US004001769B2

United States Statutory Invention Registration

1] Reg. Number: H1769
LeClair et al. [45] Published: Jan. 5, 1999
[54] OPTIMIZED RECURSIVE FOUNDRY 5,465,780 11/1995 Muntner et al. .coceveverereecrcnne 164/516
TOOLING FABRICATION METHOD 5,498,387 3/1996 Carter et al. .occrerrerercreecrccnne 264/219
5,546,313 8/1996 Mastersccevevuererrerrnennen 364/468.03
[75] Inventors: Steyen R. LeClair, Spring Valley, Primary Examiner—Bernarr E. Gregory
Ohio; Stephen C. Gregory, San At 4 . .
o orney, Agent, or Firm—Bobby D. Scearce; Thomas L.
Antonio; Benny L. Carreon, Atascosa, Kundert
both of Tex.; Yoh-Han Pao; Ron Cass,
both of Cleveland Heights, Ohio; Kam [57] ABSTRACT
Komeyli, Cleveland, Ohio
A method for producing a pattern for making a cast part is
[73] Assignee: The United States of America as described which comprises the steps of defining the structure
represented by the Secretary of the of the part in terms of computer aided design system data,
Air Force, Washington, D.C. selecting a parting surface for the part to be cast; defining
core requirements for the part by sweeping each positive
[21] Appl. No.: 466,008 feature of the.par.t to the p.arting surface? sybtracting the part
from the projection, adding any remaining volume to the
[22] Filed: Jun. 6, 1995 core, sweeping negative features away from the parting
[S1] T8 CLE oo B22C 700 Surface (o the top or bottom of the mold and subtracting the
)]] negative features from the projection and intersecting the
[52] US. Cl e 164/6; 164/1; 164/45; remainder of the part and adding any remaining volume to
. 164/456 the core; repetitively generating alternative parting surfaces
[58] Field of Searchc...... 364/474.24, 468.03, for the part and defining the corresponding core require-
364/219, 474.05; 164/27, 456, 32, 108, ments whereby an optimum parting surface is defined for
516, 45; 156/500; 264/221, 219; 72/350 which the quantity and complexity of the corresponding core
. requirements are minimized, constructing core prints for
[56] References Cited each core requirement; constructing a pattern by adding the
U.S. PATENT DOCUMENTS core prints to the part; and defining draft for the pattern
surfaces perpendicular to the optimum parting surface.
4,144,927 3/1979 Emerton et al. ...cocovvrerueenenns 164/108
4,276,922 7/1981 Brookesc.ccocoveveencnecrcnns 164/27
4,424,183 1/1984 Nelson o 2641221 2 Claims, 13 Drawing Sheets
4,442,884 4/1984 Kunsch 164/456
4,487,246 12/1984 Frasierccoceccoveveencnecrcnnens 164/32

4,888,082 12/1989 Fetcenko et al. . .
4,915,159 4/1990 Damm et al. 164/456
4,958,674 9/1990 Bolle 164/456
5,072,782 12/1991 Namba et al. ...ccccocevvevvnvenecncencne 164/45
5,154,219 10/1992 Watson et al. ..occcoeveevvvveruennene 164/46
5,184,496 2/1993 Namba et al. ..occcoevvevveverennenne 72/350
5,309,366 5/1994 Grenkowitz
5,385,705 1/1995 Malloy et al. 264/219
5,452,219 9/1995 Dehoff et al.cccoeeeveenneeee. 364/474.05

.. 156/500

Given & part geometry
select Parting Plane

ic:
......

A statutory invention registration is not a patent. It has
the defensive attributes of a patent but does not have the
enforceable attributes of a patent. No article or adver-
tisement or the like may use the term patent, or any term
suggestive of a patent, when referring to a statutory
invention registration. For more specific information on
the rights associated with a statutory invention registra-
tion see 35 U.S.C. 157.

U.S. Patent Jan. 5, 1999 Sheet 1 of 13 H1769

Fig. 16

11

R !_CIS -

Fig. 1c

U.S. Patent Jan. 5, 1999 Sheet 2 of 13 H1769

U.S. Patent

Given a part geometry
select Parting Plane
using Hierarchical
Discrete Optimizer

Construct Mold Blank

28

Any Yes

Cores ?

No

Add rigging and
draft complete

Jan. 5, 1999

Construct Core Prints
(Each Core Print
becomes a Part)

Given a part geometry
select Parting Plane
using Hierarchical
Discrete Optimizer

Construct Mold Blank

Any YeS

Cores ?

No

Y

Sheet 3 of 13

Fig. 2

29a

Construct Core Prints
(Each Core Print
becomes a Part)

Given a part geometry
select Parting Plane
using Hierarchical
Discrete Optimizer

Construct Mold Blank

y

29b

H1769

Yes

Construct Core Pring'
(Each Core Print

becomes a Part) l

No

Construct
core box(s)

pattern

U.S. Patent Jan. 5, 1999 Sheet 4 of 13 H1769

U.S. Patent Jan. 5, 1999 Sheet 5 of 13 H1769

40

48

U.S. Patent Jan. 5, 1999 Sheet 6 of 13 H1769

ii 52
/

-

40 -7: y /
55 \/\
\
Fig. 8
@ Tig. 9

U.S. Patent Jan. 5, 1999 Sheet 7 of 13 H1769

A

Fig. 10 N
%\ 56

/

Fig. 11

T

/_/

&
S

58_/

48’

Fig. 12

U.S. Patent Jan. 5, 1999 Sheet 8§ of 13 H1769

Fig. 13 »

Fig. 15 .

U.S. Patent Jan. 5, 1999 Sheet 9 of 13 H1769

58‘// ~T—60

60

Fig. 17 \

60

65

Fig. 18

U.S. Patent Jan. 5, 1999 Sheet 10 of 13 H1769

Fig. 19

58

&
)

65

s Fig. 20

65

Fig. 21
\

H1769

13

5, 1999 Sheet 12 of

Jan.

U.S. Patent

U.S. Patent Jan. 5, 1999 Sheet 13 of 13 H1769

H1769

1

OPTIMIZED RECURSIVE FOUNDRY
TOOLING FABRICATION METHOD

RIGHTS OF THE GOVERNMENT

The invention described herein may be manufactured and
used by or for the Government of the United States for all
governmental purposes without the payment of any royalty.

BACKGROUND OF THE INVENTION

The present invention relates generally to metal casting
methods, and more particularly to a method for efficiently
producing a metal casting mold for a complex part by
recursively identifying the cores for the casting and the
molds for making the cores defining the complex part once
a parting surface for the part is defined.

In metal casting discrete mechanical parts using sand
molds, patterns are used in fabrication of the molds to ensure
that the resulting cast parts have the correct geometry, or can
be readily finished to the correct geometry. The pattern is a
model of a part to form a mold cavity substantially defining
the part shape, but is not simply a facsimile of the part
because additional shapes (sprues, runners, gates, etc) are
used to form channels for inserting molten metal, or shape
modifications to provide taper (draft) on some surfaces of
the part to facilitate withdrawal of the part from the mold.
The principal molding material conventionally used in
foundries is silica sand, which, when mixed with water and
a binder (e.g. clay), can be formed to a complex geometry
which retains its shape while being filled with metal and
allowed to cool. The mold is usually destroyed when the
casting is removed and must be recreated using the pattern
for each cast part to be produced.

Mold design and fabrication are especially difficult if the
cast part has sufficiently complex geometry or when the
parting surface is defined such that the pattern cannot be
withdrawn easily from the mold. In order to accommodate
complex geometries by means of conventional casting
methods, the pattern maker uses cores and loose pieces to
ensure that those parts of the cavity which should be filled
are filled. In standard practice, molds are often made up of
two halves. The pattern is also made up of two parts
mounted on the two sides of a board which represents the
dividing (parting) surface (which may be more complex than
a single plane) between the two mold halves. The two mold
halves are formed by packing sand around each side of the
pattern board, and subsequently combined to form the cavity
left when the pattern is removed. The mold must therefore
be made such that the pattern can be withdrawn from the
mold. If the mold is made in two halves, each part of the
pattern must be removable from the corresponding mold
half. In order to define the casting pattern, the pattern maker
modifies the pattern around the complex features of the part
(to render it removable from the mold) using extra pieces of
mold-like material, called cores or loose pieces, for filling
extraneous spaces around the correct cavity shape for the
cast part. The cores are generally made from bonded silica
sand, and the molds used to make the cores, called core
boxes, are permanent molds, usually made of wood or
hardened epoxy.

In the practice of the invention, computer associative
memories and feature-based computer aided design (CAD)
are incorporated into a highly efficient and effective method
for producing patterns and molds for casting substantially
any complex part wherein withdrawal interferences of the
pattern are defined for various parting planes or surfaces,
and, once the parting surface is specified, the correct pattern
structure is recursively defined.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is a principal object of the invention to automate and
optimize foundry tooling fabrication for metal casting.

It is another object of the invention to provide a method
for producing a pattern for a part to be cast in a metal casting
process.

It is another object of the invention to provide a method
for sequentially drafting a pattern by part feature, core and
rigging relative to a parting plane of a casting mold.

It is another object of the invention to provide a method
for producing casting patterns for complex cast parts which
cannot be otherwise withdrawn from a mold without
destroying the mold.

It is a yet further object of the invention to provide a solid
modelling recursive molding procedure for defining casting
pattern core and core box requirements.

These and other objects of the invention will become
apparent as a detailed description of representative embodi-
ments proceeds.

SUMMARY OF THE INVENTION

In accordance with the foregoing principles and objects of
the invention, a method for producing a pattern for making
a cast part is described which comprises the steps of defining
the structure of the part in terms of computer aided design
system data, selecting a parting surface for the part to be
cast; defining core requirements for the part by sweeping
each positive feature of the part to the parting surface,
subtracting the part from the projection, adding any remain-
ing volume to the core, sweeping negative features away
from the parting surface to the top or bottom of the mold and
subtracting the negative features from the projection and
intersecting the remainder of the part and adding any
remaining volume to the core; repetitively generating alter-
native parting surfaces for the part and defining the corre-
sponding core requirements whereby an optimum parting
surface is defined for which the quantity and complexity of
the corresponding core requirements are minimized, con-
structing core prints for each core requirement; constructing
a pattern by adding the core prints to the part; and defining
draft for the pattern surfaces perpendicular to the optimum
parting surface.

DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the
following detailed description of representative embodi-
ments thereof read in conjunction with the accompanying
drawings wherein:

FIGS. 1a—e show in a comprehensive fashion the foundry
casting mold fabrication method of the invention with
relation to a representative three dimensional part and asso-
ciated parting surface, cores, core boxes and rigging which
are defined in the practice of the invention;

FIG. 2 is a block diagram of the steps of the method for
constructing a mold pattern according to the invention;

FIGS. 3a—g show the method of the invention by refer-
ence to a two-dimensional example;

FIG. 4 shows a perspective view of another example
casting having complex features for illustrating the method
of the invention;

FIG. 5 shows the location of a first parting surface which
is automatically generated by the method of the invention
for the FIG. 4 casting;

FIG. 6 shows the FIG. 4 casting as it would appear in the
lower (drag) portion of the mold for the generated parting
surface illustrated in FIG. 5;

H1769

3

FIG. 7 shows the FIG. 4 casting in a view from below as
it would appear in the upper (cope) portion of the mold for
the generated parting surface illustrated in FIG. §;

FIG. 8 shows the identification of the volume of the mold,
for the FIG. 4 casting and the FIG. 5 parting surface, in
which a core is required;

FIG. 9 shows in isolation the core requirement identified
in relation to FIG. §8;

FIG. 10 shows the FIG. 9 core requirement as viewed
from below at a reverse angle;

FIG. 11 shows in isolation the FIG. 9 core requirement
with core prints added to the core requirement to make up
the finished core;

FIG. 12 shows the finished core of FIG. 11 as viewed from
below at a reverse angle;

FIG. 13 shows the location a parting line as generated by
the method of the invention for the finished core of FIG. 11;

FIG. 14 shows from below the finished FIG. 11 core with
the parting line illustrated in FIG. 13;

FIG. 15 shows the loose piece requirement for the FIG. 11
core;

FIG. 16 shows the loose piece requirement identified in
FIG. 15 as viewed from below at a reverse angle;

FIG. 17 shows the finished FIG. 11 core with the location
of an alternative parting surface as generated by the method
of the invention;

FIG. 18 is a view from below at a reverse angle of the
finished FIG. 11 core with the alternative parting line
illustrated in FIG. 17,

FIG. 19 is a view of the FIG. 11 core and alternative
parting surface reverse of the FIG. 17 view;

FIG. 20 shows the loose piece requirement for the finished
FIG. 11 core with the alternative parting surface location;

FIG. 21 shows the finished FIG. 11 core with the location
of a second alternative parting surface generated by the
method of the invention;

FIG. 22 is a view from a reverse angle of the finished FIG.
11 core with the second alternative parting surface illustrated
in FIG. 19;

FIG. 23 is a view from below at a reverse angle of the
finished FIG. 11 core with the second alternative parting line
of FIG. 19;

FIG. 24 shows the FIG. 11 core with the lower half of the
associated corebox for the second alternative parting surface
illustrated in FIG. 19;

FIG. 25 shows the FIG. 11 core with the upper half of the
associated corebox and second alternative parting surface as
viewed from below and at an angle reverse of the FIG. 24
view;

FIG. 26 shows the FIG. 11 core and lower corebox half as
viewed at an angle reverse of the FIG. 24 view;

FIG. 27 shows the finished pattern used to make the sand
mold for the FIG. 4 casting and all the coreboxes required
to make the cores for the mold;

FIG. 28 shows the lower half of the corebox required for
the FIG. 27 pattern; and

FIG. 29 shows from below the upper half of the corebox
required for the FIG. 27 pattern.

DETAILED DESCRIPTION

Referring now to the drawings, FIGs la—e show in
comprehensive fashion an overview of the rapid foundry
tooling system and fabrication method of the invention with

10

15

20

25

30

35

40

45

50

55

60

65

4

reference to a representative complex three dimensional part
10 intended to be cast. In accordance with a principle feature
of the invention, a plurality of shape features (in selected
sizes and locations), including bosses, disks, slots, shafts,
blends and other simple shapes are used to define the
structure of part 10. Therefore, part 10 may be defined by
cylinder 11, disk 12, boss 13, (half) cylinder 14, block 15
and slot 16. The structure of part 10 is first defined based on
data representing size and shape of each consitituent feature
entered into a CAD system. The structure of part 10, having
been defined in terms of CAD system data, may then be
displayed in any representative view on the CAD system
display. Once the structure of part 10 is defined as just
described, an initial parting surface 17 for casting part 10 is
then selected, and the associated sprues, runners, gates,
risers, cores, core boxes and mold are then iteratively
generated in order to optimize the design of the resultant
pattern, pattern board and mold. For example, with reference
to FIG. 1b showing part 10 from below, the initial parting
surface 17 indicated in FIG. 1a suggests volumes 18 and 19
of specified shapes as requiring cores in corresponding
shapes and locations in a pattern for part 10. However, with
reference to FIG. 1c¢, identification of volumes 18 and 19 in
FIG. 1b indicate an appropriate new parting surface 17' (with
parting surface offsets) which eliminate the necessity of
cores for volumes 18,19. The automatic identification and
generation of an appropriate offset parting surface 17', or
other parting surface which results in minimum quantity and
complexity of cores, is a critical feature of the invention.
Once the offset parting line is generated, the invention
specifies location of the appropriate rigging (sprues 20, gates
21, runners 22 and risers 23) for casting part 10 such as
illustrated in FIG. 1d. Once the rigging for part 10 is
specified, pattern board 25 (FIG. 1e) and mold configuration
are automatically generated.

Referring now to FIG. 2, shown therein is a block diagram
of the method steps for constructing a mold pattern accord-
ing to the invention. The listing of a representative computer
program useful in executing the algorithm for constructing
the mold pattern, including identification of required cores,
in the practice of the method of the invention, and used in
demonstration of the invention, is presented in Appendix A
hereto. As suggested in FIG. 2, and with reference to the
computer listing in Appendix A, the geometry of the part to
be cast is first identified and defined in terms of CAD)
system data, and an appropriate parting surface for optimum
orientation of the part within the mold is generated as at 26.
(See Computer Graphics Handbook Geometry and
Mathematics, by Michael E. Morrison, Industrial Press Inc.
(1990), the entire teachings of which are incorporated by
reference, particularly Part 10, “Transformations”.) Geom-
etry of the part to be cast may be defined in terms of any
suitable CAD data system as would occur to the skilled
artisan guided by these teachings, the software used to define
the geometry of parts in demonstration of the invention
being SHAPES (Release 1.5, XOX, Inc., Minneapolis MN
(1995)), and is incorporated by reference herein.

Two solids, called mold blanks, which represent the
volume of the mold on the upper (cope) side and lower
(drag) side of the parting surface, are generated as at 27.
Core requirements 28 for the mold blank defined with
respect to the parting surface are then identified. Each
positive feature of the part is swept to the parting surface and
the part is subtracted from the projection, and any remaining
volume is added to the core. Negative features are swept
away from the parting surface to the top or bottom of the
mold and subtracted from the projection, the remainder is

H1769

5

intersected with the part; and any remaining volume is added
to the core. Once core requirements, if any, are identified for
the selected parting surface, optional new parting surfaces
are successively generated at each combination of two or
more vertices defining a unique new plane through the part.
The optimum parting surface is selected by considering the
number and complexity of the core requirements and the
number of surfaces of the part to be drafted for each parting
surface so generated and considered.

As core requirements are identified for the optimum
parting surface, the geometry of each core print (a separate
part corresponding to the configuration of the associated
core volume) is defined, and the core box for molding each
defined core print is defined according to the recursive
parting surface selection and core identification procedure
just described for the original part to be cast including
successive identification of any core requirements for each
identified core as suggested at 29a in FIG. 2. For each core
requirement, the core pattern, called a core print, is con-
structed by sweeping any vertical faces not flush with the
part away from the body of the core piece. Distance of sweep
is selected as one half the core depth in a direction normal
to the surface being swept. If faces on opposite sides of the
core are not being swept, the distance of sweep is selected
equal to the depth of the core normal to the face being swept.
These sweep distances are needed to maintain rigid posi-
tioning of the core print during metal pouring.

When all core requirements for the part (including core
requirements for each core print) are identified and the
corresponding core prints are defined by recursively defining
as at 29b any required core prints (i.e. second or higher order
core prints) for any cores defined at 294, the pattern for the
casting is defined by adding all the identified core prints to
the part, adding draft to the pattern surfaces, and adding the
appropriate rigging such as suggested for the example of
FIG. 1d.

The hierarchical procedure for optimizing pattern con-
struction according to the foregoing may be illustrated by
reference to the two-dimensional example of FIGS. 3a—g .
Consider the hook shaped member 30 to be cast which must
be removed from the mold in a lateral direction in the plane
of FIGS. 3a—g . First, a suitable parting surface 32 is defined
(FIG. 3b). Parting surface 32 defines how the pattern will be
oriented with respect to the mold, i.e., the pattern will be
withdrawn from the two mold 31 portions 314,33 perpen-
dicularly to parting surface 32. Because of the complexity of
mernber 30, namely the hook feature, the pattern cannot be
removed from mold 31 without destroying mold portion 33.
The volume where a core 34 will be used is therefore
identified by cloaking that portion of the pattern which
cannot be withdrawn from mold 31 with a core print of
suitably simple geometry, such as a prismatic solid, to define
an augmented pattern 35 which can be withdrawn without
destroying the mold. Mold 31' formed to augment pattern 35
is called the first-level mold, and a core which will be
inserted into mold 31" is called the first-level core (see FIG.
2 at 294). Subtracting member 30 from core 34 volume
defines core 34 (FIG. 3¢) which must be cast each time a
mold is made. The core box for casting the first-level core
print is then fabricated. This mold is called the second-level
mold. One second-level mold is required for each first-level
core piece. In addition, some first-level cores are of such
complexity as to also require cores, called second-level
cores in the recursive procedure described herein (see FIG.
2 at 29b). Second-level molds and secondlevel cores may be
constructed of suitable material to be reusable. Core 34
geometry may prevent its casting in a simple mold, and core

10

15

20

25

30

35

40

45

50

55

60

65

6

34 must therefore be cast in multiple (2 for core 34) pieces
36,37 to be cast properly (FIGS. 3f,g). Core pieces 36,37
may be connected in mold 31' as by positioning pins (not
shown).

Referring now to FIGS. 4-29, shown therein are the steps
defining the optimized recursive foundry tooling procedure
outlined above and set out in the computer program listing
of Appendix A in relation to a complex part to be cast. FIG.
4 depicts in perspective example part 40 to be cast in the
recursive procedure. Example part 40 is first defined in terms
of CAD system data as described above and has a base
comprising an assemblage of a plurality of various sized
plate members 41,42, 43, upright cylindrical member 44,
and a cavity 45 in cylindrical member 44 and cantilevered
section 46 which renders the design of a pattern for making
sand molds for part 40 a non-trivial procedure. FIG. 5 shows
part 40 with one parting surface 48 generated at the upper
surface of plate member 42 by the optimized recursive
procedure of the invention. As suggested above in relation to
FIG. 2, a plurality of parting surfaces may be generated for
part 40, depending on its shape, as at any surface of the plate
members 41,4243, but for clarity, discussion of the proce-
dure related to part 40 will begin with reference to parting
surface 48 illustrated in FIG. 5. It is noted, however, that for
example part 40 the recursive procedure of the invention
favors parting surfaces which are defined by the surfaces of
plate members 41,42.43. This constraint corresponds to the
general objective of pattern-makers to have the majority of
the volume of the casting in the lower half of the mold for
optimum solidification of molten material. For clarity of the
example, part 40 is shown in an orientation in the mold
which is inverted to that which would normally be utilized.

Referring now to FIG. 6, shown therein is part 40 as its
casting would appear in the lower (drag) portion 51 of the
mold for the generated parting surface 48 of FIG. 5. FIG. 7
shows the casting of part 40 as it would appear in the upper
(cope) portion 52 of the mold for the same parting surface
48. As suggested above in relation to FIG. 2 and the program
listing of Appendix A, once the structure of part 40 is defined
and parting surface 48 is selected, volume 55 of the mold in
which a core is required (core requirement) is identified as
depicted in FIG. 8. FIG. 9 shows in isolation the core 56
requirement identified in relation to FIG. 8, and FIG. 10
shows the core 56 requirement viewed from below. In the
FIG. 10 view, tab 58 corresponding to cavity 45 in cylin-
drical member 44 of part 40 is revealed.

