(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199896018 B2
(10) Patent No. 749592

(54)

(51)°

w

= D=2

Title

I-0 forwarding in a cache coherent shared disk computer

International Patent Classification(s)
GO6F 012,08 GOGF 009-46

Application No: 1996896018 (22) Application Date:
WIPO No: %099-18510

Priority Data

Number (32) Date (33) Country
08946084 1997 .10 .07 us

Publication Date : 1999 .04 .27
Publication Journal Date : 1999 .06 .24
Accepted Journal Date : 2002 .06 .27
Applicant(s)

Oracle Corporation

Inventor(s)
Roger J Bamford: Boris Klots

Agent/Attorney

system

1998 .10 .05

FREEHILLS CARTER SMITH BEADLE,Level 43,101 Collins Street, MELBOURNE VIC

Related Art
us 5535116
EP 518639

3000

OPI DATE 27/04/99 APPLN. ID

96018/98
ADJP DATE 24/06/99 PCT NUMBER PCT/US98/20947

IRMERARMANHTAND

AU9826018

CT)

'(51) International Patent Classification 6 :

GO6F 12/08, 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/18510

15 April 1999 (15.04.99)

(21) International Application Number: PCT/US98/20947

(22) International Filing Date: 5 October 1998 (05.10.98)

(30) Priority Data:

08/946,084 7 October 1997 (07.10.97) us

(71) Applicant: ORACLE CORPORATION [US/US); 500 Oracle
Parkway, MS 5op7, Redwood Shores, CA 94065 (US).

(72) Inventors: BAMFORD, Roger, J.; 2430 Hyde Street, San
Francisco, CA 94109 (US). KLOTS, Boris; 1566 Winding
Way, Belmont, CA 94002 (US).

(74) Agents: WOLFF, Jason, W. et al.; Lyon & Lyon LLP, Suite
4700, 633 West Fifth Street, Los Angeles, CA 900712066
(US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IS, IP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, 8D, SE, 5G, S, SK,
SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, G4, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 10 be republished in the event of the receipt of
amendments.

(57) Abstract

A method and apparatus for
/O forwarding in a cache coherent
shared disk computer system is pro-
vided. According to the method, are-
questing node transmits a request for
requested data to a managing node.
The managing node receives the read
request from the requesting node and
grants a lock on the requested data.
The managing node then forwards
data that identifies the requested data
to a disk controller. The disk con-
troller receives the data that identifies
the requested data from the managing
node and reads a data item, based on
the data that identifies the requested
data, from a shared disk. After read- 3
ing the data item from the shared
1 disk, the disk controtler transmits the
data item to the requesting node. In
onc embodiment, an /O destination
| handle is generated that identifies a
read request and a buffer cache ad-
dress t0 which the data item should
be copied. The [/O destination handle
is transmitted to the disk controller to
facilitate transmission and processing
of the data item from the disk con-
troller to the requesting node. As a

REQUESTING
NODE

(54) Title: /O FORWARDING IN A CACHE COHERENT SHARED DISK COMPUTER SYSTEM

—

MANAGING
NODE

DISK
(0NTR(|)SLLER

result of forwarding data that identifies the requested data directly from the managing node to the diks controller ("VO forwarding™), the
duration of a stall is reduced, contention on resources of the system is reduced and a context switch is eliminated.

10

15

20

25

30

WO 99/18510 PCT/US98/20947

1

DESCRIPTION

/O FORWARDING IN A CACHE COHERENT SHARED DISK COMPUTER
SYSTEM

FIELD OF THE INVENTION

The present invention relates to shared disk computer systems, and more
specifically to cache coherency management in a cache coherent shared disk computer
systemn.

BACKGROUND OF THE INVENTION

In a cache coherent shared disk computet system, one or more persistent disks are
shared among a plurality of nodes, where each node contains memory and one or more
processors that share the memory. A portion of the memory of each node may be used as
2 “buffer cache” which temporarily stores disk resident data accessed by the processors of
the node.

Because data on the disk is shared among nodes, the system needs to manage the
shared data in a way that ensures each processor or device reading from or writing to the
shared data does so in a way that preserves the data in a consistent state. Consider a
situation where two nodes are executing separate processes that share a data item, where a
copy of the data item currently resides in each node. If a first node modifies its copy of
the data item and the second node isn't notified of the modification, then the second node
may supply an outdated version of the data item to its process, causing an error. However,
if a resource management system is established that maintains the data item in a way that
makes each copy of the data item appear to be a single, "consistent" data item (e.g., by
updating or invalidating the data item in the second node in response to the update in the
first node), then that data item is said to be in a "consistent" or "coherent" state.

