
United States
US 20150280915A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2015/0280915 A1
Garrard (43) Pub. Date: Oct. 1, 2015

(54) BINARY DATA STORE Publication Classification

(71) Applicant: STEALTH Software IP S.a.r.l., (51) Int. Cl.
Esch-sur-Alzette (LU) H04L 9M32 (2006.01)

G06F 7/30 (2006.01)
(72) Inventor: Thomas Garrard, Grevenmacher (LU) H04L 9/16 (2006.01)

(52) U.S. Cl.
(21) Appl. No.: 14/700,030 CPC H04L 9/3213 (2013.01); H04L 9/3242

9 (2013.01); H04L 9/16 (2013.01); G06F
17/30495 (2013.01); G06F 17/30318 (2013.01)

22) Filed: Apr. 29, 2015 (22) File pr. As, (57) ABSTRACT

O O A method for storing binary data, preferably in the form of
Related U.S. Application Data Binary Large Objects (BLOBs), in more than one location.

(63) Continuation of application No. 13/802.244, filed on The method includes the steps of producing a processing
Mar. 13, 2013, now Pat. No. 9,053,130. thread corresponding to each location where the data is to be

stored and Verifying whether each thread has completed Suc
(30) Foreign Application Priority Data cessfully after a predetermined time period. Information

relating to the storage of the binary data is stored in an access
Apr. 2, 2012 (LU) .. 91968 token.

ACCess Token Store

Application -

Database

Storage
interface

OO2

Patent Application Publication Oct. 1, 2015 Sheet 1 of 5 US 2015/0280915 A1

Access Token Store Database

N ^
Y X

Application - Collaboration System

Fig 1

001
Storage
Interface

Patent Application Publication Oct. 1, 2015 Sheet 2 of 5 US 2015/0280915 A1

App issues command to store
BLOB data

s
1OO

Collaboration System directs | -
command to Storage Interface

s
12O

Initiate store procedure on all u/
content platforms

w y y
^ ^ ×

- N - - ^
- \ - N - N

- N - N - N. :
Store to content N. - Store to content ? Store to content :

N-platform 1 complete? - N platform 2 complete? - Nplatform N Complete? -
t - N - N -
N - N v. N - - - N - - Yes Nur Yes - - : : No

122
\ : 121
s Y) -N

- N / - N
- - - N Entry in - Thread N. / Store to a N

L s:--------------- N completed? - Yes T. & platforms Complete) Control Log NO c - Yes N or timeout? -
\ -
N- N -

N
: Yes

Pass token to Generate
w

Collaboration System token

t t
s s \
141 140

Fig 3

Patent Application Publication Oct. 1, 2015 Sheet 3 of 5

App issues Command to
store BLOB data

Collaboration System
directs command directed

to Storage Interface

Provide first Key

Provide second Key

Encrypt BLOB data

y

Send encrypted BLOB to
BLOB Stores

- - 130

y

Store second Key

y

Generate access token

y

Return access token
Collaboration System

Fig. 4

US 2015/0280915 A1

Patent Application Publication Oct. 1, 2015 Sheet 4 of 5 US 2015/0280915 A1

App issues command to store
BLOB data

SharePoint (TM) directs | - 2OO
command to Storage Interface

\s 21 O
Provide Encrpytion Key |-

s 211
Generate IV | -

s 212
Encrypt BLOB |-

s 213
Generate MD5 Hash | -

s
Initiate store procedure on all - 22O

storage platforms

Store to content
platform Ncomplete?

Store to content
platform 2 complete?

Store to content
platform 1 complete?

Yes
No

222

s 221
Entry in Thread Store to all

x ---------------g >-- S{ platforms complete
ControlLog No N Completed? - Yes or timeout?

------------------ Yes

Pass token to w----------------------------- Generate
SharePoint (TM) token

241 240

Fig 5

Patent Application Publication Oct. 1, 2015 Sheet 5 of 5 US 2015/0280915 A1

App issues command to retrieve
BLOB data

Command and access token 25O
directed by SharePoint (TM) to -

Storage Interface

Y

Blob store located using - - - 26O
information in access tokent and/or U
Control Log, and Blob retrieved End

y

Inform MD5 hash extracted from access ?is 261
274 SharePoint(TM) 27O token

No N
-> 1

st red Locate Blob in Generate MD5 Hash from retrieved - 271 -1s the blob stored Yes N. elsewhere? next Blob store H- Blob and compare with extracted
U- and retrieve MD5 hash

- -
/ 272

-

273 N
No u

Are they the same? D
N -
Y -
N u

e
? 28O Retrieve IV from ACCeSS Token

Y
281

Retrieve key from Key Store -

Y
- 282

Decrypt Blob U

Y

Send decrypted BLOB back to ? 290
SharePoint (TM)

End H

Fig 6

US 2015/0280915 A1

BINARY DATA STORE

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation of application Ser.
No. 13/802,244, filed Mar. 13, 2013, the entire disclosure of
which is hereby incorporated by reference herein.

