 CNVG
chr6:161032508-161068029 CNVG
chr7:76303499-76308210 CNVG
chr7:97405580-97420636 CNVG
chr7:110175088-110177523 CNVG
chr8:140566271-140583019 CNVG
chr9:16911092-16913776 CNVG
chr11:58833238-58835701 CNVG
chr11:69329675-69351720 CNVG
chr14:101515428-101529413 CNVG
chr14:106980636-107003597 CNVG
chr15:20180946-20186638 CNVG
chrl7:12894795-12900382 CNVG
chrl8:2262552-2263726 CNVG
chr19:40783234-40786732 CNVG
chr21:11123429-11126187 CNVG
chrl:179078208-179203917 CNVL
chrl:196741305-196770682 CNVL
chr2:219313355-219433596 CNVL
chr5:788049-863796 CNVL
chr5:125932873-125966005 CNVL
chr5:180329360-180380190 CNVL
chr6:74221700-74234042 CNVL
chr6:150042816-150075171 CNVL
chr7:38297824-38319338 CNVL
chr11:7813449-7829919 CNVL
chrl6:11912686-11927917 CNVL
chr19:15983972-16013337 CNVL
chr19:53603953-53641568 CNVL
19.  The method of claim 1 wherein the following recurrent CNVs are found to be individually

useful as members of a set of diagnostic recurrent CNV features for predisposition to cancer

testing for Chinese test subjects test subjects (CNVG = CNV-gain; CNVL = CNV-loss):
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GENOMIC REGION Type
chr2:38150001-38500000 CNVG
chr5:167300001-167650000 CNVG
chr6:170800001-171115067 CNVG
chr12:106050001-106400000 CNVG
chr14:101850001-102200000 CNVG
chr15:92050001-92400000 CNVG
chr19:29400001-29750000 CNVG
chr1:117950001-118300000 CNVL
chr1:175000001-175350000 CNVL
chr1:71400001-71750000 CNVL
chr3:64400001-64750000 CNVL
chr5:167300001-167650000 CNVL
chr5:168000001-168350000 CNVL
chr6:5250001-5600000 CNVL
chr6:85400001-85750000 CNVL
chr7:80850001-81200000 CNVL
chr10:64400001-64750000 CNVL
chr15:92050001-92400000 CNVL
chr17:34300001-34650000 CNVL
chr18:73500001-73850000 CNVL
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CANCER CONTROL CAN/CO