Each buffer cache is managed by a cache coherency manager. The cache
coherency manager for a given buffer cache controls access to the buffer cache and
maintains the data in one or more buffer caches in a coherent, or consistent state. In
addition, the each buffer cache can create "locality", which will be explained in greater

detail below.

20

25

30

WO 99/18510 PCT/US98/20947

2

A shared disk computer system is frequently employed in computing
environments, such as database systems, where a number of users and processes may
require access to a common database that is persistently stored on one or more shared
disks.

Figure 1 depicts a cache coherent shared disk computer system 100, In Figure 1, a
disk 150, comprising two data blocks 152 and 154, is connected to a disk controller 140 by
alocal bus 145. The disk controller 140, is connected to a first node 190 and a second
node 192 by an I/O network 135.

First node 190 comprises a processor 102, a buffer cache 104 and a cache
coherency manager 106. Buffer cache 104 has in it a copy of data block 154 (represented
as a cached data block 154"). Processor 102, buffer cache 104 and cache coherency
manager 106 are interconnected by a local bus 108.

Similarly, second node 192 comprises a processor 112, a buffer cache 114 and a
cache coherency manager 116. Buffer cache 114 has in it a copy of data block 154
(represented as a cached data block 154"). Processor 112, buffer cache 114 and cache
coherency managers 116 are interconnected by a local bus 118.

The first node 190 and the second node 192 in the cache coherent shared disk
computer system depicted in Figure 1 are interconnected by a system area network 130.
For example, system area network 130 interconnects processors 102 and 112, as well as
cache coherency managers 106 and 116.

Various configurations may be used to interconnect processor 102 to buffer cache
104 and a cache coherency manager 106 (e.g. local bus 108). Similarly, various
configurations may be used to interconnect first node 190 to second node 192 (e.g. system
area network 130). Likewise, various configurations may be used to connect first node
190, second node 192 and disk controller 140 (e.g. I/O network 135). The interconnection
configurations shown in Figure 1 are exemplary and are intended to simplify the
description of a shared disk computer system.

Locality in a computer system takes a number of different forms, such as spatial
locality, temporal locality and processor locality. Spatial locality is said to exist when
contemporaneous memory references are likely to access adjacent or nearby memory

addresses. Temporal locality is said to exist when a recent memory reference is likely to

20

25

30

WO. 99/18510 PCT/US98/20947
3

be accessed again. Further, parallel computing can create another form of locality called

processor locality. Processor locality is said to exist when contemporaneous memory

references are likely to come from a single multiprocessor (instead of many different

ones).

The use of 2 buffer cache can create locality between the disk 150 and a process

initiated in an interconnected processor by increasing the chances that data required by a

pracessor in the future will be located near the processor. Using cache coherency manager
116, a local process initiated on processor 102 can exploit the temporal locality of accesses
to cached data block 154" while it is in adjacent buffer cache 104, instead of being delayed
by processing and communication latencies that would result from continually re-reading
data block 154 from the disk 150.

In Figure 1, each cache coherency manger maintains a data block from disk 150 in
a consistent state by using a cache coherency protocol. The cache coherency protocol
ensures that each processor 102 and 112 has access to a similar, or consistent copy of data
block 154, even though the cached data block 154' is distributed in multiple buffer caches.
For example, cache c;)herency manager 106 maintains data block 152 in a consistent state
while a copy exists in buffer caches 104 and 114. Likewise, cache coherency manager 116
maintains data block 154 in a consistent state while it is distributed in buffer caches 104
and 114.

The cache coherency managers 106 and 116 in the shared disk computer system
depicted in Figure 1 help to create locality between a buffer caches 104 and 114,
processors 102 and 112, and a data blocks 152 and 154 in disk 150.

CACHE COHERENCY MANAGEMENT

The communication sequence for a typical cache coherency management protocol
is depicted in Figure 2. Assume in Figure 2 that a process, initiated by processor 102, has
requested a read of data block 154. Additionally, assume that a copy of data block 154 is
not presently cached in buffer cache 104. Further, assume that the cache coherency
management system has chosen node 192 as the cache coherency manager for data block
154, '

In order for the process to read data block 154, a copy of data block 154 must be
placed in buffer cache 104. First, the first node 190 passes a lock request to the second

node I 92. Second nade 15‘:"2 r:é:ives.thlcl Iéck'}:q‘uestré:dmf:l;c ﬁ’rst r;'c:;die 1‘9;’);and, if a lock
is available, passes 2 lock grant back to first node 190. First node 190 receives the lock
grant and initiates a process that prepares buffer cache 104 f(;r acopy of data block 154,
First node 190 then jm.ss:s aread requ;stvto disk controller 140. Next, disk controller 140
reads daw block 154 from disk 150 and then sends & copy of data block 154 to first node

~

15

25

In Mokan C.:"Efficient locking and caching of data in the multisystem shared disks

+ 190. First node 150 reczives the copy of data block 154 and then stores a copy of darz

block 154, as cached data block [54', into buffer cache 104 .

