87112207 A2 I VAT 0O 00O A A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 September 2008 (18.09.2008)

(10) International Publication Number

WO 2008/112207 A2

(51) International Patent Classification:
GOGF 9/308 (2006.01) GOGF 9/30 (2006.01)

(21) International Application Number:
PCT/US2008/003178
(22) International Filing Date: 7 March 2008 (07.03.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/906,000 9 March 2007 (09.03.2007) US
11/818,452 14 June 2007 (14.06.2007) US
11/818,449 14 June 2007 (14.06.2007) US
11/998,994 3 December 2007 (03.12.2007) US

(71) Applicant (for all designated States except US): ANA-
LOG DEVICES, INC. [US/US]; One Technology Way,
P.O. Box 9106, Norwood, MA 02062-9106 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): OLOFSSON, An-
dreas, D. [SE/US]; 36 Hill Street, Lexington, MA 02421
(US). JACOBS, Christopher [US/US]; 26 Reverend
Houston Drive, Bedford, NH 03110 (US). KETTLE, Paul
[US/US]; P. O. Box 15222, Boston, MA 02215 (US).

(74) Agent: ABRAHAMSEN, Robert, M.; Wolf, Greenfield
& Sacks, P.C., Federal Reserve Plaza, 600 Atlantic Avenue,
Boston, MA 02210-2206 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: SOFTWARE PROGRAMMABLE TIMING ARCHITECTURE

PROGRAM ADDRESS R AD%E(ESS
v ox1
PROGRAM MEMORY Oéz
o
108)
106
) 114
———————————————————————————————— F----=<)
s \ ———— == ——=a
t 1 ’ \
i PROGRAM il [!
! SEQUENCER CLEAR | TOGGLE |
1 Losic 4, T COUNTER| !
S04 T v
! P 6| ! FIG. 3
1
| | { i
1 !
! FL(?l‘JNM}EOL%TS{S L INSTRUCTION b {
* : DECODE TOGGLE .
E COUNTER, ETC.) ot | !
1 : TV ’ :
? vy 308(1
\ 302 ;o)
Sl e ——————— P | K B dL
TOGGLE MATCH CHANNEL
| ContROL [~1%8
PADS 120

(57) Abstract: An apparatus for generating a digital signal pattern may comprises a memory, a program sequencer, first and second
circuits, and an event execution unit. The memory may have stored therein a plurality of instructions that, when executed, cause a
& digital signal pattern to be generated on a plurality of nodes. The program sequencer may be configured to control a sequence in
& which the plurality of instructions are retrieved from the memory and executed. The first circuit may sequentially step through a
o plurality of different output states in response to a clock signal. The second circuit may identify an output event when an output
state of the first circuit corresponds to an output state identified by retrieved instructions of a particular type. The event execution
unit may control states of signals on the plurality of nodes in a manner specified by the retrieved instructions of the particular type

in response to the second circuit identifying an output event.

10

15

20

25

30

WO 2008/112207 PCT/US2008/003178

SOFTWARE PROGRAMMABLE TIMING ARCHITECTURE

This application relates to the subject matter disclosed in each of (1) U.S. Provisional
Application Ser. No. 60/906,000, filed March 9, 2007 (“the ‘000 application”), (2) U.S.
Patent Application Ser. No. 11/818,449, filed June 14, 2007 (“the ‘449 application), (3) U.S.
Patent Application Ser. No. 11/818,452, filed June 14, 2007 (“the ‘452 application), and (4)
U.S. Patent Application Ser. No. 11/998,994, filed December 3, 2007 (“the ‘994
application”). The entire contents of each of the ‘000, ‘449, ‘452, and ‘994 applications are

incorporated herein by reference.

BACKGROUND
In a variety of applications, there is a need for generating timing pulses in an efficient
manner. Such applications may include, for example, CCD timing interface chips, lens
drivers, stepper motors, and display drivers. Such applications generally call for a very low
cost and lower power solution, but need to run with fine clock cycle resolution on the timing
pulse generation. Micro-controllers generally do not have the fine clock cycle or instruction

width needed to generate a sufficient number of output pulses on a pixel by pixel basis.

SUMMARY

According to one aspect of the present invention, a method for generating a digital
signal pattern involves retrieving from memory an instruction comprising a first field
representing a vector including a plurality of bits that are to be used to control states of
signals on a corresponding plurality of nodes and a second field identifying a specified output
state of a circuit that sequentially steps through a plurality of different output states in
response to a clock signal. In response to detefmining that the output state of the circuit
corresponds to the specified output state, the signals on the plurality of nodes are controlled
in the manner specified by the corresponding ones of the plurality of bits in the first field.

According to another aspect, a method for generating a digital signal pattern involves
retrieving from memory an instruction comprising a first field representing a vector including
a plurality of bits that are to be used to control states of signals on a corresponding plurality
of nodes and a second field identifying a criterion for determining an occasion on which the
plurality of bits are to be controlled as specified by the vector. The instruction is executed so

as to simultaneously control the signals on the plurality of nodes in the manner specified by

10

15

20

25

30

WO 2008/112207 2 PCT/US2008/003178

the corresponding ones of the plurality of bits in the field in response to determining that the
criterion has been met.

According to another aspect, apparatus for generating a digital signal pattern
comprises a memory, a program sequencer, first and second circuits, and an event execution
unit. The memory has stored therein a plurality of instructions that, when executed, cause a
digital signal pattern to be generated on a plurality of nodes. The program sequencer is
configured to control a sequence in which the plurality of instructions are retrieved from the
memory and executed. The first circuit sequentially steps through a plurality of different
output states in response to a clock signal. The second circuit identifies an output event when
an output state of the first circuit corresponds to an output state identified by retrieved
instructions of a particular type. The event execution unit controls states of signals on the
plurality of nodes in a manner specified by the retrieved instructions of the particular type in
response to the second circuit identifying an output event.

According to another aspect, a circuit comprises a clock cycle counter circuit, a
memory, and a clock cycle count comparison circuit. The clock cycle counter circuit is
configured to produce an output count. The memory configured to store at least first and
second count values. The cycle count comparison circuit is configured to compare the output
count with each of the first and second stored count values and to generate a particular type
of output event at a node if the output count corresponds to either of the first and second
stored count values.

According to another aspect, a method comprises steps of producing a output count in
response to a clock signal, comparing the output count with each of first and second stored
count values, and generating a particular type of output event at a node if the output count
corresponds to either of first and second stored count values.

According to another aspect, a circuit comprises a digital pattern generator, a general
purpose output controller, at least one memory element, and a selection circuit. The digital
pattern generator is configured to generate a pattern of digital signals at M nodes. The
general purpose output controller is configured to generate general purpose digital signals at
N nodes. The at least one memory element is configured to store particular values for M
outputs of the circuit corresponding to the M nodes of the digital pattern generator and for N
outputs of the circuit corresponding to the N nodes of the general purpose output controller.
The selection circuit is configured to select, independently for each of the M outputs of the
circuit, whether the particular value stored in the at least one memory element or the

corresponding output signal of the digital pattern generator is provided on that output, and is

10

15

20

25

30

WO 2008/112207 3 PCT/US2008/003178

further configured to select, independently for each of the N outputs of the circuit, whether
the standby value stored in the at least one memory element or the corresponding output

signal of the general purpose output controller is provided on that output.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an architecture block diagram of a digifal pattern processor (DPP) that
embodies various aspects of the invention;

Fig. 2 shows an illustrative example of how the DPP may be employed in a typical
micro-controller system on a chip;

Fig. 3 is a functional block diagram illustrating various components of the DPP that
may operate together to control toggling of its outputs;

Fig. 4 shows an illustrative example of a program execution sequence that may be
used by the DPP to load and execute code;

Fig. 5 shows an illustrative example of a core memory map for the DPP;

Fig. 6 shows several examples of program sequence structures that may be supported
by the DPP;

Fig. 7 shows an example of a hardware control mechanism that may by used to enable
and disable the outputs of the DPP on a pin by pin basis;

Fig. 8 is a flowchart illustrating an example of an execution flow that may be used to
generate toggle pulses on the outputs of the DPP;

Fig. 9 illustrates an example of basic steps that may be involved in executing an
interrupt service routine (ISR) using the DPP;

Figs. 10-11 illustrate examples of how nested and non-nested interrupts, respectively,
may be latched and executed in the DPP;

Fig. 12 shows a high-level diagram of an example embodiment of the GPO controller
of the DPP;

Fig. 13 illustrates an example of a programming sequence that may be used to
configure the GPO controller;

Fig. 14 illustrates an example of a set of specialized instructions that may be executed
by the DPP to generate timing signals;

Fig. 15 illustrates an example of a simple program that may be executed using the
instructions of Fig. 14 to perform fast vertical clocking of an image sensor;

Fig. 16 illustrates an example of another simple program that may be executed by the

DPP using the instructions of Fig. 14 to readout a single line of data from an image sensor;

10

15

20

25

30

WO 2008/112207 4 PCT/US2008/003178

Fig. 17 illustrates an example of a more complex program that may be executed by
the DPP using the instructions of Fig. 14 to read out image sensor data from a full frame with
several regions;

Fig. 18 shows an example of a program instruction configuration that may be used in
the DPP; and

Fig. 19 shows an example of how various instructions may be stored at particular
locations in the memory of the DPP, and accessed by a program sequencer, so as to enable

certain of the functionality described herein.

DETAILED DESCRIPTION

An illustrative embodiment of a digital pattern processor (DPP) is disclosed which
comprises a reduced instruction set computer (RISC) with a unified program and data
memory. In some embodiments, the DPP may have eight sixteen-bit general purpose
registers used for data and pointer manipulation. To aid in timing generation applications, the
DPP may also have a synchronous timer integrated into the program flow, two asynchronous
counters for general purpose output (GPO) toggle creation, and a sixteen-input maskable
interrupt controller.

As described below, in some embodiments, the architecture may have a compact and
efficient instruction set, optimized for control and timing generation applications. The
instruction set may, for example, be divided into the following four basic instruction types:
(1) program flow instructions, (2) arithmetic instructions, (3) load/store instructions, and (4)
pattern generation instructions. The program flow instructions may be used to control the
flow of the program and form the framework for all software development on the DPP. The
program flow instructions may thus provide support for looping, sub-routines, software
interrupts, and branching. The arithmetic instructions may be used for general control flow,
and for all control and data computation. The load/store instructions may be used for writing
data to and reading data from the unified data/program memory, for saving and restoring
registers in nested interrupt service routines, and for managing register data in nested sub
routines. The pattern generation instructions may comprise an extended instruction set for
generating a set of parallel output toggles very efficiently. The execution of these
instructions may, for example, be controlled by an internal clock cycle counter that
synchronizes the program fetch and execution with output pin toggling. In some
embodiments, the DPP may have only a single state machine and all outputs of the DPP may

be driven simultaneously.

10

15

20

25

30

WO 2008/112207 5 PCT/US2008/003178

In some embodiments, the DPP may be configured to fetch and execute one
instruction per clock cycle, and may be parameter scalable to allow for easy optimization in
different applications. In some embodiments, the DPP architecture may additionally or
alternatively be used in conjunction with a generic serial interface and an interrupt controller
to create a general purpose CPU subsystem.

As described below, a simple programming model may be employed that uses an
intuitive assembly programming language, a unified register file for all variable
manipulation, and a shallow, e.g., two cycle, pipeline. To aid in programming the part from
external sources, all registers and memory locations may be memory mapped in a single
coherent memory architecture. The applications in which the DPP may be used need not be
determined by its hardware configuration; it may be programmable for virtually any
application. The DPP may serve as a timing generator or other pattern signal generating
device in any of a number of possible environments, and need not be configured specifically
as an image sensor interface chip or for some other specific purpose. Examples of possible
applications for a DPP such as that disclosed include CCD timing generation, lens driver
controllers, LCD timing generators, ultra low power signal processing applications, mixed
signal SOC micro-controllers, and motor control applications.

Because the DPP may be largely software based, it may be readily scaled for a
particular application by employing a larger memory and/or employing a larger number of
addresses. The DPP may also be significantly less expensive than logic-based architectures.
In some embodiments, the DPP need not include vertical synchronization (VD) or horizontal
synchronization (HD) counters inside the chip, thus allowing for the line and pixel count to
be determined by the user so as to meet the specific needs of a particular image sensor when
the DPP is used for such a purpose.

Fig. 1 is an architecture block diagram showing several operational units of an
illustrative embodiment of a digital pattern processor (DPP) 102. In the example shown, the
DPP 102 comprises an interrupt controller 104, a program sequencer 106, a memory 108, a
datapath 110, a register file 112, a synchronous timer 114, a general purpose output (GPO)
controller 116, and an event execution unit 118.

The interrupt controller 104 may, for example, process sixteen independent interrupts
and exceptions to redirect the program pointer to one of the sixteen entries in an interrupt
vector table (IVT), described below.

The program sequencer 106 may provide addresses to the program memory 108 and

control the flow of the program being executed. The program sequencer 106 may further

10

15

20

25

30

WO 2008/112207 6 PCT/US2008/003178

comprise at least one, and preferably three or more, loop counters to control loops in the
executed program, as described below.

The memory 108 may comprise a unified program/data memory that can be accessed
by read and write operations both from the DPP 102 and from an external host (not shown).

The register file 112 may, for example, comprise a general purpose register file with
eight sixteen-bit registers. The datapath 110 may read values from the register file 112 and
return results to the register file 112, and may thus be used for “load/store” instructions and
“arithmetic” instructions.

The synchronous timer 114 may generate timing events during the program flow
using specialized instructions. It may, for example, comprise a free-running sixteen-bit clock
cycle counter (also referred to herein as a “toggle counter” or “synchronous timer” or
“STIMER”) which updates on every rising edge of the DPP clock. As explained in more
detail below, an output event may be generated when the current instruction is a toggling
instruction and the counter value specified in the toggling instruction matches the current
value of the toggle counter. From the time that the toggle instruction is fetched to the time
that the toggle event occurs, the DPP 102 may be kept in a hold state. The toggle match may,
for example, cause an instruction-specified number of outputs 120 of the DPP 102 to toggle,
and also cause the program pointer to advance to the next sequential program address.

The GPO controller 116 may permit programming of independent timing pulses on a
set of general purpose output pins, for example, using two free-running thirty-two-bit cycle
counters.

The event execution unit 118 may, for example, toggle the outputs 120 every time an
event is generated by the programmable toggle instructions or by the GPO controller 116.
The event execution unit 118 may also selectively enable outputs and manage standby
polarities for all of the outputs 120 on a per pin basis.

Fig. 2 shows an illustrative example of how the DPP 102 may be employed in a
typical micro-controller system-on-a-chip (SOC) 200. As shown, an SPI controller 202 may
receive serial data from the chip interface and convert it to parallel read and write
transactions for the on-chip memory 108 and for a DPP core 204 (which may, for example,
comprise all of the other components of the DPP 102 shown in Fig. 1). In the example
shown, the DPP core 204 is further connected to custom chip-specific logic 206 embedded on
the chip 200, thus allowing the DPP 102 to directly control not only the outputs 120 of the
chip 200 but also any embedded on-chip custom logic 206. By creating a single uniform

memory architecture, the DPP core 204 may thus access any register or memory location,

10

15

20

25

30

WO 2008/112207 7 PCT/US2008/003178

including the unified/program memory 108 and reserved memory space within the custom
chip specific logic 206.