Because the core 56 requirement identified in FIG. 8 itself
does not constitute the entire core which the foundryman
would insert into the mold, structures must be added to the
core requirement which allow it to be mounted securely
inside the mold. These structures, called core prints, are
generated as described above and are added to the core
requirement to make up finished core 60, as shown in FIG.
11, and are added to the pattern to create the cavities in the
mold in which core 60 is mounted. As such, the core prints
must also be removable from the mold. The recursive
procedure of the invention automatically adds correct core
prints to a core requirement to complete the core design. In
FIG. 11, core prints are shown added to the sides of the core
and comprise structures which are not merely extensions of
the exposed sides of the core, but extend to parting surface
48 to ensure proper positioning of the core print within the
mold. FIG. 12 shows the finished core 60 of FIG. 11 as
viewed from below at a reverse angle. The extension of the
core prints to parting surface 48 is illustrated. If the prints
were only extensions of the exposed surfaces of the core
requirement then a volume of the mold would be trapped

H1769

7

between the core prints and the large plate member 42 of the
casting defining part 40.

Because all cores must be constructed each time a new
part is cast, the most efficient way to construct cores is by
molding in permanent molds called coreboxes. Coreboxes,
like molds for the casting, must be constructed so that the
core can be removed from the corebox in a nondestructive
manner. The recursive procedure of the invention efficiently
designs the structure for the coreboxes for all cores using the
same procedure as that used to construct the mold of the
casting. Specifically, the recursive procedure of the inven-
tion generates the appropriate parting surfaces for the core,
and, for each generated parting surface, identifies any
trapped volumes in the corebox (called loose piece require-
ments rather than core requirements for clarity), and speci-
fies the structure of the corresponding coreboxes. FIG. 13
shows parting surface 48' for the FIG. 11 core 60 which is
generated by tie procedure and which is flush to the bottom
of core 60. FIG. 14 shows core 60 and parting surface 48'
from below, and reveals trapped volume 61 between parting
surface 48' and core 60. The geometry of trapped volume 61
between core 60 and parting line 48', seen in FIG. 15, is then
defined in order to identify a corresponding loose piece
requirement for core 60. FIG. 16 shows the loose piece 63
requirement in a view reverse of FIG. 15.

Because the existence of a loose piece 63 requirement
identified in relation to parting surface 48' generated as
shown in FIG. 13 may not be the optimum configuration for
the finished pattern, the recursive nature of the procedure
generates second and successive parting surfaces and iden-
tifies the associated core and loose piece requirements in
order to arrive at the optimum configuration (FIG. 2 at 27).
FIGS. 17 and 18 are respective views from the top and
bottom of the FIG. 11 core 60 with an alternative parting
surface 65. Note that, in accordance with the general scheme
of the algorithm of the invention to generate parting surfaces
at vertices of the part geometry, the alternative parting
surface is flush with the top of the impression in the core
corresponding to the smaller plate member 43 of part 40.
FIG. 19 is a view reverse of the view of FIG. 17 showing
core 60 and alternative parting surface 65, and reveals
trapped volume 67 between tab 58 on core 60 and alternative
parting surface 65. Trapped volume 67 identified in FIG. 19
then defines the geometry of a loose piece requirement
associated with alternative parting surface 65.

10

15

20

25

30

35

40

8

In a manner like that for generation of first alternative
parting surface 65, because of the identification of a loose
piece requirement for trapped volume 67 of FIG. 20, the
procedure of the invention recursively generates second
parting surface 70 such as shown in FIGS. 21,22.23. Second
alternative parting surface 70 is flush with the bottom of tab
58 which corresponds to cavity 45 in cylindrical mem-ber 44
of part 40 (FIG. 4). It is noted that no trapped volume exists
between any portion of core 60 and second alternative
parting line 70, so that the procedure of the invention has
successfully identified a parting surface 70 and associated
core requirements for which no loose piece is required.

Having identified optimum parting surface 70 for core 60,
the associated core box for casting the core is constructed
from two rectangular prisms, one on each side of the parting
surface. FIGs 24 and 26 show two views of core 60 and
lower portion 72 of the corebox, and FIG. 25 shows core 60
and upper portion 73 of the corebox.

Once the core and loose piece requirements are identified
and defined, the finished pattern 75 is needed to make the
sand mold for casting part 40 and all the coreboxes required
to make the cores for the mold comprise the parts required
to make sand molds of the casting. The finished pattern is
constructed by adding the core prints to the part pattern. FIG.
27 shows final pattern 75 for casting part 40 with the features
(rigging) used to convey metal into the mold and reservoirs
for holding the metal being omitted for clarity. FIGS. 28 and
29 show respective lower and upper portions 77,78 of the
corebox for the core (FIG. 11).

The permanent components used in the recursive molding
process of the invention may be fabricated using virtual
reality based rapid prototyping technology, such as
stereolithography, and feature-based CAD solid modelling
software and associative memory.

The invention therefore provides a novel method for
efficiently producing a metal casting mold for a complex
part. It is understood that modifications to the invention may
be made as might occur to one with skill in the field of the
invention within the scope of the appended claims. All
embodiments contemplated hereunder which achieve the
objects of the invention have therefore not been shown in
complete detail. Other embodiments may be developed
without departing from the spirit of the invention or from the
scope of the appended claims.

H1769

(in-package 'ws)

.. this function reads the orientation formula from the
5 "orient-editor” icon.

(defun cad-get-orientation-formula ()
(read-from-string
(eam-cat-strings
(apply #'eam-cat-strings (rcad-icon-value "orient-editor ‘edit))

)

3 this function inverts the orientation formula in the
i "orient-editor” icon by appending a rotation about the x-axis of
1+ the part by 180.0. this works because the main-parting-plane
3 lies in its Jocal x-y plane.
(defun cad-invert-orientation-formula 0
(read-from-string
{eam-cat-strings
(apply #'cam-cat-strings (read-icon-value 'oricnt-editor ‘edit))
"(rotate about the :x-axis of (the) by 180.0)"
e

33 FEWINS positive features
o ttached to the part-model including the
, starting block.

3

(defun cad-get-positive-features ()
(delete nil (mapcar #(lambda (feature)
(if (posp feature)
feature))
(select :use (the eam-space part-model) :type ‘fbde-feature-mixin}))
:test #'equal))

(defun cad-get-negative-features ()
{delete nil
{mapcar #'(lambda (feature)
(if (not (posp feature))
feature))
{select :use (the pace part-model) :type 'fbde-fe ixin))
:test #'equal))

retums negative features
| attached to the part-mode!
(defun cad-get-transition-features ()
{delete nil
(mapcar #'(tambda (feature)
(if (or (feature-classp feature "fillet-feature)
(feature-classp feature ‘radius-feature))
feature))
(select :use (the eam-space part: del) :type 'fbde-fi ixin))
‘test #'equal))

(defun cad-get-xox-blend-features ()

(delete nil
(mapcar #'(lambda (feature)
(if (or (feature-classp feature 'fillet-feature)
(feature-classp feature 'radius-feature))
- (if (the usc-blends-toolkit (:from feature))

10

Appendix A:

15

Page |

H1769
11 12

Appendix A:

feature)))
(select :use (the cam-space part-model) :type 'fbde-feature-mixin))
“test #'equal))

i Retums the list of 3D coordinates of the 0D sub-geoms of a geom.

(defun cad-get-face-points
(face-geom
&aux
(final-list ni})
found-ist)
(setf found-list (mapcar #(lambda (all-face-points-geoms)
(dolist (pointx (progn
(setf final-list nil)
(xox::geom-minmax-box
all-face-points-geoms))
final-list) (setf final-list (append
final-list
(list (car pointx))))))
(xox::k-sub-geoms face-geom 0)))
(append (list (second found-list))
(list (first found-tist))
{cddr found-list)))

i Retumns the coordinates in 3-space of a 0D geom
(defun cad-point-coords-from-geom (point-geom)
{mapcar ‘car (xox::g i box point:)

;> Constructs and retums a list of straight line segments
S ponding to the ID sub-g of a given geom, where the
3 endpoints of the fine segments are the 0D sub-geoms of the 1D sub-geoms.
5+ This function is used to copy a boundary-geom which is to be
35 SWepL, since (at Jast check) XOX has i probt ping
1. copies of boundary geoms made using xox::copy-geom.
(defun cad-get-face-cdges (face-geom)
{delete nil
(mapcar #'(lambda (edge &aux pts)
(setf pts (xox::k-sub-geoms cdge 0))
Gf (> (length pts) 1)
(apply #'xox::line-geom
#'cad-point ds-fr
pts)))
(xox::k-sub-geoms face-geom 1))))

. OLD: old method for generating cores, just does projections and
i+ adds them 1o the casting-manager.
(defun cad-demo-cores
(&aux (cores-geom nil))
(setf cores-geom (sclect :use (the casting-manager) :test (equal (the slot-name) 'cores)))
(if cores-geom (kill-part (car cores-geom)))
{setf cores-geom
(append
(mapcan #'(lambda (feature)
(mapcar #'(lambda
(face-geom &aux sewn scwnl)
(print *("doing” ,face-geom))
(setf sewn (xox::b dary-gecom face-geom))
(print "(dimension of sewn lines is
J(or (not sewn) (xox::geom-dimension sewn))))
;; space-dimension of sewn is 3, dimension is }
. (setf sewnl (xox::copy-geom face-geom))

Page 2

H1769
13 14

Appendix A:

(print "(dimension of face is
J(xox::geom-dimension sewn1)))
(setf sewn (xox::translation-sweep-geom sewn (get-sweep-path)))
;; dimension of sewn is 2, space-dimension is 3
(print *(dimension of sweep is
{(xox::geom-dimension sewn)))
{print ' (dot-product with normal is
,(cad-normal-dir face-geom)))
{cond ((within-tolerance
(cad-normal-dir face-geom) 0.0 1.0e-8)
(setf sewn 'nil))
((< (cad-normal-dir facc-geom) 0.0)
(setf sewn (xox::sewn-geom (list
(xox::invert-geom-orientation
(xox::copy-geom face-geom))
{xox::inven-geom-orientation sewn)
(xox::transiate-geom
(xox::copy-geom face-geom)
(get-sweep-vecior))))))

(setf sewn (xox::sewn-geom (list
(xox::copy-geom face-geom)
sewn
(xox::translate-geom
(xox::invert-geom-orientation
(xox::copy-geom face-geom))

(get-sweep-vectorn)))))})

(if sewn (setf sewn (xox::halfspace-geom sewn)))

sewn

)

(get-surface-geoms feature)))
(butlast (cad-get-positive-features)))

(mapcan #'(lambda (feature)
(mapcar #'(lambda (face-geom &aux sewn sewnl)
(print *("doing negative feature” face-geom))
(sctf sewn (xox::boundary-geom face-geom))
(print *(dimension of sewn lines is
,(or (not sewn) (xox::geom-dimension sewn))))
5 S of sewn is 3, di ion is 1
(setf sewn | (xox::copy-geom face-geom))
(print (dimension of face is
«(xox::geom-dimension sewn1)))
(setf sewn {xox:: i P-geom sewn (get-sweep-path)))
;: dimension of sewn is 2, space-dimension is 3
(print ‘(dimension of sweep is
J(xox::geom-dimension sewn)))
(print ‘(dot-product with normal is
J(cad-normal-dir face-gcom)))

m

{cond ((within-tolerance
(cad-normal-dir face-geom) 0.0 1.0¢-8)
(setf sewn 'nil))
((< (cad-normal-dir face-geom) 0.0)
(setf sewn (xox::sewn-geom (list

{xox::copy-geom face-geom))
(xex::invert-geom-otientation sewn)
(xox::translate-geom
(xox::copy-geom face-geom)
(get-sweep-vector))))))

(setf sewn (xox::sewn-geom (list
(xo0x::copy-geom face-geom)
sewn
(xox::transiate-geom
(xox::invert-geom-orientation
(xox::copy-geom face-geom))

(get-sweep-vector)))))))

(if sewn (setf sewn (xox::halfspace-geom sewn)))

sewn

)

(get-surface-geoms feature)))
- (cad-get-negative-features))))

Page 3

H1769
15

(setf cores-geom (delete nii cores-geom))
(print "(after delete ,cores-geom))

(add-part (the casting-manager) ‘cores
‘mixin ‘(masking-bounded-object)
Anit-fist
(list
{cons 'display? nil)))

(mapcar #'(lambda (gcom &aux name)

(setq name (format nil "~a" (gensym)))

(add-part (the casting-manager cores)
(read-from-string name)
:mixin (masking-bounded-object)
sinit-list
(list
(cons 'geom (xox::copy-geom geom))
(cons 'display? nil))})

cores-geom)
(change (the casting. cores d ior) 'yellow)
(change (the casting. cores rendered?) 'shaded
)
5+ This function tests the projecti hods by ing the

3 projections of the part features and adding them to the casting-manager.