A problem with the protocol described above is that the process on node 190 that
requires data block 154 (the “requesting process”) is stalled while w;.it'(ng for a copy of
data block 154. -Stalling the requesting process under these conditions can lead to
significant performance problems in an application program, Further, 2 synchronous
context switch is required by first node 190 betwssn bath 2 and path 3. The problem
described al;bve is further exacerbated when largs numbers of nodes have access to data
on the same shared disk. "For example, théusand nodes Epuld share disk 150, disk 150 may
have millions. of data blocks and each node may request a thousand data blocks every
minute. Under these ;:ondiﬁons, comimunication latencies, r;rrocessor stalls and context
switches would comprise a significant amount of wasted processing time. -

POSSIELE SOLUTIONS o

‘One approach to solving the problem of stalling a requesting pi‘occss i5 addressed
in Cache Considérations for Multiprocessor Programmers, M.D. Hill and J.R. Larus,
Communications of the ACM, Vol. 33, No. 8, August 1990, p. 97-102}shiekis

* ~ineerpesited-hereln by referenied In their article, Hill and Larus suggest that the stalling

problem can be at least partially mitigated by programming techniques that pay special
attention to the buffer cache 56 as to avoid any extra accesses (reads) of the shared disk(s).

-Four memory models are proposed and rules are suggested for single procassor and

. multiprocessor programming.

A problem with the Hill et al approach is that informed programming mo de{sh may

———

reduce the frequency of stalls, but théy do not address the undettying problem, namely, the
duration of the stalls. '

msaction environment", March 23, 1992, pages 453 to 468, XP-002055779, 2 method for locking
using global and local lock managers is disclosed.

Another approach is suggested in Techniques for Reducing Consistency-Re latcci

Communication in Distributed Shm’ed.'MCmory Systems, 1.B. Carter, LK. Bennett and W

/AMENDED SHEET

10

20

25

WO 99/18510 o - pCTiusIsmiT
5 : -
Zwaenepoel, ACM Transactions on Computer Systems, Vo‘l. 13, No. 3, August 1995, p.
205-243+w§gh4s+asespen&ed4;efei-a-bﬂeferened. In their paper, Carter et al suggest
that buffering and merging updates in a process will mask the latency of writes to a shared
datumn (i.e., the disk 150, or data block 154 distributed among buffer caches 104 and 114)
and will effectively reduce the total overhead for update operations. The Carter et al
approach is geared toward reducing the frequency of communication and, thereby, the
frequency of the stalls. Whereas Carter et al’s approach reduces the effective cost of the
stall (if the stall is amortized over the number of "batched” updates), the mdividual cost of
the stall is likely to be greater. For example, if a read request is needed immediately, then

the Carter et al approach is insufficient because the duration of the stall is greater as result

of queuing up the read requests until 2 sufficient number of requests are collected.

Thus, there is a need for an improved method and apparatus for implementing a
cache coherent shared disk computer system.
SUMMARY OF THE INVENTION

A method znd apparatus for /O forwarding in a cache coherent shared disk
computer system is provided.

According to the method, a requesting node transmits a request for requested data

A managing hode receives the read request from the requesting node and grants a lock on
the requested data. The managing node then forwards data that identifies the requested

data to a disk controller. The disk controller receives the data that identifies the requested

: data from the managing node and reads a data item, based on the data that-identifies the
' requested data, from 2 shared disk. Affer reading the data item from the shared disk, the

disk controller u'ammns the data item to the requesting node.

In one embodiment, an /Q, destination handle is generated that ideritifies 2 read ¢
request 4id & Sﬁffei’ Giche address to which the data iter should be copied. §The L/O-
destination handle is t¥ansmittéd to the disk controllergo facilitate transmission and
processing of the data item from the disk controller to the requesting node.

