
USOO4(OO1769B2

United States Statutory Invention Registration (19)
11 Reg. Number: H1769

LeClair et al. 45) Published: Jan. 5, 1999

54) OPTIMIZED RECURSIVE FOUNDRY 5,465,780 11/1995 Muntner et al. 164/516
TOOLING FABRICATION METHOD 5,498.387 3/1996 Carter et al. 264/219

5,546,313 8/1996 Masters 364/468.03

75 Inventors: Steven R. LeClair, Spring Valley, Primary Examiner Bernarr E. Gregory
Ohio; Stephen C. Gregory, San
Antonio. Benny L Carreon Atascosa Attorney, Agent, or Firm Bobby D. Scearce; Thomas L.
both of Tex.; Yoh-Han Pao; Ron Cass, Kundert
both of Cleveland Heights, Ohio; Kam 57 ABSTRACT
Komeyli, Cleveland, Ohio

A method for producing a pattern for making a cast part is
73 Assignee: The United States of America as described which comprises the Steps of defining the Structure

represented by the Secretary of the of the part in terms of computer aided design System data,
Air Force, Washington, D.C. Selecting a parting Surface for the part to be cast, defining

core requirements for the part by Sweeping each positive
21 Appl. No.: 466,008 feature of the part to the parting surface, subtracting the part

from the projection, adding any remaining Volume to the
22 Filed: Jun. 6, 1995 core, Sweeping negative features away from the parting

6 Surface to the top or bottom of the mold and Subtracting the
. O 146,167. negative features from the projection and intersecting the

O X O -- O - s s 164/456 remainder of the part and adding any remaining Volume to

f the core; repetitively generating alternative parting Surfaces
58 Field of Search 364/474.24, 468.03, for the part and defining the corresponding core require

364/219, 474.05; 164/27, 456, 32, 108, ments whereby an optimum parting Surface is defined for
516, 45; 156/500; 264/221, 219; 72/350 which the quantity and complexity of the corresponding core

requirements are minimized, constructing core prints for
56) References Cited each core requirement; constructing a pattern by adding the

U.S. PATENT DOCUMENTS core prints to the part; and defining draft for the pattern
Surfaces perpendicular to the optimum parting Surface.

4,144,927 3/1979 Emerton et al. 164/108
4,276.922 7/1981 Brookes, 164/27
4,424,183 1/1984 Nelson 264/221 2 Claims, 13 Drawing Sheets
4,442,884 4/1984 Kunsch 164/456
4,487,246 12/1984 Frasier 164/32
4,888,082 12/1989 Fetcenko et al. 156/500 A statutory invention registration is not a patent. It has
SS 9. y et al. . - - - 1. the defensive attributes of a patent but does not have the

2 - - -2 Olle - - - -

5,072,782 12/1991 Namba et al. 164/45 enforceable attributes of a patent. No article or adver
5,154,219 10/1992 Watson et all 164/46 tisement or the like may use the term patent, or any term
5.184,496 2/1993 Namba et al. . isso suggestive of a patent, when referring to a statutory
5,309,366 5/1994 Grenkowitz 36447,424 invention registration. For more specific information on
5,385,705 1/1995 Malloy et al. 264/219 the rights associated with a statutory invention registra
5,452,219 9/1995 Dehoff et al. 364/474.05 tion see 35 U.S.C. 157.

Given apart geometry
select Parting Plane
using hierarchical
Discrete Optimizer

28

238

U.S. Patent Jan. 5, 1999 Sheet 1 of 13 H1769

-Ns 7

H1769 Sheet 2 of 13 Jan. 5, 1999 U.S. Patent

U.S. Patent Jan. 5, 1999 Sheet 3 of 13 H1769

Given a part geometry
select Parting Plane
using Hierarchical
Discrete Optimizer 26

Construct Mold Blank 27 fity 2
d

28

Yes Construct Core Prints
(Each Core Print
becomes a Part)

N
O Given a part geometry

select Parting Plane
using Hierarchical
Discrete Optimizer

Construct Mold Blank

29a

Yes Construct Core Prints
(Each Core Print
becomes a Part)

NO
Given a part geometry
select Parting Plane 29b.
using Hierarchical
Discrete Optimizer

Construct Mold Blank

Yes | Construct Core Prints
(Each Core Print
becomes a Part)

l

Construct No
Core box(s) - - - - - - - - -

Add rigging and
draft complete

pattern -

U.S. Patent Jan. 5, 1999

30:

att

33

Rii:
:

Sheet 4 of 13 H1769

34

M

H1769 U.S. Patent

U.S. Patent Jan. 5, 1999 Sheet 7 of 13 H1769

58

9 ig. 10
56

fig. 11

U.S. Patent Jan. 5, 1999 Sheet 8 of 13 H1769

Tig. 13 48'

60

487

gig. 15 SYS-6

U.S. Patent Jan. 5, 1999 Sheet 10 Of 13 H1769

U.S. Patent Jan. 5, 1999 Sheet 11 of 13 H1769

70

H1769 U.S. Patent

U.S. Patent Jan. 5, 1999 Sheet 13 of 13 H1769

H1769
1

OPTIMIZED RECURSIVE FOUNDRY
TOOLING FABRICATION METHOD

RIGHTS OF THE GOVERNMENT

The invention described herein may be manufactured and
used by or for the Government of the United States for all
governmental purposes without the payment of any royalty.

BACKGROUND OF THE INVENTION

The present invention relates generally to metal casting
methods, and more particularly to a method for efficiently
producing a metal casting mold for a complex part by
recursively identifying the cores for the casting and the
molds for making the cores defining the complex part once
a parting Surface for the part is defined.

In metal casting discrete mechanical parts using Sand
molds, patterns are used in fabrication of the molds to ensure
that the resulting cast parts have the correct geometry, or can
be readily finished to the correct geometry. The pattern is a
model of a part to form a mold cavity Substantially defining
the part shape, but is not simply a facsimile of the part
because additional shapes (sprues, runners, gates, etc) are
used to form channels for inserting molten metal, or shape
modifications to provide taper (draft) on Some Surfaces of
the part to facilitate withdrawal of the part from the mold.
The principal molding material conventionally used in
foundries is Silica Sand, which, when mixed with water and
a binder (e.g. clay), can be formed to a complex geometry
which retains its shape while being filled with metal and
allowed to cool. The mold is usually destroyed when the
casting is removed and must be recreated using the pattern
for each cast part to be produced.
Mold design and fabrication are especially difficult if the

cast part has Sufficiently complex geometry or when the
parting Surface is defined Such that the pattern cannot be
withdrawn easily from the mold. In order to accommodate
complex geometries by means of conventional casting
methods, the pattern maker uses cores and loose pieces to
ensure that those parts of the cavity which should be filled
are filled. In Standard practice, molds are often made up of
two halves. The pattern is also made up of two parts
mounted on the two sides of a board which represents the
dividing (parting) Surface (which may be more complex than
a single plane) between the two mold halves. The two mold
halves are formed by packing Sand around each side of the
pattern board, and Subsequently combined to form the cavity
left when the pattern is removed. The mold must therefore
be made such that the pattern can be withdrawn from the
mold. If the mold is made in two halves, each part of the
pattern must be removable from the corresponding mold
half. In order to define the casting pattern, the pattern maker
modifies the pattern around the complex features of the part
(to render it removable from the mold) using extra pieces of
mold-like material, called cores or loose pieces, for filling
extraneous spaces around the correct cavity shape for the
cast part. The cores are generally made from bonded Silica
Sand, and the molds used to make the cores, called core
boxes, are permanent molds, usually made of wood or
hardened epoxy.

In the practice of the invention, computer associative
memories and feature-based computer aided design (CAD)
are incorporated into a highly efficient and effective method
for producing patterns and molds for casting Substantially
any complex part wherein withdrawal interferences of the
pattern are defined for various parting planes or Surfaces,
and, once the parting Surface is specified, the correct pattern
Structure is recursively defined.

5

15

25

35

40

45

50

55

60

65

2
It is a principal object of the invention to automate and

optimize foundry tooling fabrication for metal casting.
It is another object of the invention to provide a method

for producing a pattern for a part to be cast in a metal casting
proceSS.

It is another object of the invention to provide a method
for Sequentially drafting a pattern by part feature, core and
rigging relative to a parting plane of a casting mold.

It is another object of the invention to provide a method
for producing casting patterns for complex cast parts which
cannot be otherwise withdrawn from a mold without
destroying the mold.