TECHNICAL FIELD

0002 The present application relates to binary data stores
for storing Binary Large Objects (BLOBs). In particular, it
relates to binary data stores used in collaboration systems that
need to provide efficient and accurate access to data that is
being manipulated by users of the system.

BACKGROUND

0003 Collaboration systems, such as Microsoft Share
PointTM, comprise a collocated collection of applications that
are accessible to multiple users through one or more user
interfaces, and comprise one or more data stores. Each appli
cation or module contributes a distinct set of features to the
collaboration system. Such features may include a Web
server, a collaborative document repository, a blogging
framework, and an authentication server. The user interfaces
comprise dedicated client applications and web pages that
provide access to the collaboration system. The data stores are
used to save data that users create or upload via a network
connection and which can be updated or modified by other
USCS.

0004 Most commonly, a data store is provided by a rela
tional database, such as a Structured Query Language (SQL)
database. SQL databases are well Suited for saving and
accessing large numbers of Small data items that have inher
ent structure. Many applications provided by collaboration
systems deal with Such small structured data items. Examples
are intranet applications that comprise HTML data, blog
applications, and discussion forums that comprise data fea
turing information about authorship, date of creation, discus
sion thread information, and time stamps.
0005 Collaboration systems often comprise document
management and repository services that allow users to keep
track of different versions of data, Such as text processing or
spreadsheet documents, over time. Databases can be used to
store and handle such unstructured data files as well as the
structured metadata that relates to them.
0006. A user does not access the data stores directly, but
interacts with the collaboration system. The collaboration
system acts as a gatekeeper and enforces a set of rules on each
user request before eventually proceeding to retrieve or
update the requested information in the data store. The client
application is then notified accordingly. By enforcing a set of
rules on each transaction request, the collaboration system
can make Sure that every user is given access to the latest
version of any data item in the data stores. Collaboration
systems generally provide options for data backup, although
more commonly in large organizations this process is handled
by third-party tools. In known collaboration systems, the data
stores themselves are generally kept on site with the server or
servers that implement the collaboration system. A backup is
normally performed periodically as a scheduled task and the
backup data is stored separately as per user requirements.
0007 Different kinds of data nowadays tend to merge into
complex files that have a large Volume and lack easily acces

Oct. 1, 2015

sible structure. Typical examples of such files include images
or other media files such as encoded audio or video signals.
Audio-visual content is generally encoded in order to reduce
its size, resulting in a stream of binary digits that is as Such not
readable or usable. The data can only be interpreted for view
ing or listening once a decoding step has been performed on
the binary data. Binary files of that type are typically known
as Binary Large OBjects or BLOBs. However a BLOB may
refer to any unstructured binary data, including text docu
ments, spreadsheets, or any data that would generally be
considered a file on a computing system.
0008. In collaboration systems, or generally in document
repository systems, the inclusion of BLOBs can pose prob
lems to the efficiency of the system. While the underlying
SQL data stores are efficient for storing and accessing large
numbers of structured data items, they are not efficient for
storing and accessing unstructured data items, such as
BLOBs. However, as collaboration systems are being used
for the sharing and collaboratively working on unstructured
data files, BLOB data can rapidly represent over 90% of a
collaboration systems data store Volume. This incurs poor
performance when retrieving stored data and may cause pro
longed outages of the system when the data stores are being
backed up by the system.
0009. It has been proposed to offload BLOB storage to
different, unstructured data stores such as disk file systems
that can handle large data files. Such storage can be provided
on site using a dedicated storage device, or even at a physi
cally remote storage site. While the metadata related to a
BLOB remains stored in an SQL database, the BLOB itself is
stored in a remote store. The metadata comprises an access
token and a unique identifier for the BLOB. Using the access
token, the BLOB can be retrieved and accessed. While such a
solution can improve the overall performance of an SQL store
in a collaboration system, the system may still encounter
prolonged outage times when the large remote data stores are
being backed up by the system.
0010. As with any kind of data stored by a collaboration
system to which several users may have access, it is important
to provide effective and secure access control to BLOB data.
One possibility is to encrypt stored BLOB data, and to make
sure that it is improbable for unauthorized users to access or
decipher an encrypted BLOB.
0011 Collaboration systems such as Microsoft Share
PointTM generally do not natively support inline encryption of
data, including remotely stored BLOB data. However, there is
often an interface that allows the externalisation of BLOB
data. In Sharepoint, Such an interface is implemented by
External BLOB Storage (EBS) and Remote BLOB Storage
(RBS). During the process of such externalisation it is pos
sible to encrypt the data. This may be achieved using a block
cipher such as the AES 256 algorithm. In such a case the
encryption key is stored on the local server in a key store. The
encrypted BLOB is stored in the remote BLOB store. A third
element that is used for encoding and deciphering the BLOB
may be provided by an Initialization Vector (IV). Initializa
tion Vectors are commonly used with block ciphers. A block
of data that is to be encoded is first randomized through
multiplication by the IV. The randomized block is then
encrypted using the block cipher. This process makes Sure
that two identical blocks of data will not be encoded to the
same encrypted bit sequence by the block cipher, as they will
have been randomized by two different IVs.