Fig. 3 is a functional block diagram illustrating various components of the DPP 102
that may operate together to control toggling of the outputs 120. As shown, the program
sequencer 106 may comprise an instruction decoding section 302 and a program sequencing
logic section 304 that together are responsible for fetching instructions from the memory 108,
decoding the fetched instructions, and controlling the synchronous timer 114 so as to
appropriately generate toggle events. In the example shown, the synchronous timer 114
comprises a toggle counter 306 and a comparator 308. The comparator 308 may, for
example, determine when the toggle counter 114 has reached a specified “toggle count”
value. As noted above, the toggle counter 306 may, for example, comprise a sixteen-bit free-
running clock cycle counter. An illustrative example of an execution flow that may be
employed by these components to generate toggle pulses on the outputs 120 is discussed
below in connection with Fig. 8.

As noted above, the DPP 102 may execute a program stored, for example, in the on-
chip program memory 108. Fig. 4 shows an illustrative example of a program execution
sequence 400 that may be used by the DPP 102 to load and execute code. The start of the
code execution may, for example, be initiated by an off-chip host processor, either by setting
a hardware interrupt pin or by writing to an interrupt latch (ILAT) register, as described
below. As shown, the sequence 400 may begin at a step 402, where the DPP 102 is brought
out of standby mode. Next the sequence may proceed to a step 404, where an appropriate
program may be loaded through an SPI port (e.g., via the SPI controller 202 shown in Fig. 2).
Next, an IRQADDR interrupt vector table and an IMASK register (see Table 2 below) may
be initialized at the steps 406 and 408, respectively. The sequence 400 may then proceed to a
step 410, where an IRQ pin is toggled or a software interrupt occurs. Finally, the sequence
400 may begin executing code from the selected IRQADDR program pointer.

The DPP 102 may, for example, support two different data formats: sixteen bits
signed data and sixteen bits unsigned data. For signed sixteen bit integer data, the most
significant bit (MSB) and the fifteen least significant bits (LSBs) may, for example, represent
values from “-32768” to “32767.” For unsigned sixteen bit integer data, all bits may, for
example, be interpreted as unsigned bits, providing a range of “0” to “65535.” The sixteen
bits signed data may, for example, be used for all arithmetic operations, while the sixteen bits
unsigned data may be used for toggle instructions, load store instructions, and program flow

instructions.

10

15

20

25

30

35

WO 2008/112207 8 PCT/US2008/003178

The following is a brief overview of the syntax convention used in the illustrative
examples of the DPP assembly language that are described below. (1) The instruction syntax
is case insensitive. Upper and lower case letters can be used and interchanged arbitrarily.
For example RO and r0 both refer to the register RO. The only exception to this convention is
in defining and using macros, which are case sensitive. (2) White space can appear anywhere
between legal assembly tokens and is removed during assembly pre processing. Tokens
include numbers, register names, instructions, keywords, and identifiers. (3) <IMM16>
refers to a sixteen bit immediate value provided by the instruction line. (4) {this | that} in the
instruction syntax means that either “this” or “that” must be specified in the instruction line.
(5) RD, RM, RS, RN specify any one of the eight general purpose registers. (6) MMR
specifies one of the memory mapped registers described in the register tables. (7) A semi-
colon must be used to terminate every instruction. (8) Labels are supported by using the
format <LABEL: >. The label can be placed on its own line in the assembly code or on the
same line as an instruction. It is illegal to place two labels on the same line. An example of

legal use of labels is given below:

LABELL:
<code>
LABLE2:
<code>

(9) End of line comments use the double slash token (*//”). The double slash
indicates that everything from the token until the end of the line should be ignored. (10)
General comments begin with a (“/*”) token and end with a (“*/”) token and may extend over
several lines. (11) Instruction options are specified at the end of the instruction, but before
the semi-colon, surrounded by parentheses. For example, toggle_vector(0:V1) (c);. (12)
Assembler supported number format examples are given as follows:

. Hexadecimal: 0OxABCD,
Decimal: 33 and -33, and
Binary: b#10010101.

In some embodiments, the DPP may have a unified memory map for program
instructions, data parameters, and all DPP related registers. The memory architecture may,
for example, be sixteen-bit addressable, resuiting in a maximum of “65536” address
locations. The smallest addressable word in the architecture may, for example, be sixteen
bits wide. Fig. 5 shows an illustrative example of a core memory map 500 for the DPP 102.
In the example shown, the program memory is “1024” deep. In some embodiments, all DPP

core registers may be memory mapped registers (MMR), which can be accessed by load-store

10

15

20

25

30

WO 2008/112207 9 PCT/US2008/003178

instructions and external transactions. The absolute address locations shown in Fig. 5 may,
for example, refer to the access of memory and registers from the DPP core itself. When
accessing the memory mapped registers and memory from an external host, an offset may be
added to the address values shown.

The DPP instructions may, for example, be N * sixteen-bits wide, and depend on the
width of the software programmable output vector supported by the specific chip. In some
embodiments, the instruction widths supported by the DPP core may, for example, be “32-
128” in sixteen-bit increments. When loading the program into the program memory 108
through the SPI port at startup, instruction lines may be loaded sixteen bits at a time.
Instructions may, for example, be fetched on even N * sixteen-bit boundaries, so all
instructions may be stored in the program memory accordingly. Data parameters may be
stored in memory as sixteen bit values at any memory location.

In some embodiments, all memory mapped registers (MMRs) may be accessed either
by an external transaction or by a DPP generated load-store transaction. In addition, all
MMRs may, for example, be loaded with sixteen-bit immediate values, through the
immediate load instruction. Some registers may have additional functionality and access
modes, which are described in the register tables below.

The DPP registers may, for example, be divided into five different groups: (1)
General Purpose Registers, (2) Interrupt Control Registers, (3) Output Control Registers, (4)
GPO Control Registers, and (5) a GPO Toggle Table.

The General Purpose Registers may, for example, comprise eight general purpose
registers used for temporary storage of pointers, variables, and counters. They may, for
instance, be used by all arithmetic instructions, load-store instructions, and toggle
instructions. The Interrupt Control Registers may include ILAT, IMASK, and PMASK
registers which control the execution and priority of interrupts and exceptions. A set of
sixteen interrupt address registers may also form an interrupt vector table (IVT), which may
be used to configure the start addresses of up to sixteen separate interrupt service routines
(ISRs). The Output Control Registers may control the outputs of the DPP 102. All outputs
of the DPP 102 may, for example, have a direct access bit, an enable bit, and a standby value
bit that can be controlled by writing to the appropriate register. In some embodiments, some
outputs may be controlled by the parallel toggle instructions, while others may be controlled
by the GPO controller. In addition, in some embodiments, all outputs may be forced to
explicit values by writing appropriate data to the OUTREG, OUTEN, and/or
OUTSTANDBY registers. The GPO Control Registers may control the behavior of the free

WO 2008/112207 10 PCT/US2008/003178

running GPO controller. They may, for example, control the wrap around values of the
timers and validate the entries in a GPO toggle table. The GPO Toggle Table may, for
example, comprise registers that provide a table of toggle values to which a pair of cycle
counters, ATIMERO and ATIMER1 (described below), are compared. Each toggle entry
may, for instance, be validated by a valid bit in the ATIMER_VALID register.

Tables 1-5 below list examples of memory mapped registers that may be employed in
the DPP 102. The tables contain the mnemonic name of register, the memory address of the
register, access modes, reset states, and a description. In the access column, “R” refers to

Read access and “W” refers to Write access. “NA” in all columns refers to non-applicable.

Table 1: Examples of General Purpose Registers

RO 0x3C00 RW None General Purpose Register
R1 0x3C01 R/W None General Purpose Register
R2 0x3C02 RW | None General Purpose Register
R3 0x3C03 R/W None General Purpose Register
R4 0x3C04 R/W None General Purpose Register
R5 0x3C05 R/W None General Purpose Register
R6 0x3C06 R/W None General Purpose Register
R7 0x3C07 RW None General Purpose Register
PC 0x3C08 R/W 0x0 Instruction Fetch Pointer Register

Sub-routine return register. A CALL
instruction writes the next sequential
PC to the register. An RTS instruction
copies the content of the RETS
RETS 0x3C09 R/W 0x0 register to the PC register.

Interrupt return register. An interrupt
event causes the next PC address to
be written to the RETI. An RTI
instruction copies the content of the
RETI 0x3C0A . RW 0x0 RETI register to the PC register.
Controls the standby modes of the
DPP.

[0]=DPPEN

[11=GPOEN

[2]=GPOOUTEN
[3]=VECTOROUTEN
[4]=STIMEREN

[5)=ATIMEROEN

DPPSTANDBY 0x3COB R/W 0x0 [6]=ATIMER1EN

WO 2008/112207

11

PCT/US2008/003178

DPPSTATUS

0x3C0C

R/W

0x0

Monitors status of DPP.

[0]=Toggle instruction in process
[1]=Reserved

[2]=SP! transaction pending
[3]=Reserved

[4]=DPP in idle state

[5]=DPP in single step mode
[6]=Global Interrupt Disable Bit
[7]=Reserved

[8]=Skipped vector flag (sticky)
[9]=STIMER wraparound (sticky)
[10]=ATIMERO wraparound (sticky)
[11]=ATIMER1 wraparound (sticky)
[12])=Illegal opcode indication (sticky)
[13]=Indication of interrupt when not in
idle {sticky)

[14]=Indication that SPI transaction
was lost (sticky)

[15)=Reserved

ASTATUS

0x3CO0D

RW

0x0

Monitors status of DPP datapath.
Register is updated by all arithmetic
instructions.

[0]=Zero Flag

[1]=Negative Flag

[2]=Overflow Flag (sticky)
[15-3]=Reserved

DPPDEBUG

0x3COE

0x0

Controls hardware debugging of the
DPP. All bits are self-resetting.
[0]=HALT: Halts the and places it in
single step mode

[1]=SINGLESTEP: Advances PC to
next instruction and remains in single
step mode

[2]=RESUME: Brings DPP out of
single step mode and resumes normal
operation

[15:3]=Reserved

RESERVED

0x3COF

NA

NA

NA

STIMER

0x3C10

RW

OXFFFF

Pixel Counter register. The register
can be cleared by toggle instructions
and is updated automatically on every
cycle when STIMER_EN is set.

STIMER_MAX

0x3C11

RW

OXFFFF

Max count for STIMER. The STIMER
wraps around upon reaching
STIMER_MAX.

RESERVED

0x3C12-
Ox3C1F

NA

NA

NA

WO 2008/112207 12 PCT/US2008/003178

Table 2: Examples of Interrupt Controller Registers

i “SC;_,_éfi?@ Sl
Controls masking of all interrupts.
order of the interrupt bits are:
[0]=Debug Emuiation
[1]=Software Exception
[2]=Reserved

IMASK 0x3C20 R/W 0x0000 115-3]=General Purpose Interrupts
Controls priority of interrupts being
serviced. Bits in the register are set
when interrupt service routine starts
executing and are cleared by an RTl or
PMASK 0x3C21 R/W 0x0000 RDS instruction.

Latches incoming interrupts. Bits in the
register are set when rising edge
interrupts are detected and are cleared
at the start of the interrupt service

ILAT 0x3C22 R/W 0x0000 routine.

' Alias that allows for setting specific bits
of the ILAT. The operation performed is
a read-modify-write operation. The new
ILAT value is the OR function of the old
ILATSET 0x3C23 W NA ILAT and the value being written.

Alias that allows for clearing specific
bits of the ILAT. The operation
performed is a read-modify-write
operation. The new ILAT value is the
ANDNOT function of the old ILAT and

,e‘

ILATCLR 0x3C24 W NA the value being written.
IRQOADDR 0x3C30 W None Vector for IRQO
IRQ1ADDR 0x3C31 W None Vector for IRQ1
IRQ2ADDR 0x3C32 W None Vector for IRQ2
IRQ3ADDR 0x3C33 W None Vector for IRQ3
IRQ4ADDR 0x3C34 W None Vector for IRQ4
IRQ5ADDR 0x3C35 W None Vector for IRQS
IRQ6ADDR 0x3C36 W None Vector for IRQ6
IRQ7ADDR 0x3C37 w None Vector for IRQ7
IRQBADDR 0x3C38 W None Vector for IRQ8
IRQYADDR 0x3C39 w None Vector for IRQ9
IRQ10ADDR 0x3C3A W None Vector for IRQ10
IRQ11ADDR 0x3C3B W None Vector for IRQ11
IRQ12ADDR 0x3C3C W None Vector for IRQ12
IRQ13ADDR 0x3C3D W None Vector for IRQ13
IRQ14ADDR 0x3C3E W None Vector for IRQ14
IRQ15ADDR 0x3C3F W None Vector for IRQ15

WO 2008/112207 13 PCT/US2008/003178

Table 3: Examples of Output Control Registers

Direct Access register for DPP output
OUTREGO 0x3C40 R/W 0x0000 Bits[15:0]

Direct Access register for DPP outputs
OUTREG1 0x3C41 R/W 0x0000 Bits[31:16]

Direct Access register for DPP outputs
OUTREG2 0x3C42 R/W 0x0000 Bits[47:32]

Direct Access register for DPP outputs
QUTREG3 0x3C43 R/W 0x0000 Bits[63:48]

Direct Access register for DPP outputs
OUTREG4 0x3C44 R/W 0x0000 Bits[79:64]

Enable register for DPP outputs
QUTENO 0x3C48 R/W 0x0000 Bits[15:0]

Enable register for DPP outputs
OUTEN"1 0x3C49 R/W 0x0000 Bits[31:16]

Enable register for DPP outputs
QUTEN2 0x3C4A RW 0x0000 Bits[47:32])

Enable register for DPP outputs
QUTEN3 0x3C4B R/W 0x0000 Bits[63:48]

Enable register for DPP outputs
OUTEN4 0x3C4C R/W 0x0000 Bits[79:64]

Standby register for DPP outputs
OUTSTANDBYO 0x3C50 R/W 0x0000 Bits[15:0]

Standby register for DPP outputs
OUTSTANDBY1 0x3C51 R/W 0x0000 Bits[31:16]

Standby register for DPP outputs
QUTSTANDBY2 0x3C52 R/W 0x0000 Bits[47:32)

Standby register for DPP outputs
QOUTSTANDBY3 0x3C53 R/W 0x0000 Bits[63:48]

Standby register for DPP outputs
QOUTSTANDBY4 0x3C54 R/W 0x0000 Bits[79:64]

WO 2008/112207

ATIMERO_LO

14

PCT/US2008/003178

Table 4: Examples of GPO Controller Registers

0x3C60

R/W

OXFFFF

IDESCRIBHON

Low 1é-bits bf ATI.> The counter
is updated every clock cycle when the
GPO controller is enabled and

| ATIMERQO is enabled

ATIMERO_HI

0x3C61

RW

OXFFFF

High 16-bits of ATIMERO.

ATIMERO_MAX LO

0x3C62

R/W

OXFFFF

Low 16-bits of ATIMERO max count.
The ATIMEROQ wraps around to zero
when the max count is reached.

ATIMERO_MAX _HI

0x3C63

RW

OXFFFF

High 16-bits of ATIMERO max count.

ATIMER1_LO

0x3C64

R/W

OXFFFF

Low 16-bits of ATIMER1. The counter
is updated every clock cycle when the
GPO controller is enabled and the
ATIMERH1 is enabled

ATIMER1_HI

0x3C65

R/W

OXFFFF

High 16-bits of ATIMER1.

ATIMER1_MAX LO

0x3C66

RW

OXFFFF

Low 16-bits of ATIMER1 max count.
The ATIMER1 wraps around to zero
when the max count is reached.

ATIMER1_MAX HI

0x3C67

R/W

OXFFFF

High 16-bits of ATIMER 1 max count.

