Développement économique Canada

Office de la Propriété Intellectuelle du Canada

I*I Innovation, Sciences et

Innovation, Science and
Economic Development Canada

Canadian Intellectual Property Office

(86) Date de dépo6t PCT/PCT Filing Date: 2019/05/10

(87) Date publication PCT/PCT Publication Date: 2019/11/14

(45) Date de délivrance/lssue Date: 2021/11/30

(85) Entrée phase nationale/National Entry: 2020/11/10
(86) N° demande PCT/PCT Application No.: CA 2019/050628
(87) N° publication PCT/PCT Publication No.: 2019/213775

(30) Priorité/Priority: 2018/05/11 (US15/977,155)

(51) CLInt./Int.Cl. GO6F 8/00(2018.01),
GO6F 16/23(2019.01), GO6F 16/27(2019.01),
GO6F 21/10(2013.01), GO6F 8/34(2018.01),
GO6F 8/60(2018.01)

(72) Inventeurs/Inventors:
EKSTEN, BRICK, CA;
WHITE, CRAIG, CA,
PALMER, SCOTT, CA;
BELME, FRANK, CA;

LI, STEPHEN, CA;
SACEANU, CRISTIAN, CA

(73) Propriétaire/Owner:
IMAGINE COMMUNICATIONS CORP., US

(74) Agent: NORTON ROSE FULBRIGHT CANADA

(54) Titre : PLATE-FORME DE REGISTRE DISTRIBUE POUR APPLICATIONS INFORMATIQUES
(54) Title: DISTRIBUTED LEDGER PLATFORM FOR COMPUTING APPLICATIONS

Dovelopment
pmmdramewnrk 12—

Data
Containers
&5

Camponents

Transtation

- Modute SOK

24

Compeound
Components
28

Graphs

Code Sign

28

Deployment

ubsystern 14

1 External interface

I

Job Manager
50 r

¥
~Cloud Agent 34,

Cioud Engine
36
Cioud Engine
36b

Security Module

<
Lisencs
Pool 42

Licanve Berver
4z

.

(57) Abrégé/Abstract:

Systems and methods for dynamic development and/or management of computing applications including a development
framework, a visual design subsystem, a deployment subsystem, and a distributed ledger, where at runtime the deployment
subsystem is operable to dynamically deploy a computing application realized by a blueprint by sending a request at runtime for
graphs and components instantiated by the blueprint, and the distributed ledger is operable to store a set of components and

associating each component with a digital certificate.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

CA 3099814 C 2021/11/30

neEn 3 099 814

(12 BREVET CANADIEN
CANADIAN PATENT

CA 3099814 C 2021/11/30

anen 3 099 814
13 C

(74) Agent(suite/continued): LLP/S.ENN.C.R.L., S.R.L.

w0 20197213775 A1 |0 0000 00 0O O 00

CA 03099814 2020-11-10

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
14 November 2019 (14.11.2019)

(10) International Publication Number

WO 2019/213775 Al

WIPO I PCT

(51) International Patent Classification:

0E4 (CA). LI, Stephen [CA/CA], 8 Vecchia Street,

GO6F 8/00 (2018.01) GO6F 21/10 (2013.01) Markham, Ontario L6E 1R1 (CA). SACEANU, Cristian
GO6F 16/23 (2019.01) GO6F 8/34(2018.01) [CA/CA]; 21 Brack Place, Thombhill, Ontario L4J 2W3
GO6F 16/27 (2019.01) GOGF 8/60 (2018.01) (CA).
(21) International Application Number: (74) Agent: NORTON ROSE FULBRIGHT CANADA LLP/
PCT/CA2019/050628 S.E.N.C.R.L., S.R.L.; 1 Place Ville Marie, Suite 2500,
(22) International Filing Date: Montreal, Québec H3B IR1 (CA).
10 May 2019 (10.05.2019) (81) Designated States (unless otherwise indicated, for every
- . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, A]"I", AU, AZ{)BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
(30) Priority Data: HR, HU, ID. IL, IN, IR. IS, JO, JP, KE, KG, KH, KN, KP,
15/977,155 11 May 2018 (11.05.2018) Us KR KW KZ LA.LC. LK. LR.LS. LU, LY. MA. MD. ME,
(71) Applicant: IMAGINE COMMUNICATIONS CORP. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
[US/US]; 2600 Network Boulevard, Suite 400, Frisco, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
Texas 75034 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and
(71) Applicants: EKSTEN, Brick [CA/CA]; 8 Forestgreen Dri- (84) Designated States (unless otherwise indicated, for every

ve, Uxbridge, Ontario L9P 0B8 (CA). WHITE, Craig
[CA/CA]; 68 Crystal Drive, Richmond Hill, Ontario L4C
7Y7 (CA). PALMER, Scott [CA/CA]; 8 Katherine Cres-
cent, Stouffville, Ontario L4A 1K4 (CA). BELME, Frank
[CA/CA]; 27 Maurovista Court, Stouffville, Ontario L4A

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, [E, IS, IT, LT, LU, LV,

(54) Title: DISTRIBUTED LEDGER PLATFORM FOR COMPUTING APPLICATIONS

(57) Abstract: Systems and methods for dynamic development and/or management
of computing applications including a development framework, a visual design sub-
system, a deployment subsystem, and a distributed ledger, where at runtime the de-

Ve ployment subsystem is operable to dynamically deploy a computing application re-
alized by a blueprint by sending a request at runtime for graphs and components
instantiated by the blueprint, and the distributed ledger is operable to store a set of
components and associating each component with a digital certificate.

Exterra inter‘ace
38

S (o |

Teence.
Fes 44

Fig.1a

[Continued on next page]

CA 03099814 2020-11-10

WO 20197213775 A [IN 0000000 00 OO O

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

DISTRIBUTED LEDGER PLATFORM FOR COMPUTING APPLICATIONS

FIELD

[0001] The described embodiments relate to systems and methods for computing
applications, and in particular, to systems and methods for dynamic development and

deployment of computing applications using distributed ledgers.

INTRODUCTION

[0002] Computing applications generally involve processing data, performing operations
on the data to carry out specific functions, completing tasks, controlling components, and so
on. An example computing application is a media application. Media applications generally
involve producing, transforming or delivering media data, or a combination thereof. New
devices and technology increase the use of computing applications and data. New network
capabilities and improved data access further increase the use of computing applications
and data. The availability of multiple computing languages, protocols and platforms increase
options available to computing application providers, developers, and users but may make it
difficult to use a combination of multiple computing applications or combine a new
computing application with an existing system or architecture due to integration,
interoperability and connectivity problems. Computing applications may be developed by
reusing components of other computing applications. Components may be reused for the
same function or for a different function. The reused components may or may not function
properly when used for a different function or purpose. That is, the reused component may
or may not be suitable for a different function or purpose. Further, the reused component
may or may not be developed or provided by a trusted source. It may be difficult to
authenticate a computing component as being from a trustworthy source. It may also be
difficult to verify, in a contemporaneous fashion (e.g. in real-time or near real-time), that a
provided component is universally accepted by multiple stakeholders or authorities for
performing a specific function in a complex computing environment. There exists a need for
improved methods and systems for the development and deployment of computing

applications, or at least alternatives.

SUMMARY

[0003] In a first aspect, embodiments described herein provide a system for dynamic
development of computing applications comprising a development framework, one or more

processors, and a memory coupled to the one or more processor and configured to store

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

instructions executable by the one or more processors to configure the development
framework to define components and graphs, wherein each component defines a computing
processing mechanism for processing data containers of computing data at application
runtime, wherein each graph identifies components, connections between the components,
and properties for the components, wherein a graph is an instantiation of a corresponding
blueprint at application runtime, wherein the development framework enables components
to be embedded within other components. Additional and alternative functionality is

described herein.

[0004] In accordance with some embodiments, a distributed ledger platform may be
provided. The distributed ledger may include one or more blocks, each associated with a
respective component and a respective function or purpose for the component. In some
embodiments, the blocks may associate with graphs or blueprints. The distributed ledger
may receive a request to update the one or more blocks with at least one new component
(or blueprint) for a specific function or purpose, the distributed ledger having one or more
blocks, each of the one or more blocks associated with a respective component (or
blueprint) and a respective function or purpose for the respective component (or blueprint);
determine that the at least one new component (or blueprint) is linked to a digital certificate;
authenticate the digital certificate; generate a digital signature for the at least one new
component (or blueprint) based on the digital certificate; generate a new block comprising
the digital signature and a pointer to the at least one new component (or blueprint) as stored

in the one or more linked repositories; and update the distributed ledger with the new block.

[0005] In accordance with some embodiments, a graph may deliver functionality defined
by the components identified by the graph, and wherein a blueprint connects the
functionality to a running environment. The blueprint may provide business logic for the
corresponding graph. The distributed ledger can include blocks that represent graphs or
blueprints so that entire processes can be associated with blocks in the same manner as

components as described herein.

[0006] In accordance with some embodiments, the system may further comprise a
visual design subsystem for realizing computing applications, wherein the visual design
subsystem is operable to arrange components into functional blocks, define specific orders
of operation for the functional blocks, and define connections between the functional blocks
to instantiate the computing applications. Additional and alternative functionality is described

herein.

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0007] In accordance with some embodiments, each component may be associated with
one or more versions, wherein at least one of a graph and a blueprint comprises a reference
to a solution set of components, wherein the solution set identifies a version for each

component.

[0008] In accordance with some embodiments, at least one component may be
associated with one or more versions and wherein the development framework enables
loading of an appropriate version of the at least one component at application runtime.

[0009] In accordance with some embodiments, a first component may be in a first
language and a second component may be in a second different language, wherein the first
and second components comprise data and are operable to access the memory and data
structures, and wherein the system further comprises a translation module operable to
translate multiple languages into a common language by translating the first and second
component data and how the first and second component re operable to access the

memory and the data structures.

[0010] In another aspect, embodiments described herein may provide a method for
dynamic development of computing applications: providing a dynamic development of
computing applications comprising a development framework, one or more processors, and
a memory coupled to the one or more processor and configured to store instructions
executable by the one or more processors to configure the development framework to
define components and graphs, wherein each component defines a computing processing
mechanism for processing data containers of computing data at application runtime,
wherein each graph identifies components, connections between the components, and
properties for the components, wherein a graph is instantiated by a corresponding blueprint
at application runtime; wherein the development framework enables components to be
embedded within other components; developing components and graphs for a blueprint; and
storing the components and the graphs for the blueprint in the repository for loading at

application runtime.

[0011] In some embodiments, the method may include: receiving a request to update a
distributed ledger structure with at least one new component for a specific function or
purpose, the distributed ledger having one or more blocks or entries, each of the one or
more blocks associated with a respective component and a respective function or purpose
for the respective component; determine that the at least one new component is linked to a
digital certificate; authenticate the digital certificate; generate a digital signature for the at
least one new component based on the digital certificate; generate a new block comprising

-3-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

the digital signature and a pointer to the at least one new component as stored in the one or
more linked repositories; and update the distributed ledger with the new block.

[0012] In another aspect, embodiments described herein may provide a system for
dynamic deployment of computing applications comprising: a deployment subsystem for
deploying computing applications at runtime, one or more processors, and a memory
coupled to the one or more processor and configured to store instructions executable by the
one or more processors to configure the deployment subsystem with a repository, cloud
agent, cloud engine, wherein the computing applications are realized by blueprints, wherein
each blueprint may be used to instantiate a graph at application runtime, wherein a graph
identifies components, connections between the components, and properties for the
components, wherein each component defines a computing processing mechanism for
processing data containers of computing data at application runtime, wherein each graph
identifies components, wherein the repository stores the graphs and the components for
loading at application runtime, wherein the cloud agent controls at least one cloud engine,
wherein the cloud engine provides a running environment for the computing application by
using blueprints to instantiate graphs at application runtime; wherein at runtime the
deployment subsystem dynamically constructs and deploys a computing application by
sending a request at runtime to the repository for the graphs instantiate by corresponding
blueprints and components identified therein. Additional and alternative functionality is

described herein.

[0013] In accordance with some embodiments, the system may include a distributed
ledger platform including one or more blocks, wherein each of the one or more blocks is
associated with a respective component and a respective function or purpose for the
respective component, and wherein the distributed ledger platform is configured to: receive
a request to update the distributed ledger with at least one new component for a specific
function or purpose; determine that the at least one new component is linked to a digital
certificate; authenticate the digital certificate; generate a digital signature for the at least one
new component based on the digital certificate; generate a new block comprising the digital
signature and a pointer to the at least one new component as stored in the one or more
linked repositories; and update the distributed ledger with the new block.

[0014] In accordance with some embodiments, each component may be associated with
one or more versions, wherein at least one of a blueprint and a graph comprises a reference
to a solution set of components, wherein the solution set identifies a version for each

component.

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0015] In accordance with some embodiments, the system may further comprise a
license server, wherein the license server may dynamically manage licenses and associates
licenses with components and graphs, wherein use of components and graphs at

application runtime requires the appropriate license.

[0016] In accordance with some embodiments, the system may further comprise a job
manager, wherein the job manager dispatches blueprints and graphs to cloud agents based
on available licenses managed by the license server. The job manager may also be

configured to provide job and cloud engine dispatch, failover, tracking and reporting.

[0017] In accordance with some embodiments, the system may further comprise a
security manager, wherein the security manager provides for secure connections and
communications between system components. Additional and alternative functionality is

described herein.

[0018] In accordance with some embodiments, each graph identifies components,
connections between the components, and properties for the components, wherein

components are connected by different types of pins.

[0019] In accordance with some embodiments, a data container defines a data type and
a data object, wherein the data type is metadata describing the data container and the data

object maintains raw data.

[0020] In accordance with some embodiments, the repository manages versioning of
components and graphs to keep track of updates made thereto, wherein the repository
serves the components and graphs at application runtime using appropriate versions of the

graphs and components. Additional and alternative functionality is described herein.

[0021] In accordance with some embodiments, the cloud agent is provided to each user
system to manage the local resources of the user system, wherein the cloud agents interact
with cloud engines to instantiate graphs using blueprints. Additional and alternative

functionality is described herein.

[0022] In accordance with some embodiments, the system may further comprise a
normalization module operable to receive input data files and convert and parse the input

data files into data containers for processing by a graph.

[0023] In accordance with some embodiments, the system may further comprise code

signing module operable to digitally sign each component to associate a developer, license,

-5-

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

or both with at least one component. Additional and alternative functionality is described
herein.

[0024] In accordance with some embodiments, the system may further comprise a
digital certificate associated with a component provider subsystem, wherein the component
provider subsystem provides one or more components; a digital certificate associated with a
user computing subsystem, wherein the user computing subsystem is associated with a
computing application, wherein the computing application involves a component provided by
the component provider computing system; a license server configured to digitally sign a
component by linking the component to the digital certificate associated with the user
computing subsystem and the digital certificate associated with the component provider
subsystem to indicate that the user computing system and the component provider
subsystem accept performance of the digitally signed component; wherein at runtime prior
to deploying each component the deployment subsystem queries the license server to
determine whether the component is linked to the digital certificate associated with the user
computing subsystem and the digital certificate associated with the component provider

subsystem.

[0025] In accordance with some embodiments, the deployment subsystem may be
further configured to partition a graph into two or more subgraphs and handle interprocess

communications between the two or more subgraphs.

[0026] In another aspect, embodiments described herein may provide a method for
dynamic deployment of computing applications: providing a deployment subsystem for
deploying computing applications at runtime, one or more processors, and a memory
coupled to the one or more processor and configured to store instructions executable by the
one or more processors to configure the deployment subsystem to comprise a repository,
cloud agent, cloud engine, wherein the computing applications identify blueprints, wherein
each blueprint may be used to instantiate a graph at application runtime, wherein a graph
identifies components, connections between the components, and properties for the
components, wherein each component defines a computing processing mechanism for
processing data containers of computing data at application runtime, wherein each graph
identifies components; storing components and graphs in the repository for loading at
application runtime; providing, by the cloud engine, a running environment for the computing
application by using blueprints to instantiate graphs at application runtime; controlling, by the
cloud agent, the cloud engine; at application runtime, dynamically deploying a computing
application by sending a request at runtime to the repository for the graphs and components

identified in the blueprint.

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0027] In accordance with some embodiments, the method may further include storing
each of the set of components in a respective block in a distributed ledger, and associating

each of the set of components with a specific function or purpose in the respective block.

[0028] In accordance with some embodiments, the method may further comprise
providing a digital certificate associated with a component provider subsystem, wherein the
component provider subsystem provides one or more components; providing a digital
certificate associated with a user computing subsystem, wherein the user computing
subsystem is associated with a computing application, wherein the computing application
involves a component provided by the component provider computing system; providing a
license server configured to digitally sign a component by linking the component to the
digital certificate associated with the user computing subsystem and the digital certificate
associated with the component provider subsystem to indicate that the user computing
system and the component provider subsystem accept performance of the digitally signed
component; receiving, at a license server, acceptance of the component provided by the
component provider subsystem in the computing application associated with user computing
system by receiving the digital certificate from the user computing subsystem and the digital
certificate from the component provider computing system; linking, at the license server, the
component provided by the component provider subsystem in the computing application
associated with user computing system to the digital certificate from the user computing
subsystem and the digital certificate from the component provider computing system; and at
application runtime prior to deploying each component, querying the license server to
determine whether the component is linked to the digital certificate associated with the user
computing subsystem and the digital certificate associated with the component provider

subsystem.

[0029] In another aspect, some embodiments described herein provide a system for
dynamic development and deployment of computing applications (such as e.g. a media
application) comprising: a development framework comprising a software development Kit,
components, data containers, pins, and graphs, wherein the software development kit is
used to define components, graphs, data containers, and blueprints. Each component may
define a computer processing mechanism for processing data containers at application
runtime. Each graph may be a template of a set of components, and each blueprint may be
an embodiment of a graph; a visual design subsystem configured to output graphs and
blueprints to develop computing applications using components, compound components
and other graphs, wherein the visual design subsystem is operable to arrange components

into functional blocks and define specific orders of operation for the functional blocks; a

-7-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

deployment subsystem for deploying computing applications at runtime comprising a
repository, cloud agent, and cloud engine. The computing applications identify graphs,
blueprints compound components, and components. The repository is configured to store
graphs and components for loading at application runtime. The cloud engine provides a
running environment for graphs and executes graphs at application runtime to instantiate
computing applications. The cloud agent may control and manage the cloud engine. At
runtime the deployment subsystem may dynamically construct and deploy a computing
application by sending a request at runtime to the repository for the graphs, compound
components, and components identified in the computing application. The deployment
subsystem is operable to deploy a computing application by, at runtime, retrieving,
transferring, downloading, and so on, the graphs, blueprints, etc. from the repository. The
components, graphs, blueprints may not be present in the computing application and they
may be pulled dynamically to create the computing application at runtime. They may also
pre-exist locally due to previous availability (cache) or through user intent (e.g. a job

manager persists the availability because the job is going to repeat).

[0030] In accordance with some embodiments, the deployment subsystem may further
comprise a license server which may dynamically manage licenses and associate licenses
with components and graphs. Use of components and graphs identified in a computing

application requires the appropriate license.

[0031] In accordance with some embodiments, the deployment subsystem may further
comprise a job manager, which dispatches cloud engines based on available licenses

managed by the license server.

[0032] In accordance with some embodiments, the deployment subsystem may further
comprise a security manager which provides for secure connections and communications
between system components.

[0033] In accordance with some embodiments, the deployment subsystem may further
comprise a job manager configured to provide job and engine dispatch, failover, tracking
and reporting. The job manager may also be configured to provide the highest level of
access to the running cloud engines, and provide centralized access to the cloud engines
regardless of state (running or not). The job manager may further self-extend interfaces
(e.g. web services) based on the graph/blueprint that is loaded on the cloud engine to
provide a namespace (similar to the web) which may allow the developer to discover which

graphs/components are used in that particular application, query/set parameters, and so on.

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0034] In accordance with some embodiments, a graph may define a set of

components, where components in the set are connected by different types of pins.

[0035] In accordance with some embodiments, a data container may define a data type
and a data object, wherein the data type is metadata describing the container and the data

object maintains raw data.

[0036] In accordance with some embodiments, the repository is operable to manage
versioning of components and graphs to keep track of updates made thereto. The repository
serves the components and graphs at application runtime using appropriate versions of the

graphs and components.

[0037] In accordance with some embodiments, the cloud agent is provided to each user
system to manage the local resources of the user system. The cloud agents interact with

cloud engines to execute graphs in order to run computing applications.

[0038] In accordance with some embodiments, the system may further comprise a
normalization module operable to receive input files and convert and parse the input files

into data containers to be processed by a graph.

[0039] In accordance with some embodiments, the system may further comprise a code
signing module operable to digitally sign each component to associate a developer/license

with each component.

[0040] In accordance with some embodiments, the system may further comprise a
translation module operable to translate multiple languages into a common language for

system.

[0041] In accordance with another aspect, embodiments may provide a method for
dynamic development and deployment of computing applications (such as media
applications, for example) comprising: providing a development framework comprising a
software development kit, components, data containers, pins, and graphs. The software
development kit may be used to define the components, graphs, and data containers. Each
component may define a computer processing mechanism for processing data containers of
media data at application runtime. Each graph may define a set of components, along with
specific connections between the components and properties for the components; providing
a visual design subsystem to define and output graphs, wherein graphs may be used to
realize and create computing applications; using the visual design subsystem to arrange

components into functional blocks and define specific orders of operation for the functional

-9-

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

blocks, including connections between the functional blocks; providing a deployment
subsystem for deploying computing applications at runtime comprising a repository, cloud
agent, and a cloud engine. The computing applications may identify graphs, compound
components, and components. The cloud engine may provide a running environment for
graphs and executes graphs at application runtime to instantiate computing applications.
The cloud agent controls the cloud engine; storing components and graphs output by the
visual design subsystem in the repository for loading at application runtime; and at
application runtime, dynamically constructing and deploying a computing application by
sending a request at runtime to the repository for the graphs, compound components, and

components identified in the computing applications.

[0042] In another aspect, embodiments described herein provide a system for dynamic
development and deployment of computing applications comprising: a development
framework comprising a software development kit, components, data containers, pins, and
graphs. The software development kit may be used for defining the components, graphs,
blue prints, and data containers. Each component may define a media processing
mechanism for processing data containers of computing data at application runtime. Each
component may be associated with one or more versions. Each graph may be a template
identifying components and used to generate a corresponding blueprint. A blueprint may be
a final embodiment of the graph and may comprise a reference to a solution set of
components, where the solution set of components may identify a version for each
component; a visual design subsystem configured to define and output graphs in order to
realize and create computing applications. The visual design subsystem may be operable to
arrange components into functional blocks and define specific orders of operation for the
functional blocks, including connections between the functional blocks. The visual design
subsystem may be further configured to define a solution set of components by identifying a
version of each component; a deployment subsystem for deploying computing applications
at runtime comprising a repository, one or more cloud agents, and one or more cloud
engines. The computing applications identify graphs, compound components, and
components. The repository may be configured to store graphs, blueprints and components
for loading at application runtime. The cloud engine may provide a running environment for
graphs and may execute blueprints of the graphs at application runtime to instantiate
computing applications. The cloud agent may be operable to control the cloud engine;
wherein at runtime the deployment subsystem dynamically constructs and deploys a
computing application by sending a request at runtime to the repository for the graphs,
blueprints, compound components, and components, including appropriate versions thereof,

identified in the computing applications.

