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(57) Abstract: The present invention relates to a system for suppressing transient interference from a signal. The system includes a
modeling system, wherein the modeling system constructs a model of transient interference from a first signal, and a filtering system,
wherein the filtering system suppresses transient interference from a second signal by applying the model to the second signal.
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SYSTEM AND METHOD FOR ANOMALY DETECTION AND EXTRACTION

CROSS-REFERENCE TO RELATED APPLICATIONS
The present invention claims priority to U.S. Provisional Patent Application No.
61/611,778, filed March 16, 2012, the entire disclosure of which is incorporated by reference

herein as if being set forth herein in its entirety.

BACKGROUND OF THE INVENTION

Transients, or sounds such as keyboard typing and door knocking, often arise as an
interference in everyday applications involving audio signals, including hearing aids, hands-
free accessories, mobile phones, and conference-room devices. Typically, these transients
consist of an initial peak followed by decaying short-duration oscillations of length ranging
from 10ms to 50ms. Unfortunately, the wide spread assumption of stationary noise poses a
major limitation on traditional speech enhancement algorithms. In particular, it makes them
inadequate in transient interference environments, as transients are characterized by a sudden
burst of sound. Current speech enhancement algorithms fail to deal with transient
interferences, since their noise estimation components are not designed to track the rapid
variations characterizing such transients.

An algorithm has previously been proposed (Talmon, et al., 2011, I[EEE Transaction
on Audio, Speech and Language Processing, 19(6):1584—1599; Talmon, et al., 2010, Proc.
35th IEEE Internet Conf. Acoust. Speech and Signal Process. (ICASSP-2010), Dallas, Texas,
Mar. 2010) that infers the geometric structure of the transient interference using nonlocal
(NL) diffusion filtering (L. P. Yaroslavski, Digital Picture Processing, Springer-Verlag,
Berlin, 1985; Barash, 2002, /EEE Transactions on Pattern Analysis and Machine
Intelligence, 24:844— 847; Buades, et al., 2005, Multiscale Model. Simul., 4:490-530;
Mahmoudi and Sapiro, 2005, IEEE Signal Processing Letters 12:839—842; Szlam, et al.,
2008, J. Mach. Learn. Res 9:1711-1739; Singer, et al., 2009, SIAM Journal Imaging
Sciences, 2(1):118-139). The key idea was to exploit the intrinsic transient structure, instead
of relying on estimates of noise statistics. It was noted that a distinct pattern appears multiple
times. Specifically, the locations of the repeating pattern were implicitly identified, and the

transient interference was extracted by averaging over all these instances. This work was
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improved and extended to support a wider variety of transient interferences (Talmon, et al.,
2011, IEEE Trans. Audio, Speech Lang. Process.21(1):132-144; Talmon, et al., Proc. 3 6"
IEEE Internet Conf. Acoust. Speech and Signal Process. (ICASSP-2011), Prague, Czech
Republic, May 2011). A robust approach to distinguish between transients and speech was
employed based on the observation that speech components are slowly varying with respect
to transient interferences, just as psecudo-stationary noise is slowly varying with respect to
speech. In addition, a manifold learning approach termed diffusion maps was utilized to
compute a robust intrinsic metric for comparison (Coifman 2006, Appl. Comput. Harmon.
Anal., 21:5-30). It enabled the clustering of different transient interference types, and when
incorporated into the NL filter, it provided a better affinity metric for averaging over transient
instances.

Recently several supervised speech enhancement algorithms, which rely on the prior
knowledge of the typical interference patterns, have been proposed (Smaragdis, 2007, IEEE
Tran. on Audio, Speech and Language Processing, 14(1):1-12; Wilson, et al., 2008, Proc.
33th IEEE Internet Conf. Acoust. Speech and Signal Process. (ICASSP-2008), Las Vegas,
NV, 14:4029 — 4032; Mohammadiha, et al., 2011, Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics pg. 45-48). In these algorithms, nonnegative matrix
factorization (NMF) is employed to compute a basis for the interferences, which is then
utilized to enhance the speech and suppress the noise. However, these algorithms suffer from
several limitations. They require training recordings of both the interference and the speech
(Wilson, et al., 2008, Proc. 33th IEEE Internet Conf. Acoust. Speech and Signal Process.
(ICASSP-2008), Las Vegas, NV, 14:4029 — 4032), which makes the algorithms speaker-
dependent. In addition, the application of NMF is required for every new measurement and
its computational burden is high. Finally, when applied to enhance speech and suppress noise
(Mohammadiha, et al., 2011, Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics pg. 45-48), a temporal smoothing is applied which makes the algorithm
inadequate for transient interferences.

Additionally, prior art systems for reducing or suppressing transients in an audio
signal are described in the patent literature. For example, EP 1775719 describes a voice
enhancement system for suppressing transient road noise; US 7,869,994 describes a transient
noise removal system using wavelets; and US 2012/0076315 describes a system for repetitive
transient noise removal. Further, some patent literature discloses systems or methods for
removing or reducing noise produced by keyboards, or another user-operated device, from an

audio signal. For example, EP 2294697 describes a method for reducing keyboard noise in
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conferencing equipment (also published as US 8,295,502), and EP 2494550 describes a
method for suppressing noise in an audio signal created by a user operating a computer.
However, the methods in the above disclosures are based on defining a model of potential
transients or noise using information external to the noise-containing audio signal. For
example, the prior art methods may create a model using information from previously
analyzed signals that provide general characterizations of potential transients, or these
methods may use information external to the audio signal, such as identifying noise by
determining the timing of keystrokes or other user activity.

Thus, there is a need in the art for a system and method of transient interference
suppression for providing accurate and efficient speech enhancement, particularly when real-

time online processing is desired. The present invention satisfies this need.

SUMMARY OF THE INVENTION
A method of suppressing transient interference from a signal is described. The
method includes the steps of obtaining a training recording of a transient, graphing the
structure of the transient, defining a filter from the graph, and suppressing the transient from

the signal by applying the filter. In one embodiment, the method further includes computing

< w3
a training set {At(l) }l"=l of M spectral variance feature vectors. In another embodiment, the

Af
method further includes obtaining an initial measurement and computing a set {f\y (l)} I=1 of

M spectral variance feature vectors. In another embodiment, the at least one local model is is

built according to

L
Pi{xy(D)) =7 + Z(log (Ay D) — 73, 1,50 91,5
=1 (13).