It is a yet further object of the invention to provide a solid
modelling recursive molding procedure for defining casting
pattern core and core box requirements.

These and other objects of the invention will become
apparent as a detailed description of representative embodi
ments proceeds.

SUMMARY OF THE INVENTION

In accordance with the foregoing principles and objects of
the invention, a method for producing a pattern for making
a cast part is described which comprises the Steps of defining
the Structure of the part in terms of computer aided design
System data, Selecting a parting Surface for the part to be
cast, defining core requirements for the part by Sweeping
each positive feature of the part to the parting Surface,
Subtracting the part from the projection, adding any remain
ing Volume to the core, Sweeping negative features away
from the parting Surface to the top or bottom of the mold and
Subtracting the negative features from the projection and
interSecting the remainder of the part and adding any
remaining Volume to the core; repetitively generating alter
native parting Surfaces for the part and defining the corre
sponding core requirements whereby an optimum parting
Surface is defined for which the quantity and complexity of
the corresponding core requirements are minimized, con
Structing core prints for each core requirement, constructing
a pattern by adding the core prints to the part; and defining
draft for the pattern Surfaces perpendicular to the optimum
parting Surface.

DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the
following detailed description of representative embodi
ments thereof read in conjunction with the accompanying
drawings wherein:

FIGS. 1a-e show in a comprehensive fashion the foundry
casting mold fabrication method of the invention with
relation to a representative three dimensional part and asso
ciated parting Surface, cores, core boxes and rigging which
are defined in the practice of the invention;

FIG. 2 is a block diagram of the steps of the method for
constructing a mold pattern according to the invention;

FIGS. 3a–g show the method of the invention by refer
ence to a two-dimensional example,

FIG. 4 shows a perspective view of another example
casting having complex features for illustrating the method
of the invention;

FIG. 5 shows the location of a first parting surface which
is automatically generated by the method of the invention
for the FIG. 4 casting;

FIG. 6 shows the FIG. 4 casting as it would appear in the
lower (drag) portion of the mold for the generated parting
Surface illustrated in FIG. 5;

H1769
3

FIG. 7 shows the FIG. 4 casting in a view from below as
it would appear in the upper (cope) portion of the mold for
the generated parting Surface illustrated in FIG. 5,

FIG. 8 shows the identification of the volume of the mold,
for the FIG. 4 casting and the FIG. 5 parting surface, in
which a core is required;

FIG. 9 shows in isolation the core requirement identified
in relation to FIG. 8:

FIG. 10 shows the FIG. 9 core requirement as viewed
from below at a reverse angle,

FIG. 11 shows in isolation the FIG. 9 core requirement
with core prints added to the core requirement to make up
the finished core;

FIG. 12 shows the finished core of FIG. 11 as viewed from
below at a reverse angle;

FIG. 13 shows the location a parting line as generated by
the method of the invention for the finished core of FIG. 11;

FIG. 14 shows from below the finished FIG. 11 core with
the parting line illustrated in FIG. 13;

FIG. 15 shows the loose piece requirement for the FIG. 11
COre.,

FIG. 16 shows the loose piece requirement identified in
FIG. 15 as viewed from below at a reverse angle;

FIG. 17 shows the finished FIG. 11 core with the location
of an alternative parting Surface as generated by the method
of the invention;

FIG. 18 is a view from below at a reverse angle of the
finished FIG. 11 core with the alternative parting line
illustrated in FIG. 17;

FIG. 19 is a view of the FIG. 11 core and alternative
parting Surface reverse of the FIG. 17 view;

FIG. 20 shows the loose piece requirement for the finished
FIG. 11 core with the alternative parting Surface location;

FIG. 21 shows the finished FIG. 11 core with the location
of a Second alternative parting Surface generated by the
method of the invention;
FIG.22 is a view from a reverse angle of the finished FIG.

11 core with the Second alternative parting Surface illustrated
in FIG. 19;

FIG. 23 is a view from below at a reverse angle of the
finished FIG. 11 core with the second alternative parting line
of FIG. 19,

FIG. 24 shows the FIG. 11 core with the lower half of the
asSociated corebox for the Second alternative parting Surface
illustrated in FIG. 19:

FIG. 25 shows the FIG. 11 core with the upper half of the
asSociated corebox and Second alternative parting Surface as
viewed from below and at an angle reverse of the FIG. 24
view;

FIG. 26 shows the FIG. 11 core and lower corebox half as
viewed at an angle reverse of the FIG. 24 view;

FIG. 27 shows the finished pattern used to make the sand
mold for the FIG. 4 casting and all the coreboxes required
to make the cores for the mold;

FIG. 28 shows the lower half of the corebox required for
the FIG. 27 pattern; and

FIG. 29 shows from below the upper half of the corebox
required for the FIG. 27 pattern.

DETAILED DESCRIPTION

Referring now to the drawings, FIGS 1a-e show in
comprehensive fashion an overview of the rapid foundry
tooling system and fabrication method of the invention with

15

25

35

40

45

50

55

60

65

4
reference to a representative complex three dimensional part
10 intended to be cast. In accordance with a principle feature
of the invention, a plurality of shape features (in Selected
sizes and locations), including bosses, disks, slots, shafts,
blends and other Simple shapes are used to define the
structure of part 10. Therefore, part 10 may be defined by
cylinder 11, disk 12, boss 13, (half) cylinder 14, block 15
and slot 16. The structure of part 10 is first defined based on
data representing Size and shape of each consitituent feature
entered into a CAD system. The structure of part 10, having
been defined in terms of CAD system data, may then be
displayed in any representative view on the CAD System
display. Once the structure of part 10 is defined as just
described, an initial parting Surface 17 for casting part 10 is
then Selected, and the associated Sprues, runners, gates,
risers, cores, core boxes and mold are then iteratively
generated in order to optimize the design of the resultant
pattern, pattern board and mold. For example, with reference
to FIG. 1b showing part 10 from below, the initial parting
surface 17 indicated in FIG. 1a suggests volumes 18 and 19
of Specified shapes as requiring cores in corresponding
shapes and locations in a pattern for part 10. However, with
reference to FIG. 1c, identification of volumes 18 and 19 in
FIG.1b indicate an appropriate new parting surface 17" (with
parting Surface offsets) which eliminate the necessity of
cores for volumes 18, 19. The automatic identification and
generation of an appropriate offset parting Surface 17", or
other parting Surface which results in minimum quantity and
complexity of cores, is a critical feature of the invention.
Once the offset parting line is generated, the invention
Specifies location of the appropriate rigging (sprues 20, gates
21, runners 22 and risers 23) for casting part 10 Such as
illustrated in FIG. 1d. Once the rigging for part 10 is
specified, pattern board 25 (FIG.1e) and mold configuration
are automatically generated.

Referring now to FIG. 2, shown therein is a block diagram
of the method steps for constructing a mold pattern accord
ing to the invention. The listing of a representative computer
program useful in executing the algorithm for constructing
the mold pattern, including identification of required cores,
in the practice of the method of the invention, and used in
demonstration of the invention, is presented in Appendix A
hereto. AS Suggested in FIG. 2, and with reference to the
computer listing in Appendix A, the geometry of the part to
be cast is first identified and defined in terms of CAD)
System data, and an appropriate parting Surface for optimum
orientation of the part within the mold is generated as at 26.
(See Computer Graphics Handbook Geometry and
Mathematics, by Michael E. Morrison, Industrial Press Inc.
(1990), the entire teachings of which are incorporated by
reference, particularly Part 10, “Transformations”.) Geom
etry of the part to be cast may be defined in terms of any
suitable CAD data system as would occur to the skilled
artisan guided by these teachings, the Software used to define
the geometry of parts in demonstration of the invention
being SHAPES (Release 1.5, XOX, Inc., Minneapolis MN
(1995)), and is incorporated by reference herein.
Two Solids, called mold blanks, which represent the

Volume of the mold on the upper (cope) side and lower
(drag) side of the parting Surface, are generated as at 27.
Core requirements 28 for the mold blank defined with
respect to the parting Surface are then identified. Each
positive feature of the part is Swept to the parting Surface and
the part is Subtracted from the projection, and any remaining
Volume is added to the core. Negative features are Swept
away from the parting Surface to the top or bottom of the
mold and Subtracted from the projection, the remainder is