ATIMER_VALIDO

0x3C68

R/W

0x0000

Enables GPO toggle entries
[3:0]1=TOGGLE3-0 FOR GPO0
[7:4)=TOGGLE3-0 FOR GPO1
[11:8]=TOGGLE3-0 FOR GPO2
[15:12]=TOGGLE3-0 FOR GPO3

ATIMER_VALID1

0x3C69

R/W

0x0000

Enables GPO toggle entries
[3:0}=TOGGLE3-0 FOR GPO4
[7:4)=TOGGLE3-0 FOR GPO5
[11:8]=TOGGLE3-0 FOR GPO6
[15:12)=TOGGLE3-0 FOR GPO7

ATIMER_VALID2

0x3CBA

RW

0x0000

Enables GPO toggle entries
[3:0)=TOGGLE3-0 FOR GPO8
[7:4]=TOGGLE3-0 FOR GPO8
[11:8}=TOGGLE3-0 FOR GPO10
[15:12]=TOGGLE3-0 FOR GPO11

ATIMER_VALID3

0x3C68B

R/W

0x0000

Enables GPO toggle entries
[3:0)=TOGGLE3-0 FOR GPO12
[7:4)=TOGGLE3-0 FOR GPO13
[11:8)=TOGGLE3-0 FOR GPO14
[15:12]=TOGGLE3-0 FOR GPO15

ATIMER_STICKYO

0x3C6C

R/W

0x0000

Sticky enable GPO toggle entries
[3:0]=TOGGLE3-0 FOR GPOO0
[7:4)=TOGGLE3-0 FOR GPO1
[11:8]=TOGGLE3-0 FOR GPO2
[15:12]=TOGGLE3-0 FOR GPO3

ATIMER_STICKY1

0x3C6D

R/W

0x0000

Sticky enable GPO toggle entries
[3:0)=TOGGLE3-0 FOR GPO4
[7:4]=TOGGLE3-0 FOR GPO5
[11:8)=TOGGLE3-0 FOR GPO6
[15:12]=TOGGLE3-0 FOR GPO7

WO 2008/112207

15

PCT/US2008/003178

ATIMER_STICKY2

0x3C6E

R/W

0x0000

Sticky enable GPO toggle entries.
[3:0]=TOGGLE3-0 FOR GPO8
[7:4]=TOGGLE3-0 FOR GPO9
[11:8)=TOGGLE3-0 FOR GPO10
[15:12]=TOGGLE3-0 FOR GPO11

ATIMER_STICKY3

Ox3C6F

RW

0x0000

Sticky enable GPO toggle entries.
[3:0]=TOGGLE3-0 FOR GPO12
[7:4]=TOGGLE3-0 FOR GPO13
[11:8]=TOGGLE3-0 FOR GPO14
[15:12]=TOGGLE3-0 FOR GPO15

ATIMER_SEL

0x3C70

RW

0x0000

Selects ATIMERO or ATIMER1 for
each GPO pin.

A one specifies that ATIMER1 is used
for comparisons.

[0]1=GPOO0

[1]=GPO1

[2]=GPO2

[3]=GPO3

[4]=GPO4

[5]=GPO5

[6]=GPO6

[71=GPO7

[8]=GPOS8

[9)=GPO9

[10]=GPO10

[15:11}=RESERVED

10

WO 2008/112207

16

PCT/US2008/003178

Table 5: Example of a GPO Toggle Entry Table
(The complete table could continue in the same fashion for all remaining GPO pins)

GPO0_TOGO_LO 0x3C80 W none Low 16 bits of toggle0 entry for GPOO
GPO0 TOGO _HI 0x3C81 W none High 16 bits of toggle0 entry for GPOO
GPO0O TOG1 LO 0x3C82 W none Low 16 bits of toggle1entry for GPOO
GPO0 TOG1_HI 0x3C83 W none High 16 bits of toggle1entry for GPOO
GPO0Q TOG2 LO 0x3C84 W none Low 16 bits of toggle2entry for GPOO
GPO0 TOG2_HI 0x3C85 w none High 16 bits of toggle2entry for GPOOQ
GPO0 TOG3LO 0x3C86 W none Low 16 bits of toggle3entry for GPOQ
GPO0_TOG3H!I 0x3C87 W none High 16 bits of toggle3entry for GPOO
GPO1 TOGO LO 0x3C88 W none Low 16 bits of toggle0 entry for GPO1
GPO1 _TOGO_HI 0x3C89 W none High 16 bits of toggle0 entry for GPO1
GPO1 TOG1t1 LO 0x3C8A W none Low 16 bits of toggletentry for GPO1
GPO1 _TOG1 HI 0x3C8B w none High 16 bits of toggle1entry for GPO1
GPO1_TOG2_LO 0x3C8C W none Low 16 bits of toggle2entry for GPO1
GPO1 TOG2 HI 0x3C8D W none High 16 bits of toggle2entry for GPO1
GPO1 TOG3LO 0x3C8E W none Low 16 bits of toggle3entry for GPO1
GPO1_TOG3HI 0x3C8F W none High 16 bits of toggle3entry for GPO1

Program Sequencer

As noted above, the program sequencer 106 of the DPP 102 may control the flow of

the program execution. The program sequencer 106 may, for example, generate a fetch

address for the program memory, receive the instruction from memory, decode the

instruction, send control signals to the rest of the DPP units, and finally generate the next

fetch address to be sent to the program memory. The program flow in the DPP may be

typically linear, with the processor executing program instructions sequentially. The linear

10

15

20

25

30

WO 2008/112207 17 PCT/US2008/003178

flow may, however, vary occasionally when the program uses non-sequential program
structures, such as those illustrated in Fig. 6.

As shown, examples of such non-sequential program structures that may be supported
by the DPP 102 include “loops,” “subroutines,” “jumps,” “interrupts and exceptions,” and
“idle.” For loops, one sequence of instructions may, for example, execute several times using
general purpose registers, arithmetic instructions, and conditional branching instructions. For
subroutines, the processor may, for example, temporarily interrupt sequential flow to execute
instructions from another part of memory. After completing the subroutine, the program flow
may return to the instruction following the CALL instruction used execute the subroutine
program. For jumps, program flow may, for example, transfer permanently to another part of
memory. For interrupts and exceptions, a runtime event or instruction may, for example,
trigger the execution of a subroutine. The program may, for instance, jump to the address
specified in the interrupt vector table (IVT). For idle structures, an instruction may, for
example, cause the processor to stop operating and hold its current state until an interrupt
occurs. Then the processor may service the interrupt and continue normal execution.

The program sequencer 106 may manage execution of these program structures by
selecting the address of the next instruction to execute. For example, the program pointer,
also referred to as the program counter (PC), may couple with the RETS and RETI registers,
which store return addresses for subroutines and interrupt service routines. In some
embodiments, all addresses generated by the sequencer may, for example, be sixteen-bit
memory instruction addresses. The program sequencer 106 may also support both
conditional and non-conditional branching.

Branches

A branch may occur, for example, when a JUMP or CALL instruction begins
execution at a new location other than the next sequential address. A JUMP or CALL
instruction may, for example, transfer program flow to another memory location. In some
embodiments, the difference between a JUMP and a CALL may be that a CALL may
automatically write the next sequential program address into the RETS register. This push
operation may make the address available for the CALL instruction’s matching return
instruction (RTS), allowing easy return from the subroutine. An RTS instruction may, for
example, copy the content of the RETS register to the PC register and fetch a new instruction
from that address.

In some embodiments, a JUMP instruction may be conditional, depending on the

arithmetic flags set in the ASTATUS register (see Table 1 above) and the conditional options

10

15

20

25

30

35

40

WO 2008/112207 18 PCT/US2008/003178

used by the instruction. The ASTATUS register may, for example, be updated by every
arithmetic instruction. .In certain embodiments, if no condition is specified, the branch may
always be taken. As an example, the supported conditions in the conditional instruction, if
{{}<COND>, JUMP(<IMMI6>), may comprise:

o EQ: Equal to Zero. Evaluates as true if the zero flag in the ASTATUS register
is 1 and the negative flag in the ASTATUS register is 0.

o LT: Less than Zero. Evaluates as true if the zero flag in the ASTATUS register
is 0 and the negative flag in the ASTATUS register is 1.

o LTE: Less than or Equal to Zero. Evaluates as true if the zero or negative flag
in the ASTATUS register is 1.

o !: Indicates that the condition should evaluate to false for the branch to be
taken.

In some embodiments, all types of JUMP and CALL instructions may be executed
using absolute sixteen-bit addresses.
Subroutines

Subroutines may be code sequences that are constructed with the CALL and RTS

instructions. Assuming that a stack pointer has been initialized properly, a typical subroutine

-call may, for example, include the following steps: (1) pass a parameter to a register used as

an input by the subroutine, (2) execute the CALL instruction, (3) push all registers modified
by the function onto the stack, (4) execute the body of subroutine, (5) pop the values from the
stack back to their original registers, (6) execute the RTS instruction, and (7) Return to next
sequential instruction following original CALL instruction.

An example of the sub-routine definition and usage is given below.

/* parent function */

/*R0O=0%

/*R1 used as stack pointer™/

/*R4 used as input/output parameter™/
/*R6 used as temporary register™/

R4 = 0x1234, /*pass a parameter */

CALL(MYFUNCTION); /*execute subroutine™/

[RO+RESULTO0] = R4, /*save return value to memory location RESULTO */
JUMP(SOMEWHERE); /*jump to elsewhere in code*/

MYFUNCTION: /*subroutine label */

[--R1]=R6; /*pushing RG register onto stack since this register is
modified*/

R6=[RO+DATA0]; /*loading data0 from data memory to R6*/
R4=R4+R6, /*Adding R6 to register passed™/

R6=[RI++]; /*popping R6 from stack to restore state on exit from
subroutine*/

RTS; /* return from subroutine */

10

15

20

25

30

35

WO 2008/112207 19 PCT/US2008/003178

In addition to redirecting the program flow to the MYFUNCTION subroutine above,
a CALL instruction may also write the return address into the RETS register automatically.
The RETS register may hold the address where program execution is to resume after the RTS
instruction executes. In the above example, this is the location that holds the
“IRO+RESULTO0] = R4;” instruction. The return address need not be passed to the stack in
the background. Rather, the RETS register may function as single-entry hardware stack. This
scheme may thus enable “leaf functions” (subroutines that do not contain further CALL
instructions) to execute with less possible overhead, ‘as no bus transfers need to be performed.
If a subroutine calls other subroutines, it may temporarily push the content of the RETS and
other registers used by the master subroutine onto the stack.

In some embodiments, the push and pop instructions may be omitted from the
subroutines by instituting a programming methodology in which certain registers are
dedicated as temporary variables and subroutine arguments. For instance, if the R6 register
in the above example did not have to be restored for the main code, the push and pop
instructions could have been omitted.

Standby Register (DPPSTANDBY)

The DPPSTANDBY register (see Table 1 above) may, for example, selectively

enable all major features of the DPP 102. In some embodiments, all functionality may be
turned off (0x0000) at reset by default, and before any DPP related operation can take place,
the appropriate functions may be enabled in the DPPSTANDBY register. To enable a
specific function, the corresponding bit may be set to “1” in the standby register. In some
embodiments, the functionality of the individual bits of the DPPSTANDBY may, for

example, be as follows:

e [0]->DPPEN: Enable bit for the DPP. When the bit is cleared, only the
DPPSTANDBY register is being clocked. In order to enable the program sequencer
and the rest of the DPP, the DPPEN bit must be set.

e [1]=>GPOEN: Enable bit for the GPO controller. The GPO controller contains the
functionality of the ATIMER* registers and GPO* registers. When the bit is cleared,
the clock to the GPO controller is completely disabled. As a result, ATIMERO and
ATIMERI are not updated on the rising edge of the clock and the registers are
unresponsive to register write transactions.

e [2]>GPOOUTEN: Enable bit for the GPO outputs from the DPP. When this bit is
cleared, the GPO output levels are taken from the OUTSTANDBY register. When
the bit is set, the GPO driven output levels are taken from the OUTREG register. This

10

15

20

25

30

35

40

WO 2008/112207 20 PCT/US2008/003178

bit functions as an override bit for the OUTEN registers. The bit can be used to
quickly enable and disable all GPO outputs in one clock cycle.

e [3]>VECTOROUTEN: Enable bit for the vector outputs from the DPP. When this
bit is cleared, the vector output levels are taken from the OUTSTANDBY register.
When the bit is set, the vector driven output levels are taken from the OUTREG
register. This bit functions as an override bit for the OUTEN registers. The bit can be
used to quickly enable and disable all vector driven outputs in one clock cycle.

e [4]>STIMEREN: Enable bit for the synchronous timer. The timer updates on every
rising edge of the DPP clock as long as the STIMEREN bit is set. The STIMER can
be stopped with the STIMEREN bit to reduce power and to reduce noise.

e [S]2>ATIMEROEN: Enable bit for ATIMERO. The timer updates on every rising
edge of the DPP clock as long as the ATIMEROEN bit is set and the GPOEN bit is
set. The ATIMERO can thus be stopped selectively to reduce power and reduce noise.

e [6]>ATIMERIEN: Enable bit for ATIMER]. The timer updates on every rising
edge of the DPP clock as long as the ATIMERIEN bit is set and the GPOEN bit is
set. The ATIMERI can thus be stopped selectively to reduce power and noise.

Program Flow Status Register (DPPSTATUS)

The DPPSTATUS register (see Table 1 above) may, for example, contain information
regarding the present execution status of different units of the DPP 102 and may be used to
debug run away code and faulty hardware configurations. The eight least significant bits
(LSBs) of the DPPSTATUS register may, for instance, contain status flags that are updated
on every clock cycle or on every use of certain specific instructions or transactions. The
eight most significant bits (MSBs) may, for example, be sticky bits, which, once set, can be
reset only by a reset event or by explicitly writing to the DPPSTATUS register. In some
embodiments, the functionality of the individual DPPSTATUS bits may, for example, be as

follows:

IMMEDIATE BITS:

e [0]>TOGGLE_PENDING: A set bit indicates that a toggle instruction has been
executed and the DPP is waiting for a toggle count match to continue the program
execution.

e [2]2EXT_TRANS_PENDING: An external transaction tried to access the memory
but was delayed in a one stage transaction buffer until the DPP stops accessing the
memory.

e [4]>IDLE: The DPP is currently in an idle state awaiting an external interrupt signal
to start code execution.

WO 2008/112207 21 PCT/US2008/003178

10

15

20

25

30

35

40

45

e [S]>SINGLESTEP_MODE: The DPP is in single step mode and will advance one

instruction at a time. The mode is reached by inserting a breakpoint instruction in the
program or by writing to the DPPDEBUG register.

STICKY BITS:

[8]>SKIPPED MATCH: Indicates that a toggle instruction was executed, for which
the toggle count value was less than the STIMER at the time of the initial execution.
This is generally an undesirable situation and is thus flagged.

[9]>STIMER_WRAPAROUND: Indicates that the STIMER wrapped around from
STIMER MAX to zero.

[10]>ATIMERO_WRAPAROUND: Indicates that the ATIMERO wrapped around
from ATIMERO_MAX to zero.

[11]>ATIMER1_WRAPAROUND: Indicates that the ATIMER1 wrapped around
from ATIMER1_MAX to zero.

[12]2ILLEGAL_OPCODE: Indicates that an illegal opcode was entered. This bit
can be used for software debugging to indicate execution of an uninitialized program
memory or ajump to a data section of the memory.

[13]>INTERRUPT: Indicates that the normal program flow was interrupted by an
external interrupt while the DPP was running. In very timing exact applications, this
is generally an undesirable situation as it would indicate that the foreground process
or the interrupt process would get delayed. For most applications, this bit can be
ignored since DPP supports nested as well as non-nested interrupts, and the correct
program flow order is guaranteed under all interrupt sequences.

