(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 109496504 A (43)申请公布日 2019.03.22

(21)申请号 201811319387.1

(22)申请日 2018.11.07

(71)申请人 华中农业大学

地址 430070 湖北省武汉市洪山区狮子山 街1号

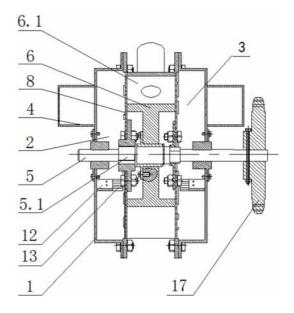
(72)发明人 夏俊芳 杨全军 杜俊 胡毅 胡梦杰 张文良 李东东 梅志雄 王镜朝

(74)专利代理机构 武汉开元知识产权代理有限 公司 42104

代理人 涂洁

(51) Int.CI.

A01C 7/18(2006.01) *A01C* 7/20(2006.01)


权利要求书1页 说明书4页 附图5页

(54)发明名称

双盘高速气力式芽种精量排种器

(57)摘要

本发明公开了一种双盘高速气力式芽种精量排种器,技术方案包括罩壳,所述罩壳内设有充种室和气室;所述充种室经充种口与固定在罩壳上的种箱连通,所述充种室的底部经投种口与导种管连通,所述气室的两侧对称设有左、右两个充种室,每个充种室由内侧的吸种盘和外侧的罩壳组成,所述气室包括以排种轴为圆心周向布置的负压区和正压区,所述负压区占周向的四分之三弧面,所述正压区对应设于导种管的上方;所述吸种盘沿周布均匀开有多组吸种孔,所述吸种,价位置与气室的负压区和正压区对应。本发明结构简单、结构简单、使用寿命长、满足高速工作状态下的排种要求,具有吸种性高、投卸种稳定性好、作业效率高、漏播率和破损率低、能耗低的优点。

- 1.一种双盘高速气力式芽种精量排种器,包括设有充种口和投种口的罩壳,所述罩壳内设有充种室和气室,排种轴穿过所述充种室和气室的中心与传动机构连接;所述充种室经充种口与固定在罩壳上的种箱连通,所述充种室的底部经投种口与导种管连通,其特征在于,所述气室的两侧对称设有左、右两个充种室,每个充种箱由内侧的吸种盘和外侧的罩壳组成,所述排种轴与所述吸种盘通过键连接;所述气室包括以排种轴为圆心周向布置的负压区和正压区,所述负压区占周向的四分之三弧面,所述正压区对应设于导种管的上方;所述吸种盘以排种轴为圆心、沿周布均匀开有多组吸种孔,所述吸种孔的位置与气室的负压区和正压区对应。
- 2.如权利要求1所述的双盘高速气力式芽种精量排种器,其特征在于,所述左、右充种箱的吸种盘上的对应多组吸种孔以相差18°~30°投种角度错位排布。
- 3.如权利要求1述的双盘高速气力式芽种精量排种器,其特征在于,所述充种室内还设有上端对应位于正压区和负压区之间、下端位于投种口边缘的隔种挡板,所述隔种档板一侧固定在罩壳上,另一侧设有毛刷并与吸种盘表面接触。
- 4. 如权利要求1-3任一项所述的双盘高速气力式芽种精量排种器,其特征在于,相邻两组吸种孔之间设有径向的扰种条。
- 5.如权利要求1-3任一项所述的双盘高速气力式芽种精量排种器,其特征在于,每组吸种孔的两侧均设有周向的搅种齿。
- 6.如权利要求1-3任一项所述的双盘高速气力式芽种精量排种器,其特征在于,所述 左、右充种室的投种口连通一个导种管。
- 7.如权利要求1-3任一项所述的双盘高速气力式芽种精量排种器,其特征在于,所述种箱的底面为斜面。
- 8.如权利要求7所述的双盘高速气力式芽种精量排种器,其特征在于,所述种箱的底面设有多条漏斗形递种槽。
- 9.如权利要求1-3任一项所述的双盘高速气力式芽种精量排种器,其特征在于,所述充种口设有种层高度调节机构。
- 10.如权利要求9所述的双盘高速气力式芽种精量排种器,其特征在于,所述种层高度调节机构包括设置充种口处的调节板,所述调节块的两侧设有定位孔,所述充种口两侧的罩壳上对应位置垂直设有多个调节孔,定位钉穿过所述定位孔对应插入所述调节孔中。