As a result of forwarding data that identifies the requested data directly from the
managing node to the disk controller (“VO forwarding”), the duration of & stall is reduced, ¥

contention on resources of the system is reduced and a context switch is ehmmated

AMENDED SHFET

20

25

30

WO 99/18510 PCT/US98/20947
6

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Figure 1 is a block diagram of a cenventional cache coherent shared disk computer
system;

Figure 2 is a flowchart illustrating the communication path for a conventional
cache coherency protocol,

Figure 3 is a block diagram of a cache coherent shared disk computer system
according to an embodiment of the present invention;

Figure 4 is a block diagram of a cache coherent shared disk computer system
according to an alternative embodiment of the present invention;

Figure 5 is a flow diagram illustrating the communication path for a cache
coherency protocol according to an embodiment of the present invention; and

Figure 6 is a flow chart depicting the steps for handling a request for data
according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for I/O forwarding in a cache coherent shared disk
computer system is described. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the
art that the present invention may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order to
avoid unnecessarily obscuring the present invention.
HARDWARE OVERVIEW

_Figure 3 depicts a cache coherent shared disk computer system 300 according to an

embodiment of the invention.

First node 302 comprises processors 304 and 306, a network driver 308, an /O
controller 310 and a buffer cache 312. A local bus 316 interconnects processors 304 and
306, network driver 308, 1/O controller 310 and buffer cache 312.

Second node 322 comprises processors 324 and 326, a network driver 328, an I/0

10

15

20

25

30

WO 99/18510 PCT/US98/20947
7

controller 330 and a buffer cache 332. A local bus 336 interconnects processors 324 and

326, network driver 328, I/O controller 330 and buffer cache 332.

First node 302 is attached to second node 322 by a system area network 350 which
interconnects network driver 308 to network driver 328. An J/O destination handle 314 in
buffer cache 312 comprises data that identifies a destination memory address in buffer
cache 312. Likewise, /O destination handle 334 in buffer cache 332 comprises data that
identifies a destination memory address in buffer cache 332.

System 300 comprises a disk controller 360, Disk controller 360 is attached to
disk 364 and disk 366 by local bus 362. Similarly, disk controller 370 is attached to disk
374 and disk 376 by local bus 372. Disks 364, 366, 374 and 376 each contain a data block
(368, 369, 378 and 379 respectively). Disk controliers 360 and 370 are connected by an
1O network 355. /O network 355 also interconnects first node 302 and second node 322
via 1/0 controllers 310 and 330 respectively.

The task of cache coherency management in system 300 is a set of processes
executed by the processors in each node. For example, processes executed by processors
304 and 306 in first node 302 manage data blocks 368 and 369. Likewise, processes
executed by processors 324 and 326 in second node 322 manage data blocks 378 and 379.

Figure 4 depicts an alternative embodiment for a cache coherent shared disk
computer system 400. In system 400, disk 150, comprising two data blocks 152 and 154,
is interconnected to disk controller 140 by a local bus 145, The disk controller 140, is
interconnected to a first node 190 and second node 192 by I/0 network 135.

First node 190 comprises processor 102, buffer cache 104 and cache coherency
manager 106. Buffer cache 104 has in it I/O destination handle 314. A local bus 108
interconnects processor 102, buffer cache 104 and cache coherency manager 106.

Similarly, second node 192 comprises processor 112, buffer cache 114 and cache
coherency manager 116. Buffer cache 114 has in it I/O destination handle 334. A local
bus 118 interconnects processor 112, buffer cache 114 and cache coherency manager 116.

Nodes in system 400 are interconnected by system area network 130. For example,
first node 190 and second node 192 are attached by system area network 130 which
interconnects to processors 102 and 112, as well as cache coherency managers 106 and

116.

WO 99/18510 . 'éc‘."x"lusss'fzb«_v;f '
‘ . |
Although similar to system 300, system 400 differs from system 300 in that system
300 is a software based cache coherency management system, meaning the cache
coherency management is a series of processes executed by the processors associated with
each node, whereas system 400 has dedicated hardware that is used expressly for cache
5 coherency management.
In order to simplify the description that follows, the terms "requesting node"” and
"managing node" will be used interchangeably with the terms "first node" and "second
node”. "Requesting node" functionaily identifies the node which has initiated a read
request, whereas "managing node” functionally identifies the node which is respo'f;s‘ible for
10 the cache coherency management of the requested data item. However, it will be obvious
to one skilled in the art that any node in the cache colierent shared disk computer system
described herein could be a requesting node, or a sending node.
OPERATIONAL OVERVIEW
According to one embediment of the invention, a p}ocess;, executing in a
15 requesﬁné node, allocates memory to receive a data item before requesting the data item.
Next, the requesting node sends data that identifies the location of the ';a.llocated mernory
(“I/O destination handle™) with the request for the data item to the node that mmaées the
rcquestéd. dataitem. The managing node then causes the disk containing the data item to
send the data item directly to the 10caﬁon identified by the VO destination handle.
20 . In one embodiment, the requesting node transforms a logical address of the
requ(:Stéd data item (e.g. 2 resource name) into a physical address of the requested data
" jtem. In another embodiment, the managing node transforms the logical address of the
requested data item to the physical address. In still another embodiment, both the
reqx.{esting node and the managing node transform the logical address of the requested data
A 25 jftemto the physical address. In yet another embodiment, the disk controller ceutd—