[14]2EXT_LOST: Indicates that an external transaction was lost. If an external
transaction and an internal transaction arrive at the memory simultaneously, the DPP
transaction has preference. The external transaction then gets latched into a one stage
buffer until the DPP stops accessing the memory. If a second external transaction
arrives before the first transaction has been completed, it overwrites the first
instruction in the transaction buffer, causing the first transaction to be permanently
lost.

Bits 15, 7, 6, 3, 1 of the DPPSTATUS may be reserved and can thus be ignored for he
purposes of this description.

Arithmetic Status Register (ASTATUS)

The ASTATUS register (see Table 1 above) may, for example, monitor the result of

the most recently executed arithmetic instruction. In some embodiments, for example, the

10

15

20

25

30

35

WO 2008/112207 22 PCT/US2008/003178

following flags may be used by the conditional branch instruction, and may also be used for

general program monitoring.

e [0]>ZERO _FLAG: This bit is set when all bits of the arithmetic instruction result are
Zero.

e [1]>NEGATIVE_FLAG: This bit is set when the most significant bit of the
arithmetic instruction result is 1.

e [2]>OVERFLOW_FLAG: This bit is set when the most significant bit of the two
input operands are the same and the most significant bit of the result is different from
the that of the two input operands. Overflow could occur in addition when adding
two large positive numbers or adding two large negative numbers, but could not
happen when adding a positive and negative number.

Output Control Register (OUTREGx, OUTENx, OUTSTANDBYXx)

The output control registers (see table 3 above) may, for example, directly control the
outputs of the DPP 102. Each DPP output may, for instance, be controlled by one bit in each
of the OUTREG, OUTEN, and OUTSTANDBY registers. In some embodiments, there may,
for example, be five each of the OUTREG, OUTEN, and OUTSTANDBY registers, each
sixteen-bits wide and controlling sixteen outputs. Outputs from the GPO controller and the
toggle instructions may, for instance, be combined to form a single wide output vector that
may be controlled by the output control registers. The GPO driven outputs may, for example,
be situated above the MSB of the vector driven outputs in the final output vector. For
example, if there are fifty-seven pins driven by the programmable vector toggle instructions
and eleven pins driven by the GPO controller, the DPP output mapping may be:

e Bits 0 to 56 are driven by the programmable vector toggle instructions
e Bits 57 to 67 are driven by the GPO controller

In the code example below, bit zero and bit fifty-seven would be enabled, while
keeping all other outputs placed in a standby state.
OUTENO=0x0001; //Bits 15-0
OUTEN3=0x0400; //Bits 48-63

Fig. 7 shows an example of a hardware control mechanism including a multiplexer
702 that may by used in conjunction with the OUTREG register 704, the OUTSTANDBY
register 706, and the OUTEN register 708 to enable and disable the outputs 120 on a pin by
pin basis. In some embodiments, all of the outputs 120 may, by default, wake up in a
disabled state with the default standby polarity set to zero. In the example of Fig. 7, each of
the sixty-eight bits of the OUTENX register 708 controls whether a corresponding bit of the

10

15

20

25

30

WO 2008/112207 23 PCT/US2008/003178

OUTSTANDBY register 706 or a corresponding bit of the OUTREGX register 704 is
provided on a corresponding one of the outputs 120. Thus, by writing appropriate values to
the OUTENX register 708, selected subsets of either or both of the vector outputs and the
GPO driven outputs may be provided on the outputs 120, with the states of the other outputs
being set based upon the corresponding bits of the OUTSTANDBYX register 706. This
arrangement may therefore allow an additional level of flexibility in controlling the content
of the outputs 120 in certain circumstances, for example, in embodiments where it may be
relatively difficult to reconfigure the logic that controls the vector toggle instructions and/or
the logic that controls the GPO outputs.

Synchronous Timing Engine

As discussed above in connection with Fig. 3, the synchronous timer 114 may, for
example, comprise a free running clock cycle counter, e.g., toggle counter 306, and a cycle
counter comparator 308 that may be integrated into the program sequencer 106. When the
DPP 102 encounters a special toggling instruction, the DPP program counter may, for
example, be stalled until the toggle counter 306 reaches the value specified in the toggling
instruction line. When a match is found, an indication may be sent to the DPP’s output event
execution unit 118, and the outputs 120 may be toggled according to the type of toggling
instruction and the data bits set in the instruction line.

The DPP architecture may, for example, support the following instruction types: (1)
TOGGLE_VECTOR and (2) FORCE_VECTOR. In some embodiments, the DPP 102 may
advaritageously support a very wide instruction word, so every one of the software driven
outputs can be toggled or forced to particular values with a single instruction. After the
outputs have been toggled or forced, the program counter may advance to the next sequential
instruction line, and the program fetching may resume to normal operation.

Fig. 8 is a flowchart illustrating an example of an execution flow 800 that may be
used to generate toggle pulses on the outputs 120. As shown, at steps 802 and 804, an
instruction is fetched from the program memory 108 and decoded for execution. If, at a step
806, it is determined that the instruction is a “toggle” instruction, then the flow 800 proceeds
to a step 808, where it waits until the comparator 308 has determined that the toggle counter
306 has reached the “toggle count” specified in the instruction. Once the toggle counter 306
has reached the specified toggle count, the flow proceeds to a step 810, where certain outputs
120 of the DPP 102 are simultaneously toggled in the manner specified by the instruction.
The flow then returns to the steps 802 and 804 where the next program instruction is fetched
and decoded.

10

15

20

25

30

WO 2008/112207 24 PCT/US2008/003178

If, at the step 806, it is determined that the fetched instruction is not a toggle
instruction, then the routine proceeds to a step 812, where the instruction is carried out to as
to control the program flow in the manner specified. Examples of the manner in which
particular toggle instructions and program flow instructions may be configured and carried
out in various embodiments are described below. Accordingly, using the configuration and
functionality illustrated in Figs. 3 and 8, the toggle counter 306 and a custom toggle
instruction set (described below) may be used to keep the DPP 102 in lock step execution.
Advantageously, in the example shown, the flow is capable of toggling all output pins on any
given clock cycle. In some embodiments, a single instruction may be defined for toggling all
of the bits.

The toggle counter 306 may be reset, for example, by explicitly writing to the
STIMER register (see Table 1 above) or by using the “(C)” option with a toggle instruction,
as described below. By using the “(C)” option, the toggle counter 306 may be cleared before
the instruction is executed. For example, in some embodiments, executing the instruction
shown below may cause the toggle counter 306 to be reset and the pins V1 and V2 to toggle
immediately:

TOGGLE VECTOR (0: V1, V2) (C),

The counter’s maximum count value may, for example, be “65535.” When the
counter reaches its maximum value, the counter may wrap around and start counting from
zero. When this occurs, the sticky wraparound flag may be raised in the DPP status register,
DPPSTATUS. To help in program debugging, if the STIMER value is less than the toggle
value programmed in the toggle instruction, the sticky skipped-vector status flag may be set
in the DPP status register.

Synchronous Timer Configuration Registers

The DPP synchronous timer 306 may, for example, have two registers with direct
control over the toggle matching: STIMER and STIMER_MAX (see Table 1 above). In
addition, in some embodiments, the counter 306 may also be stopped and started by writing
to the DPPSTANDBY register. The STIMER register may, for example, represent the free
running clock cycle counter and may be incremented on every rising edge of the clock as
long as the enable bit for the counter, STIMEREN, is set in the DPPSTANDBY register. The
STIMER register may, for example, be written to explicitly using a load immediate
instruction, a load MMR instruction, a POP instruction, or an externally generated write
transaction. The register may also be cleared, for example, by using the “(C)” option in one

of the toggle instructions.

10

15

20

25

30

35

WO 2008/112207

25 PCT/US2008/003178

The STIMER _MAX register may, for example, control the wraparound value of the

toggle counter 306. The default may be for the toggle counter 306 to wraparound when it

reaches OxFFFF, for example. In some embodiments, by programming this value, the

maximum value of the toggle counter 306 may be modified, thus shortening maximum count

in certain applications.

Interrupt Controller

The interrupt controller 104 of the DPP 102 may manage the execution and priority of

interrupts and exceptions. An “interrupt” is an event that changes normal processor

instruction flow and is asynchronous to program flow. The DPP interrupt controller 104 may,

for example, support up to sixteen independent interrupt service routines. In some

embodiments, the main components of the interrupt control system may, for example, include

the following:

e Interrupt Vector Table: Comprising a set of sixteen sixteen-bit program pointers, one

for each interrupt.

e ILAT: Latches all interrupt events regardless of masking
¢ IMASK: Allows for user controller masking of interrupts
e PMASK: Keeps track of interrupt service routine execution in case of nested

interrupts.

e RETI: Hardware registers that stores the next sequential PC whenever an interrupt
service routine starts executing

e RTI Instruction: Together with RETI, provides a method for returning to the PC
executed before the interrupt happened.

Fig. 9 illustrates an example of basic steps that may be involved in executing an

interrupt service routine (ISR) using the DPP 102.

The event system may be nested and prioritized. Consequently, several service

routines may be active at any time, and a lower priority event may be pre-empted by one of

higher priority. The processor may, for example, employ a two-level event control

mechanism. In embodiments with sixteen interrupt sources, for instance, a certain number,

e.g., twelve, may be generic interrupts defined at the chip level, and four may be DPP

hardware interrupt vectors as shown below:

e IRQO >
o [RQI 2>
e [RQ3-2 >
e IRQIS:4 2>

Hardware debugging interrupt

Software Exception

Reserved

Generic Interrupts Configured on a per product basis -

10

15

20

25

30

WO 2008/112207 26 PCT/US2008/003178

In some embodiments, the two lowest priority interrupts (IRQ14 and IRQ15) may be
reserved for software interrupt handlers, leaving ten prioritized interrupt inputs (IRQ47 —
IRQ13) for system-level hardware related interrupts.

The interrupt controller 104 may, for example, use three memory-mapped registers
(MMRs) and the interrupt vector table (IVT) to coordinate pending event requests. In each of
these MMRs, the sixteen bits may correspond to the sixteen separate interrupt levels (for
example, bit “0” may correspond to “emulator mode”). In some embodiments, the following

registers (see Table 2 above) may, for example, be used:

o IMASK->interrupt mask
o ILAT->interrupt latch
¢ PMASK=>interrupts pending
IRQ{15-0} ADDR~>interrupt vector table

IMASK Register

The interrupt mask register IMASK) may indicate which interrupt levels are allowed
to be taken. As an example, a “1” in a certain bit of the IMASK register may indicate that the
corresponding bit in the ILAT register will never be executed as long as the IMASK bit
remains “1.” If IMASK[N] == 0 and ILAT[N] == 1, then interrupt N will be taken if a higher
priority interrupt is not already recognized. If IMASK[N] == 1, and ILAT[N] gets set by
interrupt N, the interrupt will not be taken, and ILAT[N] will remain set.

ILAT Register

Each bit in the interrupt latch register (ILAT) may indicéte that the corresponding
event is latched but not yet accepted into the processor. The bit may be reset before the first
instruction ih the corresponding ISR is executed. At the point the interrupt is accepted,
ILAT[N] may be cleared and PMASK[N] may be set simultaneously. To set and clear bits of
the ILAT register, there may, for example, be two registers aliases, ILATSET and ILATCLR.
The ILATCLR alias may perform a read-modify-write operation. The new ILAT value may
be the ANDNOT function of the old ILAT and the value being written. The ILATSET alias
may perform a read modify write operation. The new ILAT value may be the OR function of
the old ILAT and the value being written. The ILATSET register may thus be used to
generate software interrupt routines, and the ILATCLR register may be used to clear latched
interrupts that should be disregarded. There need not be any restrictions on the number of

bits set or cleared simultaneously using the ILATCLR and ILATSET register aliases.

10

15

20

25

30

35

WO 2008/112207 27 PCT/US2008/003178

PMASK Register

The interrupt pending register (PMASK) may keep track of all currently nested
interrupts. Each bit in PMASK may indicate that the corresponding interrupt is currently
active or nested at some level. When an event is processed, the corresponding bit in PMASK
may be set. The least significant bit in PMASK that is currently set may, for example,
indicate the interrupt that is currently being serviced. At any given time, PMASK may hold
the current status of all nested events. The PMASK register may, for example, be read by the
program but never written.

Interrupt Vector Table

The interrupt vector table (IVT) may, for example, be a hardware table with sixteen
entries that are each sixteen bits wide. In some embodiments, the IVT may contain an entry
for each possible DPP event. Entries may be accessed as MMRs, and each entry may be
programmed at any time after reset with the corrésponding vector address for the interrupt
service routine. When an event occurs, instruction fetch may start at the address location in
the IVT entry for that event. The processor architecture may thus allow unique addresses to
be programmed into each of the interrupt vectors; that is, interrupt vectors need not be
determined by a fixed offset from an interrupt vector table base address. This approach may
minimize latency by not requiring a long jump from the vector table to the actual ISR code.

Nested and Non-Nested Interrupts

In some embodiments, the DPP 102 may support nested as well as non-nested
interrupts. Nested interrupts refers to the ability of higher priority interrupts to interrupt the
execution of an interrupt service routine in progress. The dcfault operation may be for all
interrupts to be non-nesting, meaning that the user has to enable nesting in his or her code for
nestéd interrupts to occur. Nested interrupts may be controlled, for example, by the global
interrupt disable bit in the DPPSTATUS register. The global interrupt disable bit may, for
instance, disable all interrupts except for the lowest two interrupts, IRQO and IRQ1, which
may be reserved for hardware debugging and software exceptions and may always be
enabled.

The global interrupt disable bit may, for example, be cleared by the following events:

e RTI or RDS instruction
e Pushing the RETI register onto the stack using the PUSH instruction
e A hardware or software reset

The global interrupt disable bit may, for example, be set by the following events:

10

15

20

25

30

WO 2008/112207 28 PCT/US2008/003178

e The execution of an ISR
o Popping the RETI register from the stack using the POP instruction
Figs. 10-11 illustrate examples of how nested and non-nested interrupts, respectively,
may be latched and executed in the DPP 102. The shaded boxes indicate steps that may be
under user control. All other steps may be automated by the interrupt controller hardware.
In the nested interrupt example of Fig. 11, for example, the user may take care of
saving the state of the machine (step 1110), enabling interrupts (step 1112), executing the
interrupt service routine (step 1114), and then restoring the previous state from the software
stack (step 1116). Storing and restoring context may, for example, be done in the same
method as for subroutines.
For interrupt service routines with destructive pfoperties, such as a “reset” event, the
saving and restoring of DPP registers may be omitted from the interrupt service routine to
improve code latency and code size.

General Purpose Qutput Controller

In some embodiments, the general purpose output (GPO) controller 116 of the DPP
102 may be decoupled from the timing event generator of the instruction driven DPP,
allowing for generation of completely independent events. If, for instance, the DPP 102 is a
PC-driven sequentially-executing RISC machine, all timing events may be ordered within the
program. If for some reason it is not possible to know the event before the system is
deployed, the programming model may break down. An example of this scenario is the
programming of timing events that depends on environmental conditions such as temperature
and light conditions. In these cases, a parallel execution machine may be employed that
allows for programming timing events that are completely independent of all other events in
the DPP 102.

Fig. 12 shows a high-level diagram of an example embodiment of the GPO controller
116. As shown, the GPO controller 116 may, for example, comprise two thirty two-bit free
running clock cycle counters ATIMERO and ATIMERI (see Table 4 above) and, for each
GPO output (e.g., GPOO0), a multiplexer 1202, a cycle count comparator 1204, and a logical
OR circuit 1206.