(defun test-projections
(&aux o)
(setf 0 (sciect :use (the casting-manager) :test (equal (the slot-name) ‘projections)))
(if o (kill-part (car 0)))

(add-part (the casting-manager) 'projecti
:mixin ‘(masking-bounded-object)
sinit-list
(list

(cons 'disptay? 't)))

(mapcar #'(lambda (feature)
(add-temp-part (the casting-manager projections)
(xox::difference-geom
(xox::intersection-geom
(xox::difference-geom
(cad-get-union
(rfis-construct-projection feature
(get-sweep-vector)))
(get-solid-geom feature))
(xox::copy-geom (second (the
casting-manager
mold blanks))))
(xo0x::copy-geom (the part-model
solid-part geom)))
"pos-proj"))
{cad-get-positive-features))

(mapcar #'(lambda (feature)
(add-temp-part (the casting-manager projections)
(xox::difference-geom
{(xox::intersection-geom
(xox::intersection-geom
(xox::difference-geom
(cad-get-union
(rfis-construct-projection feature
(get-sweep-vector)))
(xo0x::copy-geom (the part-model
solid-part geom)))
(xox::copy-geom (car (the
casting-manager
mold blanks))))
(xox::union-geom

16

Appendix A:

Page 4

H1769
17 18

Appendix A:

{xox::copy-geom (the part-model
solid-part geom))
(get-solid-geom feature)))
(x0x::copy-geom (the part-model
solid-part geom))})
"neg-proj"))
(cad-get-negative-features))

{mapcar #'(lambda (feature)
(add-temp-part (the casting-manager projections)
(xox::difference-geom
(xox::intersection-geom
(xox::difference-geom
(cad-get-union
(rfis-construct-projection feature

(mapcar #- (get-sweep-vector))))
(get-solid-geom feature))
(xox::copy-geom (car (the
casting-manager
moid blanks}))))
(xox::copy-geom (the part-model
solid-part geom)))
"pos-proj")}
(cad-get-positive-features))

(mapcar #'(lambda (feature)
(add-temp-part (the casting-manager projections)
(xox::difference-geom
(xox::intersection-geom
(xox::intersection-geom
(xox::difference-geom
(cad-get-union
(rfis-construct-projection feature
(mapcar
#- (get-sweep-vector))))
(xox:.copy-geom (the part-model
solid-part geom)))
(xox::copy-geom (second (the
casting-manager
mold blanks))))
(xoX::union-geom
(xox::copy-geom (the part-model
solid-part geom))
(get-solid-geom feature)))
5 {xox::copy-geom (the part-model
solid-part geom)))
"neg-proj"))
(cad-get-negative-features))

;. (mapcar #'(tambda (feature)
; (add-temp-part (the casting-manager projections)
(cad-get-union
(rfts-construct-projection feature
{mapcar ¥'-
5 (get-sweep-vector))))
; "pos-proj"))
H {cad-get-positive-features))

. (mapcar #'(lambda (feature)
N (add-temp-part (the casting-manager projections)
4 (cad-get-union
y (rfis-construct-projection feature
B {mapcar #'-
B . {get-sweep-vector))))
; "neg-proj”))
(cad-get-negative-features))

s

»» This function constructs the core pieces necessary to cast the

Page 5

H1769
19 20

Appendix A: Page 6

3ii current pan given the current orientation with respect to the
i parting-plane and the current offset parting lines.
(defun test-cores

(&aux boundary-geom positive-geom (cores-geom nil) (cores]-geom nil) o)

(setf o (select :use (the casting-manager) :test (equal (the slot-name) 'cores)))

{ifo

(progn
B (xox::free-id (the geom (:from (car 0)))) .
(kill-part (car 0)})) . |

(add-part (the casting-manager) 'cores
:mixin ‘(masking-b ded-obj bie-part)
:init-list
(list
{cons 'display? 't))}

; (setf positive-geom (cad-get-union
: (mapcar #'get-solid-geom (cad-get-positive-features))))

(setf boundary-geom
(xox::assembly-geom
(mapcar #(tambda (g o)
(ifo
(xox::copy-geom g)
{xox::invert-geom-oricntation (xox::copy-geom g))))
(xox::sub-geoms (the part-modet solid-part geom))
(xox::sub-geom-ori ions (the pant-model solid-pan geom))

»

(setf cores-geom
(mapcar #'(lambda (feature &aux test junk)
H (setf test (xox::i ion-geom (get-solid-g
; {xox::copy-geom (the
4 casting-manager mold drag blank geom))))

(ift
(progn
(setf junk (rfts-construct-projection
feature (get-sweep-vector)))
(print ' (projection of ,feature is ,junk))
(setf junk (cad-get-union junk))
(if (and junk
(xox::geom-p junk)
(not (xox::null-geom-p junk)))
(progn
; (xox::clear-window *W*)
H (xox::display-ge junk *W*)
B (is0)
(setf junk (xox::difference-geom junk
(xox::copy-geom (get-node-correct-geom feature))))
3 (xox::clear-window *W?*)
\ (xox::display-ge junk *W?*)

(iso)
(sctf junk (xox::intersection-geom
junk
(xox::copy-gecom
(second (the

casting-manager moid blanks)))))
(print "(junk is ,junk
J(and (xox::geom-p
junk) (not
{xox::null-geom-p junk)))))
(if (and junk (xox::gcom-p junk)
(not (xox::nuli-geom-p junk)))
(print ‘(geom dimension is
J(xox::geom-dimension junk))))

(if (and junk (xox::geom-p junk) (not
{xox::null-geom-p junk))
(> (xox::geom-dimension junk) 2))
junk
(progn
- (xox::free-id junk)

20

H1769
21 22

Appendix A: Page 7
nil))
)
)
»
(xox::free-id test)

(cad-get-positive-features)))
(print "(after positives cores-geom ,cores-geom))
{mapcar #'(lambda (feature &aux test junk junkl)

(if (not (feature-classp feature ‘radius-feature))
(let (inter geom)
(setf geom (get-nod t-g fi)
(setf inter (xox::intersection-geom
(construct-boundary geom)
(xox::copy-geom
{second (the
casting-manager mold blanks)))))
(if (not (xox::nuil-geom-p inter))
(progn
(setf test (xox::intersection-geom
{xox::copy-geom inter)
(xox::copy-geom (the part-model solid-part geom))))
(if (delete nil (mapcar #'(lambda (g &aux test-range)
(sampled-normal-parallel g (the pan-modetl solid-part geom)
'(0.0 1.0 0.0) :boundary boundary-geom)

) (xox::k-sub-geoms test 2))}
(setf cores-geom
(cad-get-union (list cores-geom inter)))
(setf cores-geom
(append cores-geom (list inter)))
{xox::free-id inter)

)
(xox::free-id test)
)
(xox::free-id inter)
)
(xox::free-id geom)

)
)
)

(cad-get-negative-features))

. print (¢ el K 2 J(and (xox::, -p cores-geom) (not (xox::null-gcom-p cores-geom)))))
. (if (and c 14 (xox:: p geom) (not (xox::null-g p geomy)))
(setf cores-geom (xox::difference-geom
cores-geom

(xox::copy-geom (the part-modet solid-pant geom)))))

{setf coresl-geom
(mapcar #'(lambda (feature &aux test junk)
(setf test (xox::intersection-geom {get-solid-geom feature)
(xox::copy-geom (the
casting-manager mold cope blank geom))))
(ift
(progn
(setf junk (rfis-construct-projection feature
{mapcar #'- (get-sweep-vector))))
(print “(projection of .feature is ,junk))
(setf junk (cad-get-union junk))
(if (and junk
(xox::geom-p junk)
(not (xox::nuil-geom-p junk)))
(progn
(setf junk (xox::intersection-geom
(xox::difference-geom junk
{xox::copy-geom (get-node-correct-geom feature)))
L (xox::copy-geom

21

H1769
23 24

Appendix A:

(car (the
casting-manager mold blanks)))))
(if (and junk (xox::geom-p junk) {not
(xox::null-geom-p junk))
(> (xox::geom-dimension junk) 2))
Jjunk
(progn
{xox::free-id junk)
) nil)) -
)

4 (xox::free-id test)
)
(cad-get-positive-features)))

(mapcar #'(lambda (feature &aux test junk junk1)

(if (not (feature-classp feature 'radi
(let (inter geom)
(setf geom (get-nod: 121 fe

(setf inter (xox::intersection-geom
(construct-boundary geom)
{xox::copy-geom
(car (the
casting-manager mold blanks)))))
(if (not (xox::null-geom-p inter))
(progn
(setf test (xox::intersection-geom
(xox::copy-geom inter)
(xox::copy-geom (the part-model solid-part geom))))
(if (delete nil (mapcar #'(lambda (g &aux test-range)
{samplcd-normal-parallel g (the part-model solid-part gecom)
(0.0 -1.0 0.0) :boundary boundary-geom)
) (xox::k-sub-geoms test 2)))
) (setf cores1-geom
H (cad-get-union (list coresl-geom inter)))
(setf coresl-geom
(append coresi-geom (list inter)))
(xox::free-id inter)
)
(xox::free-id test)
)
(xox::free-id inter)
)
(xox::free-id geom)
»
)

(cad-get-negative-features))

. (print "(cores1-geom ,cores]-geom ,(and (xox::geom-p coresl-geom)
; (not (xox::null-geom-p coresi-gcom)))))
; (if (and cores1-geom (xox::geom-p coresi-geom) (not (xox::null-geom-p coresl-geom)))
 (seif coresl-geom (xox::difference-geom

; coresi-geom

; (xox::copy-geom (the part-modei solid-part gcom)))))

. (print "{cores-geom | -geom ,(and cores-g (xox::geom-p
. cores-geom) (not
y (xox::null-geom-p cores-geomy)))))

. (print *(cores1-gcom ,coresl-geom ,(and cores)-geom (xox::geom-p

; cores l-geom) (not

H (xox::mnull-geom-p coresl-geom))))}

; (setf cores-geom (cad-get-union (list cores-gi coresl-geom)))
(setf geom {append cores-gi coresi-gecom))

) (cond {(or (not cores-geom) (not (xox::geom-p cores-geom)) (xo0x::null-geom-p cores-geom)) coresi-geom)
5 ((or (not cores1-gecom) (not (xox::geom-p coresl-geom)) (xox::nuti-geom-p coresi-geom)) cores-geom)

N (t (xox::union-geom g coresl-geom)))
; {change (the casting: cores geom) geom)
(the casting: cores draw-color) 'yellow)

{xox::frec-id boundary-geom)

Page 8

22

H1769
25 26

Appendix A: Page 9
. {xox::free-id positive-geom)
cores-geom

3+ this function returns a line geom corresponding to the normal : .
Wi vector from the parting plane. !
(defun get-sweep-path ()
(xox::line-geom (0.0 0.0 0.0)
(get-sweep-vector)))

5 this function retums the normal vector from the parting piane.
w this vector is used as the sweep path when projecting features
35 during the process of identifying cores.