- transfomr the logical address to the physical address. In any of the above embodiments,
the step of transforming Gedlé be initiated by an operating system call, an /O subsystem
call or anor.her process.

GENERATING AN VO DESTINATION HANDLE
30 1O destination handles 314 and 334, depicted in Figure 3 and Figure 4, eack,

/% Bagpeise data that identifies the destination memory address for a requested data block in
N

AMENDED SHEET

e

WO 99/18510 ') : PCT/US98!"U947v .
$. o
the buffer cache (e.g. buffer caches 312, 332, 104 or 114) tb which a data block is to be
copied. For example, /O destination handle 314 could identify requesting node 302 and
the destination memory address E200 FOO0 in buffer cache 312, with the data
"0001E200F000". In the previous example, the first two bytes i&entify the requesting
5 node and the next four bytes identify the specific memory address. _

In an alternative embodiment, the /O destination handles 314 and 334 comprise
the destination memory address and status information. The status information egglg
comprise a time stamp or other information used to uniquely identify a pa.rticuléir Vo
request. For example, the previous /O destination handle 314, "OOOIEZOOFOOO"!_scea&lQ-

10 have appended to the end of it the three bytes "2A0234" to represent a point in tin-le ora
sequence number for the read request. In addition, the I/O destination handle fei‘ﬁ
‘comprise a checksum to verify the; authenticity or accuracy of the I/O destination handle.

According to one embodiment, the /O destination handlesA3 14 and 334 are
generated By an operating system call or an I/O subsystem call. Inone embodiment,

15 generation of an [/O destination handle is implicitly performed upon the occurrence of an
event. In another embodiment, generation of the I/O destination handle is explicitly
performed by a function call. For example, if a process is initiated on processor 304 and
thé process requests to read data block 379, then the read request in the process triggers an
operzating syster call that generates' 1O destination handle 314 for a particular destination

20 memory address m bufer cache 312. ‘

. In an alternative embodiment, the /O destination handle (e.g. VO destination

‘ hanci{e 314) is generated by a local device responsible for the cache coherency
management (¢.g., cache coherency manager 106 or processor 304). The local dcwce
would make an operating system call or an I/0 subsystem call that is either explicit or

25 implicit in the read request. The /O destination handle could have data (e.g. status
informmation) appended and removed as it passes the managing node and disk controller.

In another embodiment, a bark of p memory addresses, where p is the result of the
amount of memory reserved for data blocks in buffer cachc (c g. buffer cache 312) divided
by a maximum size of 2 data block (e.g. datablock 379), .ceu&d-be used to generate the I/O

30 destination handle. The /O destination handle would point to a block of memory in the

buffer cache of a particular size (at 1ea_st the size of a data block). When the /O

AMENDED SHERT

15

20 °

25

WO 9913510 . ’ POT/USS8/20047

10

destination handle is generated, it is selected from the bank of p memory addresses which
do not correspond to an outstanding I/O request. A status flag &413 be used to identify
outstanding or currently unallocated memory addresses in ﬁe bank of p memory
addresses. I‘n this way, upon arrival of a data block with a particular /O destination
handle, the data block can be copied into the appropriate location in buffer cache. When
the process that initiated the read request is finished, the memory address would be
returned to the bank of available memory addresses.
/O FORWARDING

Referring to the comnmunication flow diagram depicted in Figure 3, 2 first message,

comprising a request for data, is passed from a requesting node that is executing the

requesting process to a managing node that is responsible for managing the requested data.

The managing node receives the first message from the requesting node and grants a lock
for the requested data to the requesting node. The managing node forwards a second
messdge to a disk controller. The disk controlier receives the second message and then
copies the requested data from a shared disk to the location in the requesting node that is
identified by the /O destination handie. '

The /O destination handle can be appended to the requested data, or it may be sent
separately from the requested data. In one embodiment, the 1/O destination handle is
appended to the I/O request from the requesting node to the managmg node and is sent
separate from the /O request from the managing node to the disk controller.