In another embodiment, the local filters are defined according to
di Oy (0, 2 (1) = [R@D) ~ BOSIN (g,

In another embodiment, the method further includes computing a non-symmetric kernel

AAAAA

according to
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WU_ = OXp {_ ||10g(/\y(!)) - log()_\t(f)) _ n”z }

202

X exp {— AGIORED) } . (15)

252

In another embodiment, the method further includes constructing a transition matrix. In

5 method further includes computing symmetric kernels K and K. In another embodiment,

the method further includes obtaining the eigenvalue decomposition {# i1 ¥Pj }:r' and

{,u I ?’bﬁ' }'i of kernels I and K, respectively, by computing the SVD of A. In another
embodiment, the method further includes obtaining a new time frame of the observable signal
and computing a corresponding new feature vector Ay(I). Tn another embodiment, the

10  method further includes computing the affinity of the new observation vector to the training

vectors according to

202

X exp {_d? (Ay(l’): Xt@)) } | (17)

ap(l) = % exp {__||log()«y(y)) — log(X:(D)) — ]| }

252

15  In another embodiment, the method further includes extending the eigenvectors to the new
frame according to

1 .

T
'ﬂj(l’) = e ap g
Hj (16).
20
In another embodiment, the filter corresponds to the new frame according to
£
il T !
Al = Ay Zﬁij‘llbj (1 )¢j°
=0 (18)
using the extended vector.
25

In another embodiment, the method further includes obtaining an estimate of the spectral

variance for the transient interference A¢(Z'). Tn another embodiment, the method further
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includes computing the optimal gain of the OM-LSA based on S\t (1) and employing it on
the new time frame to enhance the signal.

Also described is a system for suppressing transient interference from a signal. The
system includes a modeling system, wherein said modeling system constructs a model of
transient interference from a first signal, and a filtering system, wherein said filtering system
suppresses transient interference from a second signal by applying said model to said second
signal. In one embodiment, the system further includes a detection system, wherein said
detection system constructs an extended model from said model of transient interference
based on data from said second signal. In another embodiment, the model of transient
interference is constructed substantially simultaneously with receiving said first signal. In

another embodiment, the first signal and said second signal are the same signal. The

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, there are depicted in the drawings certain
embodiments of the invention. However, the invention is not limited to the precise
arrangements and instrumentalities of the embodiments depicted in the drawings.

Figure 1, comprising Figures 1A and 1B, depicts transient waveforms and
spectrograms. Figure 1A depicts a clean transient (door knock) event, and Figure 1B depicts
the estimated transient (door knock) event.

Figure 2, comprising Figures 2A-2F, is a segment of the measurements and enhanced
signals waveforms and spectrograms. Figure 2A depicts a noisy signal with 7 key strokes,
Figure 2B depicts enhanced speech with suppressed keyboard typing, Figure 2C depicts noisy
signal with 4 events of houschold interferences, Figure 2D depicts enhanced speech with
suppressed household interferences, Figure 2E depicts noisy signal with a door knock, and
Figure 2F depicts enhanced speech with suppressed door knocks.

Figure 3 is a flowchart of an exemplary embodiment of the training stage, comprising
a modeling system, of the present invention.

Figure 4 is a flowchart of an exemplary embodiment of the test stage, comprising a

detection system and an enhancement system, of the present invention.

DETAILED DESCRIPTION
As contemplated herein, the present invention relates to a supervised, graph-based

framework for sequential processing and suppression of transient interference. Transients
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typically consist of an initial peak followed by decaying short-duration oscillations. In one
embodiment, the present invention includes a system and method of graph construction using
a noisy speech signal and training recordings of typical transients. As described and
demonstrated herein, the present invention captures the transient interference structure, which
may emerge from the construction of the graph. The graph parameterization is then viewed as
a data-driven model of the transients and utilized to define a filter that extracts the transients
from noisy speech measurements. Unlike existing transient interference suppression studies,
the graph of the present invention is constructed in advance from training recordings. Then,
the graph is extended to newly acquired measurements, providing a sequential filtering

framework of noisy speech.

Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which this invention
belongs. Although any methods and materials similar or equivalent to those described herein
can be used in the practice or testing of the present invention, the preferred methods and
materials are described.

As used herein, each of the following terms has the meaning associated with it in this
section.

The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at
least one) of the grammatical object of the article. By way of example, “an element” means
one element or more than one clement.

“About” as used herein when referring to a measurable value such as an amount, a
temporal duration, and the like, is meant to encompass variations of £20% or £10%, or £5%,
or £1%, or £0.1% from the specified value, as such variations are appropriate.

The term “transients,” as used herein, refers to short-term statistical anomalies, relative to
the desired harmonic signal, in the power spectrum domain. In audio signals, transients are short-term
abrupt interferences, typically of a length ranging from 10 ms to 50 ms, that appear in arbitrary
random unknown locations in time during the recording, e.g. keyboard strokes and various knocks.

The term “interference,” as used herein, refers to any undesired signal, e.g. transients,
that corrupts the signal of interest, e.g., speech, in a recording.

The term “kernel,” as used herein, refers to a mathematical formulation of the connections

between objects in a graph or a network.
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The term “graph,” as used herein, refers to an object that consists of two types of elements:
nodes and edges. The nodes may represent various objects, e.g., samples of an audio recording, and
the edges connect pairs of nodes and represent the pairwise similarities. The graph is a full network
of similarity connections between recordings. Accordingly, the word “graph” may be used as an
abbreviation to this network model.

Throughout this disclosure, various aspects of the invention can be presented in a
range format. It should be understood that the description in range format is merely for
convenience and brevity and should not be construed as an inflexible limitation on the scope
of the invention. Accordingly, the description of a range should be considered to have
specifically disclosed all the possible subranges as well as individual numerical values within
that range. For example, description of a range such as from 1 to 6 should be considered to
have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to
4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example,
1,2,2.7,3,4,5,5.3, 6 and any whole and partial increments therebetween. This applies
regardless of the breadth of the range.

The present invention provides a system and method for a supervised, graph-based
framework for sequential processing and suppression of transient interference, including a
graph construction relative to a measured signal and training recordings. As contemplated
herein, the graph captures the underlying structure of the training data, which represents some
or all the variations of a certain signal of interest. The graph parameterization is then viewed
as a data-driven model of the signal of interest and utilized to define a filter that extracts this
signal from the measurement. The construction of the graph is based on an affinity kernel
between the measurement and the training recordings. In certain embodiments, the present
invention may rely on a specially-adapted metric based on local models of the signal of
interest obtained from the training data.