H1769
S

intersected with the part; and any remaining Volume is added
to the core. Once core requirements, if any, are identified for
the Selected parting Surface, optional new parting Surfaces
are Successively generated at each combination of two or
more vertices defining a unique new plane through the part.
The optimum parting Surface is Selected by considering the
number and complexity of the core requirements and the
number of Surfaces of the part to be drafted for each parting
Surface So generated and considered.
AS core requirements are identified for the optimum

parting Surface, the geometry of each core print (a separate
part corresponding to the configuration of the associated
core volume) is defined, and the core box for molding each
defined core print is defined according to the recursive
parting Surface Selection and core identification procedure
just described for the original part to be cast including
Successive identification of any core requirements for each
identified core as suggested at 29a in FIG. 2. For each core
requirement, the core pattern, called a core print, is con
Structed by Sweeping any vertical faces not flush with the
part away from the body of the core piece. Distance of Sweep
is Selected as one half the core depth in a direction normal
to the Surface being Swept. If faces on opposite sides of the
core are not being Swept, the distance of Sweep is Selected
equal to the depth of the core normal to the face being Swept.
These Sweep distances are needed to maintain rigid posi
tioning of the core print during metal pouring.
When all core requirements for the part (including core

requirements for each core print) are identified and the
corresponding core prints are defined by recursively defining
as at 29b any required core prints (i.e. Second or higher order
core prints) for any cores defined at 29a, the pattern for the
casting is defined by adding all the identified core prints to
the part, adding draft to the pattern Surfaces, and adding the
appropriate rigging Such as Suggested for the example of
FIG. 1d.
The hierarchical procedure for optimizing pattern con

Struction according to the foregoing may be illustrated by
reference to the two-dimensional example of FIGS. 3a–g .
Consider the hook shaped member 30 to be cast which must
be removed from the mold in a lateral direction in the plane
of FIGS. 3a–g. First, a suitable parting Surface 32 is defined
(FIG. 3b). Parting surface 32 defines how the pattern will be
oriented with respect to the mold, i.e., the pattern will be
withdrawn from the two mold 31 portions 31a,33 perpen
dicularly to parting Surface 32. Because of the complexity of
mernber 30, namely the hook feature, the pattern cannot be
removed from mold 31 without destroying mold portion 33.
The volume where a core 34 will be used is therefore
identified by cloaking that portion of the pattern which
cannot be withdrawn from mold 31 with a core print of
Suitably simple geometry, Such as a prismatic Solid, to define
an augmented pattern 35 which can be withdrawn without
destroying the mold. Mold 31' formed to augment pattern 35
is called the first-level mold, and a core which will be
inserted into mold 31' is called the first-level core (see FIG.
2 at 29a). Subtracting member 30 from core 34 volume
defines core 34 (FIG. 3e) which must be cast each time a
mold is made. The core box for casting the first-level core
print is then fabricated. This mold is called the second-level
mold. One second-level mold is required for each first-level
core piece. In addition, Some first-level cores are of Such
complexity as to also require cores, called Second-level
cores in the recursive procedure described herein (see FIG.
2 at 29b). Second-level molds and secondlevel cores may be
constructed of Suitable material to be reusable. Core 34
geometry may prevent its casting in a simple mold, and core

15

25

35

40

45

50

55

60

65

6
34 must therefore be cast in multiple (2 for core 34) pieces
36.37 to be cast properly (FIGS. 3fg). Core pieces 36.37
may be connected in mold 31' as by positioning pins (not
shown).

Referring now to FIGS. 4-29, shown therein are the steps
defining the optimized recursive foundry tooling procedure
outlined above and Set out in the computer program listing
of Appendix A in relation to a complex part to be cast. FIG.
4 depicts in perspective example part 40 to be cast in the
recursive procedure. Example part 40 is first defined in terms
of CAD system data as described above and has a base
comprising an assemblage of a plurality of various sized
plate members 41,42, 43, upright cylindrical member 44,
and a cavity 45 in cylindrical member 44 and cantilevered
Section 46 which renders the design of a pattern for making
sand molds for part 40 a non-trivial procedure. FIG. 5 shows
part 40 with one parting Surface 48 generated at the upper
surface of plate member 42 by the optimized recursive
procedure of the invention. AS Suggested above in relation to
FIG. 2, a plurality of parting Surfaces may be generated for
part 40, depending on its shape, as at any Surface of the plate
members 41,42,43, but for clarity, discussion of the proce
dure related to part 40 will begin with reference to parting
Surface 48 illustrated in FIG. 5. It is noted, however, that for
example part 40 the recursive procedure of the invention
favors parting Surfaces which are defined by the Surfaces of
plate members 41,42,43. This constraint corresponds to the
general objective of pattern-makers to have the majority of
the volume of the casting in the lower half of the mold for
optimum solidification of molten material. For clarity of the
example, part 40 is shown in an orientation in the mold
which is inverted to that which would normally be utilized.

Referring now to FIG. 6, shown therein is part 40 as its
casting would appear in the lower (drag) portion 51 of the
mold for the generated parting surface 48 of FIG. 5. FIG. 7
shows the casting of part 40 as it would appear in the upper
(cope) portion 52 of the mold for the same parting Surface
48. AS Suggested above in relation to FIG. 2 and the program
listing of Appendix A, once the Structure of part 40 is defined
and parting surface 48 is selected, volume 55 of the mold in
which a core is required (core requirement) is identified as
depicted in FIG. 8. FIG. 9 shows in isolation the core 56
requirement identified in relation to FIG. 8, and FIG. 10
shows the core 56 requirement viewed from below. In the
FIG. 10 view, tab 58 corresponding to cavity 45 in cylin
drical member 44 of part 40 is revealed.

Because the core 56 requirement identified in FIG. 8 itself
does not constitute the entire core which the foundryman
would insert into the mold, structures must be added to the
core requirement which allow it to be mounted Securely
inside the mold. These Structures, called core prints, are
generated as described above and are added to the core
requirement to make up finished core 60, as shown in FIG.
11, and are added to the pattern to create the cavities in the
mold in which core 60 is mounted. As such, the core prints
must also be removable from the mold. The recursive
procedure of the invention automatically adds correct core
prints to a core requirement to complete the core design. In
FIG. 11, core prints are shown added to the sides of the core
and comprise Structures which are not merely extensions of
the exposed sides of the core, but extend to parting Surface
48 to ensure proper positioning of the core print within the
mold. FIG. 12 shows the finished core 60 of FIG. 11 as
viewed from below at a reverse angle. The extension of the
core prints to parting Surface 48 is illustrated. If the prints
were only extensions of the exposed Surfaces of the core
requirement then a volume of the mold would be trapped

H1769
7

between the core prints and the large plate member 42 of the
casting defining part 40.

Because all cores must be constructed each time a new
part is cast, the most efficient way to construct cores is by
molding in permanent molds called coreboxes. Coreboxes,
like molds for the casting, must be constructed So that the
core can be removed from the corebox in a nondestructive
manner. The recursive procedure of the invention efficiently
designs the Structure for the coreboxes for all cores using the
Same procedure as that used to construct the mold of the
casting. Specifically, the recursive procedure of the inven
tion generates the appropriate parting Surfaces for the core,
and, for each generated parting Surface, identifies any
trapped volumes in the corebox (called loose piece require
ments rather than core requirements for clarity), and speci
fies the structure of the corresponding coreboxes. FIG. 13
shows parting surface 48" for the FIG. 11 core 60 which is
generated by tie procedure and which is flush to the bottom
of core 60. FIG. 14 shows core 60 and parting surface 48
from below, and reveals trapped Volume 61 between parting
surface 48" and core 60. The geometry of trapped volume 61
between core 60 and parting line 48", seen in FIG. 15, is then
defined in order to identify a corresponding loose piece
requirement for core 60. FIG. 16 shows the loose piece 63
requirement in a view reverse of FIG. 15.

Because the existence of a loose piece 63 requirement
identified in relation to parting Surface 48' generated as
shown in FIG. 13 may not be the optimum configuration for
the finished pattern, the recursive nature of the procedure
generates Second and Successive parting Surfaces and iden
tifies the associated core and loose piece requirements in
order to arrive at the optimum configuration (FIG. 2 at 27).
FIGS. 17 and 18 are respective views from the top and
bottom of the FIG. 11 core 60 with an alternative parting
Surface 65. Note that, in accordance with the general Scheme
of the algorithm of the invention to generate parting Surfaces
at Vertices of the part geometry, the alternative parting
Surface is flush with the top of the impression in the core
corresponding to the smaller plate member 43 of part 40.
FIG. 19 is a view reverse of the view of FIG. 17 showing
core 60 and alternative parting surface 65, and reveals
trapped volume 67 between tab 58 on core 60 and alternative
parting surface 65. Trapped volume 67 identified in FIG. 19
then defines the geometry of a loose piece requirement
asSociated with alternative parting Surface 65.