双盘高速气力式芽种精量排种器

技术领域

[0001] 本发明涉及农业机械领域,具体的说是一种精量排种器。

背景技术

[0002] 排种器是直播机的核心部件,其性能好坏直接关系到播种质量和效率,对水稻直播技术的发展有着重要作用。相较于机械式而言,气力式排种具有对种子形状适应性好、破损率低、作业质量高、排种均匀性好等特点,现有排种器结构主要由气室和一个充种箱组成,通过充种箱的吸种盘的转动,在负压和正压作用下,实现充种、携种和投种的过程。随着作业需求的变化,高速高效作业排种是未来的一个重要研究方向。

高速作业意味着吸种盘更高的转速,目前成熟的排种器在高速状态下存在的问 [0003] 题;在充种区α,由于排种盘的高速旋转,不仅会对气流场产生较大扰动,影响排种器内的气 流特性;同时也会增大充种区种群产生的扰动,进而改变种群内的摩擦力,影响充种区种群 受力特性,吸种型孔来不及吸种或密封性较差造成的漏播率提高。在携种区β,即使芽种被 型孔吸附,排种盘转速的提高不仅增大了水稻芽种所受的惯性力,使芽种容易脱离排种盘, 在携种过程中造成"飞种"现象:还增大了芽种离开排种盘时的初始速度,增大投种过程中 的碰撞接触力,提高了芽种损伤的风险;在投种区γ,未来及投种的芽种在一定程度上提高 了漏播率而且也会影响再次充种。为了提高投种的稳定性,减少漏播率,专利号 201610818401.7公开了一种弹性吸嘴气力式精密排种器,通过取种轮的转动利用齿槽结构 舀种,排种活塞柱内部中空形成充气工作型腔,且该充气工作型腔底部设有正、负压入口; 排种活塞柱的前端连接弹性吸嘴,后端套设弹簧后用活动端板封设,且活动端板外侧设有 工作凸轮;取种时,充气工作型腔连通负压气源,断开正压气源,卸种时,充气工作型腔连通 正压气源,断开负压气源。该方法提高了投卸种的稳定性,适用性强,但同盱活塞柱通过往 复运行取种和卸种,耗时长,不适用于高速作业,特别是对于作业速度大于8km/h的高速工 况,排种效率低下。

[0004] 发明目的

[0005] 本发明的目的是为了解决上述技术问题,提供一种结构简单、稳定性好、使用寿命长、体积小、作业效率高、漏播率低、投卸种稳定性好、破损率低,对水稻种子的形状适应性好,作业成本低、适用于高速作业的双盘高速气力式芽种精量排种器。

[0006] 技术领域包括设有充种口和投种口的罩壳,所述罩壳内设有充种室和气室,排种轴穿过所述充种室和气室的中心与传动机构连接;所述充种室经充种口与固定在罩壳上的种箱连通,所述充种室的底部经投种口与导种管连通,所述气室的两侧对称设有左、右两个充种室,每个充种室由内侧的吸种盘和外侧的罩壳组成,所述排种轴与所述吸种盘通过键连接;所述气室包括以排种轴为圆心周向布置的负压区和正压区,所述负压区占周向的四分之三弧面,所述正压区对应设于导种管的上方;所述吸种盘以排种轴为圆心、沿周布均匀开有多组吸种孔,所述吸种孔的位置与气室的负压区和正压区对应。

[0007] 所述左、右充种室的吸种盘上的对应多组吸种孔以相差18°~30°投种角度错位排

布。

[0008] 所述充种室内还设有上端对应位于正压区和负压区之间、下端位于投种口边缘的隔种挡板,所述隔种档板一侧固定在罩壳上,另一侧设有毛刷并与吸种盘表面接触。

[0009] 相邻两组吸种孔之间设有径向的扰种条。

[0010] 每组吸种孔的两侧均设有周向的搅种齿。

[0011] 所述左、右充种室的投种口连通一个导种管。

[0012] 所述种箱的底面为斜面。

[0013] 所述种箱的底面设有多条漏斗形递种槽。

[0014] 所述充种口设有种层高度调节机构。

[0015] 所述种层高度调节机构包括设置充种口处的调节板,所述调节块的两侧设有定位孔,所述充种口两侧的罩壳上对应位置垂直设有多个调节孔,定位钉穿过所述定位孔对应插入所述调节孔中。