Application of the present invention to the task of transient interference suppression
provides accurate and efficient speech enhancement. Common speech enhancement
algorithms fail to deal with transient interferences since their noise estimation component is
not designed to track the rapid variations characterizing transients. The present invention
provides an estimation of the spectral variance of the transient interference. Then, the
optimally modified log-spectral amplitude (OM-LSA) estimator (Cohen and Berdugo, 2001,
Signal Processing, 81:2403-2418; Cohen and Berdugo, 2002, IEEFE Signal Process. Let.,
9(1):12—15), which is a single-channel speech enhancement algorithm, is employed to

enhance the speech based on the estimate of the transient signal spectral variance. In this
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setting, the training recordings include typical transient interferences. Based on training
recordings of the transient signal, the graph enables the accurate capture the structure of the
transients. Then, the graph-based filter extracts it from the noisy speech and provides an
accurate spectral variance estimate. Unlike previous studies (Talmon, et al., 2011, IEEE
Transaction on Audio, Speech and Language Processing, 19(6):1584—1599; Talmon, et al.,
2011, IEEE Trans. Audio, Speech Lang. Process.21(1):132-144) that infer the geometric
structure of the transients from the noisy signal and employ batch processing, the graph of the
present invention is constructed in advance from training recordings and is further extended
to new measurements in a sequential filtering framework of the noisy signal.
Accordingly, the present invention provides an online learning and filtering framework for
high-dimensional datasets based on reference sets. In one embodiment, the invention
includes an online method to build an intrinsic model and exploit it for signal filtering. This
model may initially be obtained via a construction of a network of associates that rely on
local model estimates of the reference set. Incoming new data points are then sequentially
added into the network based on a series of comparisons to the predefined reference points.
The obtained intrinsic model reveals the underlying parameterization of the data and enables
the system to define intrinsic filters. These filters have the ability to detect and extract (or
suppress) anomalies that stand out from the model. The present invention may be
particularly suitable for applications such as (without limitation), cleaning audio and speech
signals, diagnostics for machinery such as pumps, engines and compressors, and diagnostics
based on medical time series or images, such as an MRI of the heart or mammography. As
contemplated herein, the building of a graph or a network is based on a reference set instead
of an entire set. The construction of the graph may rely on previously acquired local models
of the data. The system and method may aggregate the local models into a global intrinsic
model and provide a unified filtering framework. Accordingly, the metric that is used to
build the graph is locally defined, and not global. The present invention also provides a
general method to build and extendable model that is adapted for streaming data. This is a
highly unique feature, and unlike the existing methods that adapted to batch processing. The
extendable intrinsic modeling of the present invention is especially suitable for applications
where real-time online processing is desired or required.

The system of the present invention can generally be described as follows. The system
comprises a training stage 10 (Figure 3) and a test stage 20 (Figure 4). Referring to Figure 3,
training stage 10 comprises a modeling system 12, wherein a modeling input signal 11, for

example, speech corrupted by transients and background noise, enters a first signal
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processing unit 13 that applies short time Fourier analysis to modeling input signal 11. The
output of signal processing unit 13 is the power spectral density 14 of the signal 11. The
power spectral density 14 of the signal 11 enters a second signal processing unit 15 that
builds an empirical model 17 via a network of associations that implicitly captures the
structure of anomalies, for example, transients. The output of the modeling system 12 is
empirical model 17, i.e. the intrinsic representation of anomalies.

The modeling system 12 of the present invention can build an intrinsic representation
of anomalies, i.e. empirical model 17, without the need for any input other than the input
signal 11. The empirical model 17 is initially obtained via a construction of a network of
associations that relies on local model estimates without prior information. In other words,
the modeling system 12 is capable of implicitly identifying anomalies that stand out from the
input signal 11, and further provides an empirical model of these anomalies. For example, the
modeling system can identify anomalies associated with keystrokes from a keyboard, without
any extrinsic information, such as data from a computer operating system indicating that a
keystroke has occurred. The modeling system can be efficiently implemented in real-time.
Further, the model constructed by the modeling system for an initial input signal, i.e. the
empirical model, may be applied to a different input signal. For example, the system of the
present invention can suppress keyboard-typing transients associated with a different type of
keyboard than the original keyboard associated with the signal used to build the empirical
model.

Referring to Figure 4, the test stage 20 of the present invention comprises a detection
system 30, wherein a streaming signal 21, for example, speech corrupted by transients and
background noise, enters a signal processing unit 32 that applies short time Fourier analysis
to the signal 21. The output of signal processing unit 32 is the stream of power spectral
density 34 of the signal 21. The stream of power spectral density 34 of the signal enters a
signal processing unit 36 that is configured with the empirical model 17 from the output of
the modeling system. This signal processing unit 36 extends the empirical model 17 to the
incoming stream of data, i.e. streaming signal 21, via a network of associations that implicitly
identifies anomalies, for example, transients. The output of the detection system 30 is the
extended empirical model 25.

During the test stage 20 of the present invention, empirical model 17 may be
transformed into extended empirical model 25 in an online, i.e. real-time fashion. New
incoming data, i.e. data associated with streaming signal 21, can be sequentially added into

the network of associations of the present invention based on a series of comparisons.

9
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Further, the empirical model 17 and/or extended empirical model 25 are suitable for filtering
high-dimensional datasets because they reveal the underlying parameterization of data and
enable a definition of intrinsic filters.

Referring again to Figure 4, the system also comprises an enhancement subsystem 40,
wherein a stream of power spectral density 34 of the signal and the extended empirical model
25 enter a signal processing unit 42. This signal processing unit 42 builds a filter 27 based on
the extended empirical model 25 and applies it to the incoming stream of data, i.e. streaming
signal 21. For example, such a filter 27 could be an enhancement filter that extracts or
suppresses transients. The output of the system is a stream of filtered or enhanced signal 29.

The system of the present invention may comprise analog equipment for performing
the single processing methods, or other methods of the present invention, described herein. In
one embodiment, the system of the present invention may comprise computer software and
computer hardware suitable for performing the methods described herein, as would be

understood by a person of ordinary skill in the art.

The following formulations may be used to characterize the problem to which the system

and method of the present invention may be applied.
Let x(n) denote a clean speech signal picked up with a single microphone. The

observed signal y(#n) is given by

() =x(n) + t(n) + u(n) (D

where #(n) and u(n) are additive transient interference and stationary background noise,
respectively, and # is the time index. The transient component #(z) may consist of one or
multiple types of interferences.

Let Y (,k) denote the short-time Fourier transform (STFT) of the microphone signal
y(n) in time-frame / and frequency-bin £. Let N denote the number of nonnegative frequency
bins corresponding to analysis and synthesis windows of length 2(N —1), and let R denote the

time frame shift. Accordingly, equation (1) is represented in the STFT domain as

Y (Lk) = X(LK) + T (Lk) + U(LK)

where X(L,k), T (Lk) and U(L k) are the STFTs of x(n), t(n) and u(n), respectively.

10
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Define Ay (1,k) =E [ |¥(1,k)|*] to be the short-time spectral variance of the measured
signal. Assuming the speech, the transient interference, and the stationary noise are mutually

uncorrelated, the spectral variance of the measurement is given by
Ay (L) =y (LK) + X (L) + Ay (LK) 2)

where &, (1k) = E [ |[X(LE[], & (1K) = E [ |T(LK)], and &, (1k) = E[ |ULK)*].