-10 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0043] In a further aspect, embodiments described herein provide method for dynamic
development and deployment of computing applications: providing a development
framework comprising a software development kit, components, data containers, pins, and
graphs. The software development kit may define components, graphs, blueprints, and data
containers. Each component may define a computer processing mechanism for processing
data containers of computing data at application runtime. Each component is associated
with one or more versions. Each graph may be a template identifying components and may
be used to generate a corresponding blueprint. A blueprint may be a final embodiment of
the graph and may comprise a reference to a solution set of components, where the solution
set of components identifies a version for each component; providing a visual design
subsystem for defining and outputting graphs in order to develop media applications, and for
defining a solution set of components by identifying a version of each component; using the
visual design subsystem to define a graph by arranging components into functional blocks
and defining specific orders of operation for the functional blocks, including connections
between the functional blocks, where the graph references a solution set of components;
using the visual design subsystem to define a solution set of components referenced by the
graph by receiving a selected version for each component in the solution set of components;
providing a deployment subsystem for deploying computing applications at runtime
comprising a repository, one or more cloud agents, and one or more cloud engines. The
media applications identify graphs, compound components, and components. The cloud
engine provides a running environment for graph and executes blueprints of the graphs at
application runtime to instantiate computing applications The cloud agent may be operable
to control the cloud engine; storing components and graphs output by the visual design
subsystem in the repository for loading at application runtime; and at application runtime,
dynamically constructing and deploying a computing application by sending a request at
runtime to the repository for the graphs, compound components, and components, including

appropriate versions thereof identified in the computing application.

[0044] In another aspect, embodiments described herein provide a system for dynamic
development and deployment of computing applications comprising: a development
framework comprising a software development kit, components, data containers, pins, and
graphs. The software development kit may be for defining the components, graphs, blue
prints, data containers. Each component may define a media processing mechanism for
processing data containers of computing data at application runtime. Each graph may be a
template identifying components and may be used to generate a corresponding blueprint. A
blueprint may be a final embodiment of a graph, and a graph is the instantiation of a

corresponding blueprint at application runtime; a digital certificate associated with a

11 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

component provider subsystem, where the component provider subsystem provides one or
more components of the development framework; a digital certificate associated with user
computing subsystem, where the user computing subsystem is associated with a computing
application, where the computing application involves a component provided by the
component provider computing system; a visual design subsystem configured to define and
output graphs in order to develop computing applications, where the visual design
subsystem is operable to arrange components into functional blocks and define specific
orders of operation for the functional blocks; a deployment subsystem for deploying
computing applications at runtime comprising a repository, one or more cloud agents, and
one or more cloud engines. The computing applications identify graphs, compound
components, and components. The repository may be configured to store graphs and
components for loading at application runtime. The cloud engine may provide a running
environment for graph and may execute blueprints of the graphs at application runtime to
instantiate computing applications. The cloud agent is operable to control one or more cloud
engines. The deployment subsystem may further comprise a license server configured to
digitally sign a component by linking the component to the digital certificate associated with
the user computing subsystem and the digital certificate associated with the component
provider subsystem to indicate that the user computing system and the component provider
subsystem accept performance or conformity of the digitally signed component, where
performance may relate to runtime performance, service level agreement, and other
measures of performance; wherein at runtime the deployment subsystem dynamically
constructs and deploys a computing application by sending a request at runtime to the
repository for the graphs, blueprints, compound components, and components identified in
the computing applications. Prior to deploying each component, the deployment subsystem
may query the license server to determine whether a component is linked to a digital
certificate associated with the user computing subsystem and the digital certificate

associated with the component provider subsystem.

[0045] In a further aspect, embodiments described herein provide a method for dynamic
development and deployment of computing applications comprising: providing a
development framework comprising a software development kit, components, data
containers, pins, and graphs. The software development kit may define components,
graphs, blueprints, and data containers. Each component may define a computing
processing mechanism for processing data containers of computing data at application
runtime. Each component may be associated with one or more versions and each graph
may be a template identifying components and may be used to generate a corresponding

blueprint. A blueprint may be a final embodiment of a graph, and a blueprint may be used to

-12-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

instantiate a graph at application runtime; providing a digital certificate to a component
provider computing system, where the component provider computing system provides one
or more components to the development framework; providing a digital certificate to a user
computing subsystem, where the user computing subsystem is associated with a media
application, and where the computing application involves a component provided by the
component provider computing system; providing a visual design subsystem for defining
and outputting graphs in order to develop computing applications, and for defining a solution
set of components by identifying a version of each component; using the visual design
subsystem to define a graph by arranging components into functional blocks and defining
specific orders of operation for the functional blocks, where the graph may reference a
solution set of components; providing a deployment subsystem for deploying computing
applications at runtime comprising a repository, one or more cloud agents, and one or more
cloud engines. The computing applications may identify graphs, compound components,
and components. The cloud engine may provide a running environment for graphs and may
execute blueprints of the graphs at application runtime to instantiate computing applications.
The cloud agent is operable to control the cloud engine; receiving, at a license server,
acceptance of the component provided by the component provider subsystem in the
computing application associated with the user computing system by receiving the digital
certificate from the user computing subsystem and the digital certificate from the component
provider computing system; linking, at the license server, the component provided by the
component provider subsystem in the computing application associated with user computing
system to the digital certificate from the user computing subsystem and the digital certificate
from the component provider computing system; storing components and graphs output by
the visual design subsystem in the repository for loading at application runtime; and at
application runtime, dynamically constructing and deploying the computing application
associated with the user computing subsystem by sending a request at runtime to the
repository for the graphs, compound components, and components identified in the
computing application; and prior to deploying the component provided by the component
provider computing system, querying the license server to determine whether the
component is linked to the digital certificate associated with the user computing subsystem

and the digital certificate associated with the component provider subsystem.

[0046] Variations and combinations may also be provided by the embodiments
described herein. Additional aspects of various example embodiments are identified and

described in the following description.

13-

10

15

20

25

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

BRIEF DESCRIPTION OF THE DRAWINGS

[0047] For a better understanding of embodiments of the systems and methods
described herein, and to show more clearly how they may be carried into effect, reference

will be made, by way of example, to the accompanying drawings in which:

[0048] FIG. 1A illustrates a block diagram of the system for dynamic development and

deployment of computing applications, in accordance with an example embodiment;

[0049] FIG. 1B illustrates a block diagram of the data flow of a system for dynamic
development and deployment of computing applications, in accordance with an example

embodiment;

[0050] FIG. 1C illustrates another block diagram of the data flow of a system for
dynamic development and deployment of computing applications, in accordance with an

example embodiment;

[0051] FIG. 1D illustrates a block diagram of an example system for providing a

distributed ledger of computing components, in accordance with an example embodiment;

[0052] FIG. 1E illustrates a block diagram of an example distributed ledger manager

system, in accordance with an example embodiment;

[0053] FIG. 2A illustrates a block diagram of example components in accordance with

an example embodiment;

[0054] FIG. 2B illustrates example components for integration into a distributed ledger in

accordance with an example embodiment;

[0055] FIG. 2C illustrates an example distributed ledger of components in accordance

with an example embodiment;

[0056] FIG. 2D illustrates an example digital signature associated with a component in a

block of a distributed ledger in accordance with an example embodiment;

[0057] FIG. 2E illustrates a block diagram for instantiating components by a service

coordinator based on a distributed ledger in accordance with an example embodiment;

[0058] FIG. 3 illustrates a block diagram of example properties of an example

component in accordance with an example embodiment;

-14 -

10

15

20

25

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0059] FIG. 4 illustrates a block diagram of example data container and components in

accordance with an example embodiment;

[0060] FIG. 5 illustrates a block diagram of an example graph in accordance with an

example embodiment;

[0061] FIG. 6 illustrates a block diagram of an example interface for a visual design

subsystem in accordance with an example embodiment;

[0062] FIG. 7 illustrates a block diagram of an example interface for a repository in

accordance with an example embodiment;

[0063] FIG. 8 illustrates a block diagram of an example interface for a job manager in

accordance with an example embodiment;

[0064] FIGs. 9 and 10 illustrate block diagrams of example web services

implementations in accordance with example embodiments;

[0065] FIGs. 11 and 12 illustrate block diagrams of example implementations of an

asset management and publishing system in accordance with example embodiments;

[0066] FIG. 13A illustrates a block diagram of an example interface for defining a

solution set of components in accordance with example embodiments;

[0067] FIG. 13B illustrates a block diagram showing an example process of updating a

solution set in a distributed ledger in accordance with example embodiments;

[0068] FIG. 13C illustrates a block diagram of two parties engaging in a trusted

transaction based on a distributed ledger in accordance with an example embodiment;

[0069] FIG. 14 illustrates a block diagram of an example certification system in

accordance with example embodiments;

[0070] FIG. 15 illustrates a block diagram of dynamic provisioning in accordance with

example embodiments;

[0071] FIG. 16 illustrates a block diagram of partitioning mixed architectures in

accordance with example embodiments;

[0072] FIG. 17 illustrates an example browser based console to access the license

server in accordance with example embodiments;

-15-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0073] FIG. 18 illustrates a block diagram of stand-alone deployment in accordance with

example embodiments;

[0074] FIG. 19 illustrates a block diagram of network deployment in accordance with

example embodiments;

[0075] FIG. 20 illustrates a flow diagram for updating a distributed ledger with a new

block in accordance with example embodiments; and

[0076] FIG. 21 illustrates a flow diagram for providing a component stored in a

distributed ledger for use in accordance with example embodiments.

[0077] The drawings, described below, are provided for purposes of illustration, and not
of limitation, of the aspects and features of various examples of embodiments described
herein. The drawings are not intended to limit the scope of the teachings in any way. For
simplicity and clarity of illustration, elements shown in the figures have not necessarily been
drawn to scale. The dimensions of some of the elements may be exaggerated relative to
other elements for clarity. Further, where considered appropriate, reference numerals may

be repeated among the figures to indicate corresponding or analogous elements.
DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0078] It will be appreciated that numerous specific details are set forth in order to
provide a thorough understanding of the exemplary embodiments described herein.
However, it will be understood by those of ordinary skill in the art that the embodiments
described herein may be practiced without these specific details. In other instances, well-
known methods, procedures and components have not been described in detail so as not to
obscure the embodiments described herein. Furthermore, this description is not to be
considered as limiting the scope of the embodiments described herein in any way, but rather

as merely describing implementation of the various example embodiments described herein.

[0079] The embodiments of the systems and methods described herein may be
implemented in hardware or software, or a combination of both. However, these
embodiments may be implemented in computer programs executing on programmable
computers, each computer including at least one processor, a data storage system
(including volatile and non-volatile memory and/or storage elements), and at least one
communication interface. For example, the programmable computers may be a server,
network appliance, set-top box, embedded device, computer expansion module, personal

computer, laptop, personal data assistant, cloud computing system or mobile device. A

-16 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

cloud computing system is operable to deliver computing service through shared resources,
software and data over a network. Program code is applied to input data to perform the
functions described herein and to generate output information. The output information is
applied to one or more output devices to generate a discernible effect. In some
embodiments, the communication interface may be a network communication interface. In
embodiments in which elements are combined, the communication interface may be a
software communication interface, such as those for inter-process communication. In still

other embodiments, there may be a combination of communication interfaces.

[0080] Each program may be implemented in a high level procedural or object oriented
programming or scripting language, or both, to communicate with a computer system.
However, alternatively the programs may be implemented in assembly or machine
language, if desired. In any case, the language may be a compiled or interpreted language.
Each such computer program may be stored on a storage media or a device (e.g. ROM or
magnetic diskette), readable by a general or special purpose programmable computer, for
configuring and operating the computer when the storage media or device is read by the
computer to perform the procedures described herein. Embodiments of the system may also
be considered to be implemented as a non-transitory computer-readable storage medium,
configured with a computer program, where the storage medium so configured causes a
computer to operate in a specific and predefined manner to perform the functions described
herein.

[0081] Furthermore, the system, processes and methods of the described embodiments
are capable of being distributed in a computer program product including a physical non-
transitory computer readable medium that bears computer usable instructions for one or
more processors. The medium may be provided in various forms, including one or more
diskettes, compact disks, tapes, chips, magnetic and electronic storage media, and the like.
The computer useable instructions may also be in various forms, including compiled and

non-compiled code.

[0082] Embodiments described herein may relate to various types of computing
applications, such as media applications, resource related applications, voting applications,
user registration applications, integrity management applications, and so on. By way of

illustrative example embodiments may be described herein in relation to media applications.

[0083] Referring now to FIG. 1A, there is shown a block diagram of a system 10 for
dynamic development and/or deployment of computing applications in accordance with an
example embodiment. By way of example, a computing application may be a media

17 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

application. A media application may be a computing application designed to perform
specific tasks and activities for manipulating media data using a combination of hardware
and software computing components. For example, the media application may involve
processing media data, performing operations on the data to carry out specific functions,
completing tasks, controlling components, producing, transforming or delivering media data,
or a combination thereof. The media application may generate a deliverable or transform a
deliverable for provision to output devices and for generation of a discernable effect, such
as by transforming received input media data into a deliverable, for example. The media
application may process, transform and manipulate input data streams to generate a
complete media program for display, broadcasting, distribution, and so on. For example,
playback of the input data stream may be discernibly different from playback of the

deliverable generated or transformed by the media application.

[0084] The system 10 may scale from simple media applications run on a local
computer to complex media applications deployed on a cloud computing system. A cloud
computing system is operable to deliver computing services through shared resources,
software and information over a network. The system 10 may be operable for multiple
platforms (e.g. Windows, Linux, OS X) and multiple languages (e.g. C++, Java, Scripting),
and may use standards based interfaces (e.g. SOAP, XML).

[0085] The system 10 may be implemented as a cloud computing system and may be
accessible to users through an external interfaces layer 38 which may allow integration with
existing processes, applications and systems. The system 10 may include a development
framework 12 and a visual design subsystem 30 to define and output graphs 28 in order to
develop media applications. The system 10 may include a deployment subsystem 14 for
dynamically deploying media applications at runtime. The system 10 may provide a platform
for building, developing and deploying professional workflow applications for desktop,

networked and cloud based systems.

[0086] By way of overview, the development framework 12 may be used for the
development of component 24 and workflow (e.g. graphs 28, blueprints 28a) technologies.
The repository 32 may provide a centralized pool of component 24 technologies and
workflow blueprints28a and may act as both the warehouse and supply chain (for syncing
upstream/downstream repositories 32). The visual designer may be used to design and test
workflow graphs 28 and blueprints 28a. A license server 42 may control authorization of
component technologies. The system 10 may provide one or more of the following features:
multi-platform support through the framework SDK 20; multi-language support allows native

development in multiple languages such as C++, Java, and scripting languages; support for

- 18-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

flexible workflow models with inline, parallel, and staged execution of individual processes;
consistent management interfaces through standards based web services regardless of
workflow complexity or scope; dynamic scalability allows for simple and complex solutions to
easily scale to large volume processing capabilities with low provision and deployment

costs. Other features may also be provided by system 10 as described herein.

[0087] The system 10 may enable decomposition of hardware and software problems
into their core elements. These core elements may be referred to as components 24. By
breaking down multiple problems, a catalog of components 24 may be developed that can
be brought together in different ways (e.g. by graphs 28, blueprints 28a) to solve new
problems. For example, a user may want to perform video compression and send email
notification upon completion. These two problems are very different but by combining
elements of the video compression problems, that is, components 24 for video codec,
multiplexer and file writer; and the email problem, that is, components 24 for database
lookup, report generator and email engine; system 10 can combine the two into a complete
solution that not only performs the core video compression, but may also sends out
notification emails to the users who need to be notified of the project completion.

[0088] The system 10 may enable registration of the components 24 into a repository 32
of technology, used to store, manage, and access these technologies in a controlled
environment that may be centralized or distributed. The system 10 may allow these
repositories 32 to be chained together into managed supply chains, where downstream

repositories 32 can be synced with upstream repositories 32.

[0089] The system 10 may control access to components 24 using a floating license

server 42 which may check out licenses when components 24 are being used.

[0090] The system 10 may provide a communication/management bridge between a
higher level application and the cloud engines 36a which run jobs. The cloud agents 34 may
provide that bridge. The cloud agents 34 may provide a consistent web services integration

and management point regardless of the complexity of the solution.

[0091] The system 10 may provide a method for creating workflow solutions (graphs 28,
blueprints 28a) from components 24. The visual designer 30 may be implemented as a
visual design tool which allows new solutions to be created, tested, and saved as graphs 28
or blueprints 28a that can be referenced by an application. Blueprints 28a can also be

stored in the repository 32, becoming part of the managed supply chain.

-19-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0092] The system 10 may run cloud engines 36 to execute jobs. When the application
sends a command to the cloud agent 34 to run a job, the cloud agent 34 determines which
components are required to start running the solution and acquires those components from
the repository 32. For example, the cloud agent 34 creates the cloud engine 36a, the cloud
engine 36a loads the graph 28 or blueprint 28a, acquires the required licenses from the
license server 42, and runs the job. The cloud engine 36a may dynamically acquire new
component licenses on the fly as required by the currently running workflow. When the job is

complete the licenses are returned to the pool of licenses managed by the license server 42.

[0093] In some embodiments, a distributed ledger infrastructure or platform may be
implemented to support one or more of components 24, 26, graphs 28 and blueprints 28a.
For example, distributed ledger platform may be used to help authenticate a component as
computed by development framework 12. As an illustrative example the distributed ledger

may be implemented using a blockchain data structure in some embodiments.

[0094] For instance, historical records of a component may be linked or chained by a
block in a distributed ledger, such that the each component can be verified by one or more
parties based on the distributed ledger. In some embodiments, each component can be

verified to be functional for a specific function or purpose.
Distributed Ledger Platform of Components

[0095] Referring now to FIG. 1D, a block diagram of an example system 1000 for
providing a distributed ledger 2800 of computing components is shown. An example
distributed ledger implementation in a blockchain. The system 1000 may include one or
more stakeholders such as authorities 2200a, 2200b, blockchain (or distributed ledger)
manager 2100, requestor service or engine (or simply “requestor”) 2300, repository 32, user
devices 2500, license server 42, and license pool 44, connected to network 152. The term
“block” as used herein may also refer to electronic entries of the distributed ledger.

[0096] A distributed ledger 2800 described herein may be a tamper-proof, shared
(distributed) digital ledger (e.g. database) that records transactions or other types of data
(e.g. computing components) in a public or private peer-to-peer network. Distributed to all
member nodes in the network, the ledger may permanently record, in blocks, the history of
asset exchanges that take place between the peers in the network. All the confirmed and
validated blocks may be linked and chained from the beginning of the chain to the most
current block. The distributed ledger thus may act as a single source of truth, and members

in a distributed ledger network may view transactions that are relevant to them, or in some

-20-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

embodiments, may view all the blocks of a distributed ledger. In some cases, each member
(each node) in the network is its own authority, and anyone may participate in a transaction.
In some cases, the right to participate in exchanging information on a distributed ledger may

be limited to certain users.

[0097] In some embodiments, a distributed ledger 2800 comprising one or more blocks
2400a, 2400b, 2400c, 2400d (see e.g. FIG. 2C) may be provided by system 1000. The
distributed ledger 2800 may be developed and maintained in the form of an online ledger
using distributed technology. Each block 2400a, 2400b, 2400 may contain a component 24.
In some embodiments, one or more blocks 2400a, 2400b, 2400c may contain a pointer to
component 24. A block may also contain a digital signature 2250 associated with one or
more digital certificates 132, 142. A digital signature 2250 may be generated by blockchain
manager 2100 prior to addition or update of a block to distributed ledger 2800.

[0098] At any given point in time, a copy of distributed ledger 2800 may be stored in one
or more nodes connected to network 152. For example, authorities 2200a, 2200b may each
store a copy of distributed ledger 2800 on their respective databases. In some
embodiments, a copy of the distributed ledger 2800 may also be stored at a database on

blockchain manger 2100.

[0100] A distributed ledger 2800 described herein may include one or more blocks
2400a, 2400b, 2400c. Each block may include a component 24, a graph 28 or a blueprint
28a. In some embodiments, each block may contain a pointer, or reference, to a particular
component 24, a graph 28, or a blueprint 28a. In some instances, components 24 may be
linked together using a distributed ledger such that the distributed ledger 2800 itself

becomes a chain of trust, as described herein.

[0101] In some embodiments, a distributed ledger 2800 may be generated for a
blueprint 28a, and all the components 24 in distributed ledger 2800 are part of blueprint 28a.
The linked order of components 24 in the distributed ledger 2800 may indicate a workflow

order as required by blueprint 28a to achieve a specific function or purpose.

[0102] In some embodiments, a distributed ledger 2800 is only updated or modified
when all parties holding digital certificates agree that a new or modified block is trustworthy
to be included in the distributed ledger 2800. Each party in system 1000 may inherently trust
any given component 24 or a blueprint 28a (which may be a collection of components 24) in
a distributed ledger 2800, since authentication of a block 2400a, 2400b, 2400c is based on

the combined knowledge of distributed parties.

-21-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0103] In some embodiments, each authority 2200a, 2200b has a digital certificate 132,
142 associated therewith. With the digital certificate 132, 142, blockchain manager 2100
may be operable to authenticate identity of each authority 2200a, 2200b and further
authenticate components 24, graphs 28, blueprints 28a and solution sets 106. For example,
workflows or solution sets 106 may be authenticated prior to being updated on the

distributed ledger.

[0104] In some instances, a public knowledge pool and a private knowledge pool (not
shown) may interoperate to provide the blocks 2400a, 2400b, 2400c. Each entity in the

public and private knowledge pools may be associated with an unique digital certificate.

[0105] In some embodiments, distributed ledger 2800 may be operable to enable
auditable transactions (e.g. generation or updating of a block) and provide irrefutable proof
of transaction to a third party upon request. The irrefutable proof of transaction may be

provided by way of a digital signature associated with a block.

[01086] An authority 2200a, 2200b may be for example a user computing systems 140 or
a component provider systems 130. In some embodiments, an authority 2200a, 2200b may
use digital certificates 132, 142 to verify its own identity. For example, a private/public key
mechanism may be used to verify identity of a component provider system 130 associated
with a digital certificate. The digital certificate may be a cryptographic hash function (e.g.
MD5, SHA1, SHA2, or SHA256) of the private key held by the component provider system
130, while the public key, which may be distributed to one or more parties of the distributed
ledger 2800, may be used to authenticate that the holder of the private key used in the hash
function is indeed component provider system 130, thereby verifying identity of component

provider system 130.

[0107] In some embodiments, authorities 2200a, 2200b may use digital certificates 132,
142 to indicate they agree that a particular component 24 in a block 2400c operates
properly. That is, digital certificates 132, 142 may indicate acceptance by both the user
computing system 140 and the component provider 130 that a particular component 24
satisfies a performance standard. Blockchain manager 2100 may require one or more
authorities 2200a, 2200b to sign a particular component 24 with its digital certificate 132,
142 prior to updating distributed ledger 2800 with a new block including component 24.

[0108] A requestor service or engine (“requestor”) 2300 may be operable to request one
or more components 24 from distributed ledger 2800 for use. In some embodiments, user

devices 2500 may request use of one or more components 24 through the requestor 2300.

-22.

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

In some embodiments, requestor 2300 may relay requests from one or more cloud agents
34 for use of various components 24, graphs 28 and blueprints 28a from distributed ledger
2800.

[0109] In some embodiments, a copy of components 24 or blueprints 28a may be stored
within a block 2400a, 2400b, 2400c of distributed ledger 2800.