~ " According to another embodiment, an /O destination handle uniquely identifies an
outstanding read request, so when the requested data arrives at the requesting node from
the disk controller and is addressed to a specific memory location in the buffer cache, the
fact that the requested data has arrived is an indication that the lock request was granted.

Thus, sending the lock grant in the communication from the disk controller to the

‘ requesting node is not necessary. Inan alternative embodu‘nent if the lock grant is

required by the requesting node, then the managing node seulé send the lock grant back to
c
the requesting node (separate from forwarding the /O request), or the disk controller dotid

“send the lock grant to the requesting node.

AMENDED SHEET

20

25

30

WO 99/18510 . PCT/US98/20947

EXAMPLE

Referring to Figure 3 and Figure 6, consider a situation where a process initiated by
processor 304 on the requesting node 302, requests data block 379, which is on disk 376
(step 605). As mentioned above, data block 379 is managed by processes executing on
processors 324 and 326 in the managing node 322.

In step 610, processor 304 allocates a portion of buffer cache 312 for receipt of
data block 379. In step 615, an I/O destination handle 314 is generated by an operating
system call in requesting node 302. The 1/0 destination handle jdentifies the portion of
buffer cache 312 allocated for data block 379 in step 610. Next, in step 620, an /O
request comprising a lock request, a read request and an [/O destination handle 314 is sent
to the managing node 322 from requesting node 302 by network driver 308.

In step 625, network driver 328 in managing node 322 receives the 1/0 request
from network driver 308 in the requesting node 302. Assume processor 324 in managing
node 322 is not busy and processor 326 is busy. (If both processors were busy, then one of
the processors, usually a preset default processor in managing node 322, would be
assigned the task of processing the I/ request.) Processor 324 in managing node 322
grants the lock request to the requesting node 302 in step 630, and, in step 632, managing
node 322 transforms a Jogical address of the requested data into a physical address. (The
physical address will be sent with the I/O request, rather than the logical address.) Next, in
step 635, the managing node 322, via I/0 controller 330, forwards the I/0 request to the
disk controller 370. In some conﬁguratiops of I/O network 355, the I/0 request may be
broken up and the [/O destination handle 314 may be sent in a separate message.

In step 640, the disk controller 370 receives the I/O request (and the 1/0 destination
handle 314) from /O controller 330 in managing node 322. Next, in step 645 disk
controller 370 processes the I/O request by fetching data block 379. In step 650, disk
controller 370 sends data block 379, addressed to buffer cache 312 in requesting node 302,
with I/O destination handle 314.

In step 655, 1/0 controller 310 in requesting node 302 receives the data block 379,
The data block 379 is processed by I/O controller 310, at step 660, which moves the data
block 379 into buffer cache 312, ar the address identified by 1/O destination handle 314.

20

-

WO 99/18510 ’ PCT/US98/20947 "

2 -
Processor 304, which initiated the I/O request, is notified of the arrival of data block 379
by /O controlier 310 in step 665 and the process completes.

Note, in the embodiment described above, that arrival of the data block 379 implies
that the lock request generated by requesting node 302 was granted. However, in
alternative embodiments, the lock grant could be explicitly given to requesting node 302
by disk controller 370 or by managing node 322. .

changes may be made thereto without departing from the broader spirit and COpé. of the

invention. For example, the /O request described herein may comprise additional
information such as network and protocol headers, checksumpsand stats information
specific to the particular cache coherency protocol ipplemented. In addition, the I/O

destination handle could comprise more or legsthan the number of bytes specified above

" to identify a variable amount of nodes, 2 ariable length address space (e.g., 16, 48 or 64

bit addresses) in the buffer cache-6T a variable length time stamp or séquence number.

Furiher, two cache cohegs shared disk computer systems with specific configurations

' were described g furposes of illustration. It would be apparent that other configurations

- of cache coh€rent shared disk computer systems would also benefit from /O forwarding

(sugkrfs a system employing shared memory i:arallel processors). The specification and

AMENDED SHEET

CD/004036110v6.doc

......