(defun get-parting-plane-normat
{&aux
(vent (cad-any-vertex-on-geom (the casting-manager
pattern-board geom))))
(progt
{xox::geom-normal vert
(the
casting-manager
pattern-board geom))
(xox::free-id vert)))

++; this function returns the normal vector from the parting plane,
355 this vector is used as the sweep path when projecting features
i+ during the process of identifying cores.
(defun get-sweep-vector
(&aux (ext (* 0.5 (the casting-manager flask-height))))
{mapcar #'(lambda (point) (* point ext))
(the casting-manager pattern-board cad-normal)))

35; this function returns a line geom comresponding to the normal
1 vector from the parting plane.
(defun get-haif-sweep-path
(xox::line-geom '(0.0 0.0 0.0)
(get-half-sweep-vector)))

35+ this function retumns the normal vector from the parting plane.
st this vector is used as the sweep path when projecting features
. 3 during the process of identifying cores.

(defun get-half-sweep-vector ()
(mapcar #'(tambda (point) (* 0.5 point)) (get-sweep-vector)))

+i: This function retums the geoms of the positive features.
(defun get-positive-feature-geoms 0
(mapcar #'(lambda (object &aux
(object-name
(intem (with-the-tracing-from (object)
(the name)))))
(eval (the part-model ,object-name geom)))
. (cad-get-positive-features)))

23

H1769
27

o

5+ this function returns the 2d geoms associated with a given fearure.

(defun get-surface-geoms
(object)
. &aux
S (object-name
i (intern (with-the-tracing-from (object)
B . (the name))))
, {mapcar #'xox::copy-geom (xox::k-sub-gcoms
. (eval “(the part-model ,object-name geom)) 2))
(mapcar #'xox::copy-geom (xox::k-sub-gecoms
{the geom (:from object)) 2))
)

5> this function returns the geom associated with a given feature.
(defun get-solid-geom (object)

(xox::copy-geom (cvaling-the (list 'geom) :from object))

)

+» this function retums the 1d geoms associated with a given feature.
(defun get-line-geoms
(object &aux
{object-name
(intern (with-the-tracing-from (object)
(the name)))))
{mapcar #'xox::copy-geom (xox::k-sub-geoms
(xox::boundary-gcom (eval *(the part-model ,object-name geomy))) 1)))

3:; this function returns the 0d geoms associated with a given feature.
{defun get-poini-geoms
{object &aux
(object-name
(intern (with-the-tracing-from (object)
(the namc)))))
(mapcar #'xox::copy-geom (xox::k-sub-geoms
(eval “(the part-model ,object-name geom)) 0)))

1 this function retumns the vector dot product between the normal
;- from the given geom and the curment sweep vector (i.e. the normal
s from the parting plane).
(defun cad-normal-dir
{face-geom &aux vert norm)
{setf vert (xox::vertex-on-gcom face-geom (car
(cad-get-face-points face-geom)) 100.0))
(setf norm (xox::geom-normal vert face-geom))
(xox::free-id vert)
(vector-dot-product (list-to-vector (mapcar #'(lambda (pt &aux norm)
(setf norm
{vector-norm
(list-to-vector (get-sweep-vector))))
(/ pt norm)) (get-sweep-vector)))
(list-to-vector normy)))

;> this returns the dot product between the normals of two geoms.
{defun geom-normal-dot-product (geom1 geom2 &aux verti vert2 normi norm2}
(setf vertl (xox::vertex-on-geom geom! (car

28

Appendix A:

Page 10

24

H1769
29 30

Appendix A: Page 11
(cad-get-face-points geom1)) 100.0))
(setf norm] {xox::geom-normal vert] geom1))
(xox::free-id vertl)
(setf vert2 (xox::vertex-on-geom geom2 (car
(cad-get-face-points geom2)) 100.0))
(setf norm2 (xox::geom-normal vert2 geom2))
(xox::free-id vert2)
(vector-dot-product (list-to-vector norm1) (list-to-vector norm2)))

. This function returns the normal of a geom, from an arbitrary
;. vertex on the geom.
(defun cad-geom-normal (geom &aux vert norm)
(setf vert (xox::vertex-on-geom geom (car
(cad-get-face-points geom)) 100.0))
(setf norm (xox::geom-normal vert geom))
(xox::free-id vert)
norm})

(defun cad-geom-tangent (geom point &aux vertex)
(setf vertex (xox::vertex-on-geom geom
point
10.0)
(xox::gcom-tangent-space
geom vertex)

This function retumns an assembly-geom of a given list of geoms.

oy

i»: The geoms in the list are destroyed.

(defun cad-get-assembly
(geom-list)
(setf geom-list (delete nil
(mapcar #'(lambda (g)
(if (and g (xox::geom-p g) (not
(xox::null-geom-p g)))
g nil)) geom-list)))
(xox::assembly-geom geom-list))

;5 This function retums the i ion-gi of a given list of
s geoms. Nil entries in the list are ignored. The geoms in the
; given list are destroyed by this function.

(defun cad-get-intersection
{geom-list &aux (result nil))
{dolist {gecom geom-iist result)
(if (not result) (progn (print 'init) (setf result geom))
(if geom (setf result (xox::intersection-geom result geom))))))

(defmethod {(cad-construct-moid command-icon)
(&rest args &aux blip)
(declare (ignore args))
(cad-gen-mold))

(defun cad-gen-mold-blanks
(&aux blip object o lines-gecom blanks pieces)
(setf blip (xox::box-geom (the casting-manager pattern-board-width)
(/ (the casting-manager flask-height) 2.0)
(the casting-manager pattern-board-length)))
{setf blip (xox::translate-geom biip (list 0.0 (/ {the
casting-manager flask-height) 4.0) 0.0)))

pre

25

H1769
31 32

Appendix A:
. (setf blip {x0x::sewn-geom

; (list {xo0x::copy-geom (the casting-manager pattem-board geom))
: {xox i

p-geom
’ (x0x::copy-geom (xox::boundary-geom (the

casting-manager pattern-board geom)))
B (xox::linc-geom '(0.0 0.0 0.0)

(list 0.0 (/ (the casting-manager flask-height) 2.0) 0.0)))
(xox::translate-geom

R (xox::copy-geom (the casting-manager H i

H - pattemn-board geom)) .

; (list 0.0 (/ (the casting-manager flask-height) 2.0) 0.0)))))

i (xox::oricnt-geom blip)
(setf blip (xox::halfspace-geom blip))

(setf blanks blip)

(setf blip (xox::box-geom (the mﬁng-ﬁnager pattern-board-width)
(/ (the casting-manager flask-height) 2.0)

(the casting-manager pattem-board-length)))
(setf blip (xox::translate-geom blip (list 0.0 (- ¢/ (the

casting-manager flask-height) 4.0)) 0.0)))
(setf blip (xox::halfspace-geom blip))

(setf bianks (fist bianks blip))

(change (the casting ger mold geom)
(xo0x::union-geom (xox::copy-geom (car blanks))
(xox::copy-geom (second bianks))))

(setf pieces (cad-gen-profile-offset blanks))

(print *(pieces Jpicces))
+ (mapcar #'(lambda (p)
s (add-temp-part (the casti
5 pieces)

g) (x0x y-geom p) "pieces”™))

(if pieces
(fet ((new-blanks (mapcar 'Xox::copy-geom blanks)))
(mapcar #'(lambda (picce)
(setf piece (xox::inlelsection-geom picce
(xox::copy-geom
the
casting-manager mold geom))))
(let ((glist (xox::classify-geoms (xox::copy-geom
piece) (xox::copy-geom (second blanks))

Gin) '(:in)))
)
(print *(glist is ,glist (mapcar
#'(lambda
®
(and g
(xox::geom-p g) (not (xox::null-geom-p 8)))) glist)))

(if (and

(not (xox::nu]l-geom—p {car glist)))
{> (xox::geom-dimension (car glist)) 2))
(setf new-blanks
(list
(xox::unjon-geom (car new-blanks)
(xox::copy-geom picce))
(xox::difference-geom (second new-blanks)
(xox::copy-geom piece})))
(setf new-blanks
(list
(xox::difference-geom (car new-blanks)
(xox::copy-geom picce))
(xox::union-geom (second new-blanks)
(xox::copy-geom piece)))))
(mapcar #'xox::free-id (delete nil glist})))
. pieces)

26

Page

H1769
33 34

Appendix A: Page 13
(mapcar 'xox::free-id blanks)
(setf blanks new-blanks)
N
(print *(blanks are .blanks))
(mapcar #'(lambda (p) (mapcar #'xox::free-id p)) picces)
blanks

)

(defun cad-gen-profile-offset (blanks &aux object pieces lines-geom) b
(sctf object (select :use (the casting-manager parting-line)
‘type ‘offset-parting-line-class))
(if object
(setf pieces
(mapcar #'(lambda (cur-line &aux (pt nil)
line1-points line2-points
begin-point end-point cur-vec sheet)
3 Project each of the lines into and out of the surface.
(setf lines-geom (mapcar #'(lambda (line &aux cor-vec cur-line)
(setf begin-point
(cad-point-coords-from-geom
(car
{xox::sub-geoms line))))

(setf cur-vec
(xox::line-geom
(mapcar '- begin-point
*(0.0 0.0 100.0))
(mapcar '+ begin-point
*(0.0 0.0 100.0)
)

(setf cur-line (xox ial p-geom
(xox::copy-geom linc) cur-vec
:ref-coords begin-point))

+ Intersect the sweep of the line with the surface to get the trace
15> on the surface.

(xox::intersection~geom cur-line
(xox::imbed-geom
(xox::sheet-geom
100.0 100.0)
3)

(xox::k-sub-geoms

(the geom (:from cur-line)) 19))]
(print *(lincs-geom is Jines-geom))

(print (mapcar #'(lambda (g) “(.(xox::geom-p g) Jxox::nuli-geom-p g) +(xox::geom-dimension g)
(X0X::g; pace-di ion g))) lines-geom))
53 Connect the start of the first segment with the end of the last segment

(if (> (tength fines-geom) 1)
(progn
(setf lineI-points
(mapcar ‘cad-point-coords-from-geom

(xox::sub-geoms (car lines-geom))))
(setf line2-points

{mapcar ‘cad-point-coords-from-geom
(xox::sub-geoms (second lines-geom))))
(print *(linel ,line1-points Jline2-points))
(setf begin-point
(do® ((line1-point linel-points (rest linel-point)))
((not (peint-in-list (car fine1-point)
line2-points)) (car line1-point))))

(setf line]-points (mapcar ‘cad-poini-coords-from-geom
(xox::sub-geoms (car
(reverse lines-geom)))))

27

H1769
35 36

Appendix A:

(setf line2-points (mapcar 'cad-puim-coords-from-g:nm .
{xox::sub-geoms (sccond
(reverse lines-geom)))))

(print "(lincl line1-points line2-points))

(setf end-point

(do* ((linel-point line1-points (rest line1-point)))
((not (point-in-list (car line!-point)
line2-points)) (car line1-point))))

)
(sctf begin-point . b
(cad-point ds-from-geom (car
(xox::sub-geoms (car lines-geom))))
end-point
(cad-Doi rds-fro (q
{cad-p geom

(xox::sub-geoms (car lines-geom)))))

)
(print *(conncct from ,begin-point to ,end-point))

(setf lines-geom (append (list (xox::line-geom
begin-point end-point))lines-geom))