In the example shown, a toggle position memory (or “GPO Toggle Table™) associated
with the toggle count comparator 1204 contains four thirty-two-bit toggle values. Each one
of the toggle value entries may, for example, be enabled by a corresponding bit in an

ATIMER_VALID register (discussed below). The toggle values may be compared to either

10

15

20

25

30

WO 2008/112207 29 PCT/US2008/003178

of the two thirty-two-bit counters, ATIMERO and ATIMER1. As shown, each multiplexer
1202 may control which of the counters is selected, independently for each GPO output,
based upon the content of a special select register, ATIMER_SEL. The use of two different
thirty-two-bit counters may advantageouély allow for the programming of events with
independent frequency components or widely different time constants.

The cycle count comparator 1204 associated with each GPO pin may compare the
four toggle values to the selected ATIMER counter on every clock cycle to create a toggle
match indication. To produce the final match indication for each GPO pin, the logical OR
circuit 1206 may OR together the four toggle match indications from each cycle count
comparator 1204. Each such indication may, for example, be routed to the respective bit of
the OUTREG register 704 (see Fig. 7) to toggle the value currently in the OUTREG register
704, as well as at a corresponding one of the outputs 120 if the OUTENX register 708 is
appropriately configured.

GPO Controller Configuration Registers

The GPO controller behavior may, for example, be driven by the following MMRs,
programmed as sixteen bit registers using immediate loads, externally driven write
transactions, or through load-store transactions. Before any programming can take place, the
GPOEN and DPPEN should first be set in the DPPSTANDBY register.
ATIMERO/ATIMERI

These registers may, for example, be thirty-two-bit free running clock cycle counters,
updated on the rising edge of the DPP clock. The counters may be enabled by the
ATIMERO/ATIMER]1 bits in the DPPSTANDBY register. Write and reads to and from the
ATIMERO/ATIMERI registers may be performed using the ATIMERO_LO/ATIMERO_HI
and ATIMER1 LO/ATIMER!_HI address aliases. The ATIMERO/ATIMERI registers may
be compared to the toggle selection table on a per-pin basis.

ATIMERO MAX/ATIMER] MAX

These thirty-two-bit registers may be set to the maximum count value of the ATIMER
counters. The default maximum count value may, for example, be OXFFFF_FFFF. There
may be instances when the maximum toggle value should be shortened, as in the example of
programming a repeating event with a certain periodicity. The most efficient method of
creating a pin with a period of N may be to set the ATIMERO_MAX or ATIMER]_MAX
value to N-1 and to set two of the toggle values of that pin to be less than
ATIMERO MAX/ATIMER]_MAX. Write and reads to and from the
ATIMERO MAX/ATIMER1_MAX registers may be performed using the

10

15

20

25

30

35

WO 2008/112207 30 PCT/US2008/003178

ATIMERO_MAX LO/ATIMERO_MAX_HI and
ATIMERI_MAX LO/ATIMER!_MAX_HI address aliases.
ATIMER_VALIDO/ATIMER VALIDI/ATIMER _VALID2

The ATIMER VALID registers may, for example, be a set of 16-bit registers that

control the validity of the toggle entries in the toggle position memory associated with each
cycle count comparator 1204. A toggle entry match may, for instance, occur only if the
corresponding bit in the ATIMER _VALID registers has been previously set. The bits in the
ATIMER_VALID registers may thus control the cycle count comparators 1204 on a per-
entry basis. The default reset state may be for all entries to be invalidated. As an example,
the mapping of the ATIMER_VALID register may be as follows:

e ATIMER VALIDO:

Bits[3:0] enable toggle entry 0 to 3 for GPOO
Bits[7:4] enable toggle entry 0 to 3 for GPO1
Bits[11:8] enable toggle entry 0 to 3 for GPO2
Bits[15:12] enable toggle entry 0 to 3 for GPO3

0 O OO

e ATIMER VALIDI:

Bits[3:0] enable toggle entry O to 3 for GPO4
Bits[7:4] enable toggle entry 0 to 3 for GPOS
Bits[11:8] enable toggle entry 0 to 3 for GPO6
Bits[15:12] enable toggle entry 0 to 3 for GPO7

O O O O

e ATIMER VALID2:

Bits[3:0] enable toggle entry O to 3 for GPOS8
Bits[7:4] enable toggle entry 0 to 3 for GPO9
Bits[11:8] enable toggle entry 0 to 3 for GPO10
Bits[15:12] enable toggle entry 0 to 3 for GPO11

O 0O OO

The bits of the ATIMER _VALID registers may be set and cleared like any other
MMR, but may also be cleared by a toggle event. If for example, a toggle event occurred for
toggle entry 0 on GPOO, bit 0 of ATIMER_VALIDO would be cleared immediately following
the event. This means that for the same event to occur again, bit 0 of ATIMER_VALIDO
would first have to be set. For repeating events, this valid reset event may be avoided by
using the ATIMER_STICKY registers, as explained below.
ATIMER STICKYO/ATIMER_STICKYI/ATIMER_STICKY?2

The ATIMER STICKY registers may, for example, comprise a set of sixteen-bit
registers that control whether the bit in the ATIMER_VALID registers is reset on a toggle
entry match event. Setting a bit in the ATIMER_STICKY register may, for instance,
guarantee that the corresponding bit in the ATIMER_VALID registers will not be reset on a

10

15

20

25

30

35

40

WO 2008/112207 31 PCT/US2008/003178

toggle match event. The default may, for example, be for all toggle entries to be non-sticky.

As an example, the mapping of the ATIMER_STICKY registers may be as follows:

o ATIMER _STICKYO:

Bits[3:0] controls sticky toggle entry 0 to 3 for GPOO
Bits[7:4] controls sticky toggle entry 0 to 3 for GPO1
Bits[11:8] controls sticky toggle entry 0 to 3 for GPO2
Bits[15:12] controls sticky toggle entry 0 to 3 for GPO3

O 00O

e ATIMER STICKYI:

Bits[3:0] controls sticky toggle entry 0 to 3 for GPO4
Bits[7:4] controls sticky toggle entry 0 to 3 for GPOS5
Bits[11:8] controls sticky toggle entry 0 to 3 for GPO6
Bits[15:12] controls sticky toggle entry 0 to 3 for GPO7

OO O 0O O

e ATIMER_STICKYZ2:

Bits[3:0] controls sticky toggle entry 0 to 3 for GPO8
Bits[7:4] controls sticky toggle entry 0 to 3 for GPO9
Bits[11:8] controls sticky toggle entry 0 to 3 for GPO10
Bits[15:12] controls sticky toggle entry 0 to 3 for GPO11

O 0 OO

ATIMER_SEL

This register may select the counter used for toggle comparison on a per-pin basis.

For example, a “0” may select ATIMERO and a “1” may select ATIMERI for the respective
GPO. An example of how ATIMER_SEL bits may be mapped is shown below. By default,
all GPOs in the example shown use ATIMERO for comparison.
e [11:0]: GPO!11-GPOO
e [15:12]: RESERVED
An example of a programming sequence that may be used to configure the GPO
controller 116 is shown in Fig. 13.
Instruction Set
Examples of four types of instructions that may be executed by the DPP 102 are first
presented, without a detailed description, immediately below. These include (1) program
flow instructions, (2) load/store instructions, (3) arithmetic instructions, and (4) toggle
instructions. Options that may follow each of the foregoing instructions are also presented.
A more detailed description of each of the various instructions and options, and several
examples of timing generation routines that may be executed using such instructions are
presented further below.
The following are examples of “program flow instructions” that may be employed in

various embodiments:

10

15

20

25

30

35

40

WO 2008/112207 32 PCT/US2008/003178

IF <COND>, JUMP(<IMM16>,

JUMP(<IMMI16>
CALL(<IMMI6>);
NOP;

IDLE;
[--RM]=MMR;
MMR=[RM++];
RTS;

RTI;

RDS;
BREAKPOINT:;

The following are examples of “load/store instructions” that may be employed in

various embodiments:

MMR=<IMMI16>;
[RM+/- {<IMMI6 | RN}]=RS:
[RM+/-={<IMMI6 | RN}]=RS;
RD=[RM+/- {<IMMI16> | RN}];
RD=[RM+/-= {<IMMI6> | RN}];

The following are examples of “arithmetic instructions” that may be employed in

various embodiments:

RD=RM + {<IMMI16> | RN};
RD=RM - {<IMMIG6>| RN};
RD=RM | {<IMMI16> | RN};
RD=RM & {<IMMI16> | RN};
RD=RM ~ {<IMMI16>| RN};
RD=RM >> {<IMMI6>| RN};
RD=RM << {<IMMI6>| RN}
RD=RM >>> {<IMMI6>| RN};
RD=RM <<< {<IMMIG6> | RN};

The following are examples of “toggle instructions” that may be employed in various

embodiments:

FORCE VECTOR({<IMMI16> | RM}: <VECTOR>),
TOGGLE VECTOR({<IMMI16> | RM}: <VECTOR>),

The following are examples of “extended instructions” that may be employed in

various embodiments:

RD= RM*RN;
RD = RM <<"RN;
RD += RM * RN;

The following are “options” that may be added to the end of any instruction:
(C);
R);
(S);

10

15

20

25

30

35

40

WO 2008/112207 33 PCT/US2008/003178

Program Flow Instructions

The program flow instructions noted above will now be described in more detail.
CONDITIONAL JUMP

Syntax:

IF <COND>, JUMP(<IMM16>);

Function: This instruction may change the default sequential program flow to

conditionally jump to the location noted in the immediate address field. The jump value may
be absolute and allow jumps to anywhere in the program space. In case of jumps to labels,
the assembler may take care of substituting the label for the real jump address. The available
conditions may be derived from the arithmetic status flags: NEGATIVE and ZERO, which
may be updated on every arithmetic instruction. Generally, the arithmetic instruction that
creates the condition would be placed immediately before the conditional jump instruction to
make sure the arithmetic flags are not overwritten. The conditions that may be evaluated
include: EQ (equal to zero), LT (less than zero), and LTE (less than or equal to zero). The
“I” option may allow for reversing the polarity of the condition. Together with the subtract

and add instructions, these conditions may allow for testing of a large variety of equalities

including: ==, I=,>=, <=, >, <,
Examples:
/*Creating a Loop that executes 10 times*/
RO=10; //setting counter to 10
LOOP _LABEL: //start of loop
<code> //body of loop
RO=RO-1; //decrementing loop counter, updates ASTATUS
register

If 'EQ, JUMP(LOOP_LABEL),//jumping back while loop

/*Check if RO = R1%*/
R2=RI-RO;

IfEQ, JUMP(LABEL B);
<code>

LABEL B:

/*Check if RO /= RI1*
R2=RI1-RO;

If'EQ, JUMP(LABEL B),
<code>

LABEL B:

/*Check if RO > R1*/
R2=RI-RO;
If LT, JUMP(LABEL_B);

10

15

20

25

30

35

40

45

WO 2008/112207 34 PCT/US2008/003178

<code>
LABEL B:

/*Check if RO < R1%*/
R2=RI-RO;

If ILTE, JUMP(LABEL B),
<code>

LABEL B:

/*Check if RO >= RI1%*/
R2=RI-R0O;

IfLTE, JUMP(LABEL B);
<code>

LABEL B:

/*Check if RO <= RI1*/
R2=RI1-R0;

IfILT, JUMP(LABEL B);
<code>

LABEL B:

JUMP
Syntax:

JUMP(<IMMI16>);
JUMP(RM);

Function: The JUMP instruction may change the default sequential program flow to
allow jumps to any address within the memory space. The jump value may, for example, be
specified by a sixteen bit unsigned value, taken either from the immediate field of the
instruction or from the RM register specified. There need not be any indication of illegal
jumps or jumps to non-initialized program memory. In case of jumps to labels, the assembler
may take care of substituting the label for the real jump address.

Examples:

Y iaiaiiaiaiiaiiiaannnpinia

//An infinite loop
LOOP:
NOP; //do nothing

JUMP(LOOP),//jump back to LOOP label
Y e
//Example of jumping to mode variable

IF IEQ, JUMP(ELSE), //checking condition

R2=MODEI; //setting R2 to MODE] if condition is met
JUMP(EXIT),

ELSE:

R2=MODEO0 //setting R2 to MODEQ if condition is not met

10

15

20

25

30

35

40

WO 2008/112207 35 PCT/US2008/003178

EXIT:

JUMP(R2), //jump to address pointed to by R2
MODEQ:

<code>

MODE]!:

<code>
Yo

SUBROUTINE CALL

Syntax:

CALL(<IMMI6>);
CALL(RM);

Function: The CALL instruction may, for example, change the default sequential
program flow to allow absolute jumps to any address within the memory space. The jump
value may, for instance, be specified by a sixteen bit unsigned value, taken either from the
immediate field of the instruction or from the RM register specified. In case of jumps to
labels, the assembler may take care of substituting the label for the real jump address. Upon
executing the CALL instruction, the next sequential program pointer PC may be saved, for
example, in the RETS register. The PC value saved in the RETS register may be recalled
later by using the RTS instruction. The CALL instruction and the RTS instruction thus form
the basis of sub-routine support.

Examples:

Yoo
/4

HEXAMPLE 1: USING CALL(<IMMI16>)

CALL(PATTERN A) //Jumping to subroutine and saving PC in RETS
register

//SUBROUTINE

PATTERN A:
TOGGLE VECTOR(0.XV1) (C);//clears the pixel counter and toggles XV1
TOGGLE VECTOR(10:XV1); //toggling XVI at pixel count 10

RTS; //jump to address in RETS register

Yoo
/4

//EXAMPLE 2: USING CALL(RM)

IF EQ, JUMP(ELSEWHERE),

RM=PATTERN A,

CALL(RM) ; //Jumping to subroutine and saving PC in RETS
register

10

15

20

25

30

35

WO 2008/112207 36 PCT/US2008/003178

//SUBROUTINE

PATTERN _A:
TOGGLE VECTOR(0:XV1) (C),//clears the pixel counter and toggles XV1
TOGGLE VECTOR(10:XV1) ; //toggling XV at pixel count 10

RTS; //jump to address in RETS register

RETURN TO SAVED JUMP LOCATION

Syntax:

RTS;

Function: This instruction may perform an absolute jump to the last address stored in
the RETS register. In some embodiments, it may be assumed that the RETS register was
previously written using a CALL statement, and there need not be any warning given for
using a RTS statement when no previous CALL statement was issued.

Examples:

See subroutine CALL instruction (above).

IDLE

Syntax:

IDLE;

Function: This instruction may place the DPP 102 in an idle mode. In some
embodiments, nothing is being executed while the DPP is in this state, and the only way to
return from this state is through an externally generated interrupt, from an external pin or
through an externally generated software write to the ILAT register. The GPO controller need
not be affected by the IDLE instruction, and may keep running uninterrupted. The STIMER
register may keep running while the DPP is in the idle state.

Example:

IMASK=0xFFOF; /*enabling IRQ4-7 before entering the idle state*/
IDLE; /*executing an idle instruction®/

NOP

Syntax:

NOP;

Function: This instruction need not update any register explicitly, but simply may
advance the program pointer to the next sequential program address. The instruction may be
used, for example, for padding programs to ensure that certain code sections are always keep
the same size.

Example:

NOP; /*Do nothing*/

5

10

15

20

25

30

35

40

WO 2008/112207 37 PCT/US2008/003178

RTI
Syntax:
RTI;

Function: This instruction may return to the address pointed to by the RETI register

and notify the interrupt controller that the interrupt routine has completed. The RTI also may

reset the bit of the interrupt currently being serviced in the PMASK register.