10

15

20

25

13

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for /O forwarding of a read request in a cache coherent, shared
disk computer system sharing one or more disks between a plurality of nodes
each comprising a memory and one or more processors, wherein a portion of said
memory is used as cache memory holding a copy of a data item being shared, the
method comprising: sending a read request for a data block from a requesting
node to a managing node; receiving the read request at said managing node,
granting a lock for excluding access to said data block, said lock granted from said
managing node to said requesting node; reading said data block, by way of said
disk controller, from a shared disk, said data block corresponding to said read

request; wherein the method is further characterised by:

forwarding data corresponding to said read request from said managing
node to a disk controller;

receiving said data corresponding to said read request at said disk

controller from said managing node;
and

transmitting said data block, by way of said disk controller, to said requesting
node, wherein said data block is not processed by said managing node in a data
block return path.

2. The method of claim 1, further comprising the step of generating
destination data by said requesting node that indicates a location in a buffer cache
at which said requested data is to be stored in said requesting node.

3. The method of claim 2, further comprising the steps of:

receiving said destination data at said managing node from said requesting
node; and forwarding said destination data from said managing node to said disk

controller.

4. The method of claim 1, further comprising the step of generating
destination data that uniquely identifies said read request, said step of generating
Bcformed by said requesting node, and wherein more than one read request can

RNM:8.:40415767 - 17.4.02

CD/004036110v6.doc

10

15

20

25

14

be outstanding.

5. The method of claim 1, further comprising the step of allocating a portion of
a buffer cache in said requesting node to receive said data item from said disk
controller, said step of allocating occurring without receiving said lock grant

directly from said managing node.
6. A cache coherent computer system comprising:

one or more shared disks being shared between a plurality of nodes and

comprising a data block;
a disk controller coupled to said shared disk;

a requesting node coupled to said disk controller, said requesting node
comprising a buffer cache; and a managing node coupled to said disk controller;

wherein:

said requesting node is configured to send a first message comprising a

read request for said data block to
said managing node; and

said managing node is configured to receive said first message from said
requesting node, grant a lock for excluding access to said data block to said
requesting node; and wherein said cache coherent computer system is further

characterized in that:

said managing node is further configured to forward a second message to
said disk controller, said second message comprising said read request for said
data block; and

said disk controller is configured to respond to said second message by
retrieving said data block from said shared disk, and sending a third message
comprising said data block to said requesting node, wherein said data block in

said third message is not processed by said managing node.

7. The cache coherent computer system of claim 6, wherein said requesting
node is configured to generate destination data that indicates a location in said

buffer cache at which said requested block is to be stored.

RNM:8J:40415767 - 17.4.02

CD/0D4036110v6.doc

10

15

20

25

15

8. The cache coherent computer system of claim 7, wherein
said managing node is further configured to:

receive said destination data; and

forward said destination data to said disk controller.

9. The cache coherent computer system of claim 6, wherein said requesting
node is configured to generate destination data that uniquely identifies said read
request, and wherein more than one read request can be outstanding.

10. The cache coherent computer system of claim 6, wherein said requesting
node is further configured to allocate a portion of said buffer cache to receive said
third message from said disk controller, said allocation occurring without receiving

said lock directly from said managing node.

11. A computer readable medium having stored therein sequences of
instructions for 1/0 forwarding of a read request in a cache coherent, shared disk
computer system sharing one or more disks between a plurality of nodes each
comprising a memory and one or more processors, wherein a portion of said
memory is used as cache memory holding a copy of a data item being shared, the
sequences of instructions causing one or more processors to perform the steps of:
sending a read request for a data block from a requesting node to a managing
node; receiving the read request at said managing node, granting a lock for
excluding access to said data block, said lock granted from said managing node to
said requesting node; reading said data block, by way of said disk controller, from
a shared disk, said data block corresponding to said read request; wherein the

‘instructions of said computer readable medium are further characterized by:

forwarding data corresponding to said read request from said managing
node to a disk controller;

receiving said data corresponding to said read request at said disk
controller from said managing node; and

transmitting said data block, by way of said disk controller, to said
requesting node, wherein said data block is not processed by said managing node
in a data block return path.

RNM:$J:40415767 - 17.4.02

CD/004036110v6.doc

10

15

20

25

16

12. The computer readable medium of claim 11, said instructions further
comprising the step of generating destination data that indicates a location in a
buffer cache at which said requested data is to be stored in said requesting node.

13. The computer readable medium of claim 12, said instructions further
comprising the steps of:

receiving said destination data at said managing node from said requesting
node; and

forwarding said destination data from said managing node to said disk
controller.

14. The computer readable medium of claim 11, said instructions further
comprising the step of generating destination data that uniquely identifies said
read request, said step of generating performed by said requesting node, and

wherein more than one read request can be outstanding.