[0110] In some embodiments, each block 2400a, 2400b, 2400c in a distributed ledger
2800 may each contain a pointer or a reference to a component 24 or blueprint 28a as
stored in a repository 32. The repository 32 may store, manage, and access components 24
and blueprints 28a in a controlled environment that may be centralized or distributed. When
a requestor 2300 requests the use of a component 24 from distributed ledger 2800, a
blockchain manager 2100 may be operable to consult a license server 42 with a license pool
44 and to authorize such use (described in detail herein with respect to FIG. 21), and send

the requested components 24 to requestor 2300 if an appropriate license is located.

[0111] The requestor 2300 may then acquire the components 24 from repository 32 and
launch one or more cloud engines 36 to run the jobs. The engines 36 may load the graphs
28 or blueprints 28a. Once the job is complete, the licenses may be returned to the license
server 42. Blockchain manager 2100 may inter-operate with development framework 12 and
deployment subsystem 14 to log when a component 24 successfully executes to complete
an intended function, which may in turn be used to calculate or update a trust value for the

component for that intended function.

[0112] In some embodiments, instead of the requestor 2300 launching one or more
cloud engines to run the jobs, blockchain manager 2100 may be operable to load the
requested components 24 and blueprints 28a from repository 32, instantiate the requested
components 24 and blueprints 28a, and manage the instantiated processes 2900a, 2900b,
2900c, as shown in FIG. 2E. For example, service coordinator 2110 in distributed ledger
2800 may be configured to provision the requested components and services and act as a
lifecycle manager of the instantiated processes 2900a, 2900b, 2900c. The service
coordinator 2110 may for example launch one or more cloud engines to instantiate the
requested components 24 or blueprints 28a. The service coordinator 2110 may interoperate

with requestor 2300 to provide the instantiated processes 2900a, 2900b, 2900c.

[0113] Referring now to FIG. 1E, which illustrates a block diagram of an example
blockchain manager system 2100. A processing device 2101 can execute instructions in
memory 2109 to configure service coordinator 2110, cryptography unit 2115, blockchain (or

-23-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

distributed ledger) module 2116, and authority module 2118. A processing device 2101 can
be, for example, any type of general-purpose microprocessor or microcontroller, a digital
signal processing (DSP) processor, an integrated circuit, a field programmable gate array

(FPGA), a reconfigurable processor, or any combination thereof.

[0114] Memory 2109 may include a suitable combination of any type of computer
memory that is located either internally or externally such as, for example, random-access
memory (RAM), read-only memory (ROM), compact disc read-only memory (CDROM),
electro-optical memory, magneto-optical memory, erasable programmable read-only
memory (EPROM), and electrically-erasable programmable read-only memory (EEPROM),
Ferroelectric RAM (FRAM) or the like. Storage devices 2103 include memory 2109,
databases 2180, and persistent storage 111.

[0115] Each I/O unit 2107 enables blockchain manager 2100 to interconnect with one or
more input devices, such as a keyboard, mouse, camera, touch screen and a microphone,

or with one or more output devices such as a display screen and a speaker.

[0116] Each communication interface 2105 enables the blockchain manager 2100 to
communicate with other components, to exchange data with other components, to access
and connect to network resources, to serve applications, and perform other computing
applications by connecting to a network (or multiple networks) capable of carrying data
including the Internet, Ethernet, plain old telephone service (POTS) line, public switch
telephone network (PSTN), integrated services digital network (ISDN), digital subscriber line
(DSL), coaxial cable, fiber optics, satellite, mobile, wireless (e.g. Wi-Fi, WiMAX), SS7
signaling network, fixed line, local area network, wide area network, and others, including

any combination of these.

[0117] Blockchain manager 2100 is operable to register and authenticate users (using
a login, unique identifier, and password for example) prior to providing access to
applications, a local network, network resources, other networks and network security

devices. Blockchain manager 2100 may serve one user or multiple users.

[0118] Service coordinator 2110 may provide a trust provisioning service to the outside
world (e.g. to users 2500) and only provisions components or blueprints whose trust can be
guaranteed by distributed ledger 2800. A service coordinator may act a broker of trusted
certificates by communicating with and between each of a requestor services 2300 and a

repository 32 of services and components.

-24-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0119] In some embodiments, service coordinator 2100 may be implemented as a
floating service connected to network 152. For example, it may be a third party trust

authority outside of blockchain manager 2100.

[0120] In some embodiments, as shown in FIG. 2E, service coordinator 2100 may
further act as a lifecycle manager of requested services by requestor 2300, instantiating the
trusted components and blueprints as processes, and monitoring the activity of each
instantiated processes 2900a, 2900b, 2900c. It also may be configured to act as a
communication authority providing a secure path of communication between the requestor
2300 and the running processes 2900a, 2900b, 2900c.

[0121] Cryptography unit 2115 may be configured for encrypting and decrypting
information in distributed ledger 2800. For example, cryptography unit 2115 may apply
various encryption algorithms and/or techniques to verify identity of an authority 2200. In
some embodiments, the cryptography unit 2115 may be configured to generate information
which may be utilized in the formation and/or generation of one or more blocks for insertion
and/or addition into the distributed ledger.

[0122] Blockchain module 2116 may be configured for maintaining relationships and/or
associations identifying how blocks may be related to one another, and/or the identity of
various blocks (e.g., identifying what information is associated with each block). Blockchain
module 2116 may be configured for maintaining and updating one or more distributed
ledgers 2800 (which may be stored locally at database 2800). The blockchain module 2116
may be configured updating blocks, adding blocks, deleting blocks, validating new blocks,

rejecting new blocks, etc.

[0123] Authority module 2118 may be configured for maintaining a table of authorities
2200 and their respective public keys as stored in database 2180. Authority module 2118
may be operable to request cryptography unit 2115 to authenticate a digital certificate sent
by an authority 2200. Authority module 2118 may manage (e.g. editing or deleting entries
of) the table of authorities 2200.

[0124] The storage 111 may be configured to store information associated with the
distributed ledger, such as the blockchain ledger, blockchain entries, information stored on
various blocks, linkages between blocks, rules associated with the distributed ledger, etc. in
some embodiments. Storage device 2103 and/or persistent storage 111 may be provided

using various types of storage technologies, such as solid state drives, hard disk drives,

-925-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

flash memory, and may be stored in various formats, such as relational databases, non-
relational databases, flat files, spreadsheets, extended markup files, etc.

[0125] Blockchain manager 2100 may be configured to maintain and update distributed
ledger 2800, and in particular, to generate new blocks 2400a, 2400b, 2400c in order to
update distributed ledger 2800 in a process further described with respect to FIG. 20.
Blockchain manager 2100 may also be configured to provide one or more components 24,
graphs 28, or blueprints 28a from distributed ledger 2800 in response to an incoming
request for said components 24, graphs 28, or blueprints 28a, in a process further described
with respect to FIG. 21.

[0126] In some embodiments, requestor 2300 may be implemented as a floating service
connected to network 152. In other embodiments, requestor 2300 may be implemented as

part of blockchain manager 2100.

[0127] Turning now to FIG. 2D, which illustrates an example digital signature 2250b
associated with a component 24b in a block 2400b of a distributed ledger in accordance with
an example embodiment. A digital signature 2250b may be generated by blockchain
manager 2100 for each new or modified block 24b. A digital signature 2250b may include
data blocks representing one or more fields of information regarding component 24b. For
example, digital signature 2250b may include one or more of the following fields: digital
certificates 2420, timestamp (including date) 2430, function or purpose 2450, expiry date
2470, a pointer to block containing preceding component 2480, and if applicable, a pointer

to a block containing a following (or subsequent) component 2490.

[0128] The digital certificates field 2420 may contain a pointer to each applicable digital
certificate 132, 142 associated with one or more authorities 2200 that have provided and
accepted the component 24b. Prior to generating field 2420, blockchain manager 2100 may,
via cryptography unit 2115 to verify that the digital certificates 132, 142 are authentic. The
digital certificates 132, 142 may be obtained via network 152 from a certificate component
matrix 146, which manages records relating to digital certificates 132, 142. In particular, a
record may link the digital certificates 132, 142 and the accepted resources, such as
components, graphs, computing applications, hardware resources used to execute
computing applications, and so on. A component may be used in multiple computing
applications associated with different authority 2200 (e.g. user computer systems 140),
where each authority 2200 (e.g. user computer system 140) is associated with a different
digital certificate 142. Accordingly, the certificate component matrix 146 may include multiple

records associated with the same component, where each record links the component to a

- 26 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

different digital certificate 142 associated with a different authority 2200 (e.g. user computer
system 140).

[0129] Timestamp field 2430 may also include data information, and may represent the

precise date and time at which the digital signature 2250b is generated.

[0130] Information for function field 2450 may be obtained from repository server 32,

which may be configured to provide a specific function or purpose for component 24b.

[0131] Expiry field 2470 may be optional and indicate a pre-determined expiry date,
which may include a time, upon which the component 24b is to be deleted, modified, or de-
commissioned for a specific function or purpose as indicated in field 2450. By default, this
field may be left NULL unless the provider (e.g. authority 2200) indicates that the

component 24b has an expiry date.

[0132] Field 2480 may contain a pointer to a preceding block (e.g. block 2400a)

containing a preceding component 24a before component 24b in a blueprint 28a.

[0133] Field 2490 may contain a pointer to a preceding block (e.g. block 2400c)
containing a following or subsequent component 24c after component 24b in a blueprint
28a.

[0134] In some embodiments, digital signature 2250b may contain optional fields such

as error checksum.

[0135] In some embodiments, digital signature 2250b may contain NULL at field 2490 if
the associated component 24b does not have a subsequent component. That is, the block
2400b may be the last block in distributed ledger 2800 at the time the digital signature is

generated.

[0136] In some embodiments, digital signature 2250b may be generated using a
cryptographic hash function such as SHA256 with a private key only held by blockchain
manager 2100, as to prevent unauthorized tempering of distributed ledger 2800. In other
cases, the private key used in encrypting digital signature 2250b may be held by selected
authorities 2200 who have been authorized to update distributed ledger 2800.

[0137] Once a digital signature 2250b is generated based on the above fields, it may be
appended to a field 2410 representing a pointer to component 24b, in order to form a new or
updated block 2400b for insertion into distributed ledger 2800.

-27-

10

15

20

25

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

Development Framework

[0138] The development framework 12 may include components 24, compound
components 26 (components embedded within other components), data containers 56,
graphs 28, and blueprints 28a. The development framework 12 may be accessible through
a software development kit (SDK) 20, web services or by using the visual design subsystem
30. Both the SDK 20 and the visual design subsystem 30 may be used to develop
components 24, compound components 26, and graphs 28, and to define new data types to
define new data containers 56. System 10 may provide a graph-based processing engine,
where graphs 28 are made up of reusable components 24 with discrete processing
functions. The system 10 may also provide the framework for development and deployment
of graphs 28 and components 24. As noted above, the development framework 12 may be
accessible through web services, where a user may create graphs and components using

the web services application programming interface.

[0139] As noted, the SDK 20 may be used to define components 24, graphs 28, data
containers 56, and other features of the system 10. The SDK 20 may be language
independent.

[0140] An example of the SDK 20 in java is:

public class LoggingComponent extends JavaComponent {

@Override

public void process(DataContainer data, String inputPinName) {

super.process(data, inputPinName);

log(Level.INFO, "Process: "+ data);

getOutputPin().process(data);

[0141] Other languages may also be used and this is an example only.
[0142] The SDK 20 may include a framework APl and a component API.

-28-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0143] The framework API may be used to create the graphs 28 used by an application,
to control loading and executing graphs 28 and to provide status to the application.

[0144] The component APl may be used to create individual components 24,

[0145] Separating the component API from the framework APl may allow component
developers to focus on the development of a component 24 without requiring knowledge

about the logistics of the whole environment.

[0146] The SDK 20 may include application programming interface in multiple
languages (such as java, C++ for example) to create components. Components may be

created using one or more languages.

[0147] Components 24 are building blocks of the system 10. A component 24 is an
object, plug in or set of software code that defines a processing mechanism and uses the
SDK 20 to interact with the development framework 12. At application runtime, a component
24 is configured to process data flowing through the component 24 as a data container 56.
Each component 24 may be a single component 24 or a compound component 26 built up
of multiple embedded components 24. A component 24 may contain plug-in files, and other
files, such as jar files, dlls, and so on. In some instances, a component 24 may be the

smallest unit of functionality required to perform a specific task.

[0148] Referring now to FIG. 2A there is shown a block diagram of example
components 24 in accordance with an example embodiment. Examples of components 24
for a media application context include video input 24a, video process 24b, file sink 24c,
logic branch 25 (decisioning and routing based on criteria, such as for example video
format), strip letterbox 24d, and aspect ratio 24e. Other examples of components 24 are
shown in FIGS. 5 and 6, such as file source 24f, interlace detector 24g, film removal 24h,
deinterlacer 24i, noise reduction 24j, buffer 24k, file sink 24x, YUV to RGB 24m, image
converter 24n, flow control 240, file input 24u, color space converter 24v, scaler 24w, and
AVC encoder 24y.

[0149] Components 24 may include both public facing attributes and private data
structures. FIG. 2B shows example components such as buffer 24k and sensor 24z for
integration into a distributed ledger. For example, component buffer 24k may include public
data such as buffer name and version number, and private data such as buffer code. For
another example, component sensor 24z may include programming code for a sensor
interface and processing, which may include public data such as sensor name and version
number, and private data such as sensor code.

-29.

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0150] As part of a development process for a distributed ledger, components 24k, 24z
may be signed by authorities 2200a, 2200b to establish a level of authentication for each
component 24k, 24z. The level of authentication may be provided by a digital signature
2250a, 2250b, as further described herein. Each of digital signatures 2250a, 2250b may be
unique such that a third party may independently verify the authentication of the signature
as belonging to a trustworthy source (e.g. authority 1 or 2). For instance, the digital
signatures 2250 may be verified by means of a public key/ private key infrastructure.

[0151] Components 24 may have properties and values for those properties. A
component’s 24 properties configure its behavior. The properties provide runtime
information, transient information, results, and so on. Referring now to FIG. 3 there is shown
a table representing example properties 25 and values 27 of an example component 24 (file
source 24s) in accordance with an example embodiment. Examples of properties 25 include
description, configuration warning, default input pin, default output pin, description, file,
name, last error, log, progress, read buffer size, and so on. Each property may have an
associated value 27. A component’s 24 properties 25 may be set and modified through the

visual design subsystem 24 or other interface.

[0152] Properties modify the way a component 24 behaves, such as how it processes
data or the type of output it produces. For instance, properties can be used to change the
format of a component’s 24 output or provide scaling information. Properties can be thought
of as instance variables for components 24. Properties can be exposed to other

components 24 through pins.

[0153] Property attributes may change the way a property is used, exposed and saved.
They may be set in the property declaration in the plugin.xml file. For example, properties
may have one or more of the following attributes: transient (when a graph is saved to file,
property values may be saved with it by default, however, if a property is transient, its value
may not be saved and the default value may be used when the graph is loaded from file),
required (the property must be set for the component to run), hidden (the property is used
internally by a component and may not be visible to a user), advanced (the property
generally does not need to be modified by the user, but may be of interest to experienced
users), interprocess (the property may be accessible to processes that are spawned by its

graph), and so on.

[0154] Properties can be exposed on pins. A property exposed on a pin can be written
to or read by another component. The name of a property pin is the same as the name of
the property defined in the property declaration. The property pin’s display name in the

-30-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

visual designer 30 may be the same as the property name unless a pin display name is
provided. Properties may be declared within component definitions in the plugin file, such as

a plugin .xml file for example.

[0155] Example attributes of properties may include property name, display name,
description, required, advanced, hidden, transient, interprocess, value type, and initial value.
A property may be defined as advanced if it generally does not need to be modified, but may
be of interest to experienced users. For example, setting the attribute advanced="true” may
hide the property in the visual designer 30. The property may become visible when an
“advanced” box is selected in the visual designer 30. Setting hidden="true” may hide the
property in the visual designer 30. The property may become visible when a “hidden” box is
selected in the visual designer 30. When a graph is saved to file, the property values of its
components may also be saved. Setting transient="true” may result in the property value not
being saved. The default property value may be used when the graph is loaded from file.
Setting interprocess=“true” may make a property accessible to processes spawned by its
graph. A property initial value may be the default value of the property when the component
is initially instantiated.

[0156] Property values may be restricted. For example, property values may be
restricted to strings, numbers, integers, range of numbers defined by a minimum and a
maximum, and so on. Property value restriction attributes may include a minimum value, a
maximum value, a list of enumerated values, data type for values, and so on.

[0157] An attribute property initial value may set the initial value of a property that has
been declared elsewhere (for example, if a property has been declared in an inherited
component, in the component’s source code or in the framework itself). An example use of
property initial value may be for instructing a C++ or dual Java/C++ component how to
construct its native peer.

[0158] Components 24 may be language independent and may be developed by
different developers in different languages, and used together to create a graph 28,

blueprint 29 or compound component 26.

[0159] Each component 24 may have one or more versions. A version is a specific form
or state of the component 24, and may reflect new developments or implementations of the
component 24. Each version of a component 24 may be referenced using a version name or
number. For example, each version may be assigned a number in increasing order. As will

be explained herein in relation to FIG. 13A, the system 10 maintains versioning to keep

-31-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

track of and use different versions of components 24 in graphs 28, blueprints 28a, and
compound components 26. This may result in more flexible system 10 as different versions
of the same component 24 may be usable by graphs, media applications and users, and

each are not required to use the same component and version thereof.

[0160] Components 24 may be written for different architectures or contexts, such as 32
bit and 64 bit architectures. As will be explained herein, system 10 is operable to develop
and deploy an application instance which combines components written for both 32 bit and
64 bit architectures. For example, system 10 is operable to detect whether a particular
media application has been developed using both components 24 for 32 bit architectures
and components 24 for 64 bit architectures. If so, system 10 is operable to create a
separate process space or instance for each context and handle inter process
communications using mapping and a shared memory. For example, the system 10 is
operable to create a 32 bit architecture process instance and a 64 bit architecture process

instance and manage communications between the process instances.

[0161] Further, components 24 may be self-contained and isolated from a dependency
point of view. The entire dependency set of a component 24 may be self-contained, being
specified and packaged in the component distribution unit (e.g. plugin). The component 24
dependencies may also be isolated, referring exclusively to the specific component 24 and
version(s) they depend on. This may enable the system 10 to realize complex workflows
while resolving components 24 dependencies without user intervention. Further, the
dependency isolation may allow the system 10 to provide distinct behavior while executing
blueprints built with the same components 24 by isolating the different versions of these

components 24 and their dependencies.

[0162] Components 24 may have pins. Pins connect to pins on other components 24.
Pins may be referenced by name. Pins may connect to multiple components 24, which may
be referred to as branching. In accordance with some embodiments described herein,

components 24 do not have to be of the same type to connect to the same pin.

[0163] There may be different types of pins. There may be input pins, such as an input
push and input pull, which can be used to decouple components 24 with different
fundamental architectures. A push pin pushes its output to the next pin and a pull pin calls
for data on its input pin. The pin model controls the flow of data between components. There
are output pins. There are control pins, including event (out), property (in/out), and

command (in) pins.

-32-

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0164] Pins may be used to pass data between components 24. Pins may expose
properties and events, and may be used to trigger commands. Static pins may be defined
within the component 24 definition in the plugin.xml file and may be created every time a
component 24 is instantiated. Dynamic pins may be defined within the component 24 source

code and may be added after the component 24 has been instantiated.

[0165] Input and output pins may be defined as default pins. A default pin may not need
to be referred to by name in the component source code. There may be only one default

input pin and only one default output pin per component.

[0166] As noted herein, there may be different types of pins. For example, an
OUTPUT_PUSH pin is a type of output pin. Data may be sent through an output pin to the
next component’s 24 input pin. INPUT_PUSH and INPUT_PULL are two different types of
input pins. When using a push input pin, a component may process data as it arrives on the
pin. When using a pull input pin, a component 24 may request data from the pin, blocking
until data arrives. Pull input pins may be used in situations where there is more than one
input pin on a component 24 and the data coming in through each pin needs to be
controlled and coordinated. OUTPUT_IO and INPUT_IO pins are further examples. I/O pins
act as both input and output pins and are typically used to pass data between graphs 28 or
as output and input pins in compound components 24. A PROPERTY pin may expose a
component’s property so that it can be read or modified by other components 24. There may
also be EVENT pins. When an event occurs, the data object generated by the event may be
encapsulated in a Data Container 56 that may be pushed onto the event pin. If the event
generates a null object, an empty Data Container 56 may be placed on the pin. The
propagation of a Data Container 56 on an event pin signals that the event has occurred.
COMMAND pins act as triggers to call commands on components. When a data container is
placed on a command pin, the command is executed. The data on the data container may

be used by the command, but it does not need to be.

[0167] Pins may set data types. For example, a data type feature may provide
information to the end user about a component’s expected input and output types. A data
type may also provide information about a component’s 24 intended function or purpose.
This may be useful at graph 28 design time to ensure the compatibility of connected
components. Once the graph 28 starts, data types describing the actual data passing
between components 24 may be used. A warning may be generated when incompatible pins
are connected. The data type of a static pin may be set in the pin declaration using a data
type definition name. The data type definition name may take the name of a data type

definition, which is a set of key/value pairs that describe features such as image

-33-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

dimensions, audio format, and encoding format. For example, a pins data type for an input
push pin may be set to integer.

[0168] The data type definition may be the default data type of an unconnected input
pin. When components are connected, the input pin may acquire the data type of the output
pin it is connected to. A component’s 24 default output pin may acquire the data type of the
component’s default input pin unless the pins have been decorrelated. All other output pins
may use their own data type definition names to set their data types.

[0169] A data type transform may be used to change the default output pin’s data type.
A data type transform may add or remove data type definitions from the output pin’s
acquired data type. Consider the following example where the default input pin is defined
with a data type of integer. When the component is instantiated, the default input pin and
the default output pin may both have the same data type, namely the “integer” data type. To
change the default output pin’s data type to string, a data type transform may be used to
remove the “number” data type definition (of which Integer is a subtype) and add the string

data type definition.

[0170] Data type restrictions may be used to provide more detail about what types of
input a pin can accept. While setting a data type on a pin may act a simple data type
restriction, setting a formal data type restriction on the pin can narrow down the type of data
that is acceptable. Explicit data type restrictions may override the restriction implied by the
pin’s data type. Data type restrictions may be nested using logic operators (AND, OR, NOT).
The syntax for data type restrictions may follow prefix notation. For example, say you want
your pin to accept all numbers that are not integers: numbers AND (NOT integer), and in

prefix notation this may be: AND number (NOT integer).

[0171] There may be a pin definition schema. A component’s static pins may be
declared in its definition. Static input, output, event, command and property pins may be
declared in the component definition. In the case of event, command and property pins, the
name of the pin may need to match the name of the event, command or property,
respectively. A pin’s data type may be defined in the plugin.xml file using a data type
definition name, data type restrictions and data type transforms can also be set within the

plugin.xml file.

[0172] A pin definition may include a name, type, default, data type, and display name.
For a pin name, upon compiling the plugin.xml, a constant of the form PIN_<name> may be

generated. The pin may be referenced in source code using this constant. For example, the

-34-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

constant PIN_file may be generated for a pin named “file’. Input, output, event and
command pins may be displayed on the component with this name in the visual designer 20.
Property pins may have a different display name. The alternate display name may be set in
the property declaration. Pins can be of type, INPUT_PUSH, INPUT_PULL,
OUTPUT_PUSH, COMMAND, PROPERTY, OUTPUT_IO, INPUT_IO or EVENT. A default
may be used with input or output pins. There may be only one default output pin and only
one default input pin per component. Setting default to “true” may indicate that this pin is the
default pin to use when referring to this type of pin. The data type definition may define the
expected input or output data type. The pin data type may act as a data type restriction on
an input pin. The display name may be the pin name displayed in the visual designer 30. If
the display name is set on a property pin for which the defined property also has a display
name, the pin display name may appear on the component and the property display name

may appear as the property name.