(if (the offset-vector (:from cur-line))
(setf cur-vec
{xox::line-geom (car (the offsct-vector (:from cur-line)))
(second (the offset-vector (:from cur-line))))

(setf cur-vec
(xox::linc-geom
(0.0 0.0 (
0.5 (the
casting-manager part-max-cxtent)))
'(0.00.0,(*
0.5 (the
casting-manager part-max-extent)))
»
)

(setf lines-geom (xox::sewn-geom lines-geom))
(setf sheet
(xox::imbed-geom
(xox::invert-geom-grientation
(xox::sheet-geom 100.0 100.0))
3)

{xox::orient-geom lines-geom :underlying-geom sheet)

::clear-window *W*)
splay-ge lines-geom *W*)
::display-ge sheet *W*)
(xox::update-window *W*)
(xox::conform-window *W*)
(xox::update-window *W*)

(setf lines-geom (xox::replace-sub-geoms sheet (list lines-geom)))
(print "(shect was .sheet lines-geom is JJines-geom))

(if (<
(xox::gecom-volume lincs-geom) 0.0)
(xox::invert-geom-orientation lines-geom))

(xox::clear-window *W*)
(xox::display-ge lines-geom *W*)
{xox::update-window *W*)
(xox::conform-window *W*)

(setf lines-geom (xox:: i p-half n
lines-geom
cur-vec
:ref-coords
begin-point
»

Page 14

28

37

(if (<

(xox::geom-volume lincs-geom) 0.0)

H1769

38

Appendix A:

(xox::invert-geom-orientation lines-geom))

(xox::clear-window *W*)
H (xox::display-ge lines-geom *W*)
B (xox::conform-window *W*)

(setf lines-geom
(xox::intersection-geom lines-geom

(xox::translate-geom
(xox::halfspace-geom

(print ‘(passed intl))
(xox::clear-window *W*)
(xox::display-ge lines-geom *W*)
(xox::conform-window *W*)

(setf lines-geom

f . 1
(xox £t £

(xox::x-rotate-geom
(xox::imbed-gecom
(xox::sheet-geom 100.0 100.0)
3)

:deg (- (the
drafi-angle (:from cur-line)))))
@if
(the offset-vector (:from cur-line))
(second (the

offset-vector (:from cur-line)))
(0.0 0.0 (* Co

0.5 (the casting-manager
part-max-cxtent)))))))

(xox::translate-geom
(xox::halfspace-geom

Gf

} (xox::clear-window *W*)
; (xox::dispiay-ge lines-gecom W=
| {xox::conform-window *W*)

) object))
)

(xox::x-rotate-gcom
(xox::imbed-geom
{xox::sheet-geom 100.0 160.0)
3)

:deg (+ 180.0
(the
draft-angle (:from cur-iine)))))

(the offset-vector (:from cur-line))

(car

(the

offset-vector (:from cur-line)))

'(0.00.0 (-
(t
0.5 (the casting-manager
part-max-extent))))))))

. (print (pieces ,picces ,(mapcar #'(lambda (picce) (and piece (xox::geom-p piece) (not

)

(defun cad-gen-mold-offset (blanks)
(mapcar #'(lambda (offset-part)
- (let* (sg

(xox::null-geom-p piece)))) pieces)))

29

Page 15

H1769
39 40

st
0 Appendix A: Page 16
“I{) q‘ﬁ (offsei-geom (evaling-the st ‘geom) :from offsct-part))
A4 sgl
;\z"' {bg (xox.:difference-geom
|

(xox::copy-geom
(xox::boundary-geom (the
part-model solid-part geomy)))
(xox::copy-geom offset-geom))))
(mapcar #'(lambda (g &aux i jn v)
(setf i (xox::intersection-geom
(xox::copy-geom g)
(xo0x::copy-geom offset-gecom)))
(if (and (not (xox::null-geom-p i))
(> (xox::geom-dimension i) 0))

(progn
(setf v (cad-any-vertex-on-gecom i))
(setfv
(let (v1)
(setf vI (xox::vertex-on-geom
offset-geom
(xox::vertex-coords v) 0.001))
(xox::free-id v)
vl)

(print '(vertex is ,(xox::vertex-coords v)))
(setf n (xox::gcom-normal v offset-geom :underlying-geom g))
(print *(normal is ,n))
(if (> (xox::geom-dimension
(setf j (xox::intersection-geom
(xox::copy-geom g)
(xox::jine-geom (xox::vertex-coords v)
(mapcar #'(lambda (pt nt) (- pt (* 0.001 nt)))
(xox::vertex-coords v) n)))))

)
(if (xox::vertex-on-geom g
{mapcar
#(lambda (pt nt) (- pt (* 0.001 nt)))
(xox::vertex-coords v) n)
0.0001)

(progn
(print ‘(adding it))
(setf sg (append sg (list (xox::copy-geom g)))))
(print "(not adding it))}
(xox::free-id j)))
{xox::free-id i)}
{xox::basic-geoms bg)
)
(xox::free-id bg)
(print *(sg is ,sg))
(add-temp-part (the casting-manager)
(cad-get-generic-union (mapcar

‘XOX::copy-geom sg))
“surf")

»
(select :use (the casting-manager parting-fine)
‘type 'parting-line-extension-mixin))

(defun new-cad-gen-mold-offset
(blanks &aux object profile-list surface-list vector)

. (setf object (select :use (the casting-manager parting-line)

N :type ‘parting-line-extension-mixin))
(setf object (the casting-manager parting-finc extensions-list))
(if object

i An offsct paning is a list of individual parting line extensions...

(mapcar #'(lambda (extension)
(progn

;3 Start by sewing parting-ii

30

41

(setf profile-list

(mapcan #'(lambda (segment)
(cond ({equal (car segment) 'line)
(cad li

{(equal (car segrn:m) ‘edge)

extension))
(print *(profile-list is ,profile-list))

(print *(sewn profile is

3+ Now sweep each line out from the part.

it}

(setf surface-list nil)

H1769
42

Appendix A: Page 17

from-points (cdr))

(list (xox::copy-geom (nth (second segment)

(xox::k-sub-geoms (the part-model solid-part geom) DN

(do ((line-segments profile-list (rest line-scgments)))

((null line-segments))

(print *(point is ,(cad-poi

00| de-fr £l
(car (xox::sub-geoms
(car line-scgments))))

venex is ,(xox::vertex-on-geom

(setf vector (mapcar #'(lambda (p)

(the part-mode)
solid-part geom)
(cad-point-coords-from-geom
(car (xox::sub-geoms
(car line-segments))))
(get-max-extent))))

(‘
(get-max-extent) p))

(xox::geom-normal

(xox::vertex-on-geom
(the part-model
solid-part geom)
(. P int. rde-fron
{car (xox::sub-geoms
(car line-segments))))
(get-max-extent))
{the part-model
solid-part geom)

»
(setf vector *(0.0 0.0 ,(get-max-extent)))

(setf surface-list
(append surface-lis|
(list

t

(xox::difference-geom
(xox::tangential-sweep-geom
(xo0x::copy-geom (car iine-segments))

{xox::]

ine-geom (cad-point-coords-from-geom

{car
{xox::sub-geoms (car li N
(mapcar '+
(cad-point-coords-from-geom
(car (xox::sub-geoms (car i 1))

vector))

‘ref-coords (cad-point-coords-from-geom

(car (xox::sub-geoms
{car line-scgments)))))

(x0x::copy-geom (the part-model

(if (> (length line-segments) 1)

(let* ((tant (car (cad-geom-!

solid-part geom))))))

gent (car li)
(cad-point-coords-from-geom
{second
{xox::

b-geoms (car I MM

(tan2 (car (cad-geom-tangent (second line-segments)

(cross-product (direction-cosines

(cad-point-coords-from-geom
{car

(xox::sub-geoms (second linc-segments)))))))

{vector-cross-product
(direction-cosines (list-to-vector tan1))
(dircction-cosines (list-to-vector tan2)))))

31

43

(dot-product (vector-dot-prod

H1769

44

(print “(tan] ,tanl tan2 .tan2
vector ,vector

cross-product
,Cross-product

dot-product ,dot-product))
(if (not (within-tol

Appendix A:

(direction-cosines (list-to-vector vector)))))

(abs dot-prod
(setf surface-list
(append surface-list
(list

)
1.0 1.0e-3))

(xox::difference-geom

{xox::!

voluti
{xox::li

p-geom
It d. 1 de-fro
2! [§ B
(car
(x0x::sub-gi d li)
{mapcar '+
(cad-point-coords-from-geom
(car
{xo0x::sub-g dh M)
vector))

(acos dot-product)

(vector-to-list cross-product))

(xox::copy-geom (the
))) object)
nil)

surface-list
»

{defun old-cad-gen-mold-offset
(blanks &aux result object li

L list
B

ing-points)
(setf object (select :use (the casting-manager parting-line)

:type 'parting-line-extension-mixin))

(if object
(let (cur-linc (cap nil)
(sheet nil)
{cap1 nil)
{ocap nil)
(solid-surf nil)}

3s: For each sub-list of points on a single surface. .
(do ((points-list {cdar (the

casting-manager
points-sublist)
({< (length points-list) 2))
(print “(points list is ,points-list))
(if (or (< (length points-list) 3)
{not
(setf solid-surf

parting-line extensions-list)))

(find-containing-surface
(list (car points-list)
(second points-list)
(third points-list))
(the part-mode] solid-part geom)))))
(setf solid-surf
(find-containing-surface
(list (car points-list) (sccond points-list))
(the part-mode! solid-part geom))))
(sctf points-sublist nil)

(print "(found containing surface ,solid-surf))
(dolist (point points-list)

(let* ((c
(xox::classify-geoms (xox::point-geom point)

(xox::copy-geom solid-surf)
‘(:in :on}) '(:in :on)))
(co (and (xox::null-gecom-p (first c))
(xox::null-geom-p (second c))

part-model solid-part geom)))}))))

32

Page 18

H1769
45 46

Appendix A: Page 19
(xox::null-geom-p (fourth c))
(xox::mull-geom-p (fifth c))
{mapcar #(lambda (g) (if g (xox::frec-id g))))
(if (not co)
(setf points-sublist (append points-sublist (list point)))
(rewm))))
(mapcar #'(lambda (1) (setf points-list (rest points-list))) P
(rest points-sublist)) .
(setf ing-points (append ing-points (list
{car points-list))))
(print *(points sublist is ,points-sublist)}
(print “(points list is ,points-list))
55» Project each of the lines into and out of the surface.
(setf lines-geom nif)
(do* ((plist points-sublist {rest plist))
(p (car plist) (car plist)))
((< (fength plist) 2))
(setf lines-geom (append lines-geom
(list (xox::line-geom p (second plist)))))
)
(setf lines-list (append lines-list (list (xox::sewn-geom
(mapcar
‘xox::copy-geom lines-geomy)))))
(print "{lines-list is ,lines-list))
(print "{lines-geom is lines-geom))
(setf cap (xox::sewn-geom
(mapcar #'(lambda (g)
(x0x::] i g g
{xox::line-geom
(mapcar #'(lambda (pt)
(* pt-2.0 (the casting part »

{xox::gecom-normal

(xox::vertex-on-geom solid-surf
(cad-point-coords-from-gecom g)
100.0)

solid-surf)}

(mapcar #'(lambda (pt)
(* pt 2.0 (the casting: part tent)))

(xox::geom-normal

(xox::vertex-on-geom solid-surf’
(cad-point-coords-from-geom g)
100.0)

solid-surf)))))

lines-geom)))
{pnint *(projection is ,cap))
(add-temp-part (the casting-manager) (xox::copy-gcom cap) "cap”)