15

25

35

40

8
In a manner like that for generation of first alternative

parting Surface 65, because of the identification of a loose
piece requirement for trapped volume 67 of FIG. 20, the
procedure of the invention recursively generates Second
parting surface 70 such as shown in FIGS. 21.22.23. Second
alternative parting surface 70 is flush with the bottom of tab
58 which corresponds to cavity 45 in cylindrical mem-ber 44
of part 40 (FIG. 4). It is noted that no trapped volume exists
between any portion of core 60 and second alternative
parting line 70, so that the procedure of the invention has
Successfully identified a parting Surface 70 and associated
core requirements for which no loose piece is required.

Having identified optimum parting surface 70 for core 60,
the associated core box for casting the core is constructed
from two rectangular prisms, one on each Side of the parting
Surface. FIGS 24 and 26 show two views of core 60 and
lower portion 72 of the corebox, and FIG. 25 shows core 60
and upper portion 73 of the corebox.
Once the core and loose piece requirements are identified

and defined, the finished pattern 75 is needed to make the
Sand mold for casting part 40 and all the coreboxes required
to make the cores for the mold comprise the parts required
to make Sand molds of the casting. The finished pattern is
constructed by adding the core prints to the part pattern. FIG.
27 shows final pattern 75 for casting part 40 with the features
(rigging) used to convey metal into the mold and reservoirs
for holding the metal being omitted for clarity. FIGS. 28 and
29 show respective lower and upper portions 77,78 of the
corebox for the core (FIG. 11).
The permanent components used in the recursive molding

process of the invention may be fabricated using virtual
reality based rapid prototyping technology, Such as
Stereolithography, and feature-based CAD Solid modelling
Software and associative memory.
The invention therefore provides a novel method for

efficiently producing a metal casting mold for a complex
part. It is understood that modifications to the invention may
be made as might occur to one with skill in the field of the
invention within the Scope of the appended claims. All
embodiments contemplated hereunder which achieve the
objects of the invention have therefore not been shown in
complete detail. Other embodiments may be developed
without departing from the spirit of the invention or from the
Scope of the appended claims.

H1769

(in-package 'ws)

this function reads the orientation formula from the
"orient-editor" icon.

(defun cad-get-orientation-formula O
(read-from-string
(ean-cat-strings
(apply 'eam-cat-strings (read-icon-value 'orient-editor 'edit))

this function inverts the orientation formula in the
is "orient-editor" icon by appending a rotation about the x-axis of

, the part by 180.0. this works because the IElain-parting-plane
;: lies in its local x-y plane.

(defun cad-invert-orientation-formula O
(read-from-string
(eam-cat-strings
(apply feam-cat-strings (read-icon-value 'orient-editor 'edit))
"(rotate about the x-axis of (the) by 80.0)"
“)")))

returns positive features
tached to the part-model including the

s starting block,
(defun cad-get-positive-features 0
(delete nil (mapcar #(lambda (feature)

(if (posp feature)
feature))

(select use (the eam-space part-model):type "fbde-feature-mixin))
test 'equal)

returns negative features
... attached to the part-model
(defun cad-get-negative-features ()

delete nil
(napcar (lambda (feature)

(if (not (posp feature))
feature))

(select use (the eam-space part-model) itype 'fbde-feature-mixin))
:test 'equal))

returns negative features
attached to the part-model

(defun cad-get-transition-features ()
(delete nil

(mapcar f'(lambda (feature)
(if (or (feature-classp feature 'fillet-feature)

(feature-classp feature "radius-feature))
feature))

(select use (the ean-space part-model) type 'fbde-feature-mixin))
test 'equal)

(defun cad-get-xox-blend-features 0
(delete nil

(napcar #'(lanbda (feature)
(if (or (feature-classp feature 'fillet-feature)

(feature-classp feature 'radius-feature))
ra (if (the use-blends-toolkit (from feature))

10

Appendix A:

15

Page 1

H1769
11 12

Appendix A: Page 2
feature)))

(select:use (the cam-space part-model):type 'fbde-feature-mixin))
:test #'equal))

; Returns the list of 3D coordinates of the OD sub-geoms of a geom.
y

(defun cad-gct-face-points i
(face-geom
&aux
(final-list nil)
found-list)
(sctf found-list (mapcar #'(lambda (all-face-points-geoms)

(dolist (pointx (progn
(setffinal-list nil)
(xox::geom-minmax-box
all-face-points-geons))

final-list) (setffinal-list (append
final-list
(list (car pointx))))))

(xox:k-sub-geons face-geom 0)))
(append (list (second found-list))

(list (first found-list))
(cddr found-list)))

; Returns the coordinates in 3-space of a 0D geom

(defun cad-point-coords-fron-geom (point-geom)
(mapcar'car (xox::geom-ninmax-box point-gcom)))

, Constructs and returns a list of straight line segments
; corresponding to the id sub-geoms of a given geom, where the
; endpoints of the line segments are the OD sub-geoms of the D sub-geons.
... This function is used to copy a boundary-geom which is to be
..., swept, since (at last check) XOX has occasional problems sweeping
; copies of boundary geoms made using xox::copy-geon.

(defun cad-get-face-edges (face-geom)
(delete nil

(mapcar #'(lambda (edge &aux pts)
(setfpts (xox:k-sub-geoms edge 0))
(if (> (length pts))

(apply #xox:line-geom
(mapcar "cad-point-coords-from-geom

pts))))
(xox:k-sub-geoms face-geom 1))))

;: OLD: old method for generating cores, just does projections and
, adds them to the casting-manager.

(defun cad-demo-cores
(&aux (cores-geom nil))
(setfcores-geom (select use (the casting-manager) :test (equal (the slot-name) 'cores)))
(if cores-geom (kill-part (car cores-geon)))
(setfcores-geom

tappend
(mapcan f'(lambda (feature)

(mapcar (lambda
(face-geom &aux sewn sewnl)
(print ("doing", face-geon))
(setfsewn (xox:boundary-geom face-geom))
(print (dimension of sewn lines is

(or (not sewn) (xox::geom-dimension sewn))))
; space-dimension of sewn is 3, dimension is

-. (setfsewni (xox::copy-geom face-geom))

16

H1769
15

(setfcores-geom (delete nicores-geom))
(print (after delete, cores-geom))

(add-part (the casting-manager) 'cores
mixin (masking-bounded-object)
init-list
(list
(cons 'display'?nil))

(mapcar '(lambda (geom &aux name)
(seta name (format nil "-a" (gensym)))
(add-part (the casting-manager cores)

(read-fron-string name)
:mixin'(masking-bounded-object)
:init-list
(list
(cons'geom (xox::copy-geom geom))
(cons 'display? nil))))

cores-geom)

(change (the casting-manager cores draw-color) 'yellow)
(change (the casting-manager cores rendered?) 'shaded)

,,. This function tests the projection methods by creating the
; projections of the part features and adding them to the casting-manager.

(defun test-projections

(setfo (select:use (the casting-manager) :test (equad (the slot-name) projections)))
(ifo (kill-part (caro)))

(add-part (the casting-manager) projections
:mixin'(masking-bounded-object)
:init-list
(list
(cons 'display'?"t)))

(mapcar #'(lambda (feature)
(add-temp-part (the casting-manager projections)

(xox:difference-geom
(xox:intersection-geom
(xox:difference-geom

(cad-get-union
(rfts-construct-projection feature

(get-sweep-vector)))
(get-solid-geom feature))

(xox::copy-geom (second (the
casting-manager
moldblanks))))

(xox::copy-geom (the part-model
solid-part geom)))

"pos-proj"))
(cad-get-positive-features))

(mapcar #"(lambda (feature)
(add-temp-part (the casting-manager projections)

(xox:difference-geom
(xox:intersection-geom
(xox:intersection-geon

(xox:difference-geom
(cad-get-union
(rfts-construct-projection feature

(get-sweep-vector)))
(xox::copy-geom (the part-model

solid-part geom)))
(xox::copy-geom (car (the

casting-manager
mold blanks))))

-rr, (xox:union-geom

16

Appendix A:

18

Page 4

H1769
17 18

Appendix A: Page 5
(xox::copy-geon (the part-model

Solid-part geom))
(get-solid-geom feature)))