US 2015/0280915 A1

0012. In known collaboration systems and in general use
of block ciphers, the IV is stored together with the encrypted
data as part of the encrypted data, for example, in the remote
BLOB store. A sufficiently privileged user or administrator,
or a hacker maliciously gaining the privileges of Such a user,
can therefore access an unencrypted form of the binary data
by gaining access to the key store and to the BLOB store.
0013 The present application describes methods and sys
tems that alleviate at least some of the problems in relation
with the secure storage of Binary Large Objects in collabo
ration systems.

SUMMARY

0014. According to a first aspect, there is provided a
method for storing binary data in at least two data stores. The
method comprises the steps of
00.15 at a storage interface, receiving, from a collabora
tion system, a store request and binary data that is to be stored;
0016 at a storage interface, creating a processing thread
for each available data store, and configuring each processing
thread for writing said binary data to one of said data stores;
0017 at a storage interface, checking for successful ter
mination of said processing threads after a timeout delay;
0018 at a storage interface, for each thread that has not
Successfully terminated after said timeout delay, creating an
entry in a Control Log; and
0.019 at a storage interface, creating an access token for
said binary data, and sending said access token to said col
laboration system.
0020. In such embodiments that concern backing up said
binary data, the binary data written to each binary store com
prises a complete copy of the binary data to be stored so that
each binary store stores a complete, independent copy of the
binary data.
0021 Preferably, the timeout delay for processing threads
may be computed as a factor of the running time of the first
Successfully terminating thread.
0022. The Control Log may further be a database that may
be stored on the storage interface.
0023 The method may further advantageously comprise
the step of computing a hash value for the binary data. The
hash value may be included in the access token.
0024 Preferably, a Control Log entry may comprise infor
mation on a data store on which the binary data was not
successfully written.
0025 More preferably, the method may comprise the
steps of:
0026 creating a processing thread for each Control Log
entry that indicates an unsuccessful storage operation of said
binary data to a data store;
0027 configuring each created processing thread for stor
ing (i.e., writing) said binary data in one of said data stores;
and
0028 in case one of said processing threads Succeeds in
storing said binary data in said data store, updating the cor
responding Control Log entry by providing the new storage
location relative to said binary data.
0029. According to a second aspect, there is provided a
method for reading binary data that is stored in at least two
data stores, the method comprising the steps of:
0030 at a storage interface, receiving, from a collabora
tion system, a read request and an access token for encrypted
binary data that is to be read:

Oct. 1, 2015

0031 at a storage interface, locating said binary data in at
least one data store using information from said access token
or a Control Log; and
0032 retrieving said binary data from said data store and
returning it to said requesting collaboration system.
0033. The binary data that is stored in at least two data
stores may comprise a backup of binary data on each store. In
this case, the binary data in each store is a backup of the same
binary data.
0034 Preferably, the method may further comprise the
step of computing a hash value for said located binary data.
0035 More preferably, the access token may comprise the
hash value for said binary data, and the method may further
comprise the step of:
0036 checking whether the hash value for the located
binary data is equal to the hash value comprised in the access
token, and returning the binary data to said collaboration
system conditionally on the equality of the two hash values.
0037. It is preferred that the access token may comprise
information on the storage location of the stored data.
0038 According to a third aspect, there is provided a
method for encrypting and storing binary data to at least one
data store, the method comprising the steps of
0039 at a storage interface, receiving, from a collabora
tion system, a store request and binary data that is to be stored;
0040 at a storage interface, providing a first encryption
key:
0041 at a storage interface, generating a second encryp
tion key:
0042 at a storage interface, encrypting said binary data
using said first and second encryption keys and an encryption
algorithm;
0043 at a storage interface, storing (i.e., writing) said
encrypted binary data in the at least one data store; and
0044 at a storage interface, creating an access token to
said stored binary data, including said second encryption key
and returning it to said collaboration system,
0045 wherein either or both of said first encryption key
and said second encryption key are stored remote from said
encrypted binary data. The first encryption key may be stored
remote from the second encryption key.
0046. The binary data that is to be stored may be a backup.
0047 Preferably, the method may further comprise the
step of computing a hash value for said binary data and said
access token may comprise the hash value.
0048. According to a further aspect, there is provided a
method for decrypting and reading binary data that is stored in
at least one data store, the method comprising the steps of:
0049 at a storage interface, receiving, from a collabora
tion system, a read request and an access token for encrypted
binary data that is to be read:
0050 at a storage interface, providing a first encryption
key:
0051 at a storage interface, providing a second encryption
key:
0.052 at a storage interface, locating said binary data in the
at least one data store and storing it in a buffer memory;
0053 at a storage interface, decrypting said binary data
using said first and second encryption keys and a decryption
algorithm; and
0054 at a storage interface, returning said decrypted
binary data to said requesting collaboration system,