15. The computer readable medium of claim 11, said instructions further
comprising the step of allocating a portion of a buffer cache in said requesting
node to receive said data item from said disk controller, said step of allocating

occurring without receiving said lock grant directly from said managing node.

18. A method for /O forwarding of a end request including steps substantially
as hereinbefore described.

17. A cache coherent computer system substantially as hereinbefore described
with reference to the accompanying drawings.

18. A computer readable medium substantially as hereinbefore described with

reference to the accompanying drawings.
DATED: 17 April 2002
ORACLE CORPORATION

By its Registered Patent Attorneys
Freehills Carter Smith Beadle

RNM:SJ:40415767 - 17.4.02

1§7

0

PG
RO

01/05

(LMV HOIYd) \\J

SUBSTITUTE SHFFT (Ri Il F 2R)

L B4
¥s1n0e 100
051 s1
s
0v1 ¥ATIOALNOD X510
< T
911 HIVNYW SELMONIN 07 _ﬁgzuszé AN
bSL 00 BIL_) N3 A oNzHe) 800 wSL00
)
PLL JHOV) 334408 /p #n g Y0 300V 434408
l_ _|“
ZL1 4055104 [] u 201 40504
0E1 YSOMLIN VIV swaa&

Z61 00N 061 300N

O

PCTIUS
RO/US

0
N1

o0
=0
[

no

=

lé?

[f=)
=]

02/05

SECOND NODE

DISK
F,g 2 CONTROLLER

{PRIOR ART)

FANAGING
NODE

DISK
(ONTROLLER

Fig. 5

SUBSTITUTE SHEET (RULE 26)

0"

|

[y

it

03/05

(313
Do1g

29¢ ¥sla

19t Sng

89¢
D018

¥9E NSl

4 L

09€

4IN04INOY HSIa

- L

. 418 8¢
g ‘614 018 018
9.€ ¥5i vIE ¥SIo
148 Sng
o€
JITIOHINDY Y510
55¢ YIOMLIN 0/
Jd L
bEE TINVH 0g
NOLLYNILS30 HTIONND) 0/
01 _
826 3NN 0S¢ NIOMEN
wzu%wm“_“:_m NHOMLIN / VIV WIISAS
9t (74
d0ssn0sd f, EESTE 40553003
22¢ 300N

0LE vIE JIONVH
ITI0YING) 0A NOILYNILSIa
04
80E YIARQ e
Y4OMLIN JIDN ¥34408
90 40SST0¥d K 91ESNE)| poc 305532044
20¢ 300N

SUBSTITUTE SHEET (RULE 26)

04/05

TN

SUBSTITUTE SHEET (RULE 26)

v Bid . .
bsl 00 Zst o
/
05t XSia
Skl
ObL ¥ITIONINGD AStQ
PN
vEE FIANVH & SEL NYOMIIN a_ pLE TANVH
NOILYNILSIA 0/ Ll HIVNVW 900 NISUNVW NOLYNILSI] 04
ONNIH) QNI 801 .
IHW N
pLL DY) 33404 N~ ||_ —l.t vOL IV ¥34nd
4l N

t1l ¥0SSI0Yd “ _ 01 30SS1044

1%_ YAOMLIN VIV Ema&

61 J00N 061 300N
oor

PLIIUSY B/ ZUV 4
RO/US 04 JAN 1999

05/05

(SURT)

REQUESTAND U | | 440 | REQUEST AND Y0
605 | READREQUEST | | 625 N 635 FROMDISK
INTIATED DESTINATION DESTRATION CONTROLLER
HANDLE FROM HANDLE FROM
REQUESTING NODE MANAGING NODE
h 4 ‘ ‘ \ 4
ALLOCATE PORTION GRANT LOCK DATA BLOCK
O orurrmace | | 0N a0 | fags megxw 680] JOVED 10 BUFFER
FOR A DATA BLOCK REQUESTING CACHE
NODE
A 4 A 4 A\ 4 A 4
65 GENERATE 1/0 6 TRANSFORM SEND THE DATA REQUESTER
N otsmnaTion | LOGICAL ADDRESS BLOCK 0 665\ NOTIFED OF
HANDIE INTO PHYSICAL [| 50\ REQUESTING NODE ARRIVAL
ADDRESS ADDRESSED WITH
1O DESTINATION
! ! HANDLE v
FORWARD 10
G20\ [SUOVORREST| | e | Ot END
AND 0
GRANT T0 DISK y
DESTINATION ONTROLER
HANDLE 10
MANAGING NODE
A 4
Yy
FIG. 6

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