Example:

//MAIN CODE

//EXAMPLE OF IRQ4 INTERRUPTING MAIN CODE
TOGGLE_VECTOR(0:XV1) (C);
TOGGLE_VECTOR(10:XV1) ;

IRQ4ADDR=ISR A, //setting irq address to ISR_A for irq4

ILDE STATE:

IDLE; //1.) IRQ3 comes in with main code is waiting in idle
state

//2.) the next sequential address is saved in RETI
//3.) jump to ISR_A

JUMP(IDLE STATE), /jump back to the idle state
<code>

ISR A:

<body of ISR>

RTI; //1.) Reset the IRQ3 PMASK bit

//2.) Jump to the value in the RETI register

RDS
Syntax:
RDS;

Function: This instruction may reduce the interrupt service routine to a subroutine, by

simply clearing the PMASK bit of the interrupt currently being serviced. The program flow
may continue in a linear fashion and need not jump to the RETI register, as in the case of the

RTI instruction.

Example:

//MAIN CODE

//EXAMPLE OF IRQ4 INTERRUPTING MAIN CODE
TOGGLE_VECTOR(0:XV1) (C);
TOGGLE_VECTOR(10:XV1) ;

IRQ4ADDR=ISR_A; //setting irq address to ISR_A for irg4
ILDE _STATE:

10

15

20

25

30

35

WO 2008/112207 . 38 PCT/US2008/003178

IDLE; //1.) IRQ3 comes in with main code is waiting in idle
state
//2.) the next sequential address is saved in RETI
//3.) jump to ISR _A
JUMP(IDLE STATE),; /jump back to the idle state
<code>

ISR A:

<body of ISR>

RDS; //1.) Reset the IRQ3 PMASK bit

<mode code> //2.) Keep executing next sequential code

BREAKPOINT

Syntax:

BREAKPOINT;

Function: This instruction may halt the execution of the DPP and place the processor
in a single step debug state. In the single step debug state, the program pointer may sit in an
idle state waiting for the execution of a single step instruction from the debug controller. The
difference between the breakpoint instruction and the idle instruction may be that the
counters are stopped upon executing the BREAKPOINT instruction and keep running freely
after the IDLE instruction.

Example:

BREAKPOINT;

Load/Store Instructions

PUSH

Syntax:

[--RM] = MMR;

Function: The Push instruction may store the contents of the MMR register in the
stack location pointed to by RM. The instruction may pre-decrement the Stack Pointer to the
next available location in the stack first. The stack may grow down from high memory to
low memory. Consequently, the decrement operation may be used for pushing values, and
the increment operation may be used for popping values. The Stack Pointer may be defined
as any one of the eight general purpose registers R0-R7. Since R0-R7 need not have reset
values, the register defined as the stack pointer should be set to the most positive location in
the program memory before being used.

Only registers that need to be preserved need to be pushed onto the stack. To reduce
program size and improve performance, only essential registers should be pushed onto the
stack. All general purpose registers, R0-R7, PC, RETS, RETI, DPPSTATUS,

10

15

20

25

30

35

WO 2008/112207 39 PCT/US2008/003178

DPPSTANDBY, ASTATUS, STIMER, and STIMER_MAX, may be pushed and popped to
and from the stack directly using the push and pop instructions. All other MMRs may first be
stored into one of the registers, R0-R7, before the push/pop instruction is executed.

Pushing and popping of the RETI may affect the ability to perform nested interrupts.
Pushing RETI may enable nested interrupts, whereas popping RETI may disable nested
interrupts. Care should be taken to not push or pop the register used as a stack-pointer since
it cannot be retrieved from the stack.

Example:

/*R1 defined as a stack pointer*/
R1=4096,//defining stack pointer to be one address greater than last address in
memory

//Pushing RO, R2, R3 onto the stack
[--R1]=R0;

[--R1]=R2;

[—-R1]=R3;

//Pushing the STIMER onto the stack
[--R1]=STIMER;

//Pushing the ASTATUS register onto the stack
[-R1]=ASTATUS;

POP

Syntax:

MMR = [RM++];

Function: This instruction may load the contents of the stack indexed by the current
Stack Pointer, RM, into the specified register, MMR. The instruction may post-increment the
RM register to the next occupied location in the stack before concluding. The stack may
grow down from high memory to low memory, therefore the decrement operation may be
used for pushing, and the increment operation may be used for popping values. The user
should exercise programming discipline to restore the stack values back to their intended
registers from the first-in, last-out structure of the stack. Pop or load exactly the same
registers that were pushed onto the stack, but pop them in the opposite order.

Only registers that need to be preserved need to be pushed onto the stack. To reduce
program size and improve performance, only essential registers should be pushed onto the
stack. All general purpose registers, R0-R7, PC, RETS, RETI, DPPSTATUS,
DPPSTANDBY, ASTATUS, STIMER, and STIMER_MAX, may be pushed and popped to
and from the stack directly using the push and pop instructions. All other MMRs may first be
stored into one of the registers R0-R7 before the push/pop instruction is executed.

Example:

10

15

20

25

30

35

40

WO 2008/112207 40 PCT/US2008/003178

/*R1 defined as a stack pointer*/

RI1=4096,//defining stack pointer to be one address greater than last address in
memory

//Pushing RO, R2, R3 onto the stack

[--R1]=R0;

[--R1]=R2;

[--R1]=R3;

[--R1]=STIMER;

[--R1]=ASTATUS;

/*Popping all registers from stack™/

/*Note that the order is reversed from the push order™/
ASTATUS=[RI1++];

STIMER=[RI1++];

R3=[RI++];

R2=[RI++];

RO=[RI++];

IMMEDIATE LOAD

Syntax:
MMR=<IMM>;

Function: This instruction may allow for setting the specified MMR register to a 16-

bit constant specified in the instruction line. Any one of the MMR registers may be set in this

fashion.

Examples:

RO=0xffff:
RO=4096;
IMASK=0x000f;
Arithmetic Instructions

ADDITION
Syntax:

RS = RM + RN;
RS = RM + <IMM16>;

Function: This instruction may, for example, perform an addition of the RM and RN

registers and place the result in the RS register. The ZERO, NEGATIVE, and OVERFLOW
flags of the ASTATUS register may be updated upon completion of the instruction.

Examples:

R2 =RI1 + RO;
R2=RI+1;

SUBTRACTION
Syntax:

5

10

15

20

25

30

35

WO 2008/112207 41 PCT/US2008/003178

RS = RM - RN;
RS = RM - <IMM16>;

Function: This instruction may, for example, perform a subtraction of the RM and

{RN | <IMM 16>} values and place the result in the RS register. The ZERO, NEGATIVE,
and OVERFLOW flags of the ASTATUS register may be updated upon completion of the

instruction.

Examples:

R2 =RI - RO;
R2=RI-5;

OR
Syntax:

RS =RM | RN;
RS =RM | <IMMI6>,

Function: This logical instruction may, for example, perform a bitwise OR operation

between RM and {RN | <IMM16>} values and place the result in the RS register. The
ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may be updated upon

completion of the instruction.

Examples:

R2 = RI | RO;

R2 = RI | OxFFO00; //Setting the upper bits of R2 to I and
//copying the lower bits of RI to R2

AND

Syntax:

RS =RM & RN;
RS =RM & <IMMI6>;

Function: This logical instruction may, for example, perform a bitwise AND

operation between RM and {RN | <IMM16>} values and place the result in the RS register.
The ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may be updated

upon completion of the instruction.

Examples:

R2 =RI & RO;
R2 = Rl & OxFF00; //Setting the lower bits of R2 to zero and
//copying the upper bits of Rl to R2

XOR
Syntax:

5

10

15

20

25

30

35

WO 2008/112207 42 PCT/US2008/003178

RS =RM ™ RN;
RS = RM ~ <IMMI16>;

Function: This logical instructions may, for example, perform a bitwise XOR

operation between the RM and {RN | <IMM16>} values and place the result in the RS
register. The ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may be

updated upon completion of the instruction.

Examples:

R2=RI"RO;
R2 = RI " OxFF00; //Setting the lower bits of R2 to R1 and
//places the inverted upper bits of RI in R2

ANDNOT
Syntax:

RS = RM &! RN;
RS = RM &! <IMM16>;

Function: This logical instruction may, for example, invert the {RN | <IMM16>} -

value and then bitwise AND it with the value in the RM register. The result may be placed in
the RS register. The instruction may be used to selectively mask part of a register. The

ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may be updated upon

completion of the instruction.

Examples:

R2 =RI &! RO;
R2 = R1 &! OxFF00; //Copying the lower bits of R1 to R2 and
//clearing the upper bits of R2

LOGICAL RIGHT SHIFT

Syntax:

RS = RM >> RN;
RS =RM>> <IMMI16>;

Function: The logical right shift instruction may shift the RM value right by the value

specified in {RN | <IMM 16} and place the result in the RS register. The upper bits of RS
may be filled in with zeroes, up to the amount of the RN shift amount. The least significant
bits shifted out of the register may be discarded. The ZERO, NEGATIVE, and OVERFLOW
flags of the ASTATUS register may be updated upon completion of the instruction.

Examples:

//Example of register based shifi
RI1=0xFFFF;
RO=5;

10

15

20

25

30

35

WO 2008/112207 43 PCT/US2008/003178

R2=R1 >> RO, //R2 gets OxQ7FF;
//Example of immediate shifi

RI=0xFFFF;
R2=R1>>5; //R2 gets Ox07FF;

LOGICAL LEFT SHIFT

Syntax:

RS = RM << RN;
RS = RM << <IMM16>;

Function: The logical left shift instruction may shift the RM value to the left by the
value specified in {RN | <IMM16} and place the result in the RS register. The lower bits of
RS may be filled in with zeroes, up to the amount of the RN shift amount. The most
significant bits shifted out of the register may be discarded. The ZERO, NEGATIVE, and
OVERFLOW flags of the ASTATUS register may be updated upon completion of the
instruction.

Example:

//Example of register based shift
RI1=0xFFFF;

RO=35;

R2=R1 >> RO, //R2 gets OxFFEQ,

//Example of immediate shift

RI=0xFFFF;
R2=R1>>5; //R2 gets OxFFEO;

ARITHMETIC RIGHT SHIFT

Syntax:

RS = RM >>> RN,
RS = RM >>> <IMMI16>,

Function: The arithmetic right shift instruction may shift the RM value to the right by
the value specified in {RN | <IMM16} and place the result in the RS register. The upper bits
of RS may be filled in with the most significant bit, Sign Bit, of the RM register up to the
amount of the RN shift amount. The least significant bits shifted out of the register may be
discarded. The ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may
be updated upon completion of the instruction.

Examples:

I/Example of register based shift
RI=0xFFFF;

10

15

20

25

30

35

40

WO 2008/112207 44 PCT/US2008/003178

RO=5;
R2=R1 >>> R0, //R2 gets OxFFEQ;

//Example of immediate shift
RI1=0xFFFF;
R2=R1>>>15; //R2 gets OxFFEQ,

ARITHMETIC LEFT SHIEFT

Syntax:

RS = RM <<< RN;
RS = RM <<< <IMMI16>;

Function: The arithmetic left shift instruction may shift the RM value to the left by
the value specified in {RN | <IMM16} and place the result in the RS register. The lower bits
of RS may be filled in with zeroes, up to the amount of the RN shift amount. The most
significant bits shifted out of the register may be discarded. The ZERO, NEGATIVE, and
OVERFLOW flags of the ASTATUS register may be updated upon completion of the
instruction.

Examples:

//Example of register based shift
RI1=0xFFFF;

RO=5;

R2=R1 >> RO, //R2 gets OxFFEQ,

//Example of immediate shift
RI1=0xFFFF;
R2=R1 >>5; //R2 gets OxFFE(,

Load/Store Instructions

LOAD
Syntax:

RD = [RM + <IMM16>];
RD = [RM + RNJ;

RD = [RM - <IMM16>];
RD = [RM - RNJ;

Function: The load operation may, for example, load data from the address specified
within the brackets and place it in the RD register. The <IMM16> or RN address values may
either be added to or subtracted from the RM value to produce the address used for reading
data. RM and RN need not be modified by the address addition performed. If RO is used for
RM, then it should be set to zero.

Examples:

10

15

20

25

30

35

40

WO 2008/112207 45 PCT/US2008/003178

/loading general purpose register with value of stimer

//the RET _STIMER is a predefined macro that specifies a 16-bit address
RO = 0;

R7 = [RO + REG_STIMER];

/Mloading parameter from data portion of memory
R7=[R0O+1024];

//loading parameter from data portion based on a register value
RI1=1024,
R7=[RO+R1];

POST-MODIFY LOAD

Syntax:

RD = [RM += <IMMI6>];
RD = [RM += RNJ;
RD = [RM -= <IMM16>];
RD = [RM -= RNJ;

Function: The post-modify load operation may, for example, load data from the
address specified within the brackets and place it in the RD register. The address from which
to load the data may be set to the value of the RM register. After the data load has completed
and the data has been placed in the RD register, the RM register may be updated with the
result of the addition or subtraction of RM and RN or RM and <IMM16>. The instruction
may thus be used to efficiently load a large buffer of data in the memory to the register file,

one item at a time.

Example:

Yiiiiiiiaiiinzainniids
//Example of using the auto-increment load-store to add
//an offset to an array stored in memory

RO=0x512; //setting the base pointer of the array

LOOP:

R4=[R0+0]; /loading R4 with value in array

R4=R4+2; /fadding 2 to temporary value

[RO+=1]=R4; //storing R4 back into array and incrementing the pointer
R4=R0-527; //running comparing to end of array

IF |EQ, JUMP(LOOP),

STORE

Syntax:

[RM + <IMMI16>] = RS;
[RM + RN] = RS;
[RM - <IMMI16>] = RS;

10

15

20

25

30

35

WO 2008/112207 46 PCT/US2008/003178

[RM - RN] = RS;

Function: The store operation may, for example, copy the data from RS into the
address location specified within the brackets. The <IMM16> or RN address values may
either be added to or subtracted from the RM value to produce the address used for reading
data. RM and RN need not be modified by the address additioh performed. If RO is used for
RM, then it should be set to zero.

Examples:

RI=512;

R2=0xAAAA;

R3=7;

[R1 + 5] = R2;//stores OxAAAA in memory location 517
[R1 + R3] = R2, //stores 0OxAAAA in memory location 519
[RI -1] = R2; //stores OxAAAA in memory location 511
[RI - R3] = R2; //stores OxAAAA in memory location 505

POST-MODIFY STORE

Syntax:

[RM += <IMMI16>] = RS;
[RM += RN] = RS;

[RM -= <IMM16>] = RS;
[RM -= RN] = RS;

Function: The post-modify load operation may, for example, load data from the
address specified and place it in the RD register. The address used for loading the data may
be the RM register. After the data load has completed and the data has been placed in the RD
register, the RM register may be updated with the result of the addition or subtraction of RM
and RN or RM and <IMM16>. The instruction may thus be used to efficiently store a large
buffer of data in the memory to the register file, one item at a time.

Example:

Yiiiiiaiiiaiiaizaniid
//Example of using the auto-increment load-store to add
//an offset to an array stored in memory

RO=0x512; //setting the base pointer of the array

LOOP:

R4=[R0O+0], Hoading R4 with value in array

R4=R4+2; /fadding 2 to temporary value

[RO+=1]=R4; //storing R4 back into array and incrementing the pointer
R4=R0-527; //running comparing to end of array

IF IEQ, JUMP(LOOP);

10

15

20

25

30

35

40

WO 2008/112207 47 PCT/US2008/003178

Output Toggle Instructions

FORCE VECTOR

Syntax:

FORCE _VECTOR (<IMM16>: <VECTOR>) (C),
FORCE VECTOR (RM: <VECTOR>) (C),

Function: This toggle instruction may, for example, cause the PC to stall until the
STIMER cycle count reaches the value specified by the RM or <IMM 16> field. When a
match is reached, all the output pins specified in the <VECTOR> field may be set to “1,” and
all other vector driven outputs from the DPP may be cleared to “0.” The instruction may, for
example, be useful for setting starting polarities of the vector driven outputs.

Options:

(C): This option may be used to clear the internal toggle counter before the execution
of the instruction.