[0173] A data type restriction may be used to restrict the type of input a pin can accept.
When an output pin with a data type that does not meet the restriction conditions is
connected to the pin, a warning may be generated. Data type restrictions may override
restrictions based on the pin’s defined data type. Data type restrictions may be combined
using logic operators to create complex restrictions. The syntax of the data type restriction
may follow prefix notation. Example restrictions include string, number, integer and so on.
Logic operators AND, OR and NOT may be used to create complex data type restrictions.

[0174] A data type transform of a default output pin may be set by the default input pin’s
data type. If the default output pin will be producing output which is different than the input
pin’s data type, a data type transform may be used to change its data type. The data type
transform may remove parts of a data type definition or entire definitions. It can also add
data type definitions to a pin data type

[0175] The set of components that represent a workflow may be saved as a graph 28.
Data is encapsulated in data containers 56 that may be passed between connected
components in a graph 28. Data containers 56 may consist of raw data as well as meta-

information about the data.

[0176] Graphs 28 can be created, saved, and loaded programmatically or with the visual
designer 30. The visual designer 30 is a visual design tool for creating, testing and saving
workflows. A graph 28 or workflow identifies components 24 may indicate the intended

functionality of component 24 within the graph 28. A component 24 may be used in one

-35-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

graph 28 for a specific purpose and the same component 24 may be used in another graph
28 for another specific purpose.

[0177] Workflows can be saved as graphs 28 or as blueprints 28a. Blueprints 28a are
graphs 28 with attached meta-data. Graphs 28, blueprints 28a and components 24 may be
registered into a repository 32 that is used to store, manage, and access components 24
and blueprints 28a in a controlled environment that may be centralized or distributed.
Repositories 32 may be chained together into managed supply chains where downstream

repositories 32 can be synced with upstream repositories 32.

[0178] Access to components 24 may be controlled through a floating license server 42,

A component’s 24 license may be checked out when it is being used.

[0179] Applications that use graphs 28 may submit their jobs to an agent 34, which may
be a web service interface. The agent 34 may acquire the graph’s 28 components 24 from
the repository 32 and launch engines 36 to run the jobs. The engines 36 may load the
graphs 28 or blueprints 28a, and may acquire the licenses needed to run the job. Once the

job is complete, the licenses may be returned to the license server 42.

[0180] A component 24 development steps may include one or more of the following:
designing the component 24 and its interface, including a determination of which features
and elements the component 24 may need; saving the design that defines the component
24 in a file for use in graph 28, such as in a plugin.xml file, where the design of the
component 24 may also include the features and elements of the component 24; writing and
storing the component’s 24 source code. Component definitions may be used to instantiate
components 24 as a component 24 definition may contain all the information required to
instantiate a component 24, including declarations for properties, commands, events and

static pins.

[0181] Examples of properties may include a name, class name, unique identifier (such
as a GUID for example), a description and a category. A component may be declared with a
name, and an example of which is may be a Java class name and a unique GUID. Upon
compiling the plugin.xml, a constant of the form NAME_<name> may be generated. The
component’s name may be referenced in source code using this constant. For example, the
constant NAME_AudioMixer may be generated for a component named “AudioMixer”.

[0182] The class name property may reference the component constructor class. For
example, when writing a Java or Dual component, the component’s Java class may be

used, or when writing a C++ component, may use uniform NativeComponent class.

-36 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0183] Each component may have a unique identifier which may be referred to as a
GUID. The unique identifier may be for component licensing. For example, upon compiling
the plugin.xml, a constant of the form GUID_<guid> may be generated. The component’s

GUID may be referenced in source code using this constant.

[0184] The description property may be a description of your component.

[0185] The category property may reference the categories to which the component
belongs. Categories may be used for grouping components in a display such as in the visual
designer 30. Each category may be defined within its own element. You may create
subcategories by separating the category names with forward slashes. For example, if you
defined the category as “Company X/Audio”, the component would appear in the Audio
subcategory of the Company X category.

[0186] A component’s 24 definition may declare pins (dynamic and static), properties,
events, commands, and capabilities. These elements can be used, modified and managed
in the component 24 source code. When a component’s 24 plugin.xml file is compiled,
header and jar files may be generated. These files declare string constants that correspond
to the component elements.

[0187] A data container 56 holds the media data that flows between components 24,
The data container 56 may define a data type and data object. The data type may be
metadata describing the data container 56 and may include key-value pairs of information
(e.g. width, height). The data types may be configured to implement inherency and
hierarchies. Examples of data types include image dimension (width, height) and pixel
format (color space, bits per sample). The data object may be the raw data, such as in the
form of a buffer, string, and so on. Examples of data objects include file name (string), audio

sample (buffer), video frame (buffer), asset XML, and so on.

[0188] A data container 56 may include a timestamp in relation to the media data stored
therein as the data object. Media data packets typically need to be associated with a
timeline as they are received and processed to maintain sequencing and timing. Including a
timestamp for the media data stored in the data container 56 enables non-linearity of
processing and decouples the processing of the media data from the timeline typically
associated with media data. A data container 56 may define a normal form for the input data
to be processed by graphs 28 and blueprints 28a. A data container 56 may associate raw
data with a data type so that both the raw data and data type flow as a unit to provide

concurrency, multiprocessing, which may enable the context to switch at the data container

-37-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

56 boundaries, and so on. Data containers 56 may include an individual timestamp with
reference to the raw data to decouple the raw media data from its state dependent on a
timeline. Data container 56 properties may include read only, write only, and read/write. This
may be useful if, for example, a data container 56 reaches a branch and needs to be
duplicated. One data container 56 may be marked read only so that the contents cannot be
modified while a separate operation is processing the contents of the duplicate data
container 56, for example.

[0189] Referring now to FIG. 4 there is shown a block diagram of example data
container (metadata, raw buffer) 56a that flows between two components 24, video process
24p and strip letterbox 24q.

[0190] Data may be passed between components 24 as data container 56 objects. A
data container may include a raw data object and a data type object describing the contents
of the raw data. A data type object may be a collection of key/value pairs. Its keys may be
defined in one or more data type definitions defined in plugin.xml files, for example. Data
type definitions may describe features such as image dimensions, audio format, and

encoding format. Data type definitions may be inherited and extended.

[0191] Data types may consist of a set of keys that accept values of a certain type. The
values of the keys can be of either simple or complex types. A simple type may be a
primitive type such as INTEGER, BOOLEAN or STRING, while a complex type may be a
type where the key’s value is itself a data type. Data type definitions may be defined in
plugin.xml files, for example. A data type definition may include keys and their value types,
and inherited data type definitions. Data type definitions may be defined using the data type
definition schema. A data type definition may have attributes or properties such a name
(used to reference the data type definition), comments (which may include information about
what the data type definition refers to, and how and when it should be use, which may
appear in the Data Type frame of the visual designer help interface), inherits (a data type

definition can inherit and extend other data type definitions), and so on.

[0192] Data type definitions should be decoupled from component definitions. As such,
separate plugin.xml files may be used for data type definitions and for your component
definitions. If you have defined your own data type definition, you may need to compile its
plugin.xml file before using it. Compiling its plugin.xml may generate a header and class file

for each defined data type. These may automatically be exported to an SDK installation.

-38-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0193] Data type definitions declare a set of keys used to describe raw data. Key value
types are specified in the key definitions. Acceptable values for the keys can be specified
explicitly in the declaration. Examples definitions include channel configurations, language,

and so on.

[0194] Key definitions may have attributes or properties. Examples include: simple
type/complex type which indicates whether the key’s type is a simple type (the value is a
primitive type) or a complex type (the value is a data type), key name which may be used to
reference the key definition, key comments which may include a description of what property
of the raw data the key refers to, the key’s value type which may be simple (primitive type),
for example INTEGER, STRING, BOOLEAN, or complex (a DataTypeDefinition), where this
type should agree with the simpleType/complexType tag, multivalued which indicates that
the key may accept a list of O or more values, such as for example, the
audio_channel_details key may have as many values as there are audio channels, and
enumeration value which enumerates all possible values for the key. If a key can only have
certain acceptable values, these can be listed as enumerationValues. EnumerationValues
may be referenced in the source code using string constants of the form
VAL_<key_name>_<value>. For example, the ISO639_1 value of the language standard

key may be referred to by the constant, VAL_language_standard_ISO639_1.

[0195] A plugin package may be a grouping of data type definitions and component
definitions defined in a plugin.xml file, for example. A plugin package can consist of more
than one component or data type definition. The plugin may also contain libraries, header

files and java files that may be used to load and support its components or data types.

[0196] Data type definitions and components may be distributed in plugin packages.
The framework 12 may be shipped with plugin packages. Additional functionality can be
added to the framework 12 by purchasing or developing additional plugin packages.
Licenses for the framework 12 and its components may be included in a license package. A
properties file may be included in the SDK 20 package and may be edited to point to the

license server 42.

[0197] Components 24, data type definitions and plugin packages can be created using
the SDK 20. Each component created may have a unique GUID and each plugin created

may need to be signed. A license package may include GUIDs and a signing key.

[0198] Plugin package attributes may be defined within plugin.xml files. Component 24

definitions and data type definitions may be defined within the plugin package definition in

-39-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

the plugin.xml file. The plugin package definition may require a name, a unique pluginiD, a
plugin version, and, optionally, a provider and description. The name is the name of the
plugin, the plugin ID is a name that is unique to each plugin (o guarantee uniqueness, the
pluginID may be structured using a reverse domain name, for example), a pluginVersion
refers to the plugin version, a provider refers to the organization providing the plugin, and
description provides a description of the plugin. This should include the type of components

or data type definitions that are distributed in the plugin package.

[0199] All plugin packages may be signed. Signing guarantees authorship and prevents
unauthorized modification of the plugin package. Signing may happen automatically when
the plugin.xml file is compiled. At compile-time a private key is requested from the license
server. A signature is then generated using this private key. A public key, the plugin
certificate, is also generated. When the plugin package is loaded, the certificate is used to
verify that the plugin package has not been modified from build time. If the plugin package

has been modified, or if it has not been signed, it will not load.

[0200] Plugin packages may be compiled using a gradle tool. Plugin packages, even
those which do not contain source code, may be compiled to generate header files and files
that are used to instantiate their components and data type definitions. Compiling the plugin
package automatically signs your plugin package and installs it in the SDK 20 installation.
The framework 12 may use gradle to build plugin packages. A SDK 20 installation may

come with template gradle build files (build.gradle) for different types of projects.

[0201] A graph 28 may be a template describing a set of components 24 (including
compound components 26, other graphs 28), the parameter values for the components 24,
and the connections between the pins of the components 24. A graph 28 may define a set
of components 24 having specific connections and have specific properties (with values). A
graph 28 may define a set of components having specific connections and having specific
properties. A graph 28 may be referenced within another graph by a label to dereference

from the underlying graph 28. This may be useful for versioning, as described herein.

[0202] A blueprint 28a may be a final embodiment of a graph 28 and may reference a
solution set of components using a label. A blueprint 28a may be used to instantiate a graph
28 at application runtime, and may also meta-data such as include business logic about the
graph 28. A blueprint 28a may connect the functionality of a graph to a running environment.
A solution set of components 24 may be a set of specific versions of components. A
blueprint 28a may form part of the repository 32. Blueprints may be viewed as a business
level container of graphs 28. A blueprint 28a may include one or more graphs as part of a

-40 -

10

15

20

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

single life cycle of the application, which may be executed nested or in parallel, or multiple
graph 28 stages may be executed in serial form, one after the other. A blueprint 28a may be
a container of one or more graphs 28. A graph 28 can contain other graphs28 but all run in
one lifecycle, whereas the graphs 28 contained at the blueprint 28a level may run

simultaneously, or sequentially.

[0203] A graph 28 can be represented as a file (e.g. XML file) in its blueprint 28a form or
as dynamically instantiated object code at runtime. Graphs 28 may be viewed as having two
lives, as a running live instance and as a description of how that instance is saved for
communication, transportation, distribution or storage needs. In the live context, it will be
referred to herein as a graph 28. In the description context for reference in communication,
transportation, distribution or storage needs, it may be referred to herein as a blueprint 28a.

[0204] A simple example file is follows:

<pinConnections>

<connection>

<sourcePath>File Source/out</sourcePath>

<destinationPath>Buffer/in</destinationPath>

</connection>

<connection>

<sourcePath>Buffer/out</sourcePath>

<destinationPath>YUV to RGB/in</destinationPath>

</connection>

</pinConnections>

-41 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0205] A graph 28 and blueprint 28a may contain components 24, compound
components 26, and may contain other graphs 28 (compound graphs 28). A compound
graph 28 can be exported and referenced as a single component 24. The system 10 is
operable to reference components 24, compound components 26, graphs 28, blueprints 28a

and compound graphs 28 in the same manner.

[0206] Referring now to FIG. 5 there is shown a block diagram of an example graph 28
surrounded by a blueprint 28a (e.g. final embodiment of the graph 28) in accordance with an
example embodiment. The graph 28 is a compound graph and includes an outer graph 28
and an inner sub-graph 28, both of which contain components 24 (file source 24f, interlace
detector 24g, film removal 24h, deinterlacer 24i, noise reduction 24j, file sink 24x). The
components 24 and graphs 28 may be connected by pins.

[0207] A graph 28 and blueprint 28a may be used by system 10 to develop and deploy
a media application, and may be loaded from the repository 32 at application runtime. A
graph 28 and blueprint 28a can simultaneously handle source data in one or more of its
possible forms in a component 24,

[0208] As shown in FIG. 1A, components 24, compound components 26, graphs 28,
compound graphs 28, and data containers 56 are maintained in one or more linked
repositories 32. A graph 28 may implement a variety of processing roles such as an
installer, manager and executor.

[0209] A component’s 24 lifecycle is connected to that of its parent graph 28. Different
component methods may be called during different graph 28 lifecycle states. Before a graph
28 starts, its components 24 may be instantiated and connections may be made between
them. Components 24 can complete their configuration after they have been instantiated
and before the graph 28 starts. When a graph 28 is loaded from file, its components 24 are
instantiated as soon as the graph 28 is fully loaded. Additional graph 28 and component 24
configurations may take place after the graph 28 is loaded, but before it starts. Once a
graph 28 starts, its lifecycle may go through a realize, pre-process 1, pre-process 2, sources
start and sources stop states, for example.

[0210] If the graph or one of its components encounters an error, the graph may abort.

[0211] When a component 24 has completed its processing, it may move from the
active state to the inactive state. A graph’s 28 lifecycle is done when none of its components
24 remain in the active state. The graph 28 may be able to keep track of the state of its
components 24 unless these components 28 start their own worker threads. If a component

-42 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

24 starts its own worker thread, it is responsible for setting its own active flag. A set active
method may be used for this purpose, for example. Once all components 24 have become

inactive, the graph 28 may enter the Finish state.

[0212] Component 24 lifecycle actions include, for example, realize (components load
native libraries and perform self-setup, such as allocating memory and reading properties),
pre-process 1 and pre-process 2 (components send their output data type information
through the graph, and any components that need data type information block until they
receive it), sources start (source components start transmitting data, components process
data coming through their input pins), sources stop (source components stop transmitting
data and processing continues until all data has passed through the graph), abort (a signal
is sent to all components to cease activity and pass the abort signal to their threads, and
threads may exit their run loop as soon as possible), and finish (all components are inactive

and all data transmission and processing has stopped).

[0213] If a component 24 needs to perform lifecycle-related actions, they may need to
implement the appropriate lifecycle method or function. Example component life cycle
methods include post initialize, post load from document, life cycle realize, life cycle pre-
process1, life cycle pre-process 2, life cycle sources start, life cycle sources stop, process,

life cycle abort, and life cycle finish.

[0214] Post initialize may be called after the component 24 has been instantiated, while
the graph is still in the initial state. It may be called to complete the configuration of the
component by adding elements that can only be added once the component is initialized.
Post initialize may be implemented to create a complex data type restriction, add a property
change listener, set the data type on an output pin, dynamically add pins to the component,

or perform property validation, for example.

[0215] Post load from document may be called after a saved graph has finished loading
and while the graph is still in the initial state. Post load from document may be implemented
to configure a component based on its connections to other components in the graph, for

example.

[0216] Life cycle realize may be the first method called when the graph is started. There
may be no data passing through the graph when life cycle realize is called, so the
component may only have access to its own properties and to data types. Life cycle realize
may be implemented to create a worker thread (worker thread is started in sources start), or

get and/or verify properties that are set when the graph starts, for example. If a property is

-43 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

only read during the realize state, any changes made to the property value while the graph
is running may not be picked up or used by the component. The changes may be picked up

and used in subsequent executions of the graph.

[0217] Life cycle pre-process 1 may be called once the graph is started and all
components are instantiated and configured. Empty data containers, consisting of only their
data types, may be sent through the graph to prime components with run-time data type
information, such as image sizes and video frame rates. Source components implement life
cycle pre-process 1 to send their empty data containers through the graph. Life cycle pre-
process 1 may be implemented to provide run-time data type information to other
components. With regards to life cycle pre-process 2, as data type information is passed
through the graph to prime components, the components that use the data type information
can block in life cycle pre-process 2until they receive the information they need to perform
their configurations.. Life cycle pre-process 2 may be implemented to block until your
component receives data type information needed to complete its configuration or perform
its processing, or block sending data through the graph until the graph is completely
configured, for example.

[0218] For life cycle sources start, once the graph has been primed and all the
components are configured, data can begin flowing through the graph. Components can
start pushing data through the graph in life cycle sources start. Life cycle sources start may
be implemented to transmit data through the graph, or start a worker thread, for example.

[0219] If source data running through the graph is stopped through external methods
(timed broadcast, user-controlled streaming), life cycle sources stops may be called when a
signal to stop the source is detected. Any source clean-up (stopping threads, closing files,
etc.) should be implemented in this method. Life cycle sources stops may be implemented
to stop the source stream based on an external event, for example.

[0220] The process method may be called any time data arrives on a component’s input
pin. The process method is where all data processing occurs. The process method is where
data is retrieved from input pins and placed onto output pins. The process method may be
implemented to transform data, retrieve data from input pins, push data onto output pins,
change or set properties, and so on.

[0221] If an error occurs in the graph, life cycle abort may be called. Life cycle abort is
used to stop threads and close files. Life cycle abort may be implemented to stop worker

threads, or close files, for example.

-44 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0222] Life cycle finish may be the final method called in the graph lifecycle. It may be
called when no components remain in the active state. Any final clean-up needed to be
done should be implemented in this method. Life cycle finish may be implemented to close
files, release allocations, close socket connections, or wait for internal threads to finish, for

example.

[0223] The repository 32 is operable to manage versioning of components 24, graphs
28, and blueprints 28a in order to keep track of updates, variations, and modifications made
to components 24, graphs 28, and blueprints 28a. The repository 32 is operable to handle
runtime libraries and engines used by graphs 28, blueprints 28a, and components 24, such
that the repository is self-managed with respect to versioning. The repository 32 is further
operable to receive the development framework 12 to manage versioning of and updates to
the development framework 12. That is, the repository 32 can load up-to-date versions of
the development framework 12, including runtime libraries and engines. The development
framework 12 may be loaded upon request so that appropriate and updated versions of the
development framework 12 are used. The graphs 28 and blueprints 28a are loaded at run
time so that the appropriate version of the graph 28 and each component 24 in the graph 28
is used. A blueprint 28a may reference a solution set of components. A solution set of
components is a set of components 24 and specific versions of each component 24 in the
set. The blueprint 28a may reference a solution set of components using a label. A blueprint
28a may reference a solution set using a label in order to dereference from the specific
components 24 and versions of the solution set. That way, if the solution set changes, such
as if a component 24 is added or removed from the solution set, or a version of a
component 24 changes in the solution set, then the same label will reference the updated
solution set without requiring modification to the blueprint 28a containing the label. This may
result in more efficient processing as a reduced number of modifications and updates are
required. Further, components 24 may be self-contained and isolated from a dependency
point of view. The entire dependency set of a component 24 may be self-contained, being
specified and packaged in the component distribution unit (e.g. plugin). The component 24
dependencies may also be isolated, referring exclusively to the specific component 24 and
version(s) they depend on. This may enable the system 10 to realize complex workflows
while resolving components 24 dependencies without user intervention. Further, the
dependency isolation may allow the system 10 to provide distinct behavior while executing
blueprints built with the same components 24 by isolating the different versions of these
components 24 and their dependencies. Processing errors may also be reduced as the
system 10 and user may not have to manually track and manually update components

defined by blueprints 28a or graphs when a label is used.

-45 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0224] Referring now to FIG. 13A there is shown a block diagram of an example
interface 100 for defining a solution set of components in accordance with example
embodiments. In this example, the interface 100 displays different types of components 102
along one axis and different versions 104 of each type of component along another axis. In
this example there are 6 different types of components 102 and each type may be
associated with a component identifier such as for example, c1, ¢2, ¢3, c4, ¢5, c6. System

10 may use the component identifier to reference a particular type of component.

[0225] There may be multiple versions 104 of each type of component, or some types of
components may only have one version. For example, a type of component 102 c1 may
have 8 different versions. Each version may be associated with a version identifier such as
for example: c1v1, c1v2, c1v3, c1v4, c1vd, c1v6, c1v7, c1v8. System 10 may use the

version identifier to reference a particular version of a specific type of component.

[0226] A solution set 106 references a set of components, and more particularly may
reference a specific version of each type of component for use by a computing application.
In this example, the solution set 106 is the specific version of each type of component that is
intersected by a line (c1v4, c2v3, c3v4, c4v1, c5v2, c6v1). The solution set 106 may be
modified by changing a version of a specific component, by removing a particular type of
component, by adding a new type of component, and so on. The interface 10 may provide a
mechanism for a user to efficiently modify, test, and deploy different versions of components
by changing the solution set. For example, the interface 100 may change a solution set 106
by sliding a new version of a component to intersect with the line, sliding all versions of a
type of component line so that no versions of a particular type of component intersect with
the line (i.e. which may indicate that a particular component is no longer part of the solution
set), and so on. System 10 is operable to test and deploy a modified solution set 106 for a

particular computing application, and can also test all updates made to a solution set 106.

[0227] A blueprint 28a is operable to reference a particular solution set 106 using a label
to dereference from the specific components and versions of the solution set. If the contents
of a solution set 106 changes then the blueprint 28a label will reference the changed
solution set 106 without requiring modification to the blueprint 28a. Multiple blueprints 28a
may reference the same solution set 106. A blueprint 28a may also reference multiple
solution sets 106. If a change is made to the solution set 106 and a label is not used to
dereference from the specific components and versions of the solution set, then multiple
blueprints 28a may require updating and tracking as referencing the solution set 106 in

- 46 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

order to ensure that the blueprints 28a reference the appropriate components 102 and
versions 104 thereof.

[0228] Also, in accordance with some embodiments, a solution set 106 may itself have a
version number. The version number can be referenced by the label of the blueprint 28a to
identify which version of the solution set the blueprint is working with. In other embodiments,
a blueprint may ignore the version number and automatically update to refer to the latest
version of the solution set. The solution set version number may provide a mechanism to

maintain and create a history of solution sets as changes are made thereto.

[0229] FIG. 13B illustrates an example process of updating one or more components in
a solution set 106 or blueprint 28a as stored in distributed ledger 2800a. In some
embodiments, updating a component C in a block 2400 in a trusted blueprint (as
represented by distributed ledger 2800a) may require distributed ledger 2800a to be
constructed with a new block 2400 to form a new distributed ledger 2800b. This new
distributed ledger 2800b may include the new block 2400 containing (pointer or reference to)
the replacement component C’. Based on information from digital signature 2250 for each of
C and C’, it may be determined that component C’ is a functional equivalent of C, as both
components are provided by the same authority 2200, with the same (or C’ may have a

higher) level of trust, for the same purpose or function and the same category of use.

[0230] Since C’ is a functional and “trusted” equivalent of C, and both are signed by the
same digital certificate from authority 2200, a trust chain is built between C and C’, which
means C’ can now be utilized in replacement of C in that C’ is at minimum a replacement of
the C. A typical blockchain A typical blockchain environment might require revalidation of
every block after any change in the chain. For example, ABCDEF and Changing C to C’
would force a new validation of C’'DEF. Embodiments described herein use indicators of
trust to enable changing or swapping of blocks without requiring revalidation and still

providing authenticity.

[0231] Embodiments can include indicators of trust for individual and group perspectives
of trust (D E and F alone as well as varying combination of D,E,F) the distributed ledger
platform can use the independent chains of trust (AB, DEF) and C’ being a replacement for
C (same author, same signature), so that it can add C’ to the chain without having to
reprocess C’'DEF as a new addition (a fork). The distributed ledger can implement this
because DEF previously trusted C, AB trusted C, and C trusts C’. This allows the
optimization of not having to revalidate an entire blueprint (e.g. chain of blocks) to change
one component making the whole solution much more performant.

- 47 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0232] In some embodiments, a blueprint can be associated with a block of the
distributed ledger to enable process level trust. Blueprints can be seen as hierarchical in the
trust framework so that the concept of a chain of trust can extend to a blueprint of
blueprints. A process which is distributed but constructed of individual blueprints enjoys the

same optimization for trust that the components do.

[0233] Blockchain manager 2100 may then link block 2400 containing C’ to preceding
blocks AB and subsequent blocks DEF to form the updated distributed ledger 2800b. A new
trusted blueprint represented by distributed ledger 2800b is then generated which performs
the equivalent or enhanced functionality provided by the previous version of the blueprint

represented by distributed ledger 2800a.

[0234] In some embodiments, a blueprint in distributed ledger 2800a can also request
an update of an individual component C in block 2400. This may be done through a solution
set 106. The solution set 106 may reference a model of the required components of a
blueprint including version numbers, which may be references to replacement components.
It then may request all components from the repository 32, following the steps above to
achieve an updated, trusted blueprint in an updated distributed ledger 2800b.

[0235] In some embodiments, to properly substitute component C with component C’,
components D, E, and F can be treated as one functional unit, so that the distributed ledger
changes from [A, B, C, D, E, F] to [A, B, C’, (DEF)]. This is useful as it is made clear that
DEF are previously existing and trusted members of the block chain A to F, and that the
preceding component C’ is a substitution. This way, the substitution component is made

transparent, and could be publicly exposed.

[0236] FIG. 13C illustrates a block diagram of two parties engaging in a trusted
transaction based on a distributed ledger 2800 in accordance with an example embodiment.
In some embodiments, trust in a transaction extends beyond the blueprint 28a or distributed
ledger 2800 itself to encompass related parties to the distributed ledger 2800. The two
parties may each be represented by an authority 2200a, 2200b based on a table of
registered authorities (not shown). Each authority 2200a, 2200b has a digital certificate 132,
142, which may be used to authenticate identity of authority 2200a, 2200b and to generate a
corresponding digital signature 2250a, 2250b for one or more components on distributed
ledger 2800. The transaction and the process of using a distributed ledger become trusted
because the distributed ledger adds the digital certificates of each party involved to the
process itself forming an immutable linkage between the agreement, the parties, and the

process.

-48 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0237] The development framework 12 enables complexity abstraction by defining an
entire graph 28 or blueprints 28a as a component 24. A component 24 which defines an
entire graph 28 may in turn be used in another graph 28 or blueprint 28a, such that a graph
28 may be embedded within another graph 28 or blueprint 28a. The graph 28 or blueprint
28a may reference the component 24 using a label to dereference from the specific instance
of the component 24. That way, if the component 24 is modified then the label of the graph
28 or blueprint 28a will reference the modified component 24 without requiring additional
modification to the graph 28 or blueprint 28a. That is, the graph 28 or blueprint 28 will
automatically update to reference the modified component 24 by virtue of the label
reference. The development framework 12 also provides properties redirection through the
ability to expose a component 24 property as a property of an enclosing graph 28. The
development framework 12 further enables modular and recursive construction of graphs 28

through the use of pre-packaged graphs 28 and components 24.

[0238] Commands, along with events, provide a means for components, graphs and
calling applications to communicate outside of the regular data flow. Commands are
functions that may be called on components. A command may be executed by passing the
command name and an argument (in the form of a data container 56) to a process
command method. A data container 56 may be passed to process command method, even
if the command will not be using the data. If the command will not be using any data, an
empty data container 56 may be passed to process command function.

[0239] Command pins may act as triggers to call commands on components. When a
data container 56 is placed on a command pin, the process command function may be
called with the command name (the name of the pin) and the data container 56 as
arguments. The data in the data container 56 may be used by the command, but it does not
need to be. Commands may be defined within the component definition file, such as a
plugin.xml file for example. Commands may have attributes or properties, such as a name
(which may be used to access the command) and description (which may include
information such as what the command does and any data the command expects including
data type. An example command may be “read” (name) which reads a certain number of
bytes starting from a particular location and takes a data container with the number of bytes

and a seek position (description).

[0240] Events, along with commands, may provide a means for components, graphs
and their calling applications to communicate outside of the regular data flow. Events may
follow an event listener pattern where components fire events to registered event listeners

implementing a node event listener interface. A node event may include the event name

-49-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

(String) and raw data (Object). The identity of the component that fired the event may also
be contained within a node event.

[0241] Events may be exposed on pins. When an event occurs, the data object
generated by the event may be encapsulated in a data container that is pushed onto the
event pin. If the event generates a null object, an empty data container may be placed on
the pin. The propagation of a data container on an event pin may signal that the event has
occurred. Events may be defined within a component’s definition file, such as for example a
plugin.xml file. Events may have attributes or properties, such as a name (which may be
used to access the event) and description (which may include information such as under

what circumstances the event is fired and whether the event contains any data

[0242] Capabilities may be externally defined contracts that define how a component
with a particular capability should behave and appear. A capability definition may include
information such as the properties and pins that are expected in a component with this
capability. Capabilities are intended for components, graphs and applications to request
components dynamically based on their functionality. A component may declare that it
implements more than one capability. Capabilities are declared in the component definition

file, such as for example in a plugin.xml file. Capability names may be unique.

[0243] Data processing in a component can follow either a push or pull paradigm. In the
push paradigm, data is pushed onto a component’s input pin, calling that component’s
process method. In the pull paradigm, a component will request data from its input pin on a
separate internal thread. The internal pulling thread will block until data is received.

[0244] When a graph is started, source components may send a priming data container
consisting only of data type information through their output pins. The data type information
in these “empty” containers may be used by components downstream to complete their
configuration. A source component will initially produce an empty data container. Once the
empty data container has been sent through the graph, real data will be output. All
components should check for empty data containers arriving on their input pins. When an
empty data container is received on an input pin, the component should validate the data
type information and send out an empty data container of its own consisting of its output
data type. An application programming interface class may provide convenience methods

for pushing containers, including empty containers onto output pins.

[0245] Passing mutable data containers may allow components to perform data

processing without making copies of the data. However, in-place modifications should only

-50 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

be done if the data is not being used elsewhere. If the data will be used in two locations
(threads, components, methods, etc.) at once, it may be made immutable. If an output pin
feeds into multiple input pins, the same data container will be passed to each input pin; the
data container will automatically become immutable to prevent the receiving components

from modifying the same object.

[0246] A component may call clone if immutable method on the input data container if it
will be modifying the data container’s data object as well as its data type. The method clone
if immutable returns a clone of the data container if the data container is immutable;
otherwise it returns the data container itself. The method clone if immutable will make a full
copy of the entire data object in the data container, potentially using a substantial amount of
memory. If the component only needs to modify the data type within the data container, then

clone if immutable should only be called on the data type before it is modified.

[0247] All stream data type definitions may inherit from a base stream data type
definition (data type stream). The stream data type definition includes an end of stream key
that indicates whether or not this data container is the last. Marking end of stream is
important to signal that no other data will be arriving for processing. All stream source
components may set end of stream to true on the last data container they send. The end of
stream data container can be empty (no data object). Stream processing components may
check for end of stream in the data Type of each data container they receive. When they
receive the end of stream data container, they must in turn send out an end of stream data
container.

[0248] In the push data processing model, data gets pushed onto the component’s input
pin, calling that component’s process method. The process method is effectively called by
the component pushing the data onto the input pin. The push model is a passive model.
Data containers are “pushed” onto the input pin by the previous component in the workflow.
A process method may be called whenever a data container arrives on the input pin. The

component may not be active unless it is processing data.

[0249] The push model may be used in cases where there is only one pin, or in cases
where the input of multiple pins do not need to be coordinated. If the data containers arriving

on multiple input pins need to be coordinated, then the pull model may be used.

[0250] In the pull model, the component will block until either a data container arrives on
the input pull pin or a timeout expires. A worker thread may be used to drive pulling data

from the input pins, processing the data, and pushing output to the next component.

-51-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

Methods may be called on pull input pins to pull the data, blocking until either a data
container arrives on the pin, or a timeout expires. If the timeout expires before a data

container arrives on the pin, a null data container may be returned.

[0251] To prevent a pull component from entering a busy loop, it is preferable to block
until data arrives rather than until a timeout expires. However there are cases where a
timeout is necessary, for example if one pin only receives sporadic input. If one pin will not
always receive data, the component can use a timeout on this pin to allow it to continue its
processing without this pin’s input. Unlike a push processing component, a pull processing
component needs to be aware of when to stop processing. An end of stream data container
can be used for this purpose. If the parent graph is aborted, a null data container will be
returned by the pull method. Pull components may need to verify whether their parent graph

has aborted whenever they receive a null data container.
Visual design subsystem

[0252] The visual design subsystem 30 is operable to output graphs 28 and blueprints
28a for developing media applications using components 24, compound components 26,
blueprints 28a and other graphs 28. The visual design subsystem 30 defines relationships
between components 24, compound components 26, and graphs 28 using pins to define the

connections.

[0253] In one example embodiment, the visual design subsystem 30 may be accessible
via a cloud computing system. The visual design subsystem 30 may allow a user to create
components 24 and graphs 28, and define an order of operations or workflow for the graph
28. The visual design subsystem 30 may allow the user to group components 24 (including
compound components 26 and graphs 28) into functional blocks and arrange those
functional blocks into specific orders of operation. The visual design subsystem 30 further
allows the construction of logic branches which allow for flexibility in execution of the
components 24 or functional blocks. The visual design subsystem 30 may also allow for the
construction of functional blocks which may operate linearly in time, non-linearly, or as

discrete operations with separate lifecycle management.

[0254] The visual design subsystem 30 defines a graph by connecting components 24,

compound components 26, and graphs 28 using connection mechanisms such as pins.

[0255] The visual design subsystem 30 allows parameters for the components 24 to be

set and monitored. The visual design subsystem 30 may also allow graphs 28 to be instantly

-52-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

reviewed to test functionality and performance. The visual design subsystem 30 may
simplify component 24 and graph 28 testing, development and deployment.

[0256] The visual design subsystem 30 may provide an interface, such as interface 10
of FIG. 13A, in order to define solution sets of components 24 and versions thereof for use
in graphs 28, blueprints 28a, and other components 24. The visual design subsystem 30 is
operable to test and deploy a solution set for use in graphs 28 and blueprints 28a. The
visual design subsystem 30 is operable to test and deploy a version of a component 24 for

use in a solution set for graphs 28 and blueprints 28a.

[0257] Referring now to FIG. 6 there is shown a block diagram of an example interface
for a visual design subsystem 30 in accordance with an example embodiment. The example
interface for a visual design subsystem 30 includes a graph 28 and components 24 (file
input 24u, color space converter 24v, logic branch 25 with routing based on image width and
height, scaler 24w and AVC encoder 24y). Other example components 24 include YUV to
RGB, java image controller, scripted component, flow control component, and so on. The
example interface for a visual design subsystem 30 illustrates an interface 80 for setting the

properties 25 and values 27 for components 24.

[0258] The visual design subsystem 30 outputs a graph 28 or blueprint 28a, which may
be stored in the repository 32 for subsequent use and reference. For example, the visual
design subsystem 30 may output a file (e.g. XML file) which describes a graph 28,
components 24, compound components 26, blueprints 28a, and compound graphs 28. The
file describes the components 24 that are used, the parameter values, and the connections
between the pins of the components 24. A graph 28 may be used as part of media
applications and may be loaded by the system 10 at run time to ensure the appropriate
components 24 of the graph 28 are used. For example, a graph 28 may reference a solution
set of components 24 and versions thereof. The solution set may change or update, and
because the graph 28 references the solution set by label the appropriate solution will be
loaded by the system 10 at run time. The repository 32 maintains a collection of graphs 28,
blueprints 28a, and components 24. The repository 32 manages versioning of components
24 and graphs 28 to keep track of updates made to components 24 and graphs 28, and new
versions thereof. The graphs 28 are loaded at run time so that the appropriate version of the
graph 28 and each component 24 in the graph 28, as defined by a solution set for example,
is used. Further, the graphs 28 may reference the solution set by label so that if the solution
set is changed the graph 28 will automatically reference the changed solution set without

requiring a manual update to the graph 28. That is, the blueprint with the label may

-53-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

automatically reference the changed solution set without requiring a manual update. A
solution set may be referenced by different blueprints 28a using the same or different labels.
For example, a user may configure a blueprint 28a with a label for a solution set, such as
“ready for testing” or “passed testing” and another user may configure the same or different
blueprint 28a with a different label for the same solution set, such as “MY SET”, for
example. The label provides a descriptive mechanism for a user and also provides efficient
processing and propagation of updates. The label may continue to reference a solution set
even if a modification is made thereto. Labels may also be used to reference components
24, blueprints 28a, graphs 28, and so on. Different labels may be used to reference the

same components 24, blueprints 28a, graphs 28, and so on.

[0259] The visual design subsystem 30 may export a blueprint 28a or a graph 28. For
example, the blueprint 28a may be instantiated on a desktop platform as a local engine or
subset of an application, or in the cloud by a cloud engine 36. A blueprint 28a may be
considered to be a final embodiment of a graph 28. A blueprint 28a and a graph 28

reference a solution set of components and versions thereof using a label.

[0260] The visual design subsystem 30 may be an engine or object code that can be run
through an application interface or through the set of SDKs. The visual design subsystem 30
is operable to construct graphs 28, test graphs 28, perform run time validation, and simulate

graphs 28.

[0261] The visual design subsystem 30 may perform design time media inspection and
propagate media type, data container information and component configuration changes
across graphs 28 and blueprints 28a thus validating proper realization of the graph 28 and
blueprint 28a into a media application that can process the desired type of media. For
example, labels may be used to reference solution sets so that if the solution set changes
then label used in the blueprints 28a will also reference the updated solution set without
requiring the blueprint 28a to be updated. The visual design subsystem 30 enables
complexity abstraction by defining an entire graph 28 or blueprint 28a as a component 24.
Accordingly, data containers 56, components 24, compound components 26, graphs 28,
and blueprints 28a may be generally referred to herein as components 24, and may be used
like components 24 as building blocks for computing applications.

[0262] The visual design subsystem 30 may provide properties redirection through the
ability to expose a component 24 property as a property of an enclosing graph 28. The
visual design subsystem 30 enables modular and recursive construction of graphs 28
through the use of pre-packaged or pre-constructed graphs 28 and components 24. The

-54 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

visual design subsystem 30 uses the repository 32 to provide graph 28 and blueprint 28a
persistence storage and versioning strategy enabling backward compatible changes. The
visual design subsystem 30 provides dynamic, override-able and decoupled user interface

support.

[0263] Referring now to FIG. 1B there is shown a block diagram of the data flow of a
system 12 for dynamic development and deployment of computing applications, in

accordance with an example embodiment.

[0264] The system 12 may include a user system 14 delivering a plug in package that
may contain one or more components 24, graphs 28, and blueprints 28a. The system 12 is

also shown to include a repository 32, agent 34, engine 36 and an application system 15.

[0265] Components 24 may be stored in a repository server 32. The repository server
32 manages the components availability, versioning and OS/platform capability. When a
new job is running the agent 34 will contact the repository server 32 to acquire the

components 24 required by the engine 36 which will be running the graph 28/blueprint 28a.

[0266] Components 24 may be delivered to the repository server 32 as Plugin
Packages. The Plugin Packages contain one or more components 24 of related
functionality. The Plugin Packages may also include graphs 28 or blueprints 28a for
example. Note that each Plugin Package may also be signed and have a manufacturer’s
digital certificate. Third party Plugin Packages may require a certificate with their company’s
identifier before the package may be recognized by the repository 32. This certificate may

be provided by a certification agent, as will be described in relation to FIG. 14.

[0267] The visual designer 30 may provide a graphical interface that can be used to
create new graphs 28, or to create new compound components 26 based on existing
components 24. Compound components 26 include components 24 embedded within other
components 26, and may be referred to herein simply as components 24. Components 24
are the basic data processing elements. Components 24 may have input pins (which allow
data to enter the component), output pins (which allow data to leave the component) and
settings (which allow the user to set some of the parameters/properties which define what
happens to the data when it is processed by the component). Compound components 26
can be created using existing components 24 and these compound components 26 can be

saved as new components 24.

[0268] A graph 28 is a set of connected components 24. Components 24 are connected
via their pins. Data is encapsulated and passed between components in data containers 56.

-55-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

A data container 56 may be comprised of a data object (the raw data that is being
processed) and a data type (meta-information about the raw data).

[0269] A graph 28 can be a specific workflow solution or a graph 28 can be embedded
within another graph 28 as part of a more complex workflow. Complete workflow solutions

can be saved to the repository 32 as blueprints 28a.
Deployment Subsystem

[0270] The deployment subsystem 14 may include one or more linked repositories 32, a
license server 42, cloud agents 34 on user computing systems, cloud engines 36 run by the
cloud agents 34, a job manager 50, and a security module 46. The deployment subsystem
14 provides external interfaces 38 to repositories 32 to manage components 24, blueprints
28a and graphs 28, to the job manager 50 to manage application jobs, and to cloud engines
36 to manage the execution of graphs 28 and blueprints 28a.

[0271] The deployment subsystem 14 may include a computing application used to
manage the workflow and to define the graphs 28. This application may optionally provide
access to a graph creation tool such as the visual designer 30. The deployment subsystem
14 may include an agent 34 which may exchange commands and status between the
application and engines 36. One agent 34 can communicate with more than one engine 36.
The deployment subsystem 14 may include an engine 36 which is operable for running

components 24 in a graph 28.

[0272] The deployment subsystem 14 may include a license server 42 used by engines
36 to check in and out licenses for the purchased components 24. The license server 42
may also be used to enable the application. The deployment subsystem 14 may include a
repository server 32 used to store the components 24 that are to be deployed on engines
36.

[0273] There may be two types of deployments: stand-alone/desktop deployment; and

network deployment.

[0274] Referring now to FIG. 18 there is shown a block diagram of stand-alone
deployment. In this type of deployment the application 47 accesses the development
framework 12 API directly. All of the components of the deployment can be installed on a
single host system 49. That is, the local disk is used to store components 24, graphs 28 and
blueprints 28a. Alternatively, the repository 32 may be used instead of the local disk to

provide a database of plugin packages. The repository 32 can be used by more than one

-56 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

host system 49. The license server 42 can be installed on the host system 49 for a true
“stand alone” deployment, or it can be installed on the network so that it can be accessed by

more than one host system 49, to allow for network licensing.

[0275] Referring now to FIG. 19 there is shown a block diagram of network deployment.
In this type of deployment an agent 34 is required to communicate with the higher level
management application 55 and to communicate with the engines 34. The agent 34 may
reside on one to n different host systems 51, 53. Access to a repository 32 may be required

for network deployment.

[0276] An agent 34 may be the dispatch/coordinating service installed on all host
systems which will run engines 36. An agent 34 may coordinate management and
monitoring of systems on the network and dispatches and monitors jobs running on engines
36. An agent 34 communicates with higher level applications (for example, job manager 50)
through a web services interface, for example. Agents 34 may include a communication
service and a server service. Agents 34 can coordinate management and monitoring of
more than one engine 36 or a mix of engines 34 on the same system, the only restriction

may be the practical limits of the host system’s resources (cpu, memory, bandwidth, etc).

[0277] An engine 36 is a running version of a graph 28 or blueprint 28a. An engine 36
may access source files, write output files and return status to the agent 34 or Kayak-based
application. An engine 36 communicates with the agent 34 to acquire the required
components 24 and with the license server 42 to authorize the components 24 required to

run the graph 28.

[0278] The repository 32 stores components 24, compound components 26, blueprints
28a and graphs 28. As one example, the repository 32 may be a web services based
repository accessible through a cloud computing system via external interfaces 38. As
another example, the repository 32 may be stored on a local system. The deployment
subsystem 14 may use one or more linked repositories 32 for version management,
maintenance and deployment. The repository 32 is a hosted collection of components 24
and graphs 28 which are accessed by a protocol, identified as required, and transferred to
the target host environment. As an illustrative analogy, a graph may be viewed as a recipe
(i.e. template) listing different ingredients (i.e. components) and the repository 32 contains
the blueprint 28a for the graph 28 and components thereof to provide the user with both the

“recipe” and the “ingredients” listed in the “recipe”.

-57-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0279] The repository 32 organizes each component 24 (regardless of whether it is a
standalone component 24 or is a compound component 26, graph 28, blueprint 28a, or
solution set with reference to other components 24) with respect to revision (i.e. versions of
the component), ownership structure, licensing requirements, and dependencies on other
components 24 or technologies. These dependencies or requirements may further require

specific revisions of technologies or components 24 for proper function.

[0280] The repository 32 manages versioning such that it can determine the most
appropriate version of a component 24, graph 28, and blueprint 28a. The appropriate
version of a component 24 may be defined by a solution set. The repository 32 allows
access to any of the available versions of components 24 and graphs 28, which may include
the most recent version but necessarily. The repository 32 may interact with interface 10 in
order to provide available versions for each component and define solution sets. For
example, a customer may want a version of a component 24 that they have tested instead
of the latest version, and may include the tested version in the solution set. This is may be
important for downstream management. When a graph 28 and blueprint 28 thereof is used
by an application the components 24 defined by the solution set referenced by the label in
the blueprint 28a or graph 28 are loaded from the repository 32 at media application runtime
so that the proper version of the components and graphs are used. The repository 32 is
configured to provide versioned components 24 with multi stage capability, automatic
component update propagation and gated component update release.

[0281] Referring now to FIG. 7 there is shown a block diagram of an example user
interface 90 for a repository 32 in accordance with an example embodiment. The example
interface 90 for the repository 32 displays an address 91 for the repository, such as a
uniform resource locator. The example interface 90 for the repository 32 displays a listing 92
of names 93 of components 24, compound components 26, and graphs 28, along with an
associated description 96, provider 95, and version 94. The listing 92 may also include an
associated status, such as complete, tested, and so on. The interface 90 may also include
the interface 10 of FIG. 13A.

[0282] There may be multiple linked repositories 32a, 32b and a media application can
access the multiple repositories when a graph 28 or blueprint 28a is used by the media
application at runtime. Examples of repositories 32 include staging, preproduction, and

production.

[0283] A cloud agent 34 may be provided to a user computing system to manage the

local resources of the host computing system. The term 'cloud' as used herein may describe

-58-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

a heterogenous environment where agents can live in the cloud or on desktops, laptops,
mobile devices, and so on, and is not limited to ‘cloud computing systems’ accessible
through the Internet. That is, a cloud agent 34 may also refer to a desktop agent, local
agent, and so on. The cloud agents 34 may interact with cloud engines 36 to execute
graphs 28 and blueprints 28a thereof in order to run media applications, or other computing
applications. At application runtime, a pool of one or more cloud agents 34 can access a
shared repository 32 of components 24 and graphs 28 to construct the application. A cloud
agent 34 is operable to instantiate blueprints 28a of a graph 28 and run them in a cloud

engine 36.

[0284] A cloud engine 36 provides a running environment for blueprints 28a of graphs
28 and creates media applications on the blueprints 28a of the graph 28. The term 'cloud’ as
used herein may describe a heterogenous environment where engines can live in the cloud
or on desktops, laptops, mobile devices, and so on, and is not limited to ‘cloud computing
systems’ accessible through the Internet. That is, a cloud engine 36 may also refer to a
desktop engine, local engine, and so on. The cloud engine 36 is a runtime construct which
receives blueprints 28a of graphs 28, analyzes and organizes component 24 dependencies,
executes protocols for retrieval of the required components 24, constructs those
components 24 into new run-time executables and dispatches those executables against a
dynamic job or process. The dispatch of new run-time executables can be persistent or
dynamic in nature. In persistent mode the cloud agent 34 registers the availability of cloud
engines 36 with the calling server or application and no further deployment (installation) is
required. In dynamic mode each executable can be ‘renewed’ at each job instantiation

creating a new ‘product’ with each deployment.

[0285] The cloud agent 34 can be implemented as a desktop application or a cloud
based application (using an external interface 38). For a cloud based application, the cloud
agent 34 may be required to manage the cloud engine 36 and provisioning for specific
components 24, graphs 28, blueprints 28a and other resources. For the desktop application,
a dynamic link library may be used and the system SDK 20 may allow for dynamic updates

of components 24 and graphs 28.

[0286] The cloud engine 36 is operable to coordinate the license server 42 and the
repository 32. The cloud agent 34 is operable to dispatch, manage, and run independent,

unrelated functionality on a single host system.

[0287] The cloud agent 34 is operable to provide interfaces and control over lifecycle of
functional blocks of components.

-59-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0288] The cloud agent 34 is operable to monitor, aggregate, and report information
about the environment in which it is running to allow for maximum optimization and balance

of work.

[0289] A cloud engine 36 is operable to execute a graph 28 or blueprint 28a thereof at
application runtime in order to construct and deploy a media application, or other computing
application. At application runtime a cloud engine 36 is operable to use a blueprint 28a of a
graph 28 and the solution set referenced in the blueprint 28a in order to identify components
24 and other graphs 28. Further as a facilitator for version resolution, components 24 may
be self-contained and isolated from a dependency point of view. The entire dependency set
of a component 24 may be self-contained, being specified and packaged in the component
distribution unit (e.g. plugin). The component 24 dependencies may also be isolated,
referring exclusively to the specific component 24 and version(s) they depend on. This may
enable the system 10 to realize complex workflows while resolving components 24
dependencies without user intervention. Further, the dependency isolation may allow the
system 10 to provide distinct behavior while executing blueprints built with the same
components 24 by isolating the different versions of these components 24 and their

dependencies.

[0290] The cloud engine 36 is operable to send a request to the repository 32 for the
identified components 24 and graphs 28, receive a copy of the components 24 and graphs
28 from the repository 32, and dynamically build a media application using the components
24 and graphs 28. Cloud agents 34 run the cloud engines 36. A cloud agent 34 is operable

to instantiate blueprints 28a of graphs 28 and run them in a cloud engine 36.

[0291] A cloud engine 36 is registered with a shared repository 32 and dispatched by
job manager 48. The shared repository 32 works similar to a local repository but its contents
are shared by a pool of cloud agents 34. The job manager 50 dispatches blueprints 28a of
graphs 28 cloud agents 34 referencing available licenses in the license pool 44 as

maintained by the license server 42,

[0292] The cloud agent 34 may provide life-cycle management services for the cloud
engine 36 which in turn manages the components 24, blueprints 28a and graphs 28. The
cloud engine 36 is operable to control all components in a multi-threaded and multi-process
execution environment and to manage initialization. The cloud engine 36 may enable early
propagation of data type information. The cloud engine 36 may provide graceful and non-

graceful termination.

-60 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0293] The cloud engine 36 is operable to provide component configuration services for
graph 28 execution. The cloud engine 36 is operable to provide the ability to auto-configure

component 24 settings based on the input data type avoiding unnecessary user input.

[0294] The cloud engine 36 is operable to provide the ability to configure individually
each input pin to function according to a push or pull model allowing heterogeneous

components 24 to connect to realize the graphs (blueprints).

[0295] The cloud engine 36 is operable to provide memory management services

through memory pools, garbage collection and lifecycle management for large data objects.

[0296] The cloud engine 36 is operable to manage data communication pathways in
between components 24 allowing them to connect and pass data to realize the blueprints
28a.

[0297] The cloud engine 36 is operable to define generic media data type and metadata
model (video, audio, time code, subtitles, closed captions), a specific application domain
data dictionary, a mechanism to encapsulate data and data-type information with data
packets for richer information and optimizes data container management The cloud engine
36 is operable to provide hierarchical data-type representation of the information occurring
in the graph. The cloud engine 36 is operable to provide data-type transformation strategies

to ease component manipulation of data-types.

[0298] The cloud engine 36 is operable to provide multithreaded data integrity through
immutable (read-only) packets and data access performance optimization, components
altering ‘writable’ packets in-place, copying only read-only data.

[0299] The cloud engine 36 is operable to provide out of process execution support,
thus enabling blueprints execution in separate processes, while managing large data
structures transfer, inter process communication and transparent shared memory when

possible.

[0300] The cloud engine 36 is operable to provide support for multi-language

component development with communication and interoperability between them.

[0301] The cloud engine 36 is operable to provide cross platform application execution
support, allowing graphs to be executed on multiple types of platforms, including Windows,
Mac, Linux platforms, for example.

-61 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0302] The license server 42 is operable to dynamically manage a license pool 44 of
licenses and associate licenses with components 24 and graphs 28. The license server 42
is operable to determine whether a requesting user has the appropriate license for the
components 24 identified in a graph 28 that forms part of the media application. A user may
only be permitted to use components 24 and graphs 28 if they have the required and
appropriate license. This allows a user to use the technology across departments, groups
and companies depending on the conditions of the license associated with the various
components 24 of the graphs 28. Further, this enables a provider to control and track use of
its components 24 and graphs 28. The license server 42 provides tracking of all ‘in use’
technology and provides for a central accounting mechanism. The licenses can be

controlled by concurrency, physical system, floating, and leased.

[0303] That is, the license server 44 provides runtime authorization to components 24
through a pool of available licenses. Referring now to FIG. 17, there is shown an example
browser based console 41 which can be used to access the license server 44 to show which
features are available, how many are currently in use, and which systems are using the
features. The license server 44 can access and/or import plug-in package 43 of licenses.
Engines 36 can access the license server 44 to check out licenses for the components 24
required to run a graph 28 and to check in those licenses once the graph 28 has finished
running. An application system 45 can access the license server 44 to check out licenses for
the components 24 required to run an application and to check in those licenses once the

application has finished running.

[0304] The job manager 50 is configured to provide job/engine dispatch, failover,
tracking and reporting. The job manager 50 dispatches cloud engines 36 based on available
resources, system availability, processing capability, available licenses in the license pool 44
maintained by the license server 42. In particular, the job manager 48 dispatches cloud
engines 36 based on the latest or appropriate graph blueprints 28 registered with production
repository 32 and available licenses in the license pool 44. The job manager 50 may also be
configured for mapping graphs 28 to cloud engines 36. The job manager 50 may also be
configured to provide the highest level of access to the running cloud engines, and provide
centralized access to the cloud engines 36 regardless of state (running or not). The job
manager 50 may further self-extend interfaces (e.g. web services) based on the graph
28/blueprint 28a that is loaded on the cloud engine 36 to provide a namespace (for example,
similar to the web) which may allow the developer to discover which graphs 28 and
components 24 are used in that particular computing application, query parameters, set

parameters, and so on.

-B62-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0305] Referring now to FIG. 8 there is shown a block diagram of an example interface
60 for a job manager 50 in accordance with an example embodiment. The interface 60
provides a listing 62 of resources managed by the job manager 50 including a start time,
end time, resource name, status (e.g. running, completed, failed, cancelled), progress,
average encoding rate, estimated time remaining, failures, source file, project, and notes.
The interface 60 may also include a search box 64 for searching for jobs managed by job
manager 50. The search box 64 may provide a variety of search parameters such as date
range, project name, resource, group, current state, and events (e.g. dropped, failover), for
example. The interface 60 is operable to provide a variety of pages or windows, such as a
summary, network monitor, groups, resources, schedule, jobs, and alerts, for example.

[0306] The security module 46 provides for secure connections and communications

within system 10.

[0307] A code signing module 40 is operable to digitally sign each component 24 to

associate a developer, license, or both with each component 24,

[0308] The translation module 58 is operable to translate multiple languages into a

common language for system 10.

[0309] An interface application may provide users with a way to create graphs 28 and to
run those graphs 28. The graph 28 creation may be programmatic, where a graph 28 is
generated based on a few user selected parameters, and the actual graph 28 itself is hidden
from the user. At the other end of the spectrum the interface application may provide full
access to the visual designer 30, with the user choosing and connecting the components in
the graph 28 manually. The interface application may also provide a way to select the data
inputs for the graph 28 (e.g., source files), to set the outputs for the graph 28 (e.g., archive

files), and to monitor and control the execution of the graph 28.

[0310] An example of an interface application is job manager 50 with job engines 34.
The job manager 50 may be a media manager server which manages file transcode jobs.
User access to the Media Manager Server may be via an interface application. Jobs are
submitted to the server by adding source files to watch folders. Watch folders are
associated with job projects (graphs 28 for transcoding jobs). Graphs 28 may be created
using a customized version of the visual designer 30. The Media Manager Server may have
access to a pool of transcode host systems, and each transcode host system may
communicate with the Media Manager Server using an agent 34 installed on the host. When

a job is submitted the source file and project (graph 28) are sent to a host system with an

-B63 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

agent 34 which will then manage the engine 36 which processes the job. Status is returned
to the Manager Sever while the job is being processed and when the job completes.

[0311] Referring now, to FIG. 1C there is shown a block diagram of the data flow of a
system for dynamic development and deployment of media applications, in accordance with
an example embodiment. A blueprint 28a is a container of one or more graphs 28. A graph
28 can contain other graphs28 but all run in one lifecycle, whereas the graphs 28 contained
at the blueprint 28a level may run simultaneously, or sequentially. Cloud agents 34 and
cloud engines 36 may be operable to receive a blueprint 28a and use it to instantiate a

graph 28 of components 24, compound components 26, and data containers 56.

[0312] The normalization module 52 is operable to receive input media files 54 (which
may be files as in the original document, live media and so on), and convert and parse the
input media files 54 into data containers 56 to be processed by the graph 28/ blueprint 28a.
The normalization module 52 extracts as much data as possible from the input media file 54
to populate the data containers 56 and the data type and data objects of the data containers
56. The normalization module 52 can match the input data to a dictionary of languages
linked to data types in order to populate the data type component of the data containers 56.
Normalization module 52 capability may be distributed across various components (being

actually provided by specific components or for example a media file input component).

[0313] System 10 may be implemented as a cloud computing system and the user may
access system 10 through external interfaces 28 (such as web services for example).

[0314] Referring now to FIGS. 9 and 10 there is shown block diagrams 70, 80 of

example web services implementations in accordance with example embodiments.

[0315] As shown in FIG. 9, web services 72 may connect and interact with a broadcast
system 74, post broadcast system 76, and cable/IPTV system 78. Web services 72 may
provide a virtual layer between external systems (e.g. service system 74, post processing
system 76, cable/IPTV system 78) and the components of system 10. The web services 72
interact with job manager 50, which in turn dispatches and manages one or more cloud
engines 36. The job manager 50 may also interact with license server 42 and license pool
44 to comply with license restrictions. The web services 72 may be provided as a cloud
computing system. One feature of embodiments described herein is automatic generation
web services 72 based on the components that exist in a running engine. The web services
72 can be further filtered through access control by the author/designer of the application.

-84 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0316] As shown in FIG. 10, web user interfaces 81 may connect and interact with one
or more service system(s) 86, post processing system(s) 85, and other external systems 87
(e.g. cable/IPTV system). Web user interfaces 81 may provide a virtual layer between
external systems (e.g. service system(s) 86, post processing system(s) 85, other system(s)
87) and the components of system 10 (referred to as virtual appliances 84). In some
embodiments, some web user interfaces 81 may interact with an application 82a to access
the components of system 10. In some embodiments, business logic residing on web
servers 83 is operable to control interactions between web user interfaces 81 and the

components of system 10.

[0317] An example embodiment may implement an asset management and publishing
system that is responsible for implementing actions including storing, conforming, searching,
and publishing large amounts of media data to individual publishing profiles. A publishing
profile can be a VOD target, a device, a service, and a network, for example. The asset

management and publishing may be implemented as a web application.

[0318] Referring now to FIGS. 11 and 12 there is shown diagrams of example data
flows for implementing an asset management and publishing system in accordance with
example embodiments. At 200, system 10 is operable to ingest digital media assets (such
as input media files). At 202, system 10 is operable to determine whether the digital media
assets meet codified requirements and use job manager 50 to dispatch cloud engines 36 for
processing and modifying the digital media assets to meet such codified requirements. At
204, system 10 is operable to store digital media assets. In some embodiments, the job
manager 50 may be used to manage the storing of the digital media assets. At 206, system
10 is operable to search through the digital media assets for refinement based on search
parameters. At 208, system 10 is operable to publish the processed and refined digital
media assets to a customer by using the job manager 50 to dispatch corresponding cloud
engines 36 for preparing (e.g. advanced video coding) and publishing the digital media

assets to specific customers at 210.

[0319] Referring now to FIG. 14 there is shown a block diagram of an example
certification system 160 in accordance with example embodiments. The certification system
160 may certify or sign a solution set, graph 28, component 24, blueprint 28a, and so on
(referred to generally herein as components) with digital certificates 142, 132 to indicate
acceptance that the particular component will perform or carry out a function as expected,
by one or more user computing systems 140 associated with the particular component and

one or more component provider systems 130. FIG. 14 illustrates multiple user computing

-85 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

system 140, each associated with different media applications developed and deployed
using system 10. FIG. 14 further illustrates multiple component provider systems 130, each
having provided resources such as one or more components for use by system 10 or one or

more hardware resource used to execute computing applications, for example.

[0320] A user computing system 140 may be any networked computing device operated
by a user of system 10 including a processor and memory, such as an electronic tablet
device, a personal computer, workstation, server, portable computer, mobile device,
personal digital assistant, laptop, smart phone, WAP phone, an interactive television, video
display terminals, gaming consoles, and portable electronic devices or a combination of
these. A networked device is a device capable of communicating with other devices and
components of system 10 and certification system 160 through a communication network
such as network 152. A network device may couple to the communication network through a
wired or wireless connection. Similarly, component provider system 130 maybe any
networked computing device operated by a resource provider including a processor and
memory

[0321] Network 152 may be any network(s) capable of carrying data including the
Internet, Ethernet, plain old telephone service (POTS) line, public switch telephone network
(PSTN), integrated services digital network (ISDN), digital subscriber line (DSL), coaxial
cable, fiber optics, satellite, mobile, wireless (e.g. Wi-Fi, WIiMAX), SS7 signaling network,
fixed line, local area network, wide area network, and others, including any combination of

these.

[0322] The user computing systems 140 and the component provider systems 130 use
digital certificates 132, 142 to indicate that they agree that a particular component operates
properly. That is, the digital certificates 132, 142 signify acceptance by both the user
computing system 140 and the component provider 130 that a particular component
satisfies a performance standard. For example, the digital certificate 142 may sign a
particular component when a user computing system 140 activates a digital button “I agree”
linked to a digital representation of a license agreement. It may be important to track and
record acceptance by users and providers to efficiently resolve disputes and to ensure only
accepted components are used in the computing applications so that the computing
application functions as agreed. It may be important that the functionality performed by the
application or the deliverable (what the application creates or transforms) can be tracked,
agreed upon, etc.. A digital certificate may be an electronic file that identifies an individual or

organization and electronically indicates to system 10 that the individual or organization

-66 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

accepts a component. A digital certificate may be issued by system 10 or by a third party
certificate issuer. A digital certificate may have security measures to authenticate the
individual or organization associated therewith so that the digital certificate is not used

fraudulently.

[0323] The certification system 160 may extend to multiple user computing systems
140, each with a digital certificate 142 for signing components, blueprints, and so on. The
certification system 160 uses digital certificates 132, 142 to create a 'chain of trust' between
all aspects of the system 10. Trusted components may create trusted graphs (which may
include trusted or untrusted components). A graph may become a trusted graph when
signed by multiple user computing systems 140 and provider systems 130 to create trusted
exchange of trusted graphs (blueprints) for use within a media application. That is,
components may be signed using digital certificates 132, 142, and the signed components
may be used to create graphs and blueprints. The graphs and blueprints may also be
signed using digital certificates 132, 142. Those signed graphs and blueprints may form part
of a computing application, and system 160 may check to ensure all of the computing
application components are signed (i.e. accepted by a user and provider) prior to executing

the computing application.

[0324] As an example, a user computing system 140 may use system 10 to develop a
media application involving a particular component and may test and deploy the particular
component to ensure it functions properly. Once the user computing system 140 agrees that
the particular component satisfies a performance standard (i.e. functions properly) then the
user computing system 140 can indicate acceptance using a digital certificate 142
associated with the user computing system 140. The use of a digital certificate to indicate
acceptance enables the system 10 to automatically and efficiently track and check the
acceptability of media applications and components thereof. The user computing system
140 signifies acceptance by signing the component with the digital certificate 142 associated
with the user computing system 140. Similarly, the component provider 130 signifies
acceptance by signing the component with a digital certificate 132 associated with the

component provider 130.

[0325] The license server 42 includes a certificate component matrix 146 which
manages records relating to digital certificates 132, 142. In particular, a record links the
digital certificates 132, 142 and the accepted resources, such as components, graphs,
computing applications, hardware resources used to execute computing applications, and
so on. A component may be used in multiple computing applications associated with

different user computer systems 140, where each user computer system 140 is associated

-B7 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

with a different digital certificate 142. Accordingly, the certificate component matrix 146 may
include multiple records associated with the same component, where each record links the
component to a different digital certificate 142 associated with a different user computer

system 140.

[0326] In accordance with some embodiments, the computing application is deployed
internally by system 10 or externally by a remote computing system. For example, the
remote computing system may be cloud based infrastructure. The remote computing system
may be operated by system 10 or may be operated by a third party, for example. A cloud
engine 36 or a cloud agent 34 may query the license server 42 to ensure that a component
has been signed by both digital certificates 132, 142 before executing a component at
runtime as part of a media application associated with the user computing system 140. If the
component has not been signed by both digital certificates 132, 142 then the cloud engine
36 or the cloud agent 34 may not execute the component and may provide an error
message requesting that the component be signed by the digital certificates 132, 142. The
cloud engine 36 or the cloud agent 34 may submit a query that includes both the user
computer system 140 associated with the media application and the component. The cloud
engine 36 or the cloud agent 34 is operable to verify that the relevant user computing
system 140 has accepted the component, as a component may be associated with a
different user computing system 140. Further, the cloud engine 36 or the cloud agent 34 is
operable to verify that the component provider 130 has accepted the component before

deployment.

[0327] Further, the license server 42 may include a record database 150 which stores a
record or report each time the resource operates successfully, such as when a component
successfully executes within the computing application, when a signed hardware resource
successfully executes the computing application, and so on. The record establishes that the
resource operated successfully (e.g. a component or blueprint executed successfully) in the
event of a dispute between the user computing system 140 and the component provider
130. The license server 42 may generate summary of all records associated with a resource
for provision to the component provider 130, system 10 or user computing system 140. The
summary provides a mechanism to notify the component provider 130 or user computing

system 140 that the resource is or is not successfully operating.

[0328] Using certification system 160, system 10 is operable to supply some signed
components (signed with digital certificates) to guarantee a certain level of functionality. A

signed component may establish trust regarding performance and functionality.

-B8 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0329] For example, a gas company may operate user computing system 140 and may
create a computing application (including a blueprint 28a, graph 28, components 24, and so
on) which contains some signed components required to perform a particular job, such as a
component configured to perform job data mining on a large database of information about
potential drill sites, geophysical information for each of these sites, potential risks associated
with each site, costs, government limitations, environmental liabilities, and so on. The
company may not have the processing resources to perform the computations of the
computing application in a required timeframe and may use a remote computing system,
such as a cloud based infrastructure for example, to execute the computing application in
order to perform the computations. The company may want a guarantee of a performance
level in relation to the execution of the computing application by the remote computing

system.

[0330] The system 10 may engage third parties, such as a component provider system
130 (e.g. vendor of components 24), to provide the remote computing system, such as the
cloud based infrastructure. The system 10 and component provider system 130 may be
associated with a service level agreement that guarantees performance of the remote
computing system provided by the component provider system 130. In order for the gas
company operating the user computing system 140 to trust system 10 to run their computing
applications there may be a chain of trust established between the component provider
system 130, the system 10, and the user computing system 140. Accordingly, there may be
more than two digital certificates signing the computing application (or components 24,
blueprints 28a, graphs 28 thereof). System 10 may use its own digital certificate to sign to
the computing application to guarantee that it functions exactly as the gas company
associated with the user computing system 140 requires. In addition, the user computing
system 140 may use their digital certificate 142 to sign the computing application and the
component provider 130 (which may also be referred to as a service provider as it may
provide the cloud computing resources in this example) may use their digital certificate 132
to sign the media application. In effect, instead of offering remote computing system
resources (such as raw cloud resources for example), the system 10 may be viewed as
offering a “Workflow As A Service” in some examples. The system 10 may not know exactly
what job the media application is performing only that it functions in the remote computing
system infrastructure properly. The digital certificates 142, 132 provide a chain of trust and
acceptance between the parties, a security mechanism and a validating reference point that
the parties can feel confident about. Accordingly, in this example, the gas company
operating the user computing system 140 signs the application (or blueprint, graph,

component thereof) with their digital certificate, the system 10 countersigns the media

-89 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

application with their digital certificate, and the component provider system 130 signs the
media application with their digital certificate. The system 10 is operable to only execute the
blueprint only if all digital signatures (made by the digital certificates) are valid. Security may
be derived from the digital certificates and chain of trust established thereby, as only signed

components, blueprints and graphs may be executed by system 10 in some embodiments.

[0331] As system 10 generates reports each time the computing application (and
blueprints, graphs, and components thereof) successfully execute and those reports are
stored by license server 42 in the record database 150. A results summary may be
generated and transmitted to the user computing system 140. The chain of trust is
maintained so that the gas company operating the user computing system 140 can trust the
results of the media application, third party service, etc. and the fact that the data and

blueprints have been protected throughout the entire process.