(xox::copy-geon (the part-model
Solid-part geon)))

"neg-proj"))
(cad-get-negative-features))

(mapcar (lambda (feature)
(add-temp-part (the casting-manager projections)

(xox:difference-geom
(xox::intersection-geom
(xox:difference-geom

(cad-get-union
(rfts-construct-projection feature

(napcar #- (get-sweep-vector))))
(get-Solid-geom feature))

(xox::copy-geom (car (the
casting-manager
noid blanks))))

(xox::copy-geon (the part-model
solid-part geon)))

"pos-proj")}
(cad-get-positive-features))

(mapcar (lambda (feature)
(add-temp-part (the casting-manager projections)

s (xox:difference-geom
(xox:intersection-geom
(xox:intersection-geom

(xox:difference-geon
(cad-get-union
(rfs-construct-projection feature

mapcar
#- (get-sweep-vector))))

(x0x::copy-geon (the part-model
Solid-part geom)))

(xox::copy-geom (second (the
casting-manager
moldblanks))))

(xox:union-geom
(xox::copy-geon (the part-model

solid-part geom)
(get-solid-geom feature)))

(xox::copy-geom (the part-model
Solid-part geom)))

"neg-proj"))
(cad-get-negative-features))

(mapcar #(ambda (feature)
(add-temp-part (the casting-manager projections)

(cad-get-union
(rfts-construct-projection feature

(mapcar'-
(get-sweep-vector))))

"pos-pro"))
(cad-get-positive-features))

, (mapcar it"(lambda (feature)
(add-temp-part (the casting-manager projections)

s (cadget-union

(rfts-construct-projection feature
(mapcar -

(get-sweep-vector))))
"neg-proj")

(cad-get-negative-features))

s:

, This function constructs the core pieces necessary to cast the

19

H1769
25 26

Appendix A: Page 9 , (xox::free-id positive-geom)
cores-geom
)

; this function returns a line geom corresponding to the normal
; vector from the parting plane.

(defun get-sweep-path O
(xox:line-geom'(0.00.00.0)

(get-sweep-vector)))

: this function returns the normal vector from the parting plane.
, this vector is used as the sweep path when projecting features
; during the process of identifying cores.

(defun get-parting-plane-normal
(&aux
(vert (cad-any-vertex-on-geom (the casting-manager

pattern-board geom)))) (progl
(xox::geom-nomal vert

(the
casting-manager
pattern-board geom))

(xox::free-id vert)))

; this function returns the normal vector from the parting plane,
, this vector is used as the sweep path when projecting features
; during the process of identifying cores.

(defun get-sweep-vector
(&aux (ext (0.5 (the casting-manager flask-height))))
(mapcar (lambda (point) ("point ext))

(the casting-manager pattern-board cad-normal)))

; this function returns a line geom corresponding to the normal
; vector from the parting plane.

(defun get-half-sweep-path O
(xox:line-geom'(0.00.00.0)

(get-half-sweep-vector)))

sy

;: this function returns the normal vector from the parting plane.
this vector is used as the sweep path when projecting features

; during the process of identifying cores.
(defun get-half-sweep-vector O
(mapcar f'(lambda (point) (0.5 point)) (get-sweep-vector)))

,,, This function returns the geons of the positive features.

(defun get-positive-feature-geoms O
(napcar #'(lambda (object &aux

(object-name
(intern (with-the-tracing-from (object)

(the name))))) (eval (the part-model object-name geom)))
rt. (cad-get-positive-features)))

23

H1769
27 28

Appendix A: Page 10

, this function returns the 2d geoms associated with a given feature.

(defun get-surface-geoms
(object)
&aux

(object-name
s (intern (with-the-tracing-from (object)

(the name))))
, (napcar "xox::copy-geon (xox:k-sub-geoms

(eval (the part-model object-name geom))2))
(napcar 'xox::copy-gcon (xox:k-sub-geons

(the geon (from object)) 2))
)

... this function returns the geom associated with a given feature.

(defun get-soid-geon (object)
(xox::copy-geon (evaling-the (list 'geom) :from object))
)

, this function returns the dgeons associated with a given feature.

(defun get-line-geons
(object &aux

(object-name
(intern (with-the-racing-from (object)

(the name)))))
(mapcar 'xox::copy-geom (xox:k-sub-geoms

(xox:boundary-geom (eval (the part-model object-name geon))))))

; this function returns the Odgeons associated with a given feature.

(defun get-point-geons
(object &aux

(object-name
(intern (with-the-tracing-from (object)

(the name)))))
mapcar ixox::copy-geom (xox:k-sub-geoms

(eval (the pari-model object-name geom)) O)))

, this function returns the vector dot product between the normal
... from the given geon and the current sweep vector (i.e. the normal
... from the parting planc).

(defun cad-normal-dir
(face-geon &aux wet norm)
(Seifvert (xox::vertex-on-geon face-geom (car

(Cad-get-face-points face-geom)) 1000))
(Sctf norm (xox::geom-normal vert face-geom)
(xox::free-idwert)
(vector-dot-product (list-to-vector (mapcar #'(lambda (pt&aux norm)

(setfnorn
(vector-nom
(list-to-vector (get-sweep-vector))))

(fpt norm)) (get-sweep-vector)))
(list-to-vector non)))

this returns the dot product between the normals of two geons.

(defungeon-normal-dot-product (geoml geom2 &aux vertl ver2.norm norm2)
(setyert (xox::vertex-on-geom geon (car

24.

H1769
29

(cad-get-face-points geomly) 100.0))
(set fnorm (xox::geom-normal vertl geoml))
(xox::free-id vert)
(self ver2 (xox::vertex-on-geom geom2 (car

(cad-get-face-points geom2)) 1000))
(Sctf norm2 (xox::geon-normal vert2geon2))
(xox::free-id vert2)
(vector-dot-product (list-to-vector norm) (list-to-vector norm2)))

; This function returns the normal of a geon, from an artbitrary
; vertex on the geon.

(defun cad-geom-normal (geon &aux vert norm)
(setfvert (xox::vertex-on-geon geom (car

(cad-get-face-points geom)) 100.0))
(setfnorm (xox::geom-normal vert geom))
(xox::free-idvert)
norm)

(defun cad-geom-langent (geom point &aux vertex)
(setfvertex (xox:vertex-on-geom geom

point
0.0))

(xox::geom-tangent-space
geom vertex)

; This function returns an assembly-geom of a given list of geons.
;: The geoms in the list are destroyed.

(defun cad-get-assembly
(geon-list)
(setfgeom-list (delete nil

(mapcar (lambda (g)
(if (and g(xox::geon-pg) (not

g nil)) geom-list)))
(xox:assembly-geon geom-list))

; This function returns the intersection-geom of a given list of
; geons. Nil entries in the list are ignored. The geoms in the
, given ist are destroyed by this function.

(defun cad-get-intersection
(geom-list &aux (result nil))
(dolist geom geon-list result)

(if (not result) (progn (print "init) (setfresult geom))
(if geom (setfresult (xox:intersection-geon result geon))))))

(defnethod (cad-construct-mold command-icon)
(&rest args &aux blip)
(declare (ignore args))
(cad-gen-mold))

(defun cad-gen-mold-blanks
(&aux blip object o lines-geom blanks pieces)
(Setfblip (xox::box-geom (the casting-manager pattern-board-width)

(7 (the casting-manager flask-height) 2.0)
(the casting-manager pattern-board-length)))

(setfblip (xox::translate-geon biip (list 0.0 ((the
casting-manager flask-height) 4.0) 0.0)))

--"

(xox: null-geom-pg)))

30

Appendix A: Page ll

25

H1769
33 34

Appendix A: Page 13 mapcar'xox::free-id blanks)
setfblanks new-blanks)
))

(print (blanks are blanks))
napcar (lambda (p) (mapcar #'xox:free-idp)) pieces)
blanks

(defun cad-gen-profile-offset (blanks&aux object pieces lines-geom)
(serf object (select:use (the casting-manager parting-line)

:type 'offset-parting-line-class))
(if object

(Sctfpieces
(mapcar (lambda (cur-line &aux (pt nil)

linel-points line2-points
begin-point end-point cur-vec sheet)

Project each of the lines into and out of the surface.

(selflines-geom (mapcar #(lambda (line &aux cur-vec cur-line)
(setfbegin-point

(cad-point-coords-from-geom
(car
{xox::sub-geoms line))))

(setfcur-vec
(xox:line-geom
(napcar'- begin-point

(0.00.0 100,0))
(napcar'+ begin-point

(0.000 1000))
)

(sef cur-line (xox::tangential-sweep-geom
(xox::copy-geom line) cur-vec
ref-coords begin-point))

7, intersect the sweep of the line with the surface to get the trace
on the surface.

(xox:intersection-geom cur-line
(xox::imbed-geom
(xox::sheet-geom
100.0 100.0)
3))

)
(xox:k-sub-geons
(the geom (from cur-line)) 1))) (print (lines-geom is lines-geom)

(print (mapcar #(lambda(g) (,(x0x::geom-pg) (x0x:null-geom-pg) (xox::geon-dimension g)
(xox::geon-space-dimension g))) lines-geon))

5 Connect the start of the first segment with the end of the last segment
(if ((length lines-geom) 1)

progn
(Setfline-points

(napcar cad-point-coords-from-geon
(xox::sub-geoms (car lines-geom))))

(setfline2-points
(mapcar 'cad-point-coords-from-geom

(cox::sub-geoms (second lines-geom))))
(print (line line-points line:2-points))
(setfbegin-point

(do' (linel-point line-points (rest ine-point)))
(not (point-in-list (carine1-point)

line2-points) (car line 1-point))))
(setfline-points (mapcar 'cad-point-coords-from-geon

(xox::sub-geons (car
M (reverse lines-geom)))))

27

H1769
35 36

Appendix A: Page 14 (Setfline2-points (mapcar 'cad-point-coords-from-geom
(xox::sub-geoms (second

(reverse lines-geon))))) (print (line line-points, line2-points))
(setfend-point

(do" (Cline-point line-points (rest incl-point)))
(not (point-in-list (car line-point)

line2-points) (car line-point))))
)

(Sctfbegin-point
(cad-point-coords-from-geom (car

(xox::sub-geoms (car lines-geom))))
end-point
(cadpoint-coords-from-geom (second

(xox:Sub-geons (car lines-geom)))))
)

(print (connect from, begin-point to end-point))

(setflines-geom (append (list (xox:line-geon
begin-point end-point))lines-geom))

(if (the offset-vector (from cur-line))
(self cur-vec

(xox:line-geom (car (the offset-vector (from cur-line)))
(second (the offset-vector (from cur-line))))

)
(setif cur-vec

(xox:line-geom
(0.000(t

0.5 (the
casting-manager part-max-extent)))

(0.00.00
0.5 (the

casting-manager part-max-extent)))
)

)

(setflines-geom (xox::sewn-geom lines-geom))
(setifsheet

(xox::imbed-geon
(xox:invert-geon-orientation

(xox::sheet-geom 100.0 000)
3))

(xox:orient-geom lines-geon underlying-geom sheet)

(xox::clear-window we)
(xox:display-ge lines-geom we)
(xOx:display-ge sheet (W)
(xox:update-window W)
(xox::conform-window we)
(xox:update-window we)

(stiflines-geom (xox:replace-sub-geons sheet (listines-geom)))
(print (shcct was sheet lines-geom is lines-geom))

(if (<
(xox::geom-volume lines-geon) 0.0)
(x0x:invert-geom-orientation lines-geom)

(xox::clear-window W)
(xox:display-ge lines-geomW)
{xox:update-window "W")
(xox::conform-window W)

(setflines-geom (xox:translation-sweep-halfspace-geon
lines-geom
crewe
:ref-coords
begin-point
))

28

H1769
41 42

Appendix A: Page 17 (setfprofile-list
(napcar (lambda (segment)

(cond ((equal (car segment) line)
(cad-create-line-geons-from-points (cdr segment)))
(equal (car segment) 'edge)
(list (xox::copy-geom (nth (second segment)

(xoxi:k-sub-geons (the part-model solid-part geom) 1)))))))
extension)

(print (profile-list is profile-list))

(print (sewn profile is

... Now sweep each line out from the part.

(setfsurface-list nil)
(do (Cline-segments profile-list (rest line-segments)))

(null line-segments)
(print (point is (cad-point-coords-fron-geon

(car (xox::sub-geoms
car line-segments))))

vertex is,(xox::vertex-on-geon
(the part-model

solid-part geom)
(cad-point-coords-from-geom
(car (xox::sub-geoms

(car line-segments))))
(get-max-extent))))

(setf vector (mapcar #'(lambda (p)
(s
(get-max-extent) p)

(x0x::geon-normal
(xox::vertex-on-geom
(the pari-model

solid-part geom)
(cad-point-coords-fron-geon
(car (xox::sub-geoms

(car line-segments))))
(get-tax-extent))
(the part-model

solid-part geom)
)))

(setf vector (0.00.0 (get-max-extent)))
(setfsurface-list

(appendsurface-list
(list
(xox:difference-geom
(xox::tangential-sweep-geon
(xox::copy-geon car ine-segments))
(xox:line-geon (cad-point-coords-fron-geom

(car
(xox::sub-geons (car line-segments))))

(napcar'+
(cad-point-coords-from-geom
(car (xox::sub-geons (car line-segments))))
vector))

:refcoords (cad-point-coords-from-geom
(car (x0x::sub-geons

(car line-segments)))))
(xox::copy-geom (the part-model

solid-part geom))))))
(if (> (length line-segments) 1)

(let' (tani (car (cad-geom-tangent (car line-segments)
(cad-point-coords-from-geom
second
(xOx::sub-geons (car line-segments)))))))

(tan2(car (cad-geom-tangent (second line-segments)
(cad-point-coords-fron-geom
car
(xox::sub-geons (second line-segments)))))))

(cross-product (direction-cosines
(vector-cross-product
(direction-cosines (list-to-vector tan))

a (direction-cosines (list-to-vector tan2)))))

31

H1769
43 44

Appendix A: Page 18
(dot-product (vector-dot-product cross-product

(direction-cosines (list-to-vector vector)))))
(print (tanl tan tan2.an2

wcctor vector
cross-product
Cross-product
dot-product dot-product))

(if (not (within-tolerance (abs dot-product)
1.0.0e-3)

(setfsurface-list
(append surface-list

(list
(xox:difference-geon
(xox:revolution-sweep-geon
(xox:line-geom (cad-point-coords-from-geon

(car
(xox::sub-geoms (second line-segments))))

(mapcar'-
(cad-point-coords-from-geom
(car
(xox::sub-geoms (second line-segments))))

vector)
(acos dot-product)
(vector-to-list cross-product)
(xox::copy-geon (the

part-modei solid-part geom)))))))))
))) object)

nil)
strface-list
)))

(defun old-cad-gen-nold-offset
(blanks &aux result object lines-geom lines-list connecting-points)

(setfobject (select:use (the casting-manager parting-line)
:type parting-line-extension-mixin))

(if object
(let (cur-line (cap nil)

(sheet nii)
(capil nil)
(ocap nil)
(solid-surfni))

; for each sub-list of points on a single surface.

(do (points-list (cdar (the
casting-manager
parting-line extensions-list)))

points-sublist)
(< (length points-list)2))
(print (points list is points-list))
(if (or (< (length points-list) 3)

(not
setfsolid-surf

(find-containing-surface
(list (carpoints-list)

(second points-list)
(third points-list))

(the part-model solid-part geom)))))
(Setfsolid-surf

(find-containing-surface
(list (carpoints-list) (second points-list))
(the part-model solid-part geom))))

(Setfpoints-sublist mil)
(print (found containing surface, solid-surf))
(dolist (point points-list)

(let' (c
(xox::classify-geons (xox::point-geom point)

(xox::copy-geom solid-surf)
(in :on) (in :on)))

(co (and (xox:null-geom-p (first c)
(xox:null-geon-p (second c)

32

H1769
45 46

Appendix A: Page 19
(xoxinull-geon-p (fourth c))
(xox::null-geon-p (fifth c))
)))

(mapcar (lambda (g) (if g (xox::free-idg))) c)
(if (not co)

(selfpoints-sublist (appendpoints-subist (list point)))
(return))))

(mapcar (lambda () (setfpoints-list (rest points-list))) i i
(rest points-sublist))

(setf connecting-points (append connecting-points (list
(car points-list))))

(print (points subist is points-sublist))
(print (points list is points-list))

; Project each of the lincs into and out of the surface.