Examples:

//In the examples below, a hypothetical processor with 10 output pins, XVI to
/XV10 is assumed.

Viiiiaiaiaiaiaianainranpgaa
//Example]—setting XV1 and XV2 while all others are cleared at cycle count 5 0
//care should be taken by the programmer that the STIMER is less than 50 before

//the instruction below is executed. If this is the case, the instruction is skipped.
FORCE VECTOR(50: XV1, XV2),

Y iiaiaiaiaiiaiaiiiuiiuarannda
//Example2—clearing the STIMER before starting to count

/XVI and XV?2 are set and XV3-XV10 are cleared afier 51 clock cycles.
FORCE _VECTOR(50: XV1, XV2)(C),

Yz
//Example3—clearing all outputs afier 51 clock cycles.
FORCE VECTOR(50.:)(C);

Yiiiiaaiaiiiiidauppng
//Example4—using a dynamic register value for toggle match comparison.
XV] and XV2 are set and XV3-XV10 are cleared after 51 clock cycles.
RI1=50,;

FORCE VECTOR(RI: XV1, XV2)(C);

TOGGLE VECTOR

Syntax:

TOGGLE _VECTOR (<IMMI6> : <VECTOR>) (C) (R);
TOGGLE_VECTOR (RM : <VECTOR>) (C) (R);

10

15

20

25

30

35

40

WO 2008/112207 48 PCT/US2008/003178

Function: This toggle instruction may, for example, cause the program pointer to stall

until the STIMER cycle count reaches the value specified by the RM or <IMM16> field.
When a match is reached, all the output pins specified in the <VECTOR> field may be
toggled with respect to their previous state. All pins not specified in the <VECTOR> field
may be held at their previous state.

Options:

(C): This option may, for example, clear the internal toggle counter before the
execution of the instruction.

(R): This option may, for example, specify that that the value specified in the
<IMM16> field or RM register is relative to the current STIMER cycle count when the
TOGGLE_VECTOR instruction is first executed. For example, if the STIMER was “100”
when the instruction is executed and an <IMM16> value of “10” is specified, the outputs
toggle at cycle count “110.”

Examples:

//In the examples below, a hypothetical processor with 10 output pins, XV1 to
//XV10 is assumed.

Yz
//Examplel—toggling XV1 and XV2 while all other outputs are untouched at cycle
//count 50.

TOGGLE VECTOR (50: XV1, XV2);

Yaaiaaiiiiiiiaiaiiiiiniianuadnannida
//Example2—clearing the STIMER before starting to count
//XV1 and XV2 toggle and XV3-XV10 are untouched afier 50 clock cycles.

//It takes one clock cycle for the counter to clear with the clear option.
TOGGLE _VECTOR (50:. XV1, XV2)(C);

Vi g
//Example3—toggling all outputs when the STIMER reaches 50.

#define ALL_PINS XV1, XV2, XV3, XV4, XV5, XV6, XV7, XV8, XV9, XV10
TOGGLE VECTOR (50:ALL_PINS),

Y iiiiiiaiiaiidaiiidaizanniadnida
//Example4—waiting until STIMER reaches 50 before continuing with program

/fexecution. No registers or outputs are modified.
TOGGLE VECTOR(50:);

Vi
//ExampleS—relative toggle option

//Waiting for 50 clock cycles relative to the current STIMER before toggling
/outputs XV1 and XV2

WO 2008/112207 49 PCT/US2008/003178

TOGGLE VECTOR(50:XV1,XV2)(R),

Vit i s
//Example6—using a register as a relative toggle option

//Waiting for 50 clock cycles relative to the current STIMER before toggling
/foutputs XVI1 and XV2. In this example, RAND_START is a 16-bit address
/location in the unified program/data memory that controls the toggle //position
of XVI and XV2. The RAND_START parameter could be //controlled by an
external host or by the

//program itself.

RI=[RO+RAND START],

TOGGLE VECTOR (R1:XV1,XV2)(R),

Options
(C): This option may, for example, be added to the end of any instruction to clear the

internal toggle counter before the execution of the instruction.

(R): This option may, for example, be added to the end of a TOGGLE_VECTOR
instruction to specify that that the value specified in the <IMM16> field or RM register is
relative to the current STIMER cycle count when the TOGGLE_VECTOR instruction is first
executed. For example, if the STIMER was “100” when the instruction is executed, and an
<IMM16> value of “10” is specified, the outputs toggle at cycle count “110.”

(S): This option may, for example, be added to the end of any instruction to save the
current program pointer in the RET register. It may be used, for instance, with a JUMP
instruction to allow the program to return to the saved address following the jump.

Extended Instruction Set

MULTIPLICATION

Syntax:

RS =RM * RN;

Function: This instruction may, for example, multiply two fractional signed operands,
RM and RN, and place the result in RS. The rounding mode may, for example, round to
nearest even. The ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register
may be updated upon completion of the instruction.

Example:

R2 =RI *RO;

MULTIPLY-ACCUMULATE

Syntax:
RS +=RM * RN;

10

15

20

25

30

WO 2008/112207 S0 PCT/US2008/003178

Function: This instruction may, for example, multiply two fractional signed operands,
RM and RN, add the intermediate result to the value in RS, and place the final result in RS.
A set of two RS registers may be used for MAC accumulation. The rounding mode may, for
example, round to nearest even. The ZERO, NEGATIVE, and OVERFLOW flags of the
ASTATUS register may be updated upon completion of the instruction.

. Example:

R2 +=R1 *RO;

LFSR

Syntax:

RS = RM <<" RN;

Function: This instruction may, for example, be used to create a programmable
sixteen-bit Linear Feedback Shift Register (LFSR). The RM may hold the previous state of
the LFSR and the RN may hold a map of the tap locations for feedback. The RS register may
represent the next state of the LFSR. The feedback of the LSFR may be at bit zero of the RS
register. The ZERO, NEGATIVE, and OVERFLOW flags of the ASTATUS register may be
updated upon completion of the instruction.

Example:

R2 = Rl <<"RO;

Image Sensor Timing Generator Example

As noted above, one application of the DLL 102 described above may be as a timing
generator for a image sensor. Examples of environments in which such a timing generator
may operate are described in U.S. Pat. No. 6,512,546, U.S. Pat. No. 6,570,615, and U.S.
Patent Application Publication No. 2006/0077275 Al, each of which is incorporated herein
by reference in its entirety.

Fig. 14 illustrates a set of specialized instructions in the format defined above that
may be used for such a purpose. For such instructions, it is assumed that the program
sequencer logic 304 (Fig. 3) comprises several loop counters to keep track of local loops
during the processing. The program pointer (PC) of the program sequencer 106 may, for
example, reset at the falling edge of the vertical synchronization signal (VD), and the starting
address may be set at the falling edge of VD by a program pointer (PGMPTR) register. The
next line read may be “PC+1” unless a jump is specified. The program counter may halt on
toggle statements until the toggle has been completed, and when jumping to a subroutine

from the main program, the return address may be saved in a temporary register. Upon using

10

15

20

25

WO 2008/112207 51 PCT/US2008/003178

the return statement, an automatic jump may be done to the previous address. All jumps may
be done relative to the current PC. |

Fig. 15 illustrates an example of a simple program that may be executed using the
instructions of Fig. 14 to perform fast vertical clocking of an image sensor. Fig. 16 illustrates
an example of another simple program that may be executed using the instructions of Fig. 14
to readout a single line of data from an image sensor. Fig. 17 illustrates an example of a
more complex program that may be executed using the instructions of Fig. 14 to read out
image sensor data from a full frame with several regions.

Fig. 18 shows an example of a program instruction configuration that may be used in
some embodiments of the DPP 102. As shown, the instruction may, for example, comprise
fields for an instruction operational code (INST OPCODE) defining the instruction type, a
“count” or “address” value (COUNT/ADDRESS) to be used to set the toggle counter or
control program flow as discussed above, a vector specifying how output pins are to be
toggled in appropriate circumstances (TOGGLE VECTOR), and a bit (CLEAR) specifying
when the toggle counter 306 is to be cleared, e.g., using the “(c)” option discussed above. In
some embodiments, the INST OPCODE field may, for simplicity, have a fixed width, and the
TOGGLE VECTOR and COUNT/ADDRESS fields may be scalable to various vector widths
and count/address values, depending on the application.

Fig. 19 shows an example of how various instructions like those discussed above may
be stored at particular locations in the memory 108 of the DPP 102, and accessed by the
program sequencer 106, so as to enable certain of the functionality described herein.

Having described several embodiments of the invention in detail, various
modifications and improvements will readily occur to those skilled in the art. Such
modifications and improvements are intended to be within the spirit and scope of the
invention. Accordingly, the foregoing description is by way of example only, and is not
intended as limiting. The invention is limited only as defined by the following claims and the
equivalents thereto.

What is claimed 1s:

10

15

20

25

30

WO 2008/112207 52 PCT/US2008/003178

CLAIMS

1. A method for generating a digital signal pattern, comprising steps of:

retrieving from memory an instruction comprising a first field representing a vector
including a plurality of bits that are to be used to control states of signals on a corresponding
plurality of nodes and a second field identifying a specified output state of a circuit that
sequentially steps through a plurality of different output states in response to a clock signal;
and

in response to determining that the output state of the circuit corresponds to the
specified output state, controlling the signals on the plurality of nodes in the manner specified

by the corresponding ones of the plurality of bits in the first field.

2. The method of claim 1, wherein the second field identifies the specified output

state of the circuit by identifying a register in which a vector representing the specified output

_state is stored.

3. The method of claim 1 or 2, wherein the method is performed by a
Mmicroprocessor.
4. A method for generating a digital signal pattern, comprising steps of:

retrieving from memory an instruction comprising a first field representing a vector
including a plurality of bits that are to be used to control states of signals on a corresponding
plurality of nodes and a second field identifying a criterion for determining an occasion on
which the plurality of bits are to be controlled as specified by the vector; and

executing the instruction so as to simultaneously control the signals on the plurality of
nodes in the manner specified by the corresponding ones of the plurality of bits in the field in

response to determining that the criterion has been met.

5 The method of claim 4, wherein the second field identifies the criterion by

identifying a register in which a vector representing the criterion is stored.

6. The method of claim 4 or 5, wherein the method is performed by a

Microprocessor.

10

15

20

25

30

WO 2008/112207 53 PCT/US2008/003178

7. An apparatus for generating a digital signal pattern, comprising:

a memory having stored therein a plurality of instructions that, when executed, cause
a digital signal pattern to be generated on a plurality of nodes;

a program sequencer configured to control a sequence in which the plurality of
instructions are retrieved from the memory and executed;

a first circuit that sequentially steps through a plurality of different output states in
response to a clock signal;

a second circuit that identifies an output event when an output state of the first circuit
corresponds to an output state identified by retrieved instructions of a particular type; and

an event execution unit that controls states of signals on the plurality of nodes in a
manner specified by the retrieved instructions of the particular type in response to the second

circuit identifying an output event.

8. The apparatus of claim 7, wherein the first circuit comprise a counter.

0. The apparatus of claim 7 or 8, wherein the apparatus comprises a

programmable microcontroller.

10. The apparatus of any of claims 7-9, wherein the memory comprises a

read/write memory.

11. The apparatus of any of claims 7-10, in combination with an SPI controller

that can read data from and write data to the memory of the apparatus.

12. The apparatus of any of claims 7-11, further comprising a general purpose
output controller that permits programming of independent timing pulses on a set of general

purpose output pins.

13. The apparatus of any of claims 7-12, further comprising an interrupt controller

that manages the execution and priority of interrupts and exceptions.

14. The apparatus of any of claims 7-13, further comprising a general purpose

register file.

10

15

20

25

30

WO 2008/112207 54 PCT/US2008/003178

15. The apparatus of claim 14, further comprising a datapath that reads values

from the register file and returns results to the register file.

16. The apparatus of claim 15, wherein the datapath is used for load/store

instructions.

17. The apparatus of claim 15 or 16, wherein the datapath is used for arithmetic

instructions.

18. The apparatus of any of claims 14-17, wherein the general purpose register file

is used for temporary storage of pointers.

19. The apparatus of any of claims 14-18, wherein the general purpose register file

is used for temporary storage of variables.

20. The apparatus of any of claims 14-19, wherein the general purpose register file

is used for temporary storage of counters.

21. A circuit, comprising:

a first clock cycle counter circuit configured to produce a first output count;

a memory configured to store at least first and second count values; and

a first cycle count comparison circuit configured to compare the first output count
with each of the first and second stored count values and to generate a particular type of
output event at a first node if the first output count corresponds to either of the first and

second stored count values.

22. The circuit of claim 21, wherein:

the memory is further configured to store a third count value; and

the first cycle count comparison circuit is further configured to compare the first
output count with the third stored count value and to generate the particular type of output

event at the first node if the first output count corresponds to the third stored count value.

23. The circuit of claim 21 or 22, wherein the first clock cycle counter circuit

comprises:

10

15

20

25

30

WO 2008/112207 55 PCT/US2008/003178

a first clock cycle counter configured to generate a first counter output;
a second clock cycle counter configured to generate a second counter output; and
a first multiplexer configured to select one of the first counter output and the second

counter output as the first output count based upon a first control signal.

24. The circuit of any of claims 21, wherein:

the circuit further comprises a second clock cycle counter circuit configured to
produce a second output count;

the memory is configured to store at least third and fourth count values; and

the circuit further comprises a second cycle count comparison circuit configured to
compare the second output count with each of the at least third and fourth stored count values
and to generate the particular type of output event at a second node if the second output count

corresponds to either of the third and fourth stored count values.

25. The circuit of claim 24, wherein:

the circuit further comprises a first clock cycle counter configured to generate a first
counter output and a second clock cycle counter configured to generate a second counter
output;

the first clock cycle counter circuit comprises the first and second clock cycle
counters and a first multiplexer configured to select one of the first counter output and the.
second counter output as the first output count based upon a first control signal; and

the second clock cycle counter circuit further comprises the first and second clock
cycle counters and a second multiplexer configured to select one of the first counter output

and the second counter output as the second output count based upon a second control signal.

26. The circuit of claim 25, wherein:

the memory is further configured to store at least fifth and sixth count values;

the first cycle count comparison circuit is further configured to compare the first
output count with the fifth stored count value and to generate the particular type of output
event at the first node if the first output count corresponds to the fifth stored count value; and

the second cycle count comparison circuit is further configured to compare the second
output count with the sixth stored count value and to generate the particular type of output
event at the second node if the second output count corresponds to the sixth stored count

value.

10

15

20

25

30

WO 2008/112207 56 PCT/US2008/003178

27. A method, comprising steps of:

(a) producing a first output count in response to a clock signal;

(b) comparing the first output count with each of first and second stored count values;
and

(c) generating a particular type of output event at a first node if the first output count

corresponds to either of first and second stored count values.

28. The method of claim 27, wherein:

the step (b) further comprises comparing the first output count with a third stored
count value; and

the step (c) further comprises generating the particular type of output event at the first

node if the first output count corresponds to the third stored count value.

29. The method of claim 27 or 28, wherein the step (a) comprises:

generating first and second different counter outputs in response to the clock signal;
and

selecting one of the first and second counter outputs as the first output count based

upon a first control signal.

30. The method of any of claims 27-29, further comprising steps of:

(d) producing a second output count in response to the clock signal;

(€) comparing the second output count with each of at least third and fourth stored
count values; and

(f) generating the particular type of output event at a second node if the second output

count corresponds to either of the third and fourth stored count values.

31. The method of claim 30, wherein:

the method further comprises a step of generating first and second different counter
outputs;

the step (a) comprises selecting one of the first counter output and the second counter
output as the first output count based upon a first control signal; and

the step (d) comprises selecting one of the first counter output and the second counter

output as the second output count based upon a second control signal.