针对背景技术中存在的问题,发明人进行了如下改进:(1)在气室两侧分别设置 [0016] 左、右充种室,由过去的单箱充变为双箱,共用一个气室,两个对称的吸种盘同步转动,其作 业效果等同于孔数双倍的单盘,从而提高排种频率,解决了水稻种子高速直播的关键问题, 吸种性能好、漏播率和破损率低,大大提高工作效率;进一步的,左、右充种室的吸种盘上的 对应多组吸种孔以相差18°~30°投种角度错位排布,防止因高速来不及吸种或"飞种"的现 象,可降低种子充填时的线速度,保证压力稳定和充种、卸种、防止因高速来不及吸种或"飞 种"的现象,可降低种子充填时的线速度,可满足高速作业的要求、节能降耗。(2)气室包括 负压区和正压区,所述负压区占周向的四分之三弧面,形成马蹄形负压区,以便流畅的完成 吸附充种、携种动作,所述正压区位于余下的四分之一弧面处,且对应设于导种管的上方, 通过正压吹气完成投种动和,种料正好下落至导种管内,气流对水稻种子的破损较小,对水 稻种子的形状适应性较强,降低成本。(3)设置隔种挡板,可以将吸种盘上的投种区与充种 区隔开,一方面,避免扰动下,防止进入充种室的种子或种子层内的种子直接进入导种管, 无法均匀排种;另一方面,隔种挡板上的毛刷还能对吸种盘表面进行连续刮种作业,刮掉附 着在投种区吸种孔上未来及掉落的种子,进一步降低漏播率,减少对种子的损伤,保证种子 顺利投出,也可方便拆卸更换。(4) 相邻两组吸种孔之间设有径向的扰种条,使吸种盘上的 吸种孔在吸种前有一个初速,增加排种盘对种子的扰动性,提高种子的流动性,从而增强吸 种盘的吸种性能;每组吸种孔的两侧均设有周向的搅种齿,可限制高速排种时水稻种子的 碰撞接触力,保证每组充种口每次的充处数量,从而改善充填模式,吸种盘上的搅种齿确保 每穴粒数1~3粒,完成精量播种作业。

[0017] 由于芽种本身的物理特性,表面存在芒刺,种子群间摩擦力较大,其在储种区内的空间分布是随机的,因而在进料(充种)时存在流动性较低,出现充种性差、芽种结拱的现象,对此发明人将种箱的底面设计为斜面,方便种料滑入,并且在底面设计多条漏斗形递种槽,种料在漏斗形递种槽的导流作用下,可有序规律的进入到充种箱,漏斗形递种槽的结构可以在一定程度上改善其分布情况,可改善充种环境。

 充种箱内料层高度的要求,满足不同情况下的需求,缓解排种盘上型孔对芽种吸附的"压力",提高种子在充种区的流动性,利于充种。

[0019] 综上,本发明结构简单、结构简单、使用寿命长、满足高速工作状态下的排种要求,具有吸种性能高、投卸种稳定性好、适应性好、作业效率高、漏播率和破损率低、能耗低的优点,特别适用于作业速度大于8km/h的高速工况。

附图说明

[0020] 图1为本发明立体图。

[0021] 图2为本发明横向截面图。

[0022] 图3为发明气室内正压区和负压区的布置示意图。

[0023] 图4为吸种盘的示意图。

[0024] 图5为吸种盘各区投影关系图。

[0025] 图6为种箱底面的结构示意图。

[0026] 图7为充种口处种层高度调节机构的安装示意图。

[0027] 其中,1-罩壳、1.1-充种口、1.2-投种口、2-左充种室、3-右充种室、4-种箱、4.1-斜面、4.2-漏斗形递种槽、5-排种轴、5.1—键、6-气室、6.1-负压区、6.2-正压区、7-底座、8-吸种盘、9-吸种孔、10-扰种条、11-搅种齿、12-隔种挡板、13-毛刷、14-导种管、15-种层高度调节机构、15.1-调节板、15.2-定位孔、15.3-调节钉、15.4-调节孔、16-卸料挡口、17-传动机构。