In one embodiment, the system and method of the present invention estimates the
clean speech signal x(r) given the noisy measurements y(#). The processing of the measured
signal is performed sequentially in the time-frequency domain. In order to exploit the spectral
structure of the transients, the spectral features are collected from all the frequency bins of
each time frame into vectors. Let A, (/) be a vector of the spectral variance values of the

measured signal corresponding to time frame /, defined by

y (D =[hy (1,0),..., &y (IN-D]T 3)

and let A, (/) be a vector of spectral variance values of the transient signal, defined similarly as
be (D) = [M (10),..., 2 (LN-D)] 4)

As contemplated herein, the system and method of the present invention estimates the
spectral variance of the transient interference. Given a new time frame of measurements, the
present invention estimates A, (/) based on A, (/). Then, the estimated spectrum is used for
enhancing the speech.

In one embodiment, a training recording of a typical transient signal (%) may be
available in advance. In non-limiting manner and for purpose of clarity, all terms associated
with a training recording are denoted with a bar. The recording comprises a collection of
transient instances representing the various possible types, which are assumed to be known a-

priori. The training recording is processed in the time-frequency domain using the STFT with
the same analysis and synthesis windows and the same time shift. Let A, k) be the spectral

variance of the training recording, and let M be the number of available training time

frames. Similarly to equations (3) and (4) we define

11
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X = [M00),. . Xl N - DT o

Each of the vectors can be viewed as an N-dimensional point. Collecting all the vectors yields

a set {Xi(f)}‘f of M training points in an N-dimensional space.

Let N, be the number of transient types in the training recording, and let 7+ be the set
of training time frame indices containing the ith type. It is assumed that no more than a single
transient exists in one time frame, which implies that 7: N 75 = ? for ¢ # 7. In addition, it
is assumed that the duration of each transient event is shorter than a single short-time frame.
Longer transient interferences are broken into separate sets and considered as few transient
types. Each transient event consists of an abrupt sound followed by decaying oscillations.
Unlike existing studies, where a transient is modeled as a composition of two parts - abrupt

and decaying [9], the present invention treats each part independently, as a different type of

transient. Let 7 == T1 @+« @® T w, denote the set of training time frames indices containing
any transient interference. The remaining time frames of the training recording are considered

silent.

Graph Construction

Defined herein is a non-symmetric kernel consisting of an affinity measure between
the observed data points and the training points. Let M be the number of available
observation time frames. The following derivation is extended to support sequential
processing where the observations are not available in advance. Let W be an M x M kernel

matrix defined using a Gaussian as

202

Wiz = exp { Jlog(Au () — log(Xe(®) ~ nlf* }

(6)

where o is the variance and 1 is a constant vector. This is operated in the logarithmic domain
because empirical experiments show better results than the linear domain. As in many speech
processing applications in the logarithmic domain, small values are clipped. For simplicity,
the clipping is omitted from the derivation.

The non-symmetric kernel defines a bipartite graph [20], where {2} and (MO}

are the two disjoint sets of nodes, and W .1 determines the weight of the edge connecting A,

12
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(7) and X+(D). The non-symmetric kernel is normalized to create a transition matrix of a

Markovian process on the graph, i.c., A = D''W with D a diagonal matrix defined by
-D.l.! = EE:Z Wiz, Accordingly, Av7 is the transition probability in a single step from
node A, (7) to node A+{1}.

Let K bea symmetric kernel of size M x M defined on the training nodes by

KA ATA According to the definition, each component of the symmetric kernel is given
by

Thus, K7 F can be interpreted as an affinity metric between a training node *¢(0) and a
p y g

training node Ae(M) via any observable node &, (/).

Similarly, K is a symmetric kernel of size M x M defined on the observed points by
K2 AAT je,

A
Ky = Z AfAp g

i=1

Then, K11 can be interpreted as an affinity metric between an observed node 4, (/) and an

no. .. % (7 T .
observed node *{} via any training node Ae(D). 1t further implies that two observations are
similar if they “see” the training points in the same way.

Suppose that the transient part in the observation at time frame / equals to one of the

training points, i.e., Ail) = Ae U_) By (2) we have

log (A, (1)) — log (A:(7)) = log (1 + @_QW) >0

It is demonstrated that the empirical probability density function of the right hand term has a
single peak. It is observed that the peak (mean) is located remotely from zero, and the
empirical probability density function is almost symmetric. Thus, the probability density
function is approximated by a normal distribution with 1 mean and o” variance, such that the

negative tail is negligible. The values of the mean and variance can then be determined

13
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according to the empirical mean and variance of the set {log (Au (D)) — log (A (I
Accordingly,

Pr (log(y@)Me(t) = X(D)
o (L) - O n||2}

B 202

vV 27a?

(7

It is assumed that the transient signal in the observation and the training transient signal have
similar distributions. In addition, it is assumed that the spectral feature vector of the transient
signal in each time frame can uniformly take one of a finite set of spectral feature vectors of

cardinality vy (as each transient type has a distinct characteristic structure), i.e.,

10 Prxl)=XD) =1/, By the law of total probability the following is obtained

Pr (log(y (1) = = 3 Pr (log(u(NIA) = X(D) N

Statistically independent frames neglecting potential frame overlap are assumed. This
assumption is not respected in practice, especially since 75% overlapping frames are used.
15  However, it enables a probabilistic interpretation of the kernel. The conditional joint

probability of frames with the same transient component can be expressed similarly

Pr (log(A, (1), log(3, (1) () = Au(t)
= = 30 Pr (o0 (), log(h () M) = M) = D)
{

1 . v
= ; ZPF (103()‘3; ), |At(l) = At(l))
x Pr (log(Ay (i) |,\t(l’) = Xg(l_)) . )]
20 A significant benefit from this particular kernel is expressed by the following

proposition (Proposition 1). Under the probabilistic assumptions (7) (8) (9), the elements of
the kernel satisfy

Ky = Pr(As(l) = A(l) Ay (0, (1))
25

14
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By definition we have

Wl T WI’ H
I<I,I'= AA.T , = A7AL = : ’ ’
( )u ;Z R 2;': S Wi don Wop
_ o 2aWWeg (23)
Ei’f WI,T’ Ei_’ WV:F

5 Substituting the non-symmetric affinity function (6) into (23) yields (24). Then, by the
probability assumption (7) we have (25).

Srexp {_ L tog(0y () ~log (G D)--n? } exp {_ g0y () ~log(Re(D)—rl }

K = S exp {H loe ) -Tog R @)-ull? } S exp { ~loxu ) log R T)=nlE ] @9
Koy o SPE (0B IAD = (D) Pr (oE A DIA) = Xe0) o5
" e Pr(log(y(DIAe(®) = Ae(T) Zp Pr (tog(Ay (NA(l) = Ae())
10
Substituting (8) and (9) into (25) yields
K,y = LEr(ogAy(0), 1og(Ay (1)) [Ae(6) = A:(t))
' Y Pr (log(A, (1)) Pr (log(Ay (1))
_ Pr{log(Ay (1)), log(Ay () [A: () = Ae(l'))
Pr(log(Ay (1)}, log(Ay (1))
x Pr (At(l) = }tt(l’)) .
Finally, by Bayes’ theorem we obtain
15

Kir = Pr{x (D) = X IA, (D), A (1)) (26)

This (Proposition 1) implies that the affinity metric defined by the kernel is the
probability of comparing a pair of observable vectors with the same transient pattern.
20 Accordingly, this kernel entails a comparison between the underlying spectral features of the
transients “neutralizing” the speech and background noise. This way, the constructed graph

may convey the desired transient interference spectral structure.
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Graph-based Filter

Let {131 ¥3} be the eigenvalue decomposition of I, which satisfies

K=oA®T (10)
with

LI [lpg T 'wj‘l-fml]

and A is a diagonal matrix consisting of the eigenvalues in a descending order po > p; > ... >

0. Each eigenvector 1-{"5 is of length A and its /th coordinate parameterizes the /th time frame.

By the orthogonality of the cigenvectors, the set {¢J }-'f forms a complete basis for any
function f 2 =R with I' = {Ay (l)}l. In particular, let % : I* ~ R be a function

that retrieves the kth frequency bin from the spectral vector Ay(D), dey dr (Ay(l)) = Ay(l R)
It implies that each spectral component can be expanded according to the set of eigenvectors

as

Af—-1

Ayl k) =i Ay (D) = Z #i(ik:"vbj)"’bj(l)
i=0

where the inner product is defined as

(irytbs) & AT g M E) = Ay (1, K), ., Ag (M, K]

The constructed graph captures the structure of the transients, characterized by a
distinct spectral structure, by connecting similar spectral observations. Specifically, as
implied above (Proposition 1), strong connections represent a high probability that the same
transient pattern exits in the connected time frames. Consequently, there exists a subset of £

eigenvectors which represents the transient interference. For simplicity, it is assumed that this

subset consists of the dominant eigenvectors, i.e., ["'ba' }5“0 In some embodiments, the
appropriate eigenvectors may be determined by observing their spectral structure.

The following graph-based filter that approximates the transient spectral component is
defined by projecting the spectral variance of the observation onto the eigenvectors spanning

the transient interference subspace
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g1
Al kY =) pilar, ) (D)
30 (11)

Let &, be an M x N matrix where its (/,k)th element is defined as A, (7,k). Then (11) can be re-

written in a matrix form as

£—1
Ae(ly = ALY i (D

j=0 (12)

Few speech “leftovers” may appear in the estimated spectral variance. Human speech
consists of both harmonic and nonharmonic sounds and it can span across a wide range of
frequencies. Thus, many speech phonemes can be represented (at least partially) by the
transients “building blocks.” Existence of such residuals in the spectral variance estimate of
the transient signal degrades the quality of the speech when incorporated into an
enhancement algorithm. Since the leftovers usually exist in periods where the transient signal
is absent, the present invention is able to easily distinct them by their low magnitude
compared to the magnitude of the transients. Thus, potential leftovers are removed by

employing a hard threshold.

Speech Enhancement

To enhance the speech, the present invention employs the OM-LSA with a modified
noise estimate. Let G(/,k) denote the spectral gain of the OM-LSA estimator given the noisy

measurement Y(/,k). Thus, the speech estimate is given by
XK =G EY (k)

In (Cohen and Berdugo, 2001, Signal Processing, 81:2403-2418), the optimal spectral gain
with respect to the minimum log spectral amplitude (LSA) error criterion is controlled by the
speech presence probability. Since it is unknown, the speech presence probability is estimated
based on the time-frequency distribution of the a-priori signal-to-noise ratio (SNR), where the

noise variance is estimated using the improved minima controlled recursive averaging

17



10

15

20

25

30

WO 2013/138747 PCT/US2013/032248

(IMCRA) (Cohen, 2003, IEEE Trans. Speech, Audio Process., 11(5):466-475).
Unfortunately, short and abrupt bursts of transient interferences are falsely detected as speech
components. Hence, the transient interference is not a part of the noise PSD estimate obtained
by the IMCRA approach, and as a result, is not attenuated. However, the present invention

sets the optimal spectral gain to correspond to the sum of the spectral variance estimate of the

transient interference j‘ta: k) and the stationary noise Xu(l, k.. The former estimate is
obtained by the graph-based filter (11) following the hard thresholding, and the latter estimate
is obtained by the IMCRA. The IMCRA and the OM-LSA parameters used in this stage are
similar to the set of parameters used to enhance speech and reduce stationary background
noise as described in Cohen and Berdugo (Cohen and Berdugo, 2001, Signal Processing,
81:2403-2418).

Since the optimal spectral gain is controlled by the transient interference spectrum,
the suppression of transients is now attainable. For more details regarding the optimal gain
derivation and estimation of the speech presence probability and the noise spectrum, see
Cohen and Berdugo (Cohen and Berdugo, 2001, Signal Processing, 81:2403-2418) and
references therein. A Matlab code of the OM-LSA is also available online at

http://webee.technion.ac.il/people/israclcohen/.

Transient Local Models and an Affinity Function

The estimation of the spectral variance of the transient interference is employed by
the graph-based filter defined in (11). Thus, the estimation accuracy heavily depends on the
ability of the graph to extract the structure of the spectral variance of the transients. As
discussed herein and implied by (Proposition 1), the graph connects nodes with the same
transient type. In order to enhance this property, a local data-driven model is defined for each

transient interference type based on the training recording. It is assumed that the labeling of

== N = -
the transient recording {Ts}i:::l is available. Let {’\‘(J)}feﬁ be the set of training spectral

vectors corresponding to the ith transient type. We assume it consists of several transient
events which define the variability of the transient type. Let 7: be the empirical mean vector

of the set, i.e.,
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and let Ci be the empirical covariance matrix of the set

g = 1
T

c > (tog (Re(D) — ) (log (3e(D) — 73)"

=i

where |?z‘ is the cardinality of the st 7 4. The pair (71 Ci) may be used as the learned
model of the ith transient type. This assumption is supported by the fact that the logarithm

has support for both negative and positive values. By employing principal component

analysis (PCA), the large eigenvectors of G, which correspond to the principal “parameters,”
capture most of the information disclosed in the data. Hence, the dimensionality is

significantly reduced by considering only the subspace spanned by a few principal

eigenvectors. Let Vi };'5=1 be the set of L such principal eigenvectors. A well-known
limitation of PCA is that it is linear and able to capture only the global structure of the
training data. The training set of transient instances admits a complicated global structure
(often referred to as a non-linear manifold). Thus, a low-dimensional linear subspace may not
faithfully describe the data in this setting. However, a PCA-based approach may perform
rather well when applied locally, i.e., on a data set sufficiently condensed in a small
neighborhood. In the present setting, this corresponds to defining a model for each transient
interference type. Then, incorporating these local models in the graph provides integration of
all the acquired models together.