US 2015/0280915 A1

0055 wherein either or both of said first encryption key
and said second encryption key are stored remote from said
encrypted binary data.
0056. The binary data that is stored on at least one data
store may be a backup.
0057 Preferably, the method may further comprise the
step of computing a hash value for said located binary data.
0058. The access token may preferably comprise the hash
value for said binary data, and the method may further com
prise the step of:
0059 checking whether the hash value for the located
binary data is equal to the hash value comprised in the access
token, and decrypting the binary data conditionally on the
equality of the two hash values.
0060. Further, the first encryption key may be provided by
said collaboration system.
0061 Preferably, the encryption algorithm may be a block
cipher and the second encryption key may be an Initialization
Vector that is generated by the storage interface and used to
randomize the binary data prior to encryption.
0062 More preferably, the access token may comprise the
Initialization Vector.
0063. The collaboration system may preferably be a
Microsoft SharePointTM collaboration system.
0064. Even more preferably, the binary data may be a
Binary Large Object (BLOB).
0065 Embodiments described herein allow BLOB data to
be efficiently stored in and retrieved from several physically
collocated or remote storage platforms.

DESCRIPTION OF THE DRAWINGS

0066 Embodiments of the present disclosure are
described with reference to the accompanying schematic dia
grams where:
0067 FIG. 1 is a schematic illustration of an embodiment
of the present invention;
0068 FIG. 2 is a schematic illustration of an embodiment
of the present invention;
0069 FIG.3 is a flow diagram illustrating steps according
to an embodiment of the present invention;
0070 FIG. 4 is a flow diagram illustrating steps according
to an embodiment of the present invention;
0071 FIG. 5 is a flow diagram illustrating steps according
to an embodiment of the present invention; and
0072 FIG. 6 is a flow diagram illustrating steps according
to an embodiment of the present invention.

DETAILED DESCRIPTION

0.073 Embodiments of the invention are described here
after with reference to the accompanying diagrams. The dia
grams themselves do not limit the scope of the present inven
tion. Similar reference numbers in diagrams depicting
different embodiments of the present invention are used to
denote similar concepts that are present throughout the dif
ferent embodiments.

Storage Interface
0074. In a first embodiment according to the present
invention, as depicted in FIGS. 1 and 2, there is provided a
storage interface 001 for a collaboration system. The storage
interface is configured to receive a store request from the
collaboration system, and receive BLOB data that is to be
stored. The storage interface is further configured for buffer

Oct. 1, 2015

ing the BLOB into a memory buffer, and for writing the
BLOB to at least two storage platforms or BLOB stores 002.
The storage platforms can be a dedicated storage device Such
as a HardDisk Drive, a Solid State Drive, a redundant array of
independent disks (RAID) storage server, a Content Platform,
a Cloud service, any other storage platform, or a combination
thereof. The respective I/O interfaces for writing, reading,
and networking are provided. A Control Log 003 is used to
keep track of storage operations that are performed on the
BLOB Stores 002.
(0075. The method steps are further illustrated in FIG. 3.
Upon reception of the store request 100, the storage interface
creates one processing thread 120 for each available storage
platform. Each processing thread is configured to write the
BLOB data to a respective storage platform. Each thread uses
an appropriate protocol for writing to the respective storage
platform. Storage platforms include, but are not limited to,
Microsoft AZureTM, Hitachi HCPTM, Dell DXTM, NAS, and
Amazon S3TM. Configuration data is used to define the avail
able storage types and the protocols (e.g., Common Internet
File System (CIFS) or any proprietary protocol) to be used to
access the data stores. The configuration data is advanta
geously stored as a file or in Some other way Such as a
database or system registry entry.
0076. If the storage operation is successful, the processing
thread returns a signal to the storage interface indicating that
it has terminated Successfully. If the storage operation fails,
no such signal is sent. After a timeout delay, the storage
interface checks 121 whether all the threads that have been
created have terminated successfully. The timeout delay is
specified in the configuration data. In a preferred embodi
ment, the timeout delay is set to a multiple of the running time
of the first Successfully returning storage thread. If two stores
are defined and a timeout of 1.5 specified, the timeout mecha
nism operates as follows. Two threads are started for storing
the BLOB to their respective data stores. A first thread returns
a success after 100 ms. The storage interface will wait a
further 50 ms for the second thread to return.
0077. In a different embodiment, the timeout may not be
preconfigured, but may instead be dependent on network
conditions and other user-dependent parameters, such as a
tendency of a particular storage platform to fail. The storage
interface computes the timeout using the above parameters in
order to balance user experience (lower timeouts) and varying
storage latency (higher timeouts).
0078. As stated above, the storage interface can be config
ured using a file:

<?xml version=“1.0 encoding=“utf8?s
<StealthConfig

<Servers
<Server

<Host-\\Sv098598.hcptest.Stealth-soft.com\data-Host
<Port-80<f Port

</Servers>
</Servers>
<Retention>

<MinRetention-O</MinRetention>
<MaxRetention-0</MaxRetention

<Retention>
<GarbageCollectionDB>

<TableName><TableName>
<Servers><Servers>
<Database-STEALTHDB<Database
<TrustedConnection>Yes<TrustedConnection

</GarbageCollectionDB

US 2015/0280915 A1

-continued

<Encryption>
<EncryptionOn-False-EncryptionOn
<AES256Key></AES256Key>

</Encryption>
<ProviderSettings

<BackEndType->CIFS.</BackEndType->
<Active-True:Active
<DebugOutput-Truex, DebugOutput
<DebugLevelD-5</DebugLevelD
<LogFileName>SSLog.txt.</LogFileName>

</ProviderSettings
</StealthConfig

007.9 The storage interface creates an access token 140 for
the stored BLOB data if at least one storage thread returns
Successfully. The access token comprises information relat
ing to the storage platforms to which the BLOB data has been
successfully written, such as the path to the location where the
BLOB may be retrieved later on. In a preferred embodiment,
it also includes information relating to the storage platforms
to which the BLOB data has not been successfully written.
The access token is sent to the requesting collaboration sys
tem 141 and is to be used as a reference to the stored BLOB.

0080. An example of an access token implemented in
XML is given below:

0081. The above access token provides the storage loca
tion of a BLOB on two different platforms: TestNAS1 and
TestNAS2. These locations are provided using the <Paths
markup. Moreover the access token comprises an Initializa
tion Vector, provided using the <IV> markup, for encryption
purposes, and a hash value representing the stored content.
The hash value is provided using the <MD5> markup. These
access token entries are preferably generated even if the
BLOB was not successfully written to one of the considered
platforms during the timeout interval. In Such a case, the path
relative to that platform, which is comprised in the access
token, is a tentative path. The storage interface expects that it
will be able to store the BLOB to this tentative location once
it tries to store the BLOB to that particular platform once
aga1n.

0082 For each thread that has not terminated successfully
and that has not been able to perform the assigned store
operation before expiry of the timeout, a corresponding entry
is made 122 in a Control Log. The Control Log may be stored
in a database, in a file, or any other event log. If the Control
Log is stored as a database, it may be accessed through the
same database server which controls access to the collabora
tion system database.

Oct. 1, 2015

I0083. The Control Log is initially a record of all storage
requests that could not be completed within the required
timeout period. It allows a thread to be rescheduled by the
storage interface in order to try and store the data to the
respective platforms in later attempts. The use of the Control
Log 122 is explained using three examples here below:
I0084. First Storage on TestNAS1 Fails, Retry Fails:
0085. In the event that the thread that tries to store the
BLOB B1 on TestNAS1 does not successfully return within
the specified timeout delay, a tentative path for B1 is gener
ated and written to the access token, while the status of the
platform is marked as “failed in the Control Log.
I0086. This indicates that the storage interface should try to
store the BLOB to TestNAS1 again at a later time. If this
attempt fails as well, the status remains “failed.” The resulting
entries comprise the following information:

0.087 Path in aCCCSS token:
“\\TestNAS1\\Scratchpad\\19Dec12\\7557610f-9419
4762-9f)c-a779d 13807d 1

I0088 Status in Control Log for Platform 1 and BLOB
B1: Failed

I0089 First Storage on TestNAS1 Fails, Retry Succeeds to
Unexpected Path:
0090. In the event that the thread that tries to store the
BLOB B1 on TestNAS1 does not successfully return within
the specified timeout delay, a tentative path for B1 is gener
ated and written to the access token, while the status of the
platform is marked as “failed in the Control Log.
0091. This indicates that the storage interface should try to
store the BLOB to TestNAS1 again at a later time. If this
attempt succeeds, the status is recorded as 'success. How
ever, the path to which B1 has been stored in the second
attempt does not correspond to the tentative path that has been
written to the access token. In Such a case, the correct path is
recorded in the corresponding Control Log entry. The result
ing entries comprise the following information:

0092 Path in aCCCSS token:
“\\TestNAS1\\Scratchpad\\19Dec12\\7557610f-9419
4762-9f)c-779d 13807d 1

(0.093 Status in Control Log for Platform TestNAS1 and
Blob B1 : “Success’