[0332] Other potential types of computing applications and contexts include voter

registration, integrity management, and vote tally applications.

[0333] For example, a computing application may include a blueprint defining a workflow
at place at each voting station. The computing application may be a trusted application
using trusted (i.e. signed) components, running on a trusted system 10.The user (voter)
registers their data and signs the data using their digital certificate and the system 10 adds a
user specific certificate to the data. At voting time, the trusted user data is interjected into
the trusted workflow and the vote is recorded by system 10. All of the voter stations involved
send trusted data into the remote computing system hardware infrastructure executing the
computing application where trusted processes are running inside of a trusted environment.
The remote computing system solution provider (e.g. component provider system 130)
countersigns the computing application implementing the workflow with their digital
signature, the data coming back is secure (i.e. signed), the public and government can trust
the system 10 because it is secure (i.e. signed), and the results are trusted because of the
nature of the system 10. The signing of a component may involve encrypting the component

to enhance security.

[0334] The use of digital certificates in the described example embodiments differs from
a traditional https style of key exchange. For an https system, when a user accesses a
website, say a bank, the user can trust the bank because the certificate at the bank website
is certified against that particular system. In a remote environment, such as a cloud
environment, where the system providing the remote hardware infrastructure may be
unknown, and using the described embodiments, the digital certificates may be used to

-70 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

secure the process implemented by the computing applications. The described
embodiments may use digital certificates to sign the entire media application, including the
individual components and entire workflows implemented by blueprints 28a, and even

multiple stages of workflow.

[0335] As another example, a media company may sign a media application provided by
system 10 as a Workflow As A Service. The media company may operate the user
computing system 140 to access system 10 and develop blueprints (workflow) for the media
application. System 10 or a third party, such as a media company association, may certify
that the workflow (blueprint or media application) is secure when all involved companies sign
the blueprint using their digital certificates. The signatures makes all parties feel protected,
and ensures with some level of credibility that the media will be secure, the processes will

be secure and operate as expected, and the chain of trust is secure.

[0336] A process flow associated with the certification system 160 may include the

following steps in accordance with an example embodiment.

[0337] A user computing system 140 may be provided, via network 140, with access to
the system 10, which includes a development framework 12 with a software development kit
20, components 24, data containers 56, pins, graphs 28, blue prints 28a and so on, in order
to construct a computing application. The software development kit 20 may be used to
define the components 24, data containers 56, pins, graphs 28, blue prints 28a, and solution
sets (each generally referred to as components). Each component defines a computing
processing mechanism for processing data containers 56 of data at application runtime.
Each graph 28 or blueprint 28a comprises a reference to a solution set of components,

where the solution set of components is a set of particular versions of components.

[0338] The user computing system 140 may be provided, via network 140, with access
to the visual design subsystem 30 configured to define and output graphs 28 and blueprints
28a in order to develop computing applications. The visual design subsystem 30 is operable
to arrange components into functional blocks and define specific orders of operation for the
functional blocks. The user computing system 140 may use the visual design subsystem 30

in order to define solution sets for blueprints 28a and graphs 28 using interface 10.

[0339] The user computing system 140 may be provided with a digital certificate 142
associated therewith. The certificate 142 may be provided by system 10, and in particular by
license server 42. The certificate 142 may also be provided by a third party certificate

provider.

-71-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0340] The component provider 130 provides one or more resources, such as
components to system 10 for use by the user computing system 140 to develop
components and computing applications. Other example resources include signed
computing applications and hardware resources to execute computing applications. The
component provider 130 is provided with a certificate 132 associated with the provided
components. The certificate 132 may be provided by system 10, and in particular license
server 32. The certificate 132 may also be provided by a third party certificate provider.

[0341] The user computing system 140 may use the component provided by the
component provider 130 for one or more of their media applications. As described herein,
the user computing system 140 may require a license to use the component, as managed

by the license server 42 and the license pool 44.

[0342] The user computing system 140 may be provided, via network 140, with access
to the deployment subsystem 14 for deploying the computing applications including the
component. As described herein, the deployment subsystem 14 includes a repository 32,
cloud agent 36, cloud engine 34, and other modules. The computing application may identify
graphs 28, blue prints 28a, compound components 26, and components 24, including the
component provided by the component provider 130. The repository is configured to store

graphs 28, blueprints 28a, and components 24 for loading at application runtime.

[0343] The user computing system 140 may use the deployment subsystem 14 to test
and deploy the component provided by the component provider 130. If the user computing
system 140 is satisfied that the component provided by the component provider 130
functions as expected then the user computing system 140 may accept the performance by
signing the component using the digital certificate 142 associated therewith. The license
server 42 receives the digital certificate 142 from the user computer system 140 via network
152 and creates a record in the certificate component matrix that links the signed
component with the digital certificate 142. Similarly, the component provider 130 may accept
the performance by signing the component using the digital certificate 132 associated
therewith. The license server 42 receives the digital certificate 132 from the component
provider 130 via network 152 and updates the record in the certificate component matrix to
also link the signed component with the digital certificate 132.

[0344] A cloud engine 36 provides a running environment for the media applications
(and the graphs 28 and blueprints 28a thereof) and executes the graphs 28 and blueprints
28a at runtime to instantiate the media application. The cloud agent 34 controls the cloud
engine(s) 36. At runtime, the deployment subsystem 14 dynamically constructs and deploys

-72-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

a computing application by sending a request at runtime to the repository 32 for the graphs
28, blueprints 28a, compound components 26, and components 24 identified in the media
applications. The deployment subsystem 14, and in particular the cloud engine 36 or the
cloud agent 34, is operable to query the license server 42 at runtime to ensure that the
component of the computing application has been accepted by both the user computing
system 140 and the component provider 130 prior to executing the component and running
the computing application. The license server 42 is operable to respond to the query by
checking the certificate component matrix 146 for a record that links the component to the
user computing system 140 and the component provider 130. If the component has not

been accepted an error message may be provided requesting acceptance.

[0345] Each time the component of the computing application successfully executes the
cloud agent 36 or the cloud engine 36 may provide a record or report of the successful

execution to the license server 42.

[0346] The job manager 50 is operable to store the record of successful execution in
the record database 150 in association with the component, the user computing system 140
or the component provider 130. That way, if a dispute arises in relation to the operation of
the component the job manager 50 can provide a copy of the record to establish that the
component did or did not execute successfully to resolve the dispute. The license server 42
may know whether or not specific technology resources are in use, may not know whether

or how the technology resources used was actually successful.

[0347] In accordance with some embodiments, system 10 is operable to provide support
for mixed architectures. This may provide increased flexibility as typically a process needs to
be compiled for the same architecture binary. For example, a 32 bit CODEC library would
typically have to run on a 32 bit context, and typically could not run in a 64 bit context or with
a 64 bit library. In accordance with some embodiments, system 10 is operable to develop
and deploy an application instance which combines components 24 written for both 32 bit
and 64 bit architectures. System 10, and in particular cloud engine 36a, is operable to detect
whether a particular media application has been developed using both components 24 for
different architectures, such as components 24 for 32 bit architectures and components 24
for 64 bit architectures, for example. If so, system 10 is operable to create a separate
process space or instance for each context and handle inter process communications using
mapping and a shared memory. For example, the system 10 is operable to create a 32 bit
architecture process instance and a 64 bit architecture process instance and manage
communications between the process instances.

-73-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0348] Referring now to FIG. 16 there is shown a block diagram of a mixed architecture
in accordance with example embodiments. A graph 28 may contain components 24
developed for different architectures, such as components 24 for 32 bit architectures and
components 24 for 64 bit architectures, for example. System 10, and in particular cloud
engine 364, is operable to detect whether a particular graph 28 includes components 24 for
different architectures. In this example, graph 28 contains components 24a, 24b, 24c, 24d
developed for 32 bit architectures and further contains a subgraph 28" with components
developed for 64 bit architectures. System 10 is operable to create a separate process
space or instance of graph 28 for the 64 bit context and handle inter process
communications using mapping and a shared memory to receive and provide input and

output. The subgraph 28’ may run out of process for example.

[0349] In accordance with some embodiments, system 10 is operable to provide
selective scalability, through dynamic provisioning, and deployment based on the individual
workload of a component 24, group of components 24, or entire graph 28/blueprint 28a.
System 10 is operable to analyze the runtime processing of a blueprint 28a and break down
the blueprint 28a into separate running graphs 28 based on derived knowledge of the
processing overhead (e.g. bottlenecks) of particular components which exist in a particular
workflow. System 10 is further operable to isolate those component(s) 24 and partition the
blueprint 28a into multiple graphs (e.g. create new graphs 28) on the fly which can exist on a
separate host system (or the same host system) while maintaining the communication and
integrity of the original workflow/blueprint 28a. For example, system 10 is operable to use a
separate host system with more resources to process to overhead/bottlenecks and manage
data flows between. The modular nature of components 24 and graphs 28 enable system
10 to partition a graph 28 into multiple graphs and run them separately on different

computing resources.

[0350] Referring now to FIG. 15 there is shown a block diagram of a graph 28
partitioned into two graphs 28, where each is run on a separate host system 300, 302.
System 10 is operable to identify a processing bottleneck (i.e. graph 28’ in a graph 28
running on a host system 300, isolate the components 24 associated with the processing
bottleneck, and create a new graph 28’ on the fly which can exist on separate host system
302. The separate host system 302 provides additional resources to process graph 28.
System 10 is operable to manage communications and data flow (e.g. via a shared memory)
between the host systems 300, 302 and graphs 28, 28’.

-74 -

10

15

20

25

30

35

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0351] In accordance with some embodiments, system 10 is operable to provide
security through dynamic re-location of graphs 28 and components 24 that make up a
particular computing application. The process is similar to as described above in relation to
selective scalability except that a graph is partitioned for the purpose of increased security,
as opposed to the purpose of isolating a processing bottleneck. For example, security
module 46 may interact with license server 42 to determine whether a particular graph 28 for
a media application refers to components 24 (or embedded graphs 28) that are signed. If
so, system 10 may partition the graph 28 for the media application by isolating the signed
components 24 for increased security by obfuscating the original footprint of the media
application. The partitioned components may then run on a separate host system (similar to
that shown and described in FIG. 15). System 10 is operable to further limit access to the
running footprint of a particular blueprint 28a and relocate sections of the blueprint 28a onto
different hosts in a dynamic fashion. This may be viewed as 'scrambling' the application
footprint at the functional level making it harder to find and compromise. For example, an
attacker may focus on one host to monitor and listen, so splitting a process onto multiple
hosts may make it more difficult for an attacker to monitor and tamper with the program.
The original functionality is maintained as system 10 manages communications and data
between the multiple host systems. Security is maintained as the process of creating the
new sub-graphs 28 may involve automatic injection of secure messaging components (e.g.
encryption). As an extension of this, system 10 is further operable to create multiple
instances of each new sub-graph 28 and to randomize the data paths through the running
components 24 of the sub-graphs 28. Further, system 10 may be operable to maintain a set
of potential host systems and randomize selection of a subset of those host systems on
which to run the program, so that the host systems are also randomly selected.

[0352] In accordance with some embodiments, system 10 is operable to control access
to resources using virtual priority management. That is, system 10 is operable to tune a
media application to control priority of processing, parallelization and threading. At runtime,
system 10 is operable to manage the execution of a component 24 in such a way as to
make it process faster or slower than normal. There may be an imbalance of resource
utilization between components 24 in a media application, and system 10 is operable to
manage the processing prioritization of a particular component while other components 24
are prioritized independently. For example, if a more important component 24 is running
then system 10 is operable to manage, control, manipulate or throttle (i.e. slow down)
another component that may be consuming a larger amount of resource until the more

important component 24 has completed its processing.

-75-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0353] As an illustrative example, the virtual priority management may be implemented
using a virtual clock as a mechanism to control priority. A virtual clock is one example and

the implementation could be done a number of different ways.

[0354] As noted above system 10 is operable to limit resources allocated to a particular
component 24. For example this may be limiting component access to a thread pool,
memory, or other mechanism. System 10 may throttle the data while not touching anything.
An example may be a source component such as a complex signal generator. The signal
generator may be the first component in the pipeline and may generate frames faster than
they can be consumed but while doing so can also use some amount of CPU. If system 10
decides at runtime to limit the CPU activity the system 10 may simply trigger the signal
generator less often. This may not require any manipulation of threads, memory, or source
data packets. Another example may be something at the end of the pipeline that is designed
to send out notifications or updates but is also blocking while doing so. The component may
send email notifications and the act of sending those notifications takes longer than the rest
of the pipeline does in actual processing. System 10 may limit the number of notifications by
throttling the packets that normally trigger the component to start execution.

[0355] In accordance with some embodiment, components 24 may be self-contained
and isolated from a dependency point of view. The entire dependency set of a component
may be self-contained, being specified and packaged in the component 24 distribution unit
(plugin). The component 24 dependencies may also be isolated, referring exclusively to the
specific component 24 and version(s) thereof they depend on. Thus the system 10 may be
able to realize complex workflows while resolving components dependencies without user
intervention. Further the dependency isolation may allow the system 10 to provide distinct
behavior while executing different solution sets (blueprints 28a) built with the same
components 24, by isolating the different versions of these components 24 and their

dependencies.

[0356] As described herein, graphs 28 and blueprints 28a are portable and may be

packaged to run anywhere there is a cloud agent 34.

[0357] In accordance with some embodiments, components 24 and graphs 28 may
support promotion of properties and values. For example, if one component 24 is embedded
within another component 24, the inner component 24 may promote one or more of its
properties to the outer-component 24. A user may pass expressions to components 24 to
change/promote properties. That is, properties may be reauthored as they are promoted.
Properties may be selectively promoted in that not all properties need to be promoted

-76 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

together. Properties may be promoted without exposing the values, and without exposing

the values of the properties that are not promoted.

[0358] FIG. 20 illustrates a process 3000 performed by blockchain manager 2100 for
updating a distributed ledger 2800 with a new block in accordance with example
embodiments. At step 3100, blockchain manager 2100 may receive a request to add a
component 24 to distributed ledger 2800 from one or more authorities 2200. At step 3200,
blockchain manager 2100 queries development framework for a specific function or purpose
for component 24. In response to the query, manager 2100 may receive the appropriate
information for a specific function or purpose for component 24. In some cases, the received
information may include one or more digital certificates 132 associated with one or more
authorities 2200 (e.g. component provide subsystem 130), the digital certificates 132 may

be specifically tied to the specific function or purpose for component 24.

[0359] At step 3300, if a digital certificate has not been received, blockchain manager
2100 may be configured to query for the digital certificate(s) directly from authorities 2200.

[0360] It is noted that the order of steps 3200 and 3300 may be interchangeable, such
that blockchain manager 2100 may query for a digital certificate before querying for

information regarding function or purpose for component 24.

[0361] At step 3400, blockchain manager 2100 may be configured to authenticate the
digital certificate(s). There may be two levels of authentication for each digital certificate: 1)
authentication of an identity of authority 2200, and 2) authentication of the function or
purpose for component 24. Blockchain manager 2100 may perform the authentication
process by a private/public key mechanism, if the digital certificate is a cryptographic hash

function based on a private key.

[0362] At step 3500, once the digital certificates have been successfully authenticated,
blockchain manager 2100 may generate a digital signature 2250 for component 24. The
digital signature 2250 may include one or more fields as described in detail in relation to
FIG. 2D. The digital signature may be encrypted by a cryptographic hash function or through

any other encryption means.

[0363] At step 3600, blockchain manager 2100 may combine the digital signature with
component 24 to generate a new block 2400. For example, manager 2100 may append the
digital signature to a data field containing a pointer or reference to component 24, which

may be stored locally and/or at repository 32. The new block 2400 may be further encrypted.

-77 -

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

A single encrypted block may be generated by a cryptographic hash function based on at
least a given set of data (e.g. digital signature).

[0364] At step 3700, blockchain manager 2100 may update distributed ledger 2800 with
the new block 2400 and propagate the updated distributed ledger 2800 across network 152
to all nodes, including authorities 2200 who may keep a copy of the distributed ledger on

their respective database.

[0365] In some embodiments, instead of blockchain manager 2100 updating distributed
ledger 2800, the manager 2100 may propagate the new block 2400 across network 152,
and request to have it added or inserted into distributed ledger 2800. In this case, all nodes
(e.g. authorities 2200) may verify information of the new block and update their respective
copy of distributed ledger 2800 accordingly, in a distributed manner.

[0366] In some embodiments, instead of adding a new block, blockchain manager 2100
may receive a request to update an existing block within a distributed ledger with an
updated version of the component in the block. In response to the request for updating the
distributed ledger, manager 2100 may query authorities 2200 (which have provided the
updated version of component) for their respective digital certificates, and verify that the
authorities 2200 are authorized to update the component. For example, the authorities 2200
may be the same entities that have provided the previous version of the component. For
another example, authorities 2200 may be an entity that has overwriting authority, according
to a record of authorities, to update one or more blocks of distributed ledger 2800. Once the
digital certificates are authenticated, manager 2100 may proceed to query for the
appropriate information (e.g. function or purpose, expiry date, etc.) required to generate a
new digital signature 2250 for updated block containing the updated component. In this
case, the new digital signature may contain information regarding a pointer to the preceding
block and a pointer to the subsequent block as taken from the old digital signature. Once a
new digital signature 2250 is generated, manager 2100 may combine it with the updated
component (or a pointer thereto) to generate the new block for insertion into distributed
ledger 2800.

[0367] FIG. 21 illustrates a process 3900 performed by blockchain manager 2100 for
providing a component stored in a distributed ledger for use in accordance with example
embodiments. At step 3910, blockchain manager 2100 may receive a user request from
requestor 2300 to use a component 24 from distributed ledger 2800. The component 24
may be from a blueprint 28a. The request may be for use of some or all components in a
blueprint 28a represented by distributed ledger 2800.

-78-

10

15

20

25

30

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

[0368] At step 3920, which is optional, blockchain manager 2100 may query for a digital
certificate from user, in order to establish and authenticate the identity of user. This may be
needed if the user has not previously requested any services from blockchain manager
2100.

[0369] At step 3930, which is also optional, upon receipt of the digital certificate,
blockchain manager 2100 may authenticate the digital certificate to establish the identity of

user.

[0370] At step 3940, once a user is authenticated, blockchain manager 2100 may query
license server 42 for an appropriate license from a license pool 44. The license may indicate

whether the user is authorized to use the requested component 24 or blueprint 28a.

[0371] At step 3950, which is an optional step, upon receipt of the license, blockchain
manager 2100 may check that the requested component 24 is the requested version in the
copy of distributed ledger 2800 associated with blueprint 28a. The requested version may
be the most up-to-date version in some embodiments, or it may be another requested
version. There may be other versions of components 24 associated with different graphs 28
or blueprints 28a. If blockchain manager 2100 finds a more up-to-date version of the
component 24 with the same or higher trust value for the same function or purpose,
blockchain manager 2100 may be operable to send the more up-to-date version of

component 24.

[0372] At step 3960, blockchain manager 2100 may send a pointer of the most up-to-
date version of component 24 to requestor 2300 for the user to launch. In some
embodiments, instead of sending the component 24 directly to the requestor 2300 or user,
blockchain manager 2100 may be operable to launch (i.e., instantiate) the component 24 or
blueprint 28a and manage the lifecycle of the instantiated processes of component 24 or
blueprint 28a for user.

[0373] At step 3970, if appropriate, blockchain manager 2100 may send a request to
update a use of the component 24 that has just been instantiated based on its performance
at application runtime. If any aspect of the component 24 has been changed (e.g. a trust
value), blockchain manager 2100 may be configured to update the block containing
component 24 with a new digital signature 2250 containing information regarding the

updated aspect(s).

[0374] Embodiments have been described herein in relation to media applications as an

illustrative example. The system and methods described herein may be used to develop and

-79-

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

deploy other type of software applications and are not limited to media applications, such as

natural resource applications, voting applications, and so on.

[0375] Embodiments have been described here by way of example only. Various

modification and variations may be made to these exemplary embodiments.

-80-

WE CLAIM:

1. A system for dynamic development of computing applications comprising:

one or more linked repositories storing blueprints, graphs, and components, each
component defining a computing processing mechanism for processing data containers of

computing data, each component being associated with one or more versions;

at least one development processor to develop and output at least one computing
application to process at least one input data stream to generate at least one output data
stream, the at least one computing application realized by a blueprint of the blueprints in the one
or more linked repositories, the blueprint used to instantiate at least one graph of the graphs in
the one or more linked repositories at application runtime, the at least one graph representing a
workflow of components from the components stored in the one or more linked repositories, the
workflow defining an arrangement of the plurality of components and connections between the

components using pins; and

an interface for defining, updating, and testing a solution set of the components of the
workflow, the solution set identifying a set of components of the components of the workflow

and, for each component of the set of components, a version;

the at least one development processor for adding a label to the blueprint realizing the at
least one computing application, the label referencing the solution set for loading appropriate
versions of the set of components from the one or more linked repositories at application
runtime such that when the solution set updates to identify a different version of a component in
the set of components, the label references the updated solution set with the different version of
the component without requiring modification to the blueprint realizing the at least one

computing application; and

a distributed ledger comprising data storage structures for one or more blocks, wherein
each of the one or more blocks is associated with a respective component and a respective
function or purpose for the respective component, and wherein the blockchain system is

configured to:

receive a request to update the distributed ledger with at least one new

component for a specific function or purpose;

-81-

Date Regue/Date Received 2021-04-22

determine that the at least one new component is linked to a digital certificate

and a solution set;
authenticate the digital certificate;

generate a digital signature for the at least one new component based on the

digital certificate;

generate a new block comprising the digital signature, the solution set, and a
pointer to the at least one new component as stored in the one or more linked

repositories; and

update the distributed ledger with the new block.

2. The system of claim 1, wherein a graph delivers functionality defined by the components
identified by the graph, and wherein a blueprint connects the functionality to a running

environment.

3. The system of claim 1, further comprising a certification system to issue a digital
certificate to sign the solution set of components to indicate agreement that the set of

components of the solution set satisfy a performance standard.

4. The system of claim 1, further comprising:

a visual design subsystem for realizing computing applications, wherein the visual

design subsystem is operable to:
arrange components into functional blocks,
define specific orders of operation for the functional blocks, and

define the connections between the functional blocks using the pins to define the

at least one computing application.

5. The system of claim 1,

wherein a first component is in a first language and a second component is in a second

different language,

wherein the first and second components comprise data and are operable to access the

memory and data structures, and

-82-

Date Regue/Date Received 2021-04-22

wherein the system further comprises a translation module operable to translate multiple
languages into a common language by translating the first and second component data and
how the first and second component are operable to access the memory and the data

structures.