(setf capl (cad-get-generic-union
(mapcar #'(lambda
(face-geom &aux sewn sewnl)
{cond ((within-tolerance
(vector-dot-product
(list-to-vector (cad-geom-normal face-geom))
(list-to-vector ‘(0.0 -1.0 0.0))) 0.0 1.0¢-8)
{setf sewn 'nil))
{t
(progn
(setf sewn (xox::sewn-geom
(list
(xox::copy-geom face-geom)
(xox:: lati
(xox::copy-geom
5 {xox::boundary-geom face-gcom))

B

33

0.0

H1769
47

(xox::line-geom
(0.0 0.0 0.0)
(mapcar
#'(lambda (pt)
*n
(the
part-mode}

48

Appendix A:

&

(xox::translate-geom
(xox::invert-geom-orientation

(xox::copy-geom face-geom)) n i

(mapcar #'(lambda
(o)
(*pt

(the part-model casti

{xox::orient-geom sewn)
(cond
((< (vector-dot-product (list-1

tor (cad-g: 1 £

(setf sewn (xox::halfspace-geom
(xox::invert-gecom-oricntation sewn))))

(t (setf sewn (xox::halfspace-geom sewn)))))))
sewn

)
(xox::k-sub-geoms cap 2))))

(xox::free-id cap)
{print "(capl is ,capl))

(if (and capl {not (xox::nuil-geom-p capi)))

(progn

(setf cap (xox::intersection-geom capl

(sctf cap (xox::diffcrence-geom cap

(print *(passed difference))

(xox::copy-geom (car blanks))))

(xox::copy-geom (the
part-model
solid-part geom))))

(print "(basic-gcoms connection are

,(mapcar #'(lambda (bg &aux c ans)

(setf ¢ (xox::classify-geoms
{xox::copy-geom bg)
{xox::copy-geom solid-surf)
‘(zon) '(:on)))

(setf ans (if {or (not

(xox::nutl-geom-p
(second c)))
(not
(xox::null-geom-p
(fifth c))))
tnil)
(xox::frec-id (sccond c))
(xox::free-id (fifth c))
ans)
(xox::basic-geoms cap))))

(dolist (geom (xox::basic-geoms cap))

(setf ocap (xox::classify-geoms
(xox::copy-geom geom)
(xox::copy-geom solid-surf)

'(:on) '(:on)))
(if (or (not (xox::null-geom-p (second ocap)))
(not (xox::null-geom-p (fifth ocap))))
(setf capl (xox::copy-geom geom)))
(xox::free-id (sccond ocap))
(xox::free-id {fifth ocap))
)

(xox::free-id cap)

)

(setf result (append result (list cap1)))

geom))
(list-to-vector (0.0 -1.0 0.0))) 0.0)

part

34

Page 20

) (0.0 -1.0 0.0))))

)) (0.6 -1.0

H1769
49

result

)

(defun cad-gen-mold

{&aux object)
h (the casting: mold cope geom)
(xox::copy-geom (car (the casting-manager mold blanks))))
(change (the casting mold drag geom)
(xox::copy-g d (the casting mold blanks))))

(if (select :use (the casting-manager) :test (cqual (the siot-name) ‘cores))
{let ((8 (the casting: cores geom)))
(print '(subwracting cores from drag))

h (the casting. mold cope geom)
(xox::difference-gecom
(xox::diffe g (the casting: mold cope geom)

(xox::copy-geom (the part-model
solid-part geom)))
(xo0x::copy-geom cores-geom)))

(ch (the casting: mold drag geom)
{xox::difference-geom
(xox::difference-g (the casting: mold drag geom)

(xox::copy-geom (the part-model
solid-part geom)))
(xox::copy-geom cores-geom)))

(defun cad-gen-mold-haifs (&aux object cores-geom pattern-geom)
{the casting-manager mold blanks)
{setf pattern-gcom
{cad-get-union
(append
(list (xox::copy-geom (the part-modei solid-part geom))
(if (sub-part-exists (the casting-manager) ‘cores)
{xo0x::copy-gcom (the casting-manager cores geom))))
(mapcar #'(lambda (g)
(xox::copy-geom (the geom (:from g))))
(butlast (cdr (select ;usc (the casting-manager rigging)))))

»
(print “(patter-geom is ,pattern-geom))
(list
(xox::diffe £ (xox::copy-g (car (the

casting-manager
mold blanks)))
(xox::copy-geom pattem-geom))
{xox::difference-geom (xox::copy-geom (second (the
casting-manager moid blanks))}
{xox::copy-geom patiern-geom)))

3 this function computes the "maximum extent® of the part model
;3 this is defined as the diagonal of the min-max box of the
;3 part-model's geom
{defun get-max-extent ()
(sqrt (apply '+
(mapcar #'(lambda (axis &aux x)
(setf x

50

Appendix A:

Page 21

35

H1769
51

(apply '- axis))
(* xx))
(xox::geom-minmax-box (the part-model
solid-part geom)))))}

.+ This function tests for the existence of a sub-part of a given
;»» part having a given name. If the named sub-part exists, the
;»; function retumns t, otherwise it retums nil.
{defun sub-part-exists (part sub-part-name &aux test-name)

(if (evaling-the (list sub-part) :from part :error-p ail) t nil)

3:; This function destroys the sub-parts of a given part. The pant
35 itself is not deleted.
ai'cfun kitl-sub-parts (part)

(mapcar #' kill-part (cdr (select :usc part)}))

1 This function creates and retumns a list of line geoms defined by
i1 alist of corrdinates. The endpoints of the line geoms are
;; defined by the pairs of coordinates in order, with the last
5 connecting to the first. The order of the first two lines are
5 reversed, so that the orientations of the line geoms are
.. consistent (in accordance with a previous XOX bug regarding
15, sweeps; it is not known if this is still necessary; I'd guess it isn't).
(defun cad-create-line-g from-points (face-point-set &aux found-list)
(setf found-list
(do* ((face-point-sct-l face-point-set)
(first-point (first face-point-set-I))
(first-point-save first-point)
(second-point (second face-point-set-1))
(line-geom-set nil))
((nu“ I P i 1. I) It 2 .)
(setf line-gecom-set
(append line-geom-set (list

(xox::line-geom first-point second-point))))
(scu't point-set-1 (rest fi r'. .|))
(if (equal (length face-point-set-1) 1)
(setf first-point (car face-point-set-l)
second-point first-point-save)
(setf first-point (first face-point-set-1)

second-point (second face-point-set-1)))))

found-list)

This function retumns the union-geom of a given list of

3D geoms. Nii entrics and cnries of dimension less than 3 in the list are ignored. The geoms in the
given list are destroyed by this function.

(defun cad-get-union
(geom-list &aux (resutt nil))
(print’ (cad-get-union of ,geom-list))
(dolist (geom geom-list result)
(if (and (not result)
geom
{xox::geom-p geom)
(not (xox::null-gcom-p geom))
(> (xox::gcom-dimension geom) 2))
(setf result geom)
(if (and geom
(xox::geom-p geom)
(not (xox::null-geom-p geom))
- (> (xox::gecom-dimension geom) 2))

52

Appendix A:

36

Page 22

H1769
53 54

Appendix A: Page 23
(progn
{setf result (xox::union-geom result geom)))))))
(defun cad-get-generic-union
(geom-list &aux (result nil))
(dolist (geom geom-list result)
(if (and (not resuit)
geom .
{xox::geom-p gcom) . . P
(not (xox::null-geom-p geom)))
(setf result geom)
(if (and geom
(xox::geom-p geom)
(not (xox::null-gcom-p geom)))
(progn
(setf resuit (xox::union-geom result geom)))))))
;3> This function returns whether two lists of di are
5 equivalent. Equivalence is defined by the two lists having the
1+ same coordinate values (within 1.0e-8 tolerance) in any order.
(defun point-lists-equal (11 12 &aux (i 0))
(if (not (= (length 11) (length 12))) nil
(if (< (length 11) 1) t
(progn
B {print *(checking ,!] against ,12))
(f (> (do ((pt (car 12))
(pl 12)
G1)
{(nuil pl) i}
(if (not (member nil (mapcar #'(lambda (p!1 p2) (within-tolerance p1 p2 1.0¢-8)) (car
11) pt)))
(setfi j))
(setfj (+j 1))
(setf pi (cdr p))
(setf pt (car pl))) 0)

(let ((nl1 11) (ni2 12))
(print '(matched first))
(point-lists-equal (cdr nil) (delete (ath (- i 1) nl2) ni2 :test 'equal)))
nil)))

3»» This function adds a "temporary” par 1o a given object. The
;;» function is given the location in the pace tree for the new
3i: part, the geom for the part, and a name template for the part.

(defun add-temp-part (part gecom name-template)
(add-part part

(read-from-string (format nil "~a" (gensym name-template)))
:mixin ‘(rons-temp-part-mixin)
sinit-ist
(Jist
(cons 'geom] geom)
(cons 'display? nil))))

;»» Function for creating the main-parting-line gecom. Called when
i» the geom of 'the casting-manager parting-line main-parting-line'
s is referenced. This function retuns a geom created by

1 intersecting the pattem-board geom with the part.

(defun cad-create-main-parting-line ()
(xox::intersection-geom
(xox::copy-geom (the part-model solid-part geomy))
(xox::copy-geom (the casting-manager
paitem-board geom))))

37

H1769
55 56

Appendix A:

;5> This function is displays the casting-manager sub-parts. This
;5 function is called by the EAM module when a part is called into
5 the passive display.
(define-part-method (draw-casting: ti Aass)()
(the eam-space part-model solid-part geom)
(draw-part !pattem-board) Vi
; (print ‘(drawing main-parting-line)) .-
; (draw-part (the parting-linc main-parting-linc))
; (print "(drawing extensions))
; (if (the paning-line extensions-list)
5 (mapcar #'(lambda (sub)
H {print *(drawing .sub))
H (with-the-tracing-from (sub)

x

(change !dispiay? 1))
(draw-part sub))
(select :use (the

parting-line)
‘type ‘parting-line-extension-mixin)))

(defun cad-gen-pattern-board (&aux geom-list found-bottom)
(dolist (geom (xox::k-sub-g (the casting: mold drag geom) 2)
found-bottom)
(if (and (within-tolerance 1.0 (second (cad-geom-normal geom)) 1.0¢-8)
(not (member nil (mapcar #'(lambda (g)
(within-tolerance (second
(cad-point-coords-from-geom g))
(- (/ (the

casting-manager flask-height) 2.0))
1.0c-8))
(xox::k-sub-geoms geom 0)))))
{setf found-bottom geom)}))

(dolist (geom (xox::k-sub-gi (the casting mold drag geom) 2)
(cad-get-generic-union geom-list))
(if (and (not {(equal geom found-bottom))
(let ((glist (xox::classify-geoms (xox::copy-geom found-bottom)
(xox::copy-geom geom)

(o) ‘G:on)))

™)
(if (xox::nuli-geom-p (second glist)) (setf rv 1))
(mapcar #'xox::free-id (delete nil glist))
)
(setf geom-list (append (list (xox::copy-geom geom)) geom-list)))))

(defun cad-make-core-print
{&aux prints sewn vec)
(if (not (sub-part-exists (the casting-manager) ‘cores))

(progn
(pop-up-message "Construct cores first.")
nil)
(progn
(cad-get-union
(let (ans)
{setf prints
(xox::difference-gcom
(xox::copy-geom
(xox::boundary-geom (the casting-manager corcs geom)))
{xox::copy-geom
(xox::boundary-geom (the part-model solid-part geom)))))
(setf ans
(cad-get-union
(mapcar #'{lambda (face-geom).
(print ‘(normal is
J(cad-geom-normal face-geom)))
(setf vec (mapcar #'(lambda (v d)
i (*v-05