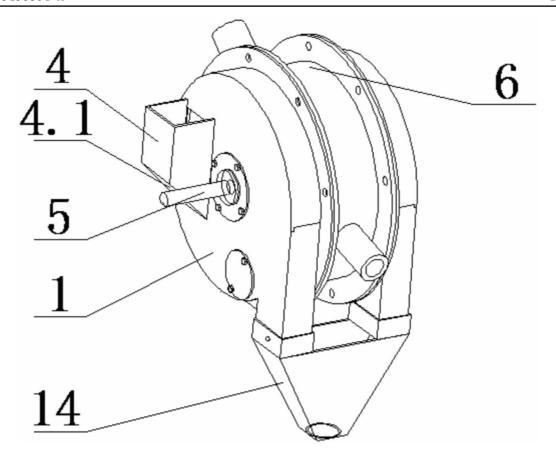
具体实施方式

[0028] 下面结合附图对本发明作进一步解释说明:

[0029] 参见图1和图2,设于底座7上的罩壳1设有充种口1.1和投种口1.2,所述罩壳1内设有气室6,所述气室6的两侧对称设有左充种室2和右充种室3,所述左、右充种室2、3分别经投种口1.2连通一个导种管14。排种轴5穿过左充种室2、气室6和右充种室3的中心与传动机构17连接。

[0030] 两个充种室结构相同,以左充种室2为例介绍其具体结构,所述左充种室2由内侧的吸种盘8和外侧的部分罩壳1组成,所述左充种室2经充种口1.1与固定在罩壳1上的种箱4连通,且所述排种轴5与所述吸种盘8通过键5.1连接;参见图3,所述气室6包括以排种轴5为圆心周向布置的负压区6.1和正压区6.2,所述负压区6.1占周向的四分之三弧面形成马蹄形负压区,该区域下段在吸种盘8上的投影对应为充种区α,该区域上段在在吸种盘8上的投影对应为携种区β,所述正压区5.2为圆形正压吹气口,位于余下的四分之一弧面上,对应设于导种管14的上方,在吸种盘8上的投影对应为投种区γ。所述负压区6.1可经负压接口与负压设备连接,所述正压区6.2可经正压接口与正压设备连接,此为现有技术。

[0031] 所述吸种盘8以排种轴5为圆心、沿周布均匀开有多组吸种孔9,优选吸种孔直径为1.4~2.0mm,每个吸种盘的吸种孔组数范围为6~10组,每组由2-4个吸种孔9组成,本实施例图中为每组有两个吸种孔9。相邻两组吸种孔9之间设有径向的扰种条10,每组吸种孔9的两侧均设有周向的搅种齿11。所述吸种孔9的位置与气室6的负压区6.1和正压区6.2对应。所述左充种箱2内还设有上端对应位于正压区6.1和负压区6.2之间、下端位于投种口1.2边


缘的隔种挡板12,所述隔种档板12一侧固定在罩壳1上,另一侧设有毛刷13并与吸种盘8表面接触,通过隔处挡板12将充种区 α 和投种区 γ 隔开。所述左、右充种室2、3的吸种盘8上的对应多组吸种孔9以相差18°~30°种角度错位排布。

[0032] 参见图6,所述种箱4的底面为斜面4.1,所述斜面4.1上设有多条漏斗形递种槽4.2。

[0033] 参见图7,所述充种口1.1处设有种层高度调节机构15,所述种层高度调节机构15包括设置在充种口1.1处的调节板15.1,所述调节块15.1的两侧设有定位孔15.2,所述充种口1.1两侧的罩壳1上对应位置垂直设有多个调节孔15.3,定位钉15.4穿过所述定位孔15.2对应插入所述调节孔15.3中,从而使调节板15.1按照需要高度被固定在充种口1.1处。

[0034] 工作原理:

[0036] 采用上述结构的本发明的作业效果等同于孔数双倍的单盘,从而提高排种频率,在作业速度大于8km/h的高速工况下,也能够产生均匀的种子流,实现高速作业,吸种性能高、投卸种稳定性好、飞种现象得到有效控制,漏播率均不大于6%、种子破损率降至0.5%。