(setflines-geom ni)
(do' (cplist points-sublist rest pist))

(p (carplist) (carplist)))
(< (length plist)2))
(Setflines-geon (append lines-geom

(list (xox:line-geom p (second pist)))))
)

(setflines-list (appendlines-list (list (xox::sewn-geom
(mapcar

xox:Copy-geon lines-geom)))))
(print (lines-list is lines-list))
(print (lines-geom is lines-gcorn)

(setfcap (xox::sewn-geon
(mapcar 'Clanbda (g)

(xox::translation-sweep-geong
(xox:line-geon
(mapcar (lambda (pt)

(pt -2.0 (the casting-manager part-max-extent)))
(xox::geon-normal
(xox::vertex-on-geom solid-surf

(cad-point-coords-from-geom g)
100.0)

solid-surf)
mapcar f'(lambda (pt)

(pt 2.0 (the casting-manager part-max-extent)))
(xox::geon-normal
(xox:vertex-on-geom solid-surf

(cad-point-coords-fron-geong)
100.0)

solid-surf))))) lines-geon)))

(print (projection is cap))

(add-temp-part (the casting-manager) (xox::copy-geom cap) "cap")

(Setf cap (cad-get-generic-union
(mapcar (lambda

(face-geon &aux sewn sewn)
(cond (within-tolerance

(vector-dot-product
(list-to-vector (cad-geon-normal face-geom))
(list-to-vector"(0.0-1.000))) 0.01.0e-8)

(setf sewn'nil))
(t
(progn
(setfsewn (xox::sewn-geom

(list
(xox::copy-geon face-geom)
(xox:translation-sweepigeon
(xox::copy-geom

-i. (xox:boundary-geom face-geom)

33

H1769
49 SO

Appendix A: Page 21
Tesult

(defun cad-gen-mold
(&aux object)

(change (the casting-manager mold cope geom)
(xox::copy-geom (car (the casting-manager noid blanks))))

(change (the casting-manager mold draggeon)
(xox::copy-geom (second (the casting-manager moldblanks))))

(if (select:use (the casting-manager) :test (equal (the slot-name) 'cores))
(let (cores-geom (the casting-manager cores geon)

(print(subtracting cores from drag)

(change (the casting-manager mold cope geom)
(xox:difference-gcom
(xox:difference-geom (the casting-manager mold cope geon)

(xox::copy-geom (the part-model
solid-part geom)))

(xox::copy-geom cores-geom)
(change (the casting-manager mold draggeom)

(xox:difference-geon
(xox:difference-geom (the casting-manager mold drag geom)

(xox::copy-geom (the part-model
solid-part geom)))

(xox::copy-geom cores-geom)))

(defun cad-gen-mold-haifs (&aux object cores-geom pattern-geom)
(the casting-manager moldblanks)
(setfpattern-geom

(cad-get-union
(append
(list (xox::copy-geom (the part-model solid-part geom)

(if (sub-part-exists (the casting-manager) 'cores)
(xox::copy-geom (the casting-manager cores geom))))

(napcar (lambda (g)
(xox::copy-geon (the geon (from g))))

(butlast (cd (select:ust (the casting-manager rigging)))))
)))

(print (patcm-geom is pattern-geom)
(list
(xox:difference-geom (xox::copy-geon (car (the

casting-manager
moldblanks)))

(xox::copy-geon pattern-geon))
(xox:difference-geon (xox::copy-geom (second (the

casting-manager moldblanks)
(xox::copy-geom pattern-geom)))

, this function computes the "maximum extent" of the part model
, this is defined as the diagonal of the min-max box of the
; part-nodel's geom

(defun get-max-extent ()
(sqrt (apply

(mapcar (lambda (axis &auxx)
-. (setfx

35

H1769
S1 52

Appendix A: Page 22
(apply "- axis))

(xx))
(xox::geom-minimax-box (the part-node

solid-part geom))))))

. This function tests for the existence of a sub-part of a given
,, part having a given name. If the named sub-part exists, the

function returnst, otherwise it returns nil. m

(defun sub-part-exists (part sub-part-name &aux test-name)
(if (evaling-the (list sub-part-name):from part:error-pni)t nil)
)

; This function destroys the sub-parts of a given part. The part
, itself is not deleted.

(defun kill-sub-parts (part)
(mapcar #"kil-part (cdr (select:use part))))

; This function creates and returns a list of line geons defined by
... a list of corrdinates. The endpoints of the line geoms are
; defined by the pairs of coordinates in order, with the last
; connecting to the first. The order of the first two lines are
..., reversed, so that the orientations of the line geons are
;: consistent (in accordance with a previous XOXbug regarding
, sweeps; it is not known if this is still necessary; I'd guess it isn't).

(defun cad-create-line-geoms-from-points (face-point-set&aux found-list)
(setiffound-list

(do' (face-point-set-face-point-set)
(first-point (first face-point-set-1))
(first-point-save first-point)
(sccond-point (second face-point-set-l)
(line-geom-set niD)
((null face-point-set-) line-geom-set)
(setfline-geom-set

(appendline-geom-set (list
(xox:line-geom first-point second-point))))

(setifface-point-set-l (rest face-point-set-l)
(if (equal (length face-point-set-D1)

(setffirst-point (car face-point-set
second-point first-point-save)

(setffirst-point (first face-point-set-)
second-point (second face-point-set-)))))

found-list)

This function returns the union-geom of a given list of
3D geoms. Nil entrics and Cntries of dimension less than 3 in the list are ignored. The geoms in the
given list are destroyed by this function.

(defun cad-get-union
(geom-list &aux (result mil))
(print (cad-get-union of geom-list))
(dolist (geom geon-list result)

(if (and (not result)
geom
(xox::geon-p geom)
(not (xox:Tull-geom-p geom))
(> (xox::gcon-dimension geom)2))

(setfresult geom)
(if (and geom

(xox::geom-p geon)
(not (xox:null-geon-p geom)
(> (xox:gton-dimension geon)2)

36

H1769
S3 S4

Appendix A: Page 23
(progn
(set fresult (xox:union-geom result geom)))))))

(defun cad-get-generic-union
(geon-list aux (result nil))
(dolist (geon geom-list result)

(if (and (not result)
geot
(xox::geom-pgton) i
(not (xox:null-geon-p geom)

(Sctfresult georn)
(if (and geom

(xox::geom-p geom)
(not (xox:null-gcon-p geom)))

(progn
(setfresult (xox:union-geon result geom)))))))

... This function returns whether two lists of coordinates are

... equivalent. Equivalence is defined by the two lists having the
; same coordinate values (within it.0e-8 tolerance) in any order.

(defun point-lists-equai (12 &aux (O)
(if (not (= (length) (length 2) nil
(if (< (length 11 l) t
progn

(print (checking,ll against .2)
(if (> (do (pt (car 2)

(pl2)
(1))
(nuil pl) i)
(if (not (member nil (napcar (lambda (pi p2) (within-tolerance p p21.0e-8)) (car

11) pt)))
(setfij})

(setfj(+jl))
(setfpi (cdrp))
(sctfpt (car pl))) 0)

(let (nl) (n22))
(print (matched first)
(point-lists-equal (cdr ni) (delete (nth (-il) inl2) ni2:test'equal)))

nil)))))

,,, This function adds a "temporary" part to a given object. The
; function is given the location in the ean-space tree for the new
; part, the geom for the part, and a name template for the part.

(defun add-temp-part (part geon Ilamc-template)
(add-part part

(read-from-String (format nil "-a" (gensym name-template)))
:mixin (rons-temp-part-mixin)
init-list
(list
(cons 'geoml geom)
(cons "display? ni))))

, Function for creating the main-parting-line geom. Caled when
, the geom of "the casting-manager parting-line main-parting-line'
; is referenced. This function returns a geom created by

..., intersecting the pattern-board geom with the part.

(defun cad-create-main-parting-line O
(xox::intersection-geom
(xox::copy-geom (the part-model solid-part geom))
(xox::copy-geom (the casting-manager

pattern-board geom))))

37

H1769
SS S6

Appendix A: Page 24

... This function is displays the casting-manager sub-parts. This
, function is called by the EAM module when a part is called into
, the passive display.