38

Page 24

H1769
57 58

Appendix A:
(abs (-
(second d) (car d)))))
(cad-geom-normal face-geom)
(xox::g i box (the casting: cores geom))))

(setf sewn (xox::sewn-geom (list
(xox::copy-geom face-geom)
(xox lati
{xox::copy-geom
(xox::b d;

PE!

y-geom face-geom)) | .
(xox::line-geom
'(0.0 0.0 0.0)
vec))
(xox::transiate-gecom
\)u.m::‘ g i
(xox::copy-geom face-geom))

vec)))

(xox::orient-geom sewn)
(cond
((< (vector-dot-product (list-to-vector (cad-g rmal f

(list-to-vector vec)) 0.0)

(xox::halfspace-geom
(xox::invert-geom-oricntation sewn)))
(t (xox::haifspace-geom scwn))))
(xox::basic-geoms prints))))
(xox::free-id prints)
ans)))

(defun update-casting-features()
(if (the casting: part-ori ion-fi la)
(progn

(change-formula
(the part-model starting-block orientation)
(the casting: ger pan-ori ion-fc 1
(interactive-smash-variable
{the part-modet starting-block)
:attribute-name ‘orientation)
(interactive-smash-variable
{the part-model starting-block solid-part)
:attribute-name ‘geom)
(interactive-smash-variable
(the casting-manager parting-iine main-panting-line)
:atribute-name 'geom)
H (the eam-space part-model solid-part geom)
K (the eam-space casting-manager parting-line
; main-parting-line geom)
(draw-part (the casting-manager pattern-board))
5 (draw-part (the casting-manager parting-linc main-parting-line))
(add-offsct-parting-lines (the casting: parting-line))
»

(defun find-containing-surface (point-list part-geom

&aux (surf-list (xox::k-sub-gcoms part-geom 2))

(oricnt-list (xox::sub-geom-orientations part-geom))

retum-surf)

(dolist (surf surf-list return-surf)
(if (not (member nil
(mapcar #'(lambda (pt &aux c p)
(setf ¢ (xox::classify-geoms

(xox::point-geom pt)
(xox::copy-geom surf)
‘(:in :on) C:in :on)}))

39

Page 25

H1769
59 60

Appendix A:

;.. Retumn whether the geom contains the point, and w.aether the
normal on the geom at that point has a x of Z component.

(setf p (and (not (and (xox::nuil-geom-p (car c))
(xox::null-geom-p (second c))))

(et ((n
(xox::geom-normaj
{xox::vertex-on-geom surf
pto .
oony ' !
surf)))
{or
(not
(within-tolerance (car n) 0.0 1.0e-8))
(not

(within-tolerance (third r) 0.0 1.0¢-8))))))
(mapcar #'xox::frec-id c)

p)
point-list)))
(if (car orient-list)
(setf return-surf (xox::copy-geom surf))
(xox::invert-gcom-oricntation
(setf retumn-surf (xox::copy-geom surf)))))
(setf orient-list (rest orient-list))))

(defun find-connecting-surface-not-on-part (piece point lines &aux result)
(dolist (geom (xox::k-sub-geoms piece 2) result)
(let {(c (xox::classify-geoms
(xox::copy-geom gcom)
(xox::copy-geom lines)
‘(:in :on) '(:in :o0n))))
(if (and (xox::null-geom-p (first c))
(not (xox::nuli-geom-p (second c))))
(let ({1 (xox::classify-geoms
(xox::copy-geom geom)
(xox::point-geom point)
'(in :on) '(:in :on)}))
(print "(not on point ,(mapcar #'(lambda (g)
(or (not g)
(xox::nuli-geom-p g))) c1)))
(if (or (not (xox::null-geom-p (first c1)))
(not (xox::null-geom-p (second cl)))
{not (xox::nuil-geom-p (fourth c1)))
(not (xox::null-geom-p (fifth c1))))
(setf result (xox::copy-geom geom)))
{xox::free-id (first c1))
{xox::free-id {second cl))
(xox::free-id (fourth ci))
(xox::free-id (fifth c1))))
(xox::free-id (first c))
(xox::free-id (first c)))))

{(defun p-surf; I-to-itself (surf &aux 51 normal)
.5 (sctf normal (mapcar

B #'(lambda (p)

; - (*p(the

) casting-manager part-max-extent)))) (cad-gecom-normai surf))}
(setf normal (mapcar '- (cad-geom-normal surf)))
(print "(normal is ,normal))
(setf s1 (xox::sewn-gecom
(list (xox::copy-geom surf)

(xox

p-geom
{xox::copy-geom
(xox::boundary-geom surf))
(xox::line-geom '(0.0 0.0 0.0) normal))
{xox::transiatc-geom
(xox::copy-geom surf) normal))))
(xox::oricat-geom s1)
(xoxzhalfspace-geom s1)

40

Page 26

H1769
61

{(defun cad-make-core-print (feature

(setf print-surface
(nth (find-closest-geom-face feature 1)
(xox::k-sub-geoms (the geom (:from feature)) 1)))
(add-part feature (read-from-string (format nil "print—a" (gensym)))

:mixin (masking-bounded-object ble-part)

<imit-list

(list

(cons 'display? 't)

(cons 'geom] p-surfa I-to-itself print-surfacc)))
)

)

(defun cad-seperate-cores ()
{mapcar #'(lambda (g)
(add-part (the casting-manager cores)
(read-from-string (format nil "core—a" (gensym)))
:mixin ‘(masking-bounded-object bie-part)
sinit-list
(Jist
(cons 'dispiay? 't}
{cons 'geom] (xox::copy-geom g)))

)
(xox::basic-g (the casting cores geom)))
)
(defun cad-stl-blends ()
(dump-geom-as-stl
(xox::assembly-geom
(mapcar #'(lambda (p)

{xox::copy-geom (the geom (:from p)}))
(select ;use (the part-model) :type ‘radius-feature)))
"/kelly 1/rds/rds/radius.st1")
(dump-geom-as-stl
{xox::assembly-geom
(mapcar #'(lambda (p)
(xox::copy-geom (the gecom (:from p))))
(sclect :use (the part-model) :type 'fillet-feature)))
“/kelly 1/rds/rds/fillet sti™)

)
;(define-part: hod (d: D in-p rting-li 3)(&mstﬂg’)
3 (if (xox::null-g p !geom) (pop-up- "Part and pattern board do not intersect.”)
i (progn
3 (change !display? t)
v (draw-self seif)
3 (rcally-draw-part self :DRAW-SUBPARTS? DRAW-SUBPARTS? :TYPE TYPE
: :LINE-TYPE LINE-TYPE)

{draw-part seif args)
»

" (defun point-in-list (point point-list)
(do ((point2 point-list (rest point2)))
((or (not point2)
(within-tolerance
(vector-norm (list-to-vector
(mapcar '- point (car point2))))
1.0e-3))
(return (car point2)))))

(defun points-cqual (p1 p2)
(within-tolerance
(vector-norm (list-to-vector
(mapcar - pi p2)))
e 1.0e-3))

62

Appendix A:

Page 27

41

H1769
63

(defun get-end-points {basic-gcoms &aux points-list)
(setf points-list
(mapcan #'(lambda (g &aux v1 v2 range ret)
(setf range (xox::geom-params-range g))
(setf v1 (xox::vertex-for-params g

(mapcar ‘car range)))

(setf v2 (xox::vertex-for-params g

(setf ret (list (xox::vertex-coords v1)
(xox::vertex-coords v2)))

(xox::free-id v1)

(xox::free-id v2)

ret) basic-geoms))

| (print ‘(points-list ,points-list))
(setf points-list
(detete nil .
(mapcar #'(lambda (p)

64

Appendix A: Page 28

(mapcar ‘car (mapcar ‘last rapge))))

; (print *(pis ,p ber p is ,(ber p points-list :test ‘points-equal)

equal)))

)

(defun construct-match-plate
(&aux (bounding-box (xox::g i box (the part-model solid-part
geom))) o p)
(setf o (select :use (the casting-manager) :test (equal (the slot-name) ‘match-plate)))
(ifo
(progn
(kill-part (car 0)}))

(setf bounding-box

(G- (the casting: part)
J(the casting: ger part))
{;(- (the casting-manager part-max-extent))
J(the casting; ager part:)
{,(- (the casting-manager part-max-extent))
J(the casting: part tent))))

(setfp
(add-part (the casting-manager) ‘match-plate
mixin '(masking-bounded-object)
:init-Jist
(list
(cons 'geom (xox::difference-geom
(xox::difference-geom
(xox::halfspace-geom
(xox::box-geom
(- (the casting-manager
pattemn-board-width) 0.75)
(+ 0.5 (the casting flask-height))
(- (the casting-manager
pattern-board-length) 0.75)

{xox::translate-geom
(xox::copy-geom (the casting-manager mold drag geom))
'(0.0-0.375 0.0)))

(xox::transiate-geom

(xox::copy-gecom (the casting-manager mold cope geom))
*(0.0 0.375 0.0))))

(cons 'draw-color 'yellow)

(cons 'display? 1))))

(dump-geom-as-stl (the geom (:from p)) "/kelly 1/rds/rds/matchplate sti*)
)

p is ,(member p (cdr

p points-list :test 'point q 1)) :test ‘points-

(if (not (member p (cdr (member p points-list :test 'points-equal)) :test ‘points-equal)) p)) points-list)))

42

H1769

65

We claim:
1. A method for producing a mold pattern for making a
cast part, comprising the steps of:

(a) defining the structure of a part to be cast in terms of
computer aided design system data;

(b) selecting a parting surface for said part defined by said
computer aided design system data, said parting surface
defining a selected orientation of said part within a
mold;

(c) defining core requirements for said part to be cast by
first sweeping each positive feature of the part to said
parting surface, subtracting said part from the projec-
tion on said parting surface and adding any remaining
volume to the core, and then by sweeping negative
features of said part away from said parting surface to
the top or bottom of said mold, subtracting said nega-
tive features from said projection and intersecting the
remainder of said part and adding any remaining vol-
ume to said core;

(d) successively selecting alternative parting surfaces for
said part and defining the corresponding core require-
ments whereby an optimum parting surface having
minimum core requirements is defined, (¢) molding
core pieces defined by said core requirements defined at
said optimum parting surface for said part to be cast;
and

(f) assembling said core pieces in a mold box to define the
mold pattern for said part.

2. A method for producing a mold pattern for making a

cast part, comprising the steps of:

5

10

15

20

25

30

66

(a) defining the structure of a part to be cast in terms of
computer aided design system data;

(b) selecting a parting surface for said part defined by said
computer aided design system data, said parting surface
defining a selected orientation of said part within a
mold;

(¢) defining first core requirements for said part by first
sweeping each positive feature of said part to said
parting surface, subtracting said part from said projec-
tion on said parting surface and adding any remaining
volume to the core, and then sweeping negative fea-
tures away from said parting surface to the top or
bottom of said mold, subtracting the negative features
from said projection and intersecting the remainder of
said part and adding any remaining volume to the core;

(d) successively selecting alternative parting surfaces for
said part and defining the corresponding core require-
ments whereby an optimum parting surface having
minimum core requirements is defined;

(e) defining second core requirements for each first core
requirement defined for said part for said optimum
parting surface by repeating step (c) for each said first
core requirement defined at said optimum parting sur-
face;

(f) molding core pieces defined by said first and second
core requirements defined at said optimum parting
surface; and

(g) assembling said core pieces in a mold box to define the
mold pattern for said part.

#* #* #* #* #*