P; is defined to be a linear projection operator of each spectral feature vector onto the

local model of the /th transient type as

L
Pi(Ay(D)) = 7 + Z(log Ay D)) — 73, ¥1,5) V1,5
=1 (13)

where the inner product is defined as {108 (Ag (D))~ 7i; ¥1,5) £ (log (A, (D)) — )" ¥1,5. The
linear projection (13) can be used as a stand-alone estimator for the spectral variance of the
transients. This provides information which may be incorporated into the graph construction.
The graph provides integration of all transient instances and their local models together.
Capitalizing the connections between the entire set of data, rather than using a single local

model, attains significantly improved results.
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Based on the projection, a pairwise metric between spectral feature vectors for each

transient type is defined
di g (0, Ay () = (1P (g () — PA (N (14)

The definition of the local metric (14) enables to adjust the kernel computation in (6). The

affinity kernel can now be defined as

202

x cxp {—d? HORY } . (15)

252

W= cxp {- [log(xy (1)) - log(Re(D) — m’ }

for [ € Tt with scale &% corresponding to the values of d;. The first term ensures that the
kernel is defined locally by comparing the spectral features of the vectors. The second term
conveys the affinity of the observable vector to the training vector in terms of the 7th transient
interference type. Consequently, two vectors are similar if their underlying transient is similar
and the observable speech component does not distort the transient significantly. The

remainder of the graph construction, namely, the computation of the transition matrix A and

kernel enhances the connection between time frames that consist of transient events.
Consequently, the spectral representation of the constructed graph better captures the
transient structure, and the estimation of the transient spectral variance in (11) becomes more
accurate. As demonstrated herein, experimental results show improved transient extraction

and speech enhancement using the adjusted local kernel (15) compared with (6).

Implementation
First, the algebraic connection is drawn between the eigen-decomposition of the

kernels I and I<.

(Proposition 2) The kernels IX and I share the same eigenvalues p;. The eigenvector WYof

K corresponding to nonzero eigenvalues p; > 0 satisfies

20
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1
P, = —Agp,
3 i 3

where ¥ is the eigenvector of K corresponding to eigenvalue y;. In addition, the
eigenvector sets {WJ’ } 1 and {5} i are orthogonal.
By the definition of the kernels, namely ¥ = AAT and K = AT A the left singular

vectors of A are the eigenvector W of I, and the right singular vectors of A are the

Moreover,
Ay = i,
which yields
1
P; = ——=Ap;

The main property emerged from this (Proposition 2) is the natural extension of the

eigenvalue decomposition. Given a training recording and an initial observation interval, the

s

(SVD) of A is computed, which allows one to define the graph-based filter (11) used to
estimate the spectral variance of a transient in the initial observation interval. Proposition 2
can then be applied to extend the spectral representation of the kernel matrix I, which
defines the filter, to a new observation. The extension implied by Proposition 2 is efficiently

computed and can be implemented in a sequential manner based on the spectral
representation of K (which is computed in advance using the training data).
' . . .
For each spectral feature vector Ay () corresponding to a new time frame observation

l’, one has by Proposition 2 that

1 ,
(Y = ——alp.

where &1’ is a vector of length M with elements given by
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ap(l) = % exp {_ [log(Ay () — log(Xe(D)) — || }

202
@ (A (1, (1
X exp {_ i ( y(~)2 t())} (17)
20
and where
5
/3 2
{ log (A (1)) — log(e(T)) — }
Z ex 2
20
If._.
% XD d2 (A4 (1), ().
252
Then, the corresponding graph-based estimator based on the extended eigenvector is given by
(12), i.e.,
10
£
L T 4
My =27 Y ;)
=0 (18)
The sequential estimation of the spectral variance of the transient signal via the graph-
based processing framework is summarized in Algorithm 1.
15

Algorithm 1: Graph-based Processing Algorithm

The Training stage may include the following steps:

v M
Step 1: Obtain a training recording of typical transients and compute a training set {At(i)}l"z

.....

20  of M spectral variance feature vectors.

Step 2: Obtain an initial measurement and compute a set {)‘1.' (©) }le of M spectral variance
feature vectors.

25  Step 3: Compute the non-symmetric kernel matrix W of size M x M according to (15).
Step 4: Construct the transition matrix A of size M x M.
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Step 5: Obtain the eigenvalue decomposition {# $¥Pj }:r' and {fuj ’ 1'!’3' }»f of K and K,
respectively, by computing the SVD of A.

The Enhancement stage may include the following steps:

Step 1: Obtain a new time frame of the observable signal and compute the corresponding new
feature vector du(l').

Step 2: Compute the affinity of the new observation vector to the training vectors according
to (17).

Step 3: By Proposition 2, extend the eigenvectors to the new frame according to (16).

Step 4: Construct the graph-based filter corresponding to the new frame according to (18)
using the extended vector. Obtain an estimate of the spectral variance for the transient

interference S\t U’).

Step 5: Compute the optimal gain of the OM-LSA based on Slt ('Y and employ it on the new
time frame to enhance the speech.

Step 6: Return to Step 1 in the Enhancement stage.

Particular attention should be given to the efficiency and low computational
complexity of the enhancement stage of each time frame. The following is a description of
the naive computational cost (number of operations) for each step in the enhancement stage.
Step 1 involves fast Fourier transform which yields O(N log N) operations. Computing the
affinity between the new observation and the M training vectors in Step 2 yields O(NM)
operations, treating the number of principal local-model eigenvectors £ as a constant.
Accordingly, Step 3 costs O(M) operations. Finally, employing the graph-based filter in Step
4 requires Of M M. By assuming that M, M > N, we have a total computational burden of
O(MM), We note that this cost is mainly due to a matrix multiplication, which can be

implemented very efficiently.

EXPERIMENTAL EXAMPLES
The invention is now described with reference to the following Examples. These
Examples are provided for the purpose of illustration only and the invention should in no way
be construed as being limited to these Examples, but rather should be construed to encompass

any and all variations which become evident as a result of the teaching provided herein.
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Without further description, it is believed that one of ordinary skill in the art can,
using the preceding description and the following illustrative examples, make and utilize the
present invention and practice the claimed methods. The following working examples
therefore, specifically point out the preferred embodiments of the present invention, and are
not to be construed as limiting in any way the remainder of the disclosure.

The performance of the proposed algorithm was evaluated on recorded speech and
transient signals sampled at 16 KHz. Speech signals are taken from the TIMIT database (J. S.
Garofolo, “DARPA TIMIT acoustic-phonetic continuous speech corpus cd-rom,” National
Inst. of Standards and Technology, Gaithersburg, MD, Feb 1993), and recorded transient
interferences are taken from an online free corpus (http://www. freesound.org). The time
domain measurements are constructed according to (1). The speech and transient interference
were re-scaled to have equal maximal amplitude in the measured interval. The additive
stationary noise part is a computer generated white Gaussian noise with SNR of 20 dB. Each
measurement is 20 s long and consists of several speech utterances of 5 different speakers
and 30 transient events. For the time-frequency representation, time frames of 512 samples
length were used which correspond to N = 257 positive frequency bins. In addition, a 75%
overlap was used between successive frames.

The suppression of three transient interference signals were examined. The first
transient interference is keyboard typing. A measurement interval containing 30 key strokes
was enhanced with different amplitudes. The different key strokes are organized into three
clusters of similar spectral structures. Based on a training recording of similar keyboard
strokes, three transient models corresponding to the three key stroke types were trained as
described previously. The second interference consists of three types of household knocks.
One of the knocks has a relatively long duration, which exceeds a single time frame.
Consequently, two models were attached to this interference type (one for the first abrupt part
and one for the following decaying part) and another two models corresponding to the other
two types of knocks, which results in four different models. The measurement signal consists
of several different instances of each type with varying amplitudes. Finally, the third
interference consists of three types of door knocks. Accordingly, three corresponding models
were trained based on the training recordings. Similarly to the other transient interferences,
the measurement consists of several different instances of these door knocks with varying
amplitudes. It was noted that each training recording consisted of 10 instances of transients

from each type. In addition, in order to represent the transients and define the graph-based
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filter (11) the principal £ =20 eigenvectors of the graph was used. For each transient
interference, the parameters (kernel scale) were empirically set, which yield maximum
performance.

Figure 1 shows an example for the transient spectral variance estimation. Figure 1(a)
presents the waveform and spectrogram of an instance of a door knock, and Figure 1(b)
presents the waveform and spectrogram of the transient instance estimate by the graph-based
filter (11). Similar waveform and spectral features were observed. Particular attention should
be given to the accurate estimate of the spectral “pattern” of the abrupt first part of the
transient.

Figure 2 depicts the waveforms and spectrograms of the measurements and enhanced
signals. Figures 2(a), (¢), and (e) show the noisy signals with keyboard typing, household
interferences, and door knocks, respectively. Figures 2(b), (d), and (f) show the
corresponding enhanced signals. It was observed that the proposed method attains significant
transient interference reduction, while imposing very low distortion. Merely few transient
residuals (e.g., near 1.3 s in Figure 2(b)) appear in the enhanced signal. Furthermore, the
waveforms of the enhanced signals suggest that the transient suppression does not leave
“holes” in the signal, but rather maintains the speech component.

The performance of the present algorithm was compared to the algorithm proposed in
Talmon et al. (Talmon, et al., 2011, IEEE Trans. Audio, Speech Lang. Process.21(1):132-
144). The present algorithm introduces two new aspects with respect to the previous work:
learning transient models from training recordings and online processing, which are both
incorporated into an integrated processing framework. It is noted that the online processing is
obtained naturally given the trained models, since the employment of the models on the entire
observation interval is equivalent to the employment of the models frame-by-frame. Thus, the
comparison between the algorithms does not reflect the additional training stage of the
proposed algorithm nor the advantage that the measurement is processed frame-by-frame.
The online processing makes the present algorithm more adequate to communication
applications. In addition, learning transient models in advance circumvents the requirement
of the algorithm proposed in Talmon et al. (Talmon, et al., 2011, IEEE Trans. Audio, Speech
Lang. Process.21(1):132-144) to have several instances of transients in order to properly
capture the model from the measurements. In the following experiment better results are
expected using the batch algorithm in case the observation interval contains several instances

of transients with similar structure and amplitude. On the other hand, the graph-based

25



WO 2013/138747 PCT/US2013/032248

algorithm is advantageous in case of multiple transient types and in case of high variability in
the amplitudes of the transients.
The output of the algorithms was evaluated using two objective measures (S. R.
Quachenbush, T. P. Barnwell 111, and M. A. Clements, Objective measures of speech quality,
5 Prentice Hall, 1988). The first is the common SNR, defined as

' E{z%(n
SNRin = 1010810 E{(y(i:) ey

3:2 i
N = 1000 gz by 9

The second is the mean log spectral distance (LSD) between the measured signal and the

10 desired source, which is specifically adapted to speech signals and defined as

et

A N-—-1 2 2
LSD;, 2 E {% = [E(Ax(l,k))—f(,\y(l,k))|] (20)

1

|‘e()\x(lsk)) - e(:\z(ll k))fz] % (21)

where

15 £(A) = max {10logip A, 6} (22)

and & is a small value defined by & = max Az(l, k) =50, used to confine the dynamic range of
the log-spectrum to 50 dB. These measures are computed only in time periods where the
estimate of the PSD of transients exists. This allowed focus on the performance of the

20  proposed algorithm and evaluate the speech enhancement and the artifacts introduced by the
algorithm simultaneously. In periods where the transient estimate does not exit, only
stationary noise suppression is attained, and the performance of the algorithm equals to the

performance of the OM-LSA.

25  Table I - Speech Enhancement Evaluation

Transient Type | SNR Improvement [dB] LSD Improvement [dB]
Batch Online Graph- | Batch Online Graph-
Algorithm based Filtering | Algorithm based Filtering
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Proposed in [9] Proposed in [9]

Keyboard 9.47 7.78 2.71 2.12

Typing

Household 5.20 6.62 1.83 2.04

Interferences

Door Knocks 8.17 9.79 2.96 2.39

Table 1 summarizes the objective evaluation of the speech enhancement algorithms.
Improvement in all tested cases was observed. For keyboard typing the batch algorithm
indeed demonstrates better SNR and LSD improvements since it exploits the presence of
similar keystrokes with similar amplitudes. For door knocks the present algorithm yields
better SNR improvement whereas the batch algorithm yields better LSD improvement. The
repeating door knocks in the observation interval have a similar structure which may be better
exploited by the batch algorithm, however, the knocks have high amplitude variability which
can be better handled by the graph-based algorithm. For household interferences the present
online algorithm outperforms the batch algorithm. In this case the noisy signal consists of
multiple types of interferences with various spectral structures and with both short- and long-
durations. Thus, it demonstrates the robustness and flexibility of the present algorithm

attained by training several interference models.

Table II - Perceptual Evaluation of Speech Quality (PESQ) Scores

Transient Type Noisy PESQ Scores | Batch Algorithm Online Graph-based
Proposed in [9] Filtering PESQ
PESQ Scores Scores Improvement
Improvement

Keyboard Typing 2.165 0.601 0.749

Household 2.028 0.663 0.644

Interferences

Door Knocks 1.933 0.593 0.536

Table IT depicts the improvement of the perceptual evaluation of speech quality

(PESQ) scores (“Perceptual evaluation of speech quality (pesq): An objective method for
end-to-end speech quality assessment of narrow-band telephone networks and speech
codecs,” Tech. Rep. ITU-T P.862, 2001) with respect to the noisy signal. This measure cover
a different aspect compared to Table I. It is noted that even a small increase in the PESQ
score suggests noticeable improvement, as any sudden increase of power (e.g., attenuated
transients) is audible. It was observed that the speech quality is improved in all tested cases in

comparison with the noisy signal. In addition, the PESQ score improvement is larger when
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using the present algorithm compared to the algorithm in Talmon et al. (Talmon, et al., 2011,
IEFEE Trans. Audio, Speech Lang. Process.21(1):132-144) in case of keyboard typing,
whereas it is smaller in household interferences and door knocks. This trend complements the
reported results in Table I. In general, it is noted that milder transient suppression (conveyed
by lower SNR and LSD improvements) usually leads to smaller speech distortion (conveyed
by higher PESQ values).