0094) Path in Control Log for Platform TestNAS1 and
BLOB B1: “http://castorf740baec0-406c-495c-a54a
57aab3716.f57

(0095 First Storage on TestNAS1 Fails, Retry Succeeds to
Expected Path:
0096. In the event that the thread that tries to store the
BLOB B1 on TestNAS1 does not successfully return within
the specified timeout delay, a tentative path for B1 is gener
ated and written to the access token, while the status of the
platform is marked as “failed in the Control Log.
0097. This indicates that the storage interface should try to
store the BLOB to TestNAS1 again at a later time. If this
attempt Succeeds, the status is recorded as "success.” If the
path to which B1 has been stored in the second attempt
corresponds to the tentative path that has been written to the
access token, no further entry in the Control Log is required.
The resulting entries comprise the following information:

0.098 Path in aCCCSS token:
“\\TestNAS1\\Scratchpad\\19Dec12\\7557610f-9419
4762-9f)c-779d 13807d 1

0099 Status in Control Log for Platform TestNAS1 and
BLOB B1: Success

US 2015/0280915 A1

0100. The storage interface periodically creates a new
thread for each entry in the Control Log in order to retry the
write operation that originally failed. If the corresponding
threadterminates Successfully, the corresponding entry in the
Control Log is adapted accordingly. This avoids generating,
updating, and sending anew any access tokens to the collabo
ration system.
0101 Storage errors are handled internally, for most
examples, the storage locations are simply retried up to a
maximum of three times. There is a limit to three attempts as
at that point we can assume that the resource is unavailable.
When storing BLOBs, storage errors are treated in the same
way as timeouts. If a particular storage platform cannot be
written to, an entry will be made in the Control Log in exactly
the same way as ifa thread had failed to return in time. As long
as at least one thread returns successfully (i.e., one Successful
storage was achieved) there is no need to report an error to the
collaboration platform. If however no files can be written,
then an error (or exception) will be returned to the collabora
tion platform in the form expected by the collaboration plat
form.

0102 The storage interface is further configured to receive
a retrieve or read request from the collaboration system,
together with an access token relating to a BLOB that is to be
retrieved. A retrieval is successful once the storage interface is
able to successfully retrieve and verify one copy of the
requested BLOB from the available data stores.
0103) The storage interface looks up, among the informa
tion included in the access token, on which of the available
storage platforms the BLOB has been successfully written.
The storage interface locates the BLOB on one of the match
ing storage platforms and sends the BLOB to the collabora
tion system. In cases where data was not stored on all plat
forms at the point of initial storage, the interface will first try
storage platforms that were successful; it will then check the
entries in the Control Log.
0104 Indeed, if the storage interface has managed to suc
cessfully write the BLOB to a BLOB store that initially failed,
the corresponding updated path location will be available in
the ControlLog. The information provided in the Control Log
is kept up to date by the storage interface, while the informa
tion comprised in the access token is static, and reflects the
status of the write operations at the time the access token was
created, i.e., after the expiration of the timeout delay triggered
by the first successful completion of a writing thread.
0105. The storage interface retrieves the BLOB from one
of the available storage locations and returns it to the collabo
ration system. The collaboration system may then pass the
data on to the user application that has requested the data.
0106 The proposed storage interface allows embodiments
of the invention to mirror the BLOB data to any type of
backend storage platform. High data integrity is ensured
through the use of the Control Log as it enables the storage
interface to verify whether all the storage platforms contain
the same version of the BLOB data at a given time.
0107 Embodiments of the invention are therefore particu
larly well suited for providing backups of the BLOB data.
0108 High data integrity is further ensured by the use of a
Write Once Read Many (WORM) storage model which
means file updates do not need to be propagated to all stores
as there are no file updates. As the mirroring operation is
performed in a semi-synchronous way, the availability of the

Oct. 1, 2015

overall system remains high. A combination of remote and
local storage is possible through the use of a single storage
interface.

Encryption
0109. In a second embodiment according to the present
invention, there is provided a storage interface for a collabo
rative system. The storage interface is configured to receive a
store request from the collaborative system and receive
BLOB data that is to be stored. The storage interface is further
configured to encrypt the BLOB data prior to storing it. The
encryption cipher uses at least two pieces of special knowl
edge, which will be called “keys” in what follows, for
encrypting the BLOB data. In a preferred embodiment, the
first key is static but the second key is generated for each
BLOB storage request. For implementation purposes, these
keys may be two traditional keys or a key and an Initialization
Vector, if an Initialization Vector is used, it is to be considered
the second key.
0110. The method steps that are used are further illustrated
in FIG. 4. First, the storage interface receives a store request
from the collaboration system 100. The storage interface has
access to a first key 110, which is stored in a primary key
store. A second key is generated 111 by the storage interface.
Using both keys, the storage interface runs a cipher algorithm
in order to produce the encrypted BLOB data 112. The
encrypted BLOB data is written to at least one BLOB storage
platform 130, and an access token is generated 140. The
access token comprises information on the storage platforms
to which the BLOB has been written. The storage interface
returns the access token to the collaboration system 141. The
second key is stored in a secondary key store 131, which is
distinct from both the BLOB store and from the primary key
store. The secondary key store also keeps information about
which of the stored keys has been used to encrypt a particular
BLOB. The secondary key store may be implemented as a
separate database or database table. However, as the access
token is normally stored on a separate server to the primary
key store, the access token is a preferred location to efficiently
store the secondary key.
0111. The storage interface is further configured to receive
a retrieve or read request from the collaboration system and
receive an access token for the BLOB that is to be read. The
storage interface is further configured to decrypt the BLOB
data prior to sending it to the collaboration system.
0112. After retrieving the encrypted BLOB from a storage
platform using the information that is included in the access
token, the storage interface proceeds to deciphering the
BLOB. In order to decipher a previously encrypted BLOB, a
first encryption key is retrieved from the primary key store.
The storage interface is configured to retrieve the second key
that has been used to encrypt the BLOB from a secondary key
store. Using the first and second encryption keys, the storage
interface deciphers the encrypted BLOB and sends the deci
phered data to the collaboration system.
0113. In a preferred embodiment, the cipher used by the
storage interface is a block cipher, which relies on an encryp
tion key and an Initialization Vector (IV), which is used for
randomizing the BLOB data. While the encryption key is kept
in a distinct key store, the IV, which implements the second
key, is generated by the storage interface prior to encrypting
the BLOB. After encrypting the BLOB data successfully, the
encrypted data is written to at least one BLOB storage plat
form. The storage interface sends the IV to an IV store, where

US 2015/0280915 A1

the IV is marked as having been used to encrypt the BLOB. In
a particular preferred embodiment, the storage interface gen
erates an access token for the encrypted BLOB that includes
the used IV. The access token is sent to the collaboration
system, which writes it to a store that is distinct from the key
store. When the collaboration system issues a read request for
the BLOB to the storage interface, it includes the access token
for the BLOB that is to be retrieved. The storage interface
retrieves the IV, which is necessary to decipher the requested
BLOB, from the access token.
0114. The proposed storage interface allows embodiments
of the invention to securely store BLOB data to any type of
backend storage platform. High data security is ensured
through the use of three different locations for storing the
primary key, the secondary key and the encrypted data. A
malicious user would need to gain access to three different
stores in order to be able to get access to the stored binary
data.

0115. A preferred embodiment based on the Microsoft
SharePointTM collaboration system will be illustrated in what
follows without limiting the scope of the present invention.
0116 A SharePoint system includes, as part of its configu
ration files, a primary key store in which a primary encryption
key is stored. When a client application requests to encrypt
and store BLOB data, the SharePoint system directs the
request to a storage interface according to a preferred embodi
ment of the present invention.
0117 The storage interface is configured for writing to at
least two storage platforms that may be collocated with the
storage interface or may be physically remote. The steps that
follow are illustrated in FIG. 5. Upon reception of the write
request from the SharePoint system 200, the storage interface
keeps the BLOB data in a temporary memory buffer. In order
to encrypt the BLOB data, the storage interface retrieves the
primary encryption key 210 from the primary key store. The
storage interface generates a second encryption key in the
form of an Initialization Vector (IV) 211, which it uses to
randomize block data of the BLOB, prior to encoding it using
a block cipher algorithm that relies on the primary encryption
key. After encrypting the BLOB 212, the storage interface
creates a hash value for the encrypted BLOB 213. The hash
value can be computed using the well-known MD5 hash
function or any other hash function.
0118 Distinct storage threads are created 220 for each
available storage platform, and the encrypted BLOB is passed
to each of the threads for it to be written on the respective
storage platforms. The storage platform monitors time from
the launching of the threads until it receives a first successful
termination signal from one of the threads. Based on the first
thread completion time, a timeout delay is computed for the
remaining threads as being 1.5 times the first thread comple
tion time. In further embodiments, the timeout delay is
between 1.5 and 2 times the first thread completion time. In
yet further embodiments, the timeout delay is set in depen
dence on characteristics of the target storage platform. In
particular, longer timeout delay are used for storage platforms
having shown slower seek and or/or access times.
0119. After the timeout delay has elapsed, the storage
interface checks 221 whether all the remaining Storage
threads have completed successfully. For each thread that has
not completed Successfully within the timeout delay, a corre
sponding entry is made in a Control Log database 222, which
is kept by the storage interface. Entries in the Control Log