10

15

20

25

30

WO 2008/112207 57 PCT/US2008/003178

32. The method of claim 31, wherein:

the step (b) further comprises comparing the first output count with a fifth stored
count value;

the step (c) further comprises generating the particular type of output event at the first
node if the first output count corresponds to the fifth stored count value;

the step (e) further comprises comparing the second output count with a sixth stored
count value; and

the step (f) further comprises generating the particular type of output event at the

second node if the second output count corresponds to the sixth stored count value.

33, A circuit comprising,

a digital pattern generator configured to generate a pattern of digital signals at M
nodes;

a general purpose output controller configured to generate general purpose digital
signals at N nodes;

at least one first memory element configured to store particular values for M outputs
of the circuit corresponding to the M nodes of the digital pattern generator and for N outputs
of the circuit corresponding to the N nodes of the general purpose output controller; and

a selection circuit configured to select, independently for each of the M outputs of the
circuit, whether the particular value stored in the at least one first memory element or the
corresponding output signal of the digital pattern generator is provided on that output, and
further configured to select, independently for each of the N outputs of the circuit, whether
the standby value stored in the at least one first memory element or the corresponding output

signal of the general purpose output controller is provided on that output.

34. The circuit of claim33, wherein the selection circuit comprises a multiplexer
comprising:

a first set of M + N inputs coupled to respective ones of the M + N nodes to receive
the pattern of digital signals and the general purpose digital signals therefrom;

a second set of M + N inputs coupled to the at least one first memory element to
received the stored standby values for the N + M outputs of the circuit therefrom;

N+M multiplexer outputs;

10

15

20

25

30

WO 2008/112207 58 PCT/US2008/003178

a set of N + M control lines, each of the M + N control lines selecting whether a
corresponding one of the first set of M + N inputs or the second set of M + N inputs is

provided on a corresponding one of the M + N multiplexer outputs.

35. The circuit of claim 34, wherein the at least one first memory element
comprises at least one first read/write register coupled to the first set of M + N inputs of the
multiplexer and configured to allow the standby values for the M + N outputs of the circuit to
be written thereto, and wherein the circuit further comprises:

at least one second read/write register coupled to the second set of N + M inputs of
the multiplexer and configured to allow the pattern of digital signals provided at the M nodes
to be written to a first set of the bits thereof and to allow the general purpose digital signals at
the N nodes to be written to a second set of bits thereof; and

at least one third read/write register coupled to the M + N control lines of the
multiplexer and configured to allow corresponding control signals for the multiplexer to be

written thereto.

36. The circuit of claim any of claims 33-35, wherein the general purpose output
controller comprises:

a first clock cycle counter circuit configured to produce a first output count;

a memory configured to store at least first and second count values; and

a first cycle count comparison circuit configured to compare the first output count
with each of the first and second stored count values and to generate a particular type of
output event at a first node if the first output count corresponds to either of the first and

second stored count values.

37. The circuit of any of claims 33-36, wherein the digital pattern generator
comprises:

a memory having stored therein a plurality of instructions that, when executed, cause
a digital signal pattern to be generated on a plurality of nodes; and

a program sequencer configured to control a sequence in which the plurality of

instructions are retrieved from the memory and executed.

38. The circuit of any of claims 33-37, wherein the digital pattern generator

further comprises:

WO 2008/112207 59 PCT/US2008/003178

a first circuit that sequentially steps through a plurality of different output states in
response to a clock signal;

a second circuit that identifies an output event when an output state of the first circuit
corresponds to an output state identified by retrieved instructions of a particular type; and

an event execution unit that controls states of signals on the plurality of nodes in a
manner specified by the retrieved instructions of the particular type in response to the second

circuit identifying an output event.

WO 2008/112207

1/16

102

PCT/US2008/003178

104
)

4
108
)
UNIFIED
PROGRAM/DATA
MEMORY PROGRAM
' POINTER
12 £\
) 106
REGISTER 1 LN ProGRAM
FILE — /] SEQUENCER
|| O
)
| 114
N SYNCHRONOUS
\I— TIMER
16 {}
)
EVENT
GPO <:_—_- :'> 118
EXECUTION
| CONTROLLER | -CuT
120
OUTPUTS
INSTRUCTION

/DATA BUS

FIG

1

INTERRUPT
CONTROLLER |

PCT/US2008/003178

WO 2008/112207

2/16

¢ 9Ol v -~ 501
- AYOWIN
> vLva
> INVHOOYd
. a3i4dINn
A
oMl N\
2oL
\ 4
IaS—» viva g ozl
Mos——| HITIONINGD Jaav g A0 (.,
avay " S1ndlno
1S—» . ,
. | ETIY)
1 ~
n 02
Viva [¥aav [3udm Javay |uLo
Y A 4 Y y
__ 21901
—| 90¢ 014103dS dIHD -
S1NdNI INOLSND S1NdLno

00¢ /

PCT/US2008/003178

WO 2008/112207

3/16

02— Savd € 9Ol4
T08INOD |,
8Ll — C
T1INNVHO HOLVIN 319901
L4 U — -
\ﬂ \\||||1-|||/, g R
I ,o! c0ge
- |50E o
| I ¢ m—
| !
INNOD o
| 3719901 300030 (013 A
| ! NOILONYLSNI dOOT diNne
| i - TOMINOO MO4
|
BES L L Y
" [u3iNnoo f—=— bOE
B 21901
i OV0L | V30 ¥3ON3INOD3S
\) NYH9O0Yd
! @m_
O 801
0
0
X0 AHOWIN WYHOONHd
1X0
0%X0 ¢ ‘
Ss3Yaav SS3YaavY Nvao0dd

-

e e e e e e o o —— e — — m— —

WO 2008/112207

4/16

PCT/US2008/003178

IRQADDR
PROGRAM POINTER

/400
BRING DPP OUT OF 402
STANDBY MODE
a
LOAD PROGRAM 404
THROUGH SPI PORT
Y
INITIALIZE IRQADDR
INTERRUPT VECTOR — 406
TABLE
INITIALIZE | 408
IMASK REGISTER
TOGGLE IRQ PIN
OR — 410
SOFTWARE INTERRUPT
CODE STARTS EXECUTING
FROM SELECTED 412

FIG. 4

WO 2008/112207 PCT/US2008/003178

5/16

500

MEMORY MAPPED CORE REGISTERS 0x3C00-0x3CDF

7 /// '
RESERVE 0x0400-0x3BFF

PROGRAM/DATA MEMORY 0x0000-0x03FF

FIG. 5

PCT/US2008/003178

WO 2008/112207

6/16

9 Old

1IVM

NOILONYLSNI

138V

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

31dl

Enle]

NOILONYLSNI

NOILONHLSNI

NOILONHLSNI

NOILONYLSNI

NOILONYLSNI

dAnr

dNnr

R

<3d0J0>

NOILONYLSNI

<3400>

NOILONYLSNI

e

NOILONYLSNI

—

JOL03A

1dNYE3LNI

odl

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

NOILONHLSNI

NOILONHLSNI

NOILONYLSNI

SANIL
N 4001

d0O0O1

S1yd

' <3000>

NOILONYLSNI

-<3d00>

NOILONHLSNI

TIVO

3INILNOYANS

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

NOILONYLSNI

MOTd dV3INIT

G+N
v+N
E€+N
¢+N
L+N

WO 2008/112207

7/16

PCT/US2008/003178

708
OUTENX |22
706 702
OUTSTANDBYX |8 o 120
68/ louTtPuTs
VECTOR OUTPUTs 24— sBs 704 68,
OUTREGX > 1
GPOs— 4| MSBs |
802
) 800
| FETCHINSTRUCTION |,
FROM MEMORY
DECODE INSTRUCTION |— 804
806
NO TOGGLE YES
INSTRUCTION ?
808
)
|_| EXECUTE PROGRAM FLOW WAIT UNTIL TOGGLE
INSTRUCTION COUNT MATCH
(
812
810— TOGGLE OUTPUTPINS |

FIG. 8

WO 2008/112207 PCT/US2008/003178

8/16

PROGRAM
INTERRUPT
VECTOR TABLE

Y

ASSERT HARDWARE
INTERRUPT

Y

EXECUTE INTERRUPT
SERVICE ROUTINE

RETURN TO
STORED PC

FIG. 9

PCT/US2008/003178

WO 2008/112207

9/16

INILNOY 3OINLAS LdNEYFLNI

31NnO03X3

NOILONYLSNI
R
31N03X3

INIMSVIND L3S (2

NIl ¥v310 (L

A

Y

LAINI SSIHAAY OL dNr (2
L34 NI Od 3y¥0LS ('L

SEIREN!
|L3Y NI SS3I¥AAQVY oL dWNr (e
INIMSVYIND ¥v31D (L

SS3IYO0Ud
NI SLdNYYILNI
ALIHOIYd ¥3HOIH ON B
d3XSVYI LON SI INJoyl
?
a37gvN3
SLdNYYILNI

1dNYHY31INI 4O

ONILIVM INTOuI

Ol Old

WO 2008/112207

10/16

IRQ[N]

WAITING

PCT/US2008/003178

—p]

FOR INTERRUPT

INTERRUPTS
ENABLED
&
IRQ[N] IS NOT MASKED
& NO HIGHER PRIORITY
INTERRUPTS IN

PROGRESS

1.) CLEAR PMASK|N]
2.)JJUMP TO ADDRESS IN RETI

Y

REGISTER
'y
1.) STORE PC IN RETI EXECUTE
RTI
2.) JUMP TO ADDRESS IN IVT INSTRUCTION

1.) CLEAR ILAT[N]

2.) SET PMASK|N]

1.) POP RETI REGISTER
2.) RESTORE CONTEXT

EXECUTE

INTERRUPT SERVICE ROUTINE

1.) STORE CONTEXT
2.) PUSH RETI REGISTER

FIG. 11

PCT/US2008/003178

WO 2008/112207

11/16

¢l 9ld

IHYINOD €901 L0dD

IHVAINOD 290L 20d9

AYVINOD LOOL L0dD

d0

< T~

LOdO

IYYIWNOD 0901 20dD

JYVAWOD €901 0049

JHVINOD 290L 00d9

d0

LYINILY /_
0¥3INILY \T
._m.mamu_z_E
LYINILY J
0Y3NILY
A4}

73S Y3INILY

JUVANOD LOOL 00dD

o

00d9

IHY4WNOD 0901 00d9 |

/
Y02}

)
90z1

//oi

WO 2008/112207

12/16

PROGRAM:

ATIMER_SEL
ATIMER_STICKY
ATIMER_MAX

ATIMER -

PROGRAM:

ATIMER_VALID

ENABLE ATIMER IN

DPPPSTANDBY

FIG. 13

PCT/US2008/003178

WO 2008/112207 , PCT/US2008/003178

13/16

¢ TOGGLE (COUNT, VECTOR)
e Countis the value of the local counter at which to toggle the vector.
o The vectoris a set of 0's and 1's, There is one bit per output pin controlled.
A one specifies a toggle, a zero specifies no action,
e The (c) option clears the local counter after the instruction has occurred

¢ (C) ;
e Option can be added to any instruction to clear the toggle counter

¢ LCx=0x0;;
e Sets one of theTBD (possibly at least 3) loop counters to value specified.

¢ JUMP(ADDRESS) (S);;
¢ Jumps to the address specified
¢ The address is relative to the current PC.
e The (S) option saves the PC in the RET register.

¢ IF NLCx, JUMP(ADDRESS) (S);;
¢ Jumps to the address specified if the loop counter is equal to zero.
e The address is relative to the current PC.
e The loop counter is decremented after the instruction takes place.
The (S) option saves the PC in the RET register.

¢ IF LCx, JUMP(ADDRESS) (S);;
o Jumps to the address specified if the loop counter is greater than zero.
The address is relative to the current PC.
The loop counter is decremented after the instruction takes place.
The (S) option saves the PC in the RET register.

4 RETURN:;
e JUMPS to PC stored in RET register.
e Needed to make subroutines modular

¢ IDLE;;
- e Stops PC until next VD falling edge

¢ WAIT(COUNT);;
¢ Do nothing for COUNT CLI cycles.

FIG. 14

PCT/US2008/003178

WO 2008/112207

14/16

SINYNL3IY

(a1dwexa 1o} 1no peal o} sjexid ge0p)sulshed jeadayy ~(1-)dWNr'ZoT 4
Jnopeas aul 1o} Bull6Bo} jeyuozuoH)/ (0000004 °1)319901

s9[0Ao N Joj yeadaly/ (9):(g-)dINNF 197 41
-(0000L10°LL)31D99D0L

+(0001000'2)3719901

uieped *(0010000'5)31990L

|BOIISA +(0100000'€)31990L

: +(1000000'L)319901

SHIYS [BJUOZIIOY JO) JBJUN0D doO| buias// MxovomovxouNOJ
SHIYS jediuaA 1o} Jejunod dooj Buyasy/ (2)EX0=1D1
:8unnoi jnopeal aul| m_m:_

9p02 Ulew 0} mc_c._gm._\\ _uszPmm

S8j0AD N Joj uisyed [ediea ybnoayy Buidooyyy (9)dwnr ‘o1 Ji
_ — ¥ oo000l'6L)319901
+(0000L0°LL)TT1D90L

usayped (000100'2)319901

|ESIOA :(001000'9)319901

+(010000'€)31990L

v :(1L00000'1)319901

Jajunod 9|6603 ay) Bunes|o pue Jayunod dooj sy Bumasy/ (9)00008X0=2901
‘ -aupnoJ m:_xoo_o JEeJIJIDA }Se

°
°
°
°
°
°
°
°
°
.
°
S

°
°
®
°
°
®
°
°
°
E |

¢

¢

91 9Old

Gl Old

PCT/US2008/003178

WO 2008/112207

15/16

3002d0

dv3io ISNI| SS3HAAVY/LNNOD | HOLD3A 3719901
[olng [1-clLig [o-WlLg [W-N1LIg

guoibayyy :i(s) (GHaAv)dNNS e

'888x0=07 *

. () dNNEDT M e

yuoibayy; li(s) (bHAAV)ANNT @

~8/X0=D1*

S(L)dNNC' DT e

guoibay; i(s) (edaav)dWNr o

LLEX0=D1 e

()N DT e

guoiBaly i(s) (zyaav)dinner ¢

ZZX0=01*

aunno. Luoibaly

‘uoibal 1xau Joy Jajunoo doo| Buyssy/

N 10} dajs snoiaald o0y yoeq dwnl ‘sugnol wodj Buiuinyaly/
aulnol guoibal 0} Burdwinl pue ssalppe Dd Buinesy;

ybnouyy o6 0} sawy Jo Jaquinu Joj J3junod dooj Buiyas)

SNOID3Y TVY3A3IS HLIM LNOAYIY FAVEI 1IN ¢

(1) dWNrDT e
“(s) (LYaav)dinr e
“pSX0=01 ®
$92A0
S(L)dINNrDT M e
~(s) (o¥aav)dwnr
dooj

lGpX0=01 ®

8L Old

A=

WO 2008/112207

PROGRAM COUNTERE>

PCT/US2008/003178

16/16
ADDRESS

LC0=0x32 0x0
JUMP 0x45 - Ox1
TOGGLE(32, 0001010);; 0x2
TOGGLE(48, 1101111);; O
JUMP 0x45 (C):; O
If LCO; JUMP 0x0:: O
IDLE;;
LC1=0x32:: 0x32
TOGGLE(32, 0001010);:
TOGGLE(48, 1101111):;
If LC1, JUMP -3::
RETURN::
LC1=0x32:: 0x45
TOGGLE(1, 11111111);;
If LC1, JUMP -2::
RETURN::

FIG. 19

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings