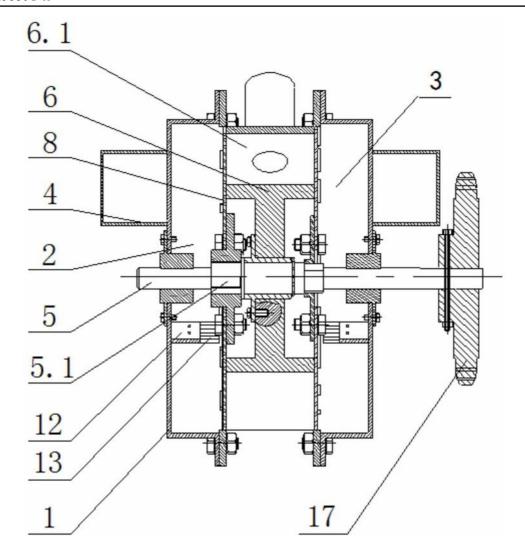


图2

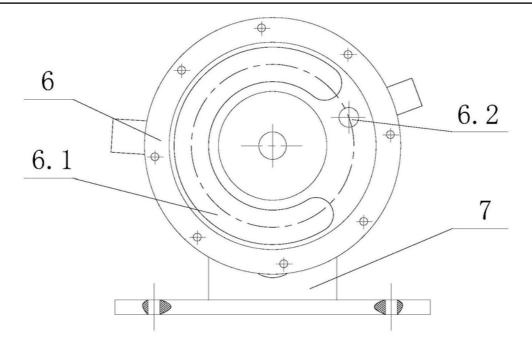


图3

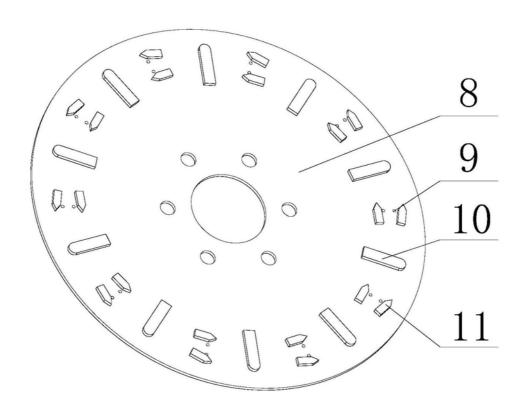


图4

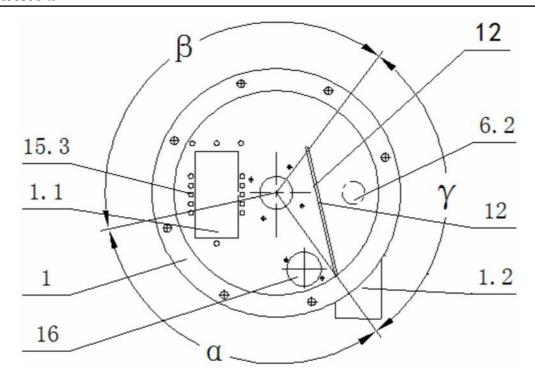


图5

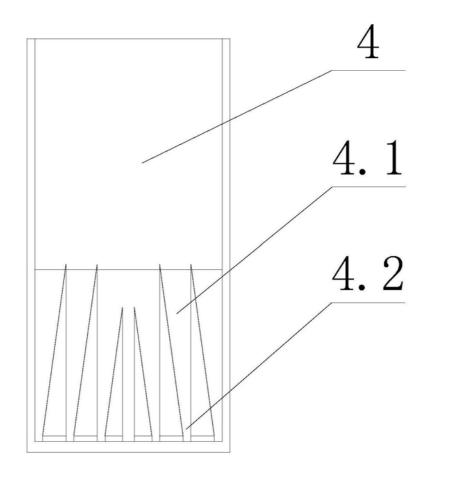


图6

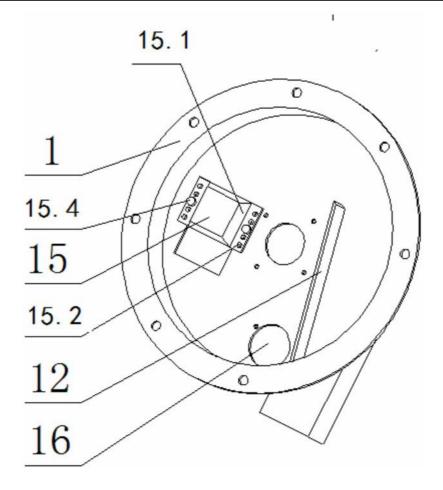


图7