CNV ID GENOMIC REGION TYPE
FREQ. FREQ N RATIO
A6 chr 1: 17082580-17093244 CNVG 0.51 0.09 5.67
A18 chr 1: 196790519-196801642 CNVG 0.73 0.30 2.43
A33 chr 2: 91774012-91778756 CNVG 0.94 0.21 4.48
Ad6 chr 3: 155483565-155492176 CNVG 0.06 0 NA
A50 chr 3: 178883723-178885918 CNVG 0 0.21
A102 chr 7: 76303499-76309667 CNVG 0.02 0.43 0.05
Al11 chr 8: 1360723-1362790 CNVG 0 0.28 0
A122 chr 9: 686583-694566 CNVG 0 0.26
A129 chr 9: 68713481-68753608 CNVG 0.73 0 NA
A139 chr 10: 46918173-46989538 CNVG 0.25 0.02 12.5
A149 chr 11: 1961189-2022483 CNVG 0.16 0 NA
A173 chr 12: 34467864-34523670 CNVG 0.08 0.89 0.09
A176 chr 13: 19319636-19400859 CNVG 0.35 0 NA
A227 chr 19: 41365625-41375784 CNVG 0.04 0 NA
A237 chr 21: 11123429-11126187 CNVG 0.82 0 NA
A242 chr 21: 48069120-48129895 CNVG 0.45 0 NA
A243 chr 22: 16102481-16395149 CNVG 0.29 0 NA
A249 chr 22: 22447034-22453683 CNVG 0 0.45 0
D17 chr 1: 152768559-152776742 CNVL 0.04 0.34 0.12
D41 chr 3: 195422280-195429688 CNVL 0.16 0 NA
D89 chr 11: 4967240-4970264 CNVL 0.08 0 NA
D93 chr 11: 73581673-73590246 CNVL 0 0.26 0
Figure 2
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CNV ID GENOMIC REGION rype  CANCER  CONTROL  CAN/CO
FREQ. FREQ N RATIO
Al7 chr1:144008324-144013581 CNVG 0.23 0.02 11.5
A51 chr2:132366274-132452986 CNVG 0.2 0.01 20
A132 chr6:161032508-161068029 CNVG 0.16 0.35 0.46
A147 chr7:76303499-76308210 CNVG 0 0.05 0
A148 chr7:97405580-97420636 CNVG 0.01 0.07 0.14
A151 chr7:110175088-110177523 CNVG 0.01 0.11 0.09
A182 chr8:140566271-140583019 CNVG 0.01 0.21 0.05
A184 chr9:16911092-16913776 CNVG 0.02 0 NA
A215 chr11:58833238-58835701 CNVG 0.08 0.28 0.29
A217 chr11:69329675-69351720 CNVG 0.03 0 NA
A258 chr14:101515428-101529413 CNVG 0.01 0.09 0.11
A265 chr14:106980636-107003597 CNVG 0.38 0.62 0.61
A267 chr15:20180946-20186638 CNVG 0.4 0.06 6.67
A299 chr17:12894795-12900382 CNVG 0 0.04 0
A308 chr18:2262552-2263726 CNVG 0 0.05 0
A319 chr19:40783234-40786732 CNVG 0.13 0.01 13.00
A333 chr21:11123429-11126187 CNVG 0.4 0.06 6.67
D27 chr1:179078208-179203917 CNVL 0.02 0.13 0.15
D30 chr1:196741305-196770682 CNVL 0.02 0 NA
D41 chr2:219313355-219433596 CNVL 0 0.19 0
D69 chr5:788049-863796 CNVL 0.02 0 NA
D75 chr5:125932873-125966005 CNVL 0.01 0.22 0.05
D82 chr5:180329360-180380190 CNVL 0 0.02 0
D91 chr6:74221700-74234042 CNVL 0 0.18 0
D93 chr6:150042816-150075171 CNVL 0 0.16 0
D97 chr7:38297824-38319338 CNVL 0.11 0.56 0.20
D155 chr11:7813449-7829919 CNVL 0.01 0 NA
D200 chr16:11912686-11927917 CNVL 0 0.16 0
D229 chr19:15983972-16013337 CNVL 0.02 0 NA
D242 chr19:53603953-53641568 CNVL 0.01 0 NA
Figure 3
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Basis of CNV-features Caucasian Korean
n=98 n =542

CFS 0.996 + 0.001 0.975 + 0.002

Frequency 0.991 + 0.007 0.958 + 0.009

Classifier 0.986 + 0.014 0.867 £ 0.016
Figure 5
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CAN/CON
GENOMIC REGION type  CANCERFREQ. CONTROL FREQ
RATIO
chr2:38150001-38500000 CNVG 0.30 0 NA
chr5:167300001-167650000 CNVG 0.36 0 NA
chr6:170800001-171115067 CNVG 0.36 0 NA
chr12:106050001-106400000 CNVG 0.42 0 NA
chr14:101850001-102200000 CNVG 0.55 0 NA
chr15:92050001-92400000 CNVG 0.33 0 NA
chr19:29400001-29750000 CNVG 0.42 0 NA
chr1:117950001-118300000 CNVL 0.09 0.57 0.16
chr1:175000001-175350000 CNVL 0 0.39 0
chr1:71400001-71750000 CNVL 0 0.39 0
chr3:64400001-64750000 CNVL 0.09 0.52 0.17
chr5:167300001-167650000 CNVL 0.18 0.74 0.25
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