Oct. 1, 2015

database are used for rescheduling the corresponding write
operations on the corresponding storage platforms later on
using new storage threads.
I0120 If none of the storage threads terminates success
fully within a fixed timespan as defined by the Operating
System for http or CIFS requests or by a custom interface for
proprietary requests, a corresponding error message is
returned to the requesting SharePoint system.
I0121) Ifat least one of the storage threads terminates suc
cessfully, the storage interface proceeds as follows. Using
information including the IV, the computed hash value and
information about the storage location, the storage interface
creates an access token 240 for the encrypted and stored
BLOB, which is returned to the requesting SharePoint system
241.
0.122 The SharePoint system stores the access token for
the BLOB in a dedicated SQL database and notifies the
requesting application/user of the Success of the write
request.
I0123. When a client application requests to retrieve previ
ously stored BLOB data, the SharePoint system directs the
request to a storage interface according to a preferred embodi
ment of the present invention. In its request, it includes the
access token for the BLOB, which it retrieves from a dedi
cated SQL database. The method steps that follow are illus
trated in FIG. 6.
0.124. The storage interface is configured for reading from
at least two storage platforms that may be collocated with the
storage interface or may be physically remote. Upon recep
tion of the read request from the SharePoint system 250, the
storage interface extracts the storage information for the
encrypted BLOB, as well as the hash value for the encrypted
BLOB 260 from the received access token and from the
Control Log. The storage interface tries to locate 270 the
encrypted BLOB on one of the available storage platforms. In
a preferred embodiment, the storage interface first attempts to
retrieve the data from the locations listed in the access token,
and is then followed by those in the Control Log. Alterna
tively, other access policies may be enforced by the storage
interface. For example, an optimized access policy results
from ranking the storage platforms according to increasing
latency and/or the likelihood of data having been successfully
stored to decide whether it is worthwhile checking the Con
trol Log entries prior to the access token entries. The storage
platforms are then accessed following their ranking order.
0.125. Once the first storage location returns the requested
data, the process is interrupted as only one copy of the incom
ing data is necessary. If the storage interface fails to locate the
encrypted BLOB 273, a corresponding message is sent to the
SharePoint system 274.
0.126 If the storage interface locates the encrypted BLOB
271, it retrieves the data and stores it into a temporary
memory buffer. It computes a hash value for the located
encrypted BLOB. The computed hash value is compared to
the hash value that has been retrieved from the access token.
If both hash values correspond, the correct encrypted BLOB
has been located, otherwise the storage interface continues to
look for the requested BLOB on the remaining storage plat
forms.
I0127. Once the encrypted BLOB has been successfully
retrieved and confirmed for consistency, the IV is extracted
from the access token 280. The storage interface gets the
primary encryption key from the primary key store 281.
Using the block cipher, the IV and the primary encryption

US 2015/0280915 A1

key, the BLOB is deciphered by the storage interface 282.
After decoding successfully, the deciphered BLOB data is
returned to the SharePoint system 290, which forwards it to
the requesting application.
0128. It should be understood that the detailed description
of specific preferred embodiments is given by way of illus
tration only, since various changes and modifications within
the scope of the invention will be apparent to the skilled man.
The scope of protection is defined by the following set of
claims.
The embodiments of the invention in which an exclusive

property or privilege is claimed are defined as follows:
1. A method for reading binary data that is stored in at least

two data stores, the method comprising the steps of
at a storage interface, receiving, from a collaboration sys

tem, a read request and an access token for the binary
data that is to be read:

at a storage interface, locating said binary data in at least
one data store using information from said access token
or a Control Log; and

retrieving said binary data from said data store and return
ing it to said requesting collaboration system.

2. The method according to claim 1, wherein the method
further comprises the step of computing a hash value for said
located binary data.

3. The method according to claim 2, wherein said access
token comprises said hash value for said binary data, and
wherein the method further comprises the step of:

checking whether the hash value for the located binary data
is equal to the hash value comprised in the access token,

Oct. 1, 2015

and returning the binary data to said collaboration sys
tem conditionally on the equality of the two hash values.

4. The method according to claim 1, wherein the access
token comprises information on the storage location of the
stored data.

5. The method according to claim 1, wherein the method
further comprises the steps of:

at a storage interface, providing a first encryption key:
at a storage interface, providing a second encryption key:
at a storage interface, locating said binary data in at least

one data store and storing it in a buffer memory;
at a storage interface, decrypting said binary data using

said first and second encryption keys and a decryption
algorithm; and

at a storage interface, returning including said decrypted
binary data to said requesting collaboration system.

6. The method according to claim 5, wherein the method
further comprises the step of computing a hash value for said
located binary data.

7. The method according to claim 6, wherein said access
token comprises said hash value for said binary data, and
wherein the method further comprises the step of:

checking whether the hash value for the located binary data
is equal to the hash value comprised in the access token,
and decrypting the binary data conditionally on the
equality of the two hash values.

8. The method according to claim 5, wherein the first
encryption key is provided by said collaboration system.

k k k k k