6. A computer-implemented method for managing computing components using a
distributed ledger platform, the method implemented with a computer processor coupled with
memory-stored executable instructions which, when executed by the processor, cause the

processor to perform the method, comprising:

storing blueprints, graphs, and components at one or more linked repositories, each

component being associated with one or more versions;

configuring one or more processors to execute a command to define, using each
component, a computing processing mechanism for processing data containers of computing

data;

generating, using a development processor, at least one computing application to
process at least one input data stream to generate at least one output data stream, the at least
one computing application realized by a blueprint of the blueprints in the one or more linked

repositories,

instantiating at least one graph of the graphs in the one or more linked repositories using
the blueprint at application runtime, the at least one graph representing a workflow of
components from the components stored in the one or more linked repositories, the workflow
defining an arrangement of the plurality of components and connections between the

components using pins;

configuring the one or more processors to define, update, and test, at an interface, a
solution set of the components of the workflow, the solution set identifying a set of components
of the components of the workflow and, for each component of the set of components, a

version;

adding a label to the blueprint realizing the at least one computing application, the label
referencing the solution set for loading appropriate versions of the set of components from the
one or more linked repositories at application runtime such that when the solution set updates to

identify a different version of a component in the set of components the label references the

-83 -

Date Regue/Date Received 2021-04-22

updated solution set with the different version of the component without requiring modification to

the blueprint realizing the at least one computing applications;

loading appropriate versions of the components from the one or more linked repositories

using the label referencing the solution set of components;

receiving a request to update one or more data sets representative of a distributed
ledger with at least one new component for a specific function or purpose, the distributed ledger
comprising one or more blocks, each of the one or more blocks associated with a respective

component and a respective function or purpose for the respective component;

determining, by the one or more processors, that the at least one new component is

linked to a digital certificate;
authenticating the digital certificate;

generating a digital signature for the at least one new component based on the digital

certificate;

generating a new block comprising the digital signature and a pointer to the at least one

new component as stored in the one or more linked repositories; and

updating the distributed ledger with the new block.

7. The method of claim 6, further comprising generating a digital certificate to sign the
solution set of components to indicate agreement that the set of components of the solution set

satisfy a performance standard.

8. A system for dynamic deployment of computing applications comprising:

one or more linked repositories storing blueprints, graphs, and components, each
component defining a computing processing mechanism for processing data containers of

computing data, each component being associated with one or more versions;

at least one deployment processor for receiving a command to deploy at least one
computing application to process at least one input data stream to generate at least one output
data stream, the deployment processor realizing the at least one computing application by a
blueprint of the blueprints in the one or more linked repositories, the blueprint used to instantiate
at least one graph of the graphs in the one or more linked repositories at application runtime,

the at least one graph representing a workflow of components from the components stored in

-84-

Date Regue/Date Received 2021-04-22

the one or more linked repositories, the workflow defining an arrangement of the plurality of
components and connections between the components using pins, the blueprint having a label
referencing a solution set of the components of the workflow, the solution set identifying a set of
components of the components of the workflow and, for each component of the set of
components, a version such that when the solution set updates to identify a different version of
a component in the set of components, the label references the updated solution set with the
different version of the component without requiring modification to the blueprint realizing the at

least one computing application;

the deployment processor configuring one or more cloud agents, and one or more cloud
engines, the cloud agent receiving the command to deploy the at least one computing
application to process the at least one input data stream and, in response, instantiate the one or
more cloud engines on a host system and provide a running environment for the one or more

cloud engines;

the one or more cloud engines dynamically construct the at least one computing
application on the respective host system by realizing requirements of the blueprint of the at
least one computing application, the requirements identifying the at least one graph and the
components of the workflow and by sending a request to the one or more linked repositories to
load the blueprint, the at least one graph, and the set of components on the respective host
system using the label to reference the solution set of components to load appropriate versions

of the set of components; and

a distributed ledger platform comprising data storage devices for one or more blocks,
wherein each of the one or more blocks is associated with a respective component and a

respective function or purpose for the respective component.

9. The system of claim 8, further comprising a license server, wherein the license server
dynamically manages licenses and associates licenses with components and graphs, wherein
use of components and graphs at application runtime requires the associated license.

10. The system of claim 8, further comprising a job manager, wherein the job manager

dispatches blueprints and graphs to cloud agents based on available licenses managed by the

license server.

-85 -

Date Regue/Date Received 2021-04-22

11. The system of claim 8, further comprising a security manager, wherein the security

manager provides for secure connections and communications between system components.

12. The system of claim 8, further comprising a job manager configured to provide job and

cloud engine dispatch, failover, tracking and reporting.

13. The system of claim 8, further comprising a certification system to issue a digital
certificate to sign the solution set of components to indicate agreement that the set of

components of the solution set satisfy a performance standard.

14. The system of claim 8, wherein a data container defines a data type and a data object,
wherein the data type is metadata describing the data container and the data object maintains

raw data.

15. The system of claim 8, wherein the cloud agent is provided to each user system to
manage the local resources of the user system, wherein the cloud agents interact with cloud

engines to instantiate graphs using blueprints.

16. The system of claim 8, further comprising a normalization module operable to receive
input data files and convert and parse the input data files into data containers for processing by

a graph.

17. The system of claim 8, further comprising a code signing module operable to digitally
sign each component to associate at least one of a developer and license with at least one

component.

18. The system of claim 8, further comprising:

a digital certificate associated with a component provider subsystem, wherein the
component provider subsystem provides one or more components of the set of components

identified by the solution set;

a digital certificate associated with a user computing subsystem, wherein the user
computing subsystem is associated with the at least one computing application, wherein the
computing application involves a component provided by the component provider computing

system,;

- 86 -

Date Regue/Date Received 2021-04-22

a license server configured to digitally sign a component of the set of components by
linking the component to the digital certificate associated with the user computing subsystem
and the digital certificate associated with the component provider subsystem to indicate that the
user computing system and the component provider subsystem accept performance of the

digitally signed component;

wherein at runtime prior to deploying each component the deployment subsystem
queries the license server to determine whether the component is linked to the digital certificate
associated with the user computing subsystem and the digital certificate associated with the

component provider subsystem.

19. The system of claim 8, wherein the deployment subsystem is further configured to
partition a graph into two or more subgraphs and handle interprocess communications between

the two or more subgraphs.

20. A computer-implemented method for dynamic deployment of computing applications, the
method implemented with a computer processor coupled with memory-stored executable
instructions which, when executed by the processor, cause the processor to perform the

method, comprising:

storing blueprints, graphs, and components, each component defining a computing
processing mechanism for processing data containers of computing data, each component

being associated with one or more versions;

providing at least one deployment processor for receiving a command to deploy at least
one computing application to process at least one input data stream to generate at least one

output data stream;

realizing the at least one computing application by a blueprint of the blueprints in the one

or more linked repositories;

instantiating, using the blueprint, at least one graph of the graphs in the one or more

linked repositories at application runtime;

using the at least one graph to represent a workflow of components from the
components stored in the one or more linked repositories, the workflow defining an arrangement

of the plurality of components and connections between the components using pins;

-87 -

Date Regue/Date Received 2021-04-22

defining in the blueprint a label referencing a solution set of the components of the
workflow, the solution set identifying a set of components of the components of the workflow
and, for each component of the set of components, a version such that when the solution set
updates to identify a different version of a component in the set of components, the label
references the updated solution set with the different version of the component without requiring

modification to the blueprint realizing the at least one computing application;

configuring, using the deployment processor, one or more cloud agents, and one or

more cloud engines;

receiving, at the cloud agent, the command to deploy the at least one computing
application to process the at least one input data stream and, in response, instantiating the one
or more cloud engines on a host system and provide a running environment for the one or more

cloud engines;

dynamically constructing, using the one or more cloud engines, the at least one
computing application on the respective host system by realizing requirements of the blueprint
of the at least one computing application, the requirements identifying the at least one graph
and the components of the workflow and by sending a request to the one or more linked
repositories to load the blueprint, the at least one graph, and the set of components on the
respective host system using the label to reference the solution set of components to load

appropriate versions of the set of components;

processing the input data stream as a plurality of data containers using the plurality of
components to generate the output data stream, the plurality of data containers flowing between

the components of the workflow using the pins; and

storing each of the set of components in a respective block in a distributed ledger, and
associating each of the set of components with a specific function or purpose in the respective
block.

21. The method of claim 20, further comprising:

generating a digital certificate associated with a component provider subsystem, wherein
the component provider subsystem provides one or more components of the set of components

identified by the solution set;

generating a digital certificate associated with a user computing subsystem, wherein the

user computing subsystem is associated with the at least one computing application, wherein

- 88 -

Date Regue/Date Received 2021-04-22

the computing application involves a component provided by the component provider computing

system,;

providing a license server configured to digitally sign a component of the set of
components by linking the component to the digital certificate associated with the user
computing subsystem and the digital certificate associated with the component provider
subsystem to indicate that the user computing system and the component provider subsystem

accept performance of the digitally signed component;

receiving, at a license server, acceptance of the component provided by the component
provider subsystem in the computing application associated with user computing system by
receiving the digital certificate from the user computing subsystem and the digital certificate

from the component provider computing system;

linking, at the license server, the component provided by the component provider
subsystem in the computing application associated with user computing system to the digital
certificate from the user computing subsystem and the digital certificate from the component

provider computing system; and

at application runtime prior to deploying each component, querying the license server to
determine whether the component is linked to the digital certificate associated with the user
computing subsystem and the digital certificate associated with the component provider

subsystem.

-89 -

Date Regue/Date Received 2021-04-22

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

1/31

Development

—framework 12—
Data
Containers
56 , 10
Translation /
DK
— Module [820
Components 58
24 T
i
Compound :
Components
26 Code Sign
40
Graphs
28 !
|
) i
|
- Deployment l
Subsystem 14 ! ™
Visual Designer External interface
™ 7 30 a8
|
i
: Job Manager
50 .
| |
I T |
| ~Cloud Agent 34__ E
! Cloud Engine |- — '
| 36a b
' | Repository Repository P
! 32b I
! . I
Cloud Engine | _
| | r o0 ol
I i | I
{ |] ™~ 4
]] | "
Security Module
46
Licence Licence Server
Pool 44 42
\ J

Fig.1a

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

2/31

24, 28, 28a

Repository Server

Kayak
Package
14 " Packages are imported into
User the Repository

Request Package Package delivered to

needed for job Agent

Agent 34
[Communication) Extract components from
rvi i ' Kayak
cond 2 command (o Service E’ackage, instruct Kaya
Pl . Engine to execute graph
15 execute a job Server
=
Application
/"““\35
Engine Execute the graph

12

Fig.1b

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

3/31

86

o)'Bi4

sIsURIION BIE(]

gc
sjusuodwon

punoodwon

ve

siusuoduwon)

PS5
£¢ enpow Bujuoniied epeq 1ndu;
i
|
|
|
I
|
|
i
i
|
Bge
Bge Juldenig
auibuz pnoi ydeio

8z ydeio—

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

4/31

dl Old

(47
JoAIOS 2sUB0IT

00S¢
(s)esn

00L¢C
Jabeuey

ureyoyoo|g

-

0001

0022
u Aoyiny

00¢ce
Jojsenbay

B00C¢
L Ayoyiny

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

5/31

31 'Old

|
0032 H_J 00Se
(43 —
== —— 0cc
44 0022
TS
A
\,. 251
¥4
p— JIUM UOHEDIUNWWIOD
%: AR AR
ebelolg a|npo a|npo
ueisisied Aoyny UIBY2300|g
oLLe LoLe
Gi1e
0812 KudesBordhio J0JeUIPI00D) 901n8Q Buissaooly
(s)eseqeieq 80IAleg
y
60L¢
Alowisy

€01e

saolna(abeloig

L01¢
wn o/l

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

6/31

T TALIE

X0
B = IBULOL DBPIA
yaueag o

T ave i34

T $58004d
ndu oam
Dapip nduj oepiA

UG 3iig

PCT/CA2019/050628
7/31

CA 03099814 2020-11-10

WO 2019/213775

g¢ Old

r 2
2p03 JOSUag QQWNN
B1E(Q 91BALId ainjeubig

\ — lenbig

JOQUINN UOISIDA
Wi J0SUDS

eeq dljqnd ﬁMﬂwu

G00ce
Z Auoyiny

B002¢C
L Auoyiny

4 “
apoo Jang
Bje(91BALd AP
> 7\ Jo4ng
Jaguiny Uoisiap I B0GCC
aweN Jayng w.:.;mcm_w

jeubiq
eleq olignd

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

8/31

o

S

el

N\
N

< S8 %8 =8 .

A

e r—iEar—ig—ig| o

o o o o —
LL

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

9/31

ac olid

q0G¢¢
AN
- A\
06¥¢ 08ve — e oive
ocve ocve
e ey 0.v¢ 0Sve dweys SO1BOIISD ave
jusuodwod | jysuodwoo| Aidx3 |uonoung own| o Jusuodwod
Bumoliod | Buipsoaid . o 0} Jajuiod
q001¢

CA 03099814 2020-11-10

WO 2019/213775

10/31

(=1
(=
(g
(3

2900c¢

PCT/CA2019/050628

FIG. 2E

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

11/31

s}

4

ﬁ WSISAS _Em%nEm@

Bis Jajng

ssaifold

301008 314

SBU

oy

10443 1587

AUAvisa\dLIB Iy

sl

S53038 APBUY

uopdinseg

Bupwies voeand;puoy

12 8nep

g7 Auadoid

Spow ‘ABQ) mNm pasuespy H

224005 aj14

sy

B3IN0OY um,t

sysuodwod D

sydesd D
syuudang D

Aloysoday

I

1350

diad Hp3 ol

S=e

1suBisag] ensip,

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

12/31

.........................

Metadata

Video Process 1 Strip Letterbox

Raw Buffer

; X

24p 24a

Fig.4

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

13/31

5By

xve

Ytz

\
rf wo)
ive |erowRY Witd 706
lonanpoy asion)] A sak !
QRaad aoula
M)
u
BE ydeiB-gng Buissesold omvﬁk

g7 ydein samg

eQ7 uudan|g

laubisad] Bnsia

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

14/31

08 <

9'6id
£z ET4
A T A aY
UDIIBJUSLIQ Ayz nye -
JuRWUSyY J
apduses 194 soxtd J —
Funduses noAey 8poSuT A apang
SjIEIaQ JN0AR] AAY £ ve oipne dwo)
ABOYELG INDAEY J J olpne dwoosur
oapi dilon
Jas@id 0N youerg JDHBAUOT) PO BWIL
BLEN _.n ;Eog h—pa 91607 80edg J0j0g oapiA aESE
sweu ajid |

LaRPIH D PadUBADY g

yusuoduwiory pagduos fydes yeley

Indu 8]l Bipaly

diaH

(X 87) (=)

1BuBisag [ensip

8L

N

Og

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

15/31

1'Bi4

25 95 56 {6 35 €6
)1 : 1T ' ! : 1T : 1 : 1
_HHU SpLueqINgng TURYY G SoRpIEME LY spictey jendn fsmopuEal LUt FLNDTANES
B DEpIUEQINgnG “SORILICD S3PIATIY sped fEnBig fsmapuianl £TOT EIpajUoERLIOTY
D TrgfoTUBgIngng UEDV AL sapisnlg spidey [eudia [senopuspa] 5U0T E-DY EHFIG Aglog
w ysaapay sdey uopdussag 19p1I80ig {shuropeld FLISETS awen
suolssan jje moys [[al Tosespi] [a] | 1un Asousoday

QE)w)

Jasmolg Aoysoday suidngg

h/.om

/
\
//mm

6

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

16/31

8B4
_\Om -
= : : :
] e #H# FEEs Bt
o st wae o H
SO SPes BNOSBY ;UL
| - » » - w L3 - - - . -
H H H - : H H : H H :
L H i H H H i H : : H
e it sy i i it H Hit P e e
nE it P i Ht e a4 a4 e i i
sejoN | 1efoid | apd sunos | sinped | uewey swil 153 | avey spooudy Say | ssauBoig | smielgs | eosnosay | swilpuy | swi) welg
umowtuN 23 S —
payue) - m—
SELIRL paned @
paddouq 1| | pewedwond B aswenpeloy
12Aojjed 3 Quuuny @ T @ | | B ARSEG) eduey aleg 9
[FIETE] B35 WAL 251

BLISIID YIBRS ol

LA

153 "WV pOTEITT

(suzly) | sqor { m_sﬂw__u@ﬁ saxnosay (sunoig) QBEOE JICMIBH) (ABLHUNG)

dialy apoosuely semnes ad

@O

sjosuosy Jafeuepy qof

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

17131

Cable/iPTV
78

Web Services 72

70

Job Manager 50

C License Server 42 !License Pool 44)
(Cloud Engines 36) (Cloud Engines 36)
(Cloud Engines 36) (Cloud Engines 36)
(Cloud Engines 36) (Cloud Engines 36]

Fig.2

WO 2019/213775

CA 03099814 2020-11-10

18/31

PCT/CA2019/050628

Service 1
Service 2

Service N |

Bla =

Web Ut

Web Ul

8le— web Ul

80

/]
81b
8528 —,

App

82b..]

App

Business Logic (web servers) 83

Virtual Appliances 84

Fig.10

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

19/31

LB

gt
auibuzg

8g

gg o6
subug e
suifug
0§
isbeuepy
qor
'y
wasis aulay
foneq usygnd Ieas jessy 2101g
o1e 807 mOpN

_wcwmcm

1aBeuep

0s

qof

suBWINbaY

[£074

gt

wabu] 1essy

)

00¢

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

20/31

AN I E

(9e seubuz projo] [(9g seutbuz pnoio)

?m seuibug %o_& Twm seuibug nng&

Mmm sauibug v:o_& hmm sauBug pnop u

IBLIOISND G._pv
JAV OL /

suwieals Alejuaiua)y

ﬁ ¥l 1004 B5UBIY [y JOAISS DSUBIN u

0 i38eue gor Ar/

oN

WisysAg siassy sjuswenbay
Asnag usignd yaieag sa) 108U 1985y
))) oz 20z)
01z 80¢C 907 ooz

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628
21/31
VERSIONS 104

el o2 ohE cba oS o o o
OOOPOOOO
Ll sz chd g2vd L0 g2v T
OOOOOO

v 2 ohd 4 @b o

N—=EZMZO0T=Z00

_‘
S

solution set 106

onc

Fig. 13A

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

22/31

g€l Old

q008¢

ainieudig
[eudia

062¢

e008¢

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

23/31

o€l Old

e00c<C

alnieudig
[eusia

alnjeudig

[exsig

q0sec

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

24/31

License server 42
User computing
- system 140
User computing
system 140 i
’ . certificate Sﬁecgrd
i 142 atabase
g:zglflcate 142 dats
Certificate
agent 144
User computing
system 140
network
certificate | 152
142
Certificate
Component
Component matrix 146
onent '
gfiﬂzere‘l 30 provider 130
certificate certificate
132 122

7

Fig.14

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628
25/31
/_wHost Systarn 300 «,
P raph 28 ~
o i C Is A
(e O"E’fgﬂ s ML U omgg?an -]
Componentis
24c

L Components i

——Hos! Systern 302 “

raph 28"

Components Componenis
24d T 248

<

L S

Fig.15

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628
26/31

— Graph28— 32Zbit \

1 Components Components
s 24 _L 24 —

Components
] 24c e Braph2B s e e ssrans et iarenes .

. Companents i Components: | Components i .
O 240 - B e née HeQ

\. A

Grapt28'~ 64bit
Components Components
24 - 248

Fig.16

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

27/31

JAN I

9¢—"

auBuy

afeyoey asuaony

sasuan
o ful §aeyn

13AJIG 3SLAIN

EETE ST
ULYIEEE e}

H UOITRIISIUILDY

Ty —

{eLIOd GO

uonesnddy

S P

[~—G¥

CA 03099814 2020-11-10

PCT/CA2019/050628

WO 2019/213775

28/31

g1 B
N
g Jaudisaq ensip
JBnIeg ssuadiT
& ' ™\
® > e
3 Ly
2 . g
s
) uoneoijddy
> dopisagreuoly puels,
g fioysodas
E‘ POSEQ MOM}BU 8sn ue’)
L====me] ysip uQ siuudeng 57

7 sydeiny '‘$7 siusuoduos
8% WaISAS JSOH |

WO 2019/213775

55

Kayak-based
Application

— (Communicationj

(Visual

Designer
30

CA 03099814 2020-11-10

PCT/CA2019/050628

29/31
(Host1 51 s
/:—“34 \
Agent / '}
/

— ”__% o | Server

v

=D

. J
e

Engine(s)
Service e
[Server J
”\k d _/
@]
O
f o)
Host.n 53
34 36 \
' / ™
Agent

Communication
Service —

Engine(s)

e

I

License

Repository
o —a Server

42

Fig.19

CA 03099814 2020-11-10

WO 2019/213775 PCT/CA2019/050628

30/31

w
-2
o
o

Receive a request to
add a component to
blockchain

Y

w
N
o
o

Query for a specific
function for
component

\ 4
Query for digital
certificate(s) from one
or more authorities

[V
w
o
o

3000

Y

W
=N
o
o

Authenticate digital
certificates

\ 4

w
(o)
()
o

Generate a digital
signature for
component

Y

Combine digital
signature with pointer
of component to
generate a new block

w
o)
o
o

Y

w
~
o
S

Update the blockchain
with the new block

FIG. 20

WO 2019/213775

CA 03099814 2020-11-10

31/31

Receive a user request
to use a component from
blockchain

Y

Query for digital
certificate from user

Y

Authenticate user’s
digital certificate

A 4

If user is authenticated,
query for a license for
using the component

Y

Upon receipt of the
license, check
component is the
requested version

Y

Send the most up-to-
date version of
component; OR

instantiate the
component to launch the
requested process

|

If appropriate, send
request to update a
component

FIG. 21

w
0
-
o

w
<o)
N
o

w
<o)
w
o

W
O
SN
o

w
<o)
%))
o

3970

PCT/CA2019/050628

3900

Development
—framework 12—

Data
Containers
10

56 -
- Translation B SDK /

Module 20
Components 58

24

Compound
Components

26 Code Sign
40

1
!
|
!

Graphs
28

- Deployment

Subsystem 14
Visual Designer External interface

- 30 38

Job Manager
50

¥
~Cloud Agent 34__

Cloud Engine |-+
3Ba

Repository Repository

32a 32b

Cioud Engine | _|
36b

!
|
| \., Iy
|

S ————

I D —

Security Module
46

Licence Server
42

Licence
Pool 44

Fig.1a

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - ABSTRACT
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION
	Page 74 - DESCRIPTION
	Page 75 - DESCRIPTION
	Page 76 - DESCRIPTION
	Page 77 - DESCRIPTION
	Page 78 - DESCRIPTION
	Page 79 - DESCRIPTION
	Page 80 - DESCRIPTION
	Page 81 - DESCRIPTION
	Page 82 - DESCRIPTION
	Page 83 - DESCRIPTION
	Page 84 - DESCRIPTION
	Page 85 - CLAIMS
	Page 86 - CLAIMS
	Page 87 - CLAIMS
	Page 88 - CLAIMS
	Page 89 - CLAIMS
	Page 90 - CLAIMS
	Page 91 - CLAIMS
	Page 92 - CLAIMS
	Page 93 - CLAIMS
	Page 94 - DRAWINGS
	Page 95 - DRAWINGS
	Page 96 - DRAWINGS
	Page 97 - DRAWINGS
	Page 98 - DRAWINGS
	Page 99 - DRAWINGS
	Page 100 - DRAWINGS
	Page 101 - DRAWINGS
	Page 102 - DRAWINGS
	Page 103 - DRAWINGS
	Page 104 - DRAWINGS
	Page 105 - DRAWINGS
	Page 106 - DRAWINGS
	Page 107 - DRAWINGS
	Page 108 - DRAWINGS
	Page 109 - DRAWINGS
	Page 110 - DRAWINGS
	Page 111 - DRAWINGS
	Page 112 - DRAWINGS
	Page 113 - DRAWINGS
	Page 114 - DRAWINGS
	Page 115 - DRAWINGS
	Page 116 - DRAWINGS
	Page 117 - DRAWINGS
	Page 118 - DRAWINGS
	Page 119 - DRAWINGS
	Page 120 - DRAWINGS
	Page 121 - DRAWINGS
	Page 122 - DRAWINGS
	Page 123 - DRAWINGS
	Page 124 - DRAWINGS
	Page 125 - REPRESENTATIVE_DRAWING