(define-part-method (draw-casting-features casting-manager-class)0
(the eam-space part-nodel solid-partgeon)
(draw-part pattern-board)

, (print (drawing main-parting-inc)
; (draw-part (the parting-line main-parting-line))
, (print (drawing extensions)
, (if (the parting-line Cxtensions-list)
; (mapcar (lambda (sub)

(print (drawing sub))
(with-the-tracing-from (sub)

(change display?t))
(draw-part sub)

(select:use (the
parting-line)

type parting-line-extension-mixin)

(defun cad-gen-pattern-board (taux geon-list found-bottom)
(dolist (geom (xox:k-sub-geoms (the casting-managernold drag geom)2)

found-botton)
(if (and (within-tolerance .0 (second (cad-geom-normal geom)) 10e-8)

(not (member nil (napcar (lambda (g)
(within-tolerance (second

(cadrpoint-coords-fron-geomg)
(- ((the

casting-manager flask-height).2.0)
.0e-8)

xox:k-sub-geoms geon O)))))
(setffound-bottom geom)))

(dolist (geon (xox:k-sub-geons (the casting-manager mold drag geom)2)
(cad-get-generic-union geon-list))

(if (and (not equal geon found-bottom)
(let (glist (xox::classify-geons (xox::copy-geom found-bottom)

(xox::copy-geom geom)
"(on) 'Gon)))

rv)
(if (xox:riuli-geom-p (second glist)) (setfrv t))
(mapcar fixox::free-id (delete nil glist))

(setfgeom-list (append (list (xox::copy-geom geom)) geom-list)))))

(defun cad-make-core-print
(&aux prints sewn vec)
(if (not (sub-part-exists (the casting-manager) 'cores))

(progn
(pop-up-message "Construct cores first.")
nil)

(progn
(cad-get-union
(let (ans)

(Setfprints
(xox:difference-geom
(xox::copy-geom
(xox:boundary-geom (the casting-manager cores geom)))
(xox::copy-geom
(xox:boundary-geom (the part-model solid-part geon)))))

(set fans
(cadget-union
(mapcar (lambda (face-gcorn).

(print (nornai is
(cadirgeon-normal face-geon)))

(setf vec (mapcar (iambda (v. d)
- (* v-0.5

38

H1769
57 58

Appendix A: Page 25
(abs (-

(second d) (card)))))
(cad-geon-normal face-geom)
(xox::geon-ninnax-box (the casting-manager cores geom))))

(setfsewn (xox::sewn-geom (list
(xox::copy-geom face-geom)
(xox::translation-sweep-geom
(xox::copy-geon
(xox:boundary-geom face-geom)
(xox:line-geon
"(0.00.000)
vec)

(xox::translate-geon
(xox::invert-geom-orientation
(xox:copy-geom face-geon)
vec))))

(xox:orient-geom sewn)
(cond
(< (vector-dot-product (list-to-vector (cad-geom-normal face-geom)

(list-to-vector vec)) 0.0)
(xox:halfspace-geom
(xox:invert-geon-orientation sewn)

(t(xox:halfspace-geon sewn))))
(xox:basic-geons prints))

(xox::free-id prints)
ans)

(defun update-casting-featuresO
(if (the casting-manager part-orientation-formula)

(progn
(change-formula
(the part-modelstarting-block orientation)
(the casting-nanager part-orientation-formula)
(interactive-Smash-variable
(the part-model starting-block)
:attribute-name 'orientation)
(interactive-smash-variable
the part-model starting-block solid-part)
:attribute-name geom)
(interactive-smash-variable
(the casting-manager parting-line main-parting-line)
attribute-name 'geon)

(the eam-space part-model solid-part geom)
(the ean-space casting-manager parting-line

main-parting-line geom)
(draw-part (the casting-manager patterm-board))
(draw-part (the casting-manager parting-line main-parting-line))
(add-offset-parting-lines (the casting-manager parting-line))
))

(defun find-containing-surface (point-list part-geom
&aux (surf-list (xox:k-sub-geoms part-geon 2))
(orient-list (xox::sub-geon-orientations part-geom))
return-surf)

(dolist (surf surf-list return-surf)
(if (not (member nil

(Inapcar 'lambda (pt &aux cp)
(setfc (xox::classify-geoms

(xox::point-geompt)
(xox::copy-geom surf)
'(in :on) '(in :on)))

39

H1769
63 64

Appendix A: Page 28
(defun get-end-points (basic-geoms &aux points-list)

(setfpoints-list
(mapcan #'(lambda (g &aux v v2 range ret)

(Sctfrange (xox::geon-params-range g))
(setfwl (xox:vertex-for-paransg

(mapcar'car range)
(setfv2 (xox::vertex-for-paransg

(mapcar'car (mapcar last range))))
(set frct (list (xox::vertex-coords wi)

(xox::vertex-coords v.2)))
(xox::free-idw)
(xox::free-id v2)
ret) basic-geoms)

(print (points-list points-list))
(setfpoints-list

(delete nil
(mapcar (lambda (p)

(print (p. isp member p is (member p points-list:test points-equal)
member member p is,(member p (cdr (member p points-list:test points-cqual):test points equal)))

(if (not (memberp (cdr (member p points-iist test points-equal)):test points-equal) p)) points-list)))
)

(defun construct-match-plate
(&aux (bounding-box (xox::geom-minmax-box (the part-model solid-part

geom)) op)
(Sctfo (select:use (the casting-manager) :test (equal (the slot-name) "match-plate)))
(ifo

(progn
(kill-part (caro))))

(setfbounding-box
((- (the casting-manager part-max-extent)

(the casting-manager part-max-extent)
((- (the casting-manager part-max-extent)

(the casting-manager part-max-extent)
((-(the casting-manager part-max-extent)

(the casting-manager part-max-extent))))

(setfp
(add-part (the casting-manager) 'match-plate

Imixin'(masking-bounded-object)
init-list
(list
(cons 'geom (xox:difference-geom

(xox:difference-geom
(xox:halfspace-geom
(xox:box-geon
((the casting-manager

pattern-board-width) 0.75)
(0.5 (the casting-manager flask-height))
(- (the casting-manager

pattern-board-length) 0.75)
))

(xox:translate-geom
(xox::copy-geom (the casting-manager mold draggeom)
'(0.0-0.375 0.0)))

(xox:translate-geon
(xox::copy-geom (the casting-manager noid cope geom))
(0.00.375 0.0))))

(cons 'draw-color yellow)
(cons 'display'?"t))))

(dump-geom-as-stl (the geom (:from p)) "?kelly1/rds/rds/matchplatesti")
)

42

H1769
65

We claim:
1. A method for producing a mold pattern for making a

cast part, comprising the Steps of
(a) defining the structure of a part to be cast in terms of

computer aided design System data;
(b) selecting a parting Surface for said part defined by said

computer aided design System data, Said parting Surface
defining a Selected orientation of Said part within a
mold;

(c) defining core requirements for said part to be cast by
first Sweeping each positive feature of the part to Said
parting Surface, Subtracting Said part from the projec
tion on Said parting Surface and adding any remaining
Volume to the core, and then by Sweeping negative
features of Said part away from Said parting Surface to
the top or bottom of Said mold, Subtracting Said nega
tive features from Said projection and interSecting the
remainder of Said part and adding any remaining Vol
ume to Said core;

(d) Successively Selecting alternative parting Surfaces for
Said part and defining the corresponding core require
ments whereby an optimum parting Surface having
minimum core requirements is defined, (e) molding
core pieces defined by Said core requirements defined at
Said optimum parting Surface for Said part to be cast;
and

(f) assembling said core pieces in a mold box to define the
mold pattern for Said part.

2. A method for producing a mold pattern for making a
cast part, comprising the Steps of

5

1O

15

25

66
(a) defining the structure of a part to be cast in terms of

computer aided design System data;
(b) selecting a parting Surface for said part defined by Said

computer aided design System data, Said parting Surface
defining a Selected orientation of Said part within a
mold;

(c) defining first core requirements for said part by first
Sweeping each positive feature of Said part to Said
parting Surface, Subtracting Said part from Said projec
tion on Said parting Surface and adding any remaining
Volume to the core, and then Sweeping negative fea
tures away from Said parting Surface to the top or
bottom of Said mold, Subtracting the negative features
from Said projection and interSecting the remainder of
Said part and adding any remaining Volume to the core;

(d) Successively selecting alternative parting Surfaces for
Said part and defining the corresponding core require
ments whereby an optimum parting Surface having
minimum core requirements is defined;

(e) defining second core requirements for each first core
requirement defined for Said part for Said optimum
parting Surface by repeating step (c) for each said first
core requirement defined at Said optimum parting Sur
face;

(f) molding core pieces defined by Said first and Second
core requirements defined at Said optimum parting
Surface; and

(g) assembling said core pieces in a moldbox to define the
mold pattern for Said part.

k k k k k