It is worthwhile noting that informal hearing tests confirm the objective measures and
demonstrate significant reduction of the transient interference. In addition, the present
algorithm was employed on noisy speech corrupted by keyboard typing recorded in a laptop.
The obtained results are comparable to the reported results on the simulated data. Audio
samples of the presented results are available online (http:/users.math.yale.edu/rt294/).

The present algorithm results are achieved by online processing and demanding lower
computational burden. In addition, the present algorithm does not introduce lag into the
system. In practice, these properties make the present algorithm more suitable for real-time

communication systems.

Table III - Speech Enhancement Evaluation in Multi-condition Case

Transient Type SNR Improvement | LSD Improvement | PESQ Score
[dB] [dB] Improvement

Keyboard Typing 7.46 2.04 0.597

Household 4.72 1.69 0.418

Interferences

Door Knocks 8.75 1.81 0.528

In Tables I and II, the reported results correspond to a matched-condition setup, where
each testing sample contains a certain type of transient, and the training data that is used for
applying the algorithm to the testing sample contains exactly this type of transient. This
scenario is suitable for applications in which the typical transients are known in advance, e.g.,
keyboard typing in phone- and conference call software. To further illustrate the applicability
of the proposed algorithm under real-world conditions, the present algorithm was evaluated
in a multi-condition training scenario. In this experiment, transients from all types are used
for training a single model, which is then used to suppress all the test samples. For a fair
comparison the testing stage was employed on the same noisy recordings as in the matched-
condition experiment. Table III presents the SNR and LSD improvements and the PESQ
score obtained under the multi-condition case. As expected in this challenging scenario,

degradation in the transient suppression and speech quality compared to the matched-
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condition case in Tables I and II was observed. However, the suppression of the transients
and the enhancement of the speech are significant and audible. This illustrates the ability of
the present algorithm to train a generic single model consisting of a dictionary of a wide
variety of transients, which can then be suppressed from real-world recording in various
scenarios.

Accordingly, a system and method is presented for a supervised graph-based
processing framework for sequential transient interference suppression. Based on training
recordings, a graph that captures the intrinsic structure of the transients may be constructed.
Then, by relying on the graph parameterization, a filter that extracts the transients from noisy
speech measurements is defined. The application of the filter is shown to be efficient and
adapted to online processing, by sequentially extending the graph parameterization to newly
acquired observations. To capture the underlying structure of the transients, a suitable metric
is defined based on local models computed from the training recordings. Experimental results
show significant transient interference suppression and low speech distortion for various
transient interference types.

The ability to capture the underlying structure of training recordings and then
sequentially extracting it from noisy measurements provides efficient, generic, and robust
processing framework. Given sufficient training recordings, this framework may handle a

wider variety of interferences, and may be extended to other problems and applications.

The disclosures of each and every patent, patent application, and publication cited
herein are hereby incorporated herein by reference in their entirety.

While this invention has been disclosed with reference to specific embodiments, it is
apparent that other embodiments and variations of this invention may be devised by others
skilled in the art without departing from the true spirit and scope of the invention. The
appended claims are intended to be construed to include all such embodiments and equivalent

variations.
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CLAIMS
What is claimed:

1. A method of suppressing transient interference from a signal, comprising:
obtaining a training recording of at least one transient;
building at least one local model for each transient type;
defining local filters from the at least one local model;
modeling the structure of the at least one local model as a graph;
defining a filter from the graph; and
suppressing the transient from the signal by applying the filter.

.M
2. The method of claim 1, further comprising computing a training set {’\t(i) }t"=l of M
spectral variance feature vectors.
3. The method of claim 2, further comprising obtaining an initial measurement and
Af
computing a set {)\y (l)} =1 of M spectral variance feature vectors.
4. The method of claim 3, wherein the at least one local model is built according to
L
PNy ) = 71+ ) _(log (Ay(D) — 05, ¥i,3) ¥4 5
3=1 (13).
5. The method of claim 4, wherein the local filters are defined according to
'
di (D, A ') = P2 @) = BN 1y,
6. The method of claim 5, further comprising computing a non-symmetric kernel matrix.
7. The method of claim 6, wherein the non-symmetric kernel matrix is W of size M x M

according to
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WU_ = OXp {_ ||10g(/\y(!)) - log()_\t(f)) _ n”z }

2072 |
X exp {— a (Ayégé Xt(f)) } . (15)
8. The method of claim 7, further comprising constructing a transition matrix.
5 9 The method of claim 8, wherein the transition matrix is A of size M x M.

««««««

10. The method of claim 9, further comprising computing symmetric kernels JX and K.

11. The method of claim 10, further comprising obtaining the eigenvalue decomposition

10 {# $HPj }:r' and {*uj’ 1‘{’5 }i of kernels K and K, respectively, by computing the SVD of A.

12. The method of claim 11, further comprising obtaining a new time frame of the

observable signal and computing a corresponding new feature vector A, (0,

15 13. The method of claim 12, further comprising computing the affinity of the new
observation vector to the training vectors according to

202

X exp {_d? (Ay(y):)‘t('?)) } | 7

ap(l) = % exp {_“log(ky(p)) — tog(Re(@)) — | }

262

20 14. The method of claim 13, further comprising extending the eigenvectors to the new
frame according to

1 .

('Y = ——alp.
'!’3( ) mal (pj (16)_

25
15. The method of claim 14, wherein the filter corresponds to the new frame according to
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£
(@) = XTI ps; ()3
=0 (18)
using the extended vector.

16. The method of claim 15, further comprising obtaining an estimate of the spectral

variance for the transient interference Ae (lf).

17. The method of claim 16, further comprising computing the optimal gain of the OM-

LSA based on 5\£ (1) and employing it on the new time frame to enhance the signal.

18. A system for suppressing transient interference from a signal, comprising:

a modeling system, wherein said modeling system constructs a model of transient
interference from a first signal; and

a filtering system, wherein said filtering system suppresses transient interference from

a second signal by applying said model to said second signal.
19.  The system of claim 18, comprising a detection system, wherein said detection system
constructs an extended model from said model of transient interference based on data from

said second signal.

20. The system of claim 18, wherein said model of transient interference is constructed

substantially simultaneously with receiving said first signal.

21. The system of claim 18, wherein said first signal and said second signal are the same

signal.
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