
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0208012 A1

US 201402080 12A1

Kotagiri et al. (43) Pub. Date: Jul. 24, 2014

(54) VIRTUAL DISK REPLICATION USING LOG Publication Classification
FILES

(51) Int. Cl.
(71) Applicant: Microsoft Corporation, Redmond, WA G06F 3/06 (2006.01)

(US) (52) U.S. Cl.
CPC G06F 3/065 (2013.01); G06F 3/0619

(72) Inventors: Sriravi Kotagiri, Hyderabad (IN); (2013.01); G06F 3/067 (2013.01)
Rahul Shrikant Newaskar, Hyderabad USPC ... 711/103; 711/162
(IN); Palash Kar, Redmond, WA (US);
Shreesh Rajendra Dubey, Hyderabad (57) ABSTRACT
(IN) Techniques involving replication of virtual machines at a

target site are described. One representative technique
(73) Assignee: MICROSOFT CORPORATION, includes an apparatus including a virtual machine configured

Redmond, WA (US) to provide storage access requests targeting a virtual disk. A
storage request processing module is coupled to the virtual

(21) Appl. No.: 14/221,290 machine to receive the storage access requests and update the
virtual disk as directed by the storage access requests. A

(22) Filed: Mar 21, 2014 replication management module is coupled to the virtual
machine to receive the storage access requests in parallel with

O O the storage request processing module, and to store informa
Related U.S. Application Data tion E. WR E. access requests in a log file(s).

(63) Continuation of application No. 13/188.480, filed on The log file may be transferred to a destination as a recovery
Jul. 22, 2011, now Pat. No. 8,689,047.

814

SOURCESERVER

PHYSICAL LOCALS
STORAGE

LOCAL SERVER
LOCAL SERVER

PHYSICAL
STORAGE

-

2 653
LOG FILE

replica of at least a portion of the virtual disk.

808
800

ERVER

806

Patent Application Publication

VIRTUAL
MACHINE

VIRTUAL MACHINE

Jul. 24, 2014 Sheet 1 of 14

STORAGE REGUEST
PROCESSING

108

REPLICATION
MANAGEMENT

MODULE

REPLICATION
MANAGEMENT

MODULE

STORAGE
WRITE

CONTROL

TRANSMITTER

VIRTUAL

US 2014/02080 12 A1

VIRTUAL
DISK 104

110

112

DISK 104

114

MEMORY

LOG
FILE(S)

STORAGE

LOG
FILE(S)

Patent Application Publication Jul. 24, 2014 Sheet 2 of 14 US 2014/02080 12 A1

J
202

-Ul 204
VHDMP.SYS

SRB REQUEST HANDLER

214
216 226 l 206 N
VHD REQUEST | | LOGREQUEST

220 230
IOCTL

WMMS HANDLER
221 231

222 232

VHDPARSER.SYS

2OOB

VHD REQUEST | | | LOGREQUEST
PROCESSING PROCESSING
MODULE MODULE

CREATE RP AND QUEUE TO NTFS

211

FIG. 2 210 234
STORAGE STORAGE

Patent Application Publication Jul. 24, 2014 Sheet 3 of 14 US 2014/02080 12 A1

RECEIVE VIRTUAL MACHINE WRITE REQUESTS 300

QUEUE THE WRITEREQUESTS INALOG 302 QUEUE THE WRITEREQUESTS IN
QUEUE IN PARALLEL WITH QUEUING OF A VIRTUAL DISK QUEUE

WRITEREQUESTS IN VIRTUAL DISK QUEUE 308

PROCESS QUEUE AND PREPARE
304

PROCESS LOG QUEUE AND PREPARE FOR FORWRITING TO VIRTUAL DISK
WRITING TO LOG FILE 310

UPDATEAVIRTUAL DISK BASED
306

UPDATE LOG FILE TO RECORD DATA ON THE WRITEREOUESTS
UPDATES 312

PROVIDE LOG FILE TO RECOVERY SERVER 314

FIG. 3

QUEUE WRITE REQUESTS ISSUED BY APRIMARY VIRTUAL
MACHINE IN A FIRST OUEUE 400

QUEUE THE WRITEREOUESTS ISSUED BY THE VIRTUAL
MACHINE IN A SECOND QUEUE IN PARALLEL WITH THE

QUEUING OF THE WRITEREOUESTS IN THE FIRST OUEUE 402

UPDATE DATANAVIRTUAL DISK UTILIZED BY THE VIRTUAL
MACHINE USING THE WRITEREQUESTS FROM THE FIRST 404

OUEUE

UPDATE ALOG FILE USING THE WRITEREQUESTS IN THE
SECOND QUEUE 406

TRANSFER THE LOG FILE FOR USE INGENERATING
REPLICATED WIRTUAL STORAGE ACCESSED BY ARECOVERY 408

VIRTUAL MACHINE

FIG. 4

Patent Application Publication Jul. 24, 2014 Sheet 4 of 14 US 2014/02080 12 A1

500
CHANGE
TRACKING
ENABLED?

CREATE LOGRECQUEST OUEUE

INITIALIZE WORKERROUTINE TO
PROCESS THE LOGREQUEST OUEUE

RECQUEST
RECEIVED?

NO CHANGE
TRACKING

504

506

524
CHANGE

TRACKING STILL
ENABLED?

CREATE ANEW LOGENTRY FOR ENTER ON VIRTUAL HARD
EACH NEW STORAGE REOUEST AND DISK OUEUE FORULTIMATE
PLACE ON LOGREQUEST OUEUE ENTRY INTO VHDFILE

REMOVE NEXT WRITEREQUEST ON
LOGREQUEST QUEUE, AND COPY IT

TOLOG FILE IN MEMORY

WRITE METADATA TO MEMORY

SEND RESPONSE TO STORAGE
REQUEST WHEN BOTH THE WHD WRITE
AND LOGWRITE ARE COMPLETED

THRESHOLD
REACHED TO MOVE LOG FILE IN

MEMORY TO STORAGE
MEDIUM?

MOVE LOG FILE FROM
MEMORY TO STORAGE

522

FIG. 5

Patent Application Publication Jul. 24, 2014 Sheet 6 of 14 US 2014/02080 12 A1

604A
Ya METADATA HEADER 622

MEASE: N-624A
624B

METADATA ENTRY
n 624n

FIG. 6G

622 N. 630 638
v y
FIELDS SIZE (BYTES)

632 PREVIOUS METADATALOCATION | 8
634 VALID METADATA ENTRIES

CHECKSUM

RESERVED

FIG. 6D

624AN e e

BYTE OFFSET || 8
CHECKSUM 4

644-1 DATALENGTH |
6461 TIMESTAMP 4

648 - METAOPERATION | 1

642

FIG. 6E

Patent Application Publication Jul. 24, 2014 Sheet 7 of 14 US 2014/02080 12 A1

REQUEST THAT CURRENT LOG FILE BE PROVIDED TO TARGET
SERVER 700

REQUEST TO USEA NEW LOG FILE FOR CAPTURING CHANGES 702

REDIRECT NEW LOG SRB REQUESTS TO NEW LOGFILE 704

706

HAVE ALL
PENDINGWRITES BEEN

NO WRITTENTO THE OLD LOG
FILE2

YES

SEND COMPLETION RESPONSE 708

TRANSFER OLD LOG FILE TO TARGET LOCATION 710

FIG 7A

Patent Application Publication Jul. 24, 2014 Sheet 8 of 14 US 2014/02080 12 A1

REQUEST TO RELEVANT COMPONENTS INSIDEVMTO
CREATE AN APPLICATION-CONSISTENT SNAPSHOT 712

VMWRITES TO VIRTUAL DISKS 714

716

RESPONSE
TO WRITES RECEIVED

INSIDEVM?

YES

CALL RETURNS TOVM 718

VMISSUES SWITCHLOG FILEREQUEST 720

MANAGEMENT MODULE SENDS REQUEST TO CAUSE
REPLICATION MANAGEMENT MODULE TO USE A NEW LOG 722

FILE FORCAPTURING CHANGES

REDIRECT NEW LOGSRB REQUESTSTONEW LOG FILE 704

706
HAVE ALL

PENDINGWRITES BEEN
WRITTENTO THE OLD LOG

YES

SEND COMPLETION RESPONSE 708

TRANSFER OLD LOGFILE TO TARGET LOCATION 710

FIG 7B

US 2014/02080 12 A1 Jul. 24, 2014 Sheet 9 of 14 Patent Application Publication

009

9 (9 IAI

909

Patent Application Publication Jul. 24, 2014 Sheet 10 of 14 US 2014/02080 12 A1

INITIALIZE A STACK FOR STORING METADATALOCATION OFFSETS 900

RETRIEVE THE LASTMETADATALOCATION (EOL) AND
METADATA SIZE FROM THE LOGFILE HEADER 902

USING VALUE OF THEEOL FIELD AND THE METADATA SIZE,
CALCULATE THE LOCATION OF THE LAST METADATA 904

LOCATED METADATA CONSIDERED THE CURRENTMETADATA
AND ITS VALUE IS PUSHED ONTO THE STACK 906

GO TO THE LOCATION OF THE CURRENT METADATA AND READ THE
METADATA HEADER TO OBTAIN THE LOCATION OF THE PREVIOUS

METADATA IN THE LOG FILE 908

PREVIOUS
METADATA

NO

STACK INCLUDES THE OFFSETS OF THE METADATASTRUCTURES IN
THE LOGINANASCENDING ORDER 912

POP THE VALUE AT THE TOP OF THE STACK 914

TRAVERSE TO THIS LOCATION AND READ THE METADATA
STRUCTURE INTO MEMORY 916

EACHENTRY OF THE METADATAUSED TO OBTAINDATA DETAILS, TO
APPLY TO THE RECOVERY VIRTUAL STORAGE 918

920

YES
END <sigE

FIG. 9

Patent Application Publication Jul. 24, 2014 Sheet 11 of 14 US 2014/02080 12 A1

RECEIVE LOG FILE OF CHANGES DUPLICATING CHANGES MADE TO
PRIMARY VIRTUAL STORAGE OF APRIMARY VIRTUAL MACHINE

LOCATE AFIRST METADATABLOCKIN THE LOG FILE USING
INFORMATION FROM THE LOGFILE HEADER, AND STORE THE ADDRESS

OF THE FIRST METADATABLOCK

LOCATE NEXT METADATABLOCKIN THE LOG FILE USING INFORMATION
FROM ITS IMMEDIATELY PRECEDING METADATABLOCK

1006

MORE METADATA

NO

STORE THE ADDRESSES OF EACH OF THE METADATABLOCKS THAT ARE
LOCATED IN THE LOG FILE

LOCATE THE DATA IDENTIFIED BY EACH OF THE STORED METADATA
BLOCKS

STORE THE LOCATED DATAIN REPLICATED VIRTUAL STORAGE
OPERABLE BY ARECOVERY VIRTUAL MACHINE TO REPLICATE THE

PRIMARY VIRTUAL MACHINE

FIG 10

1000

1002

1004

1008

1010

1012

Patent Application Publication Jul. 24, 2014 Sheet 12 of 14 US 2014/02080 12 A1

PRIMARY
SITE

LOG FILE

RECOVERY SERVER(S)

FIG 11

1110

UNDOLOG FILE

to) UNDOLOG 1200

t-1) UNDOLOG

t-n) UNDOLOG

FIG. 12

Patent Application Publication Jul. 24, 2014 Sheet 13 of 14 US 2014/02080 12 A1

LOG FILE RECEIVED? e

YES

APPLY CHANGES DIRECTLY TO VIRTUAL DISK

CREATE UNDOLOG FILE

FIG. 13

1302

1304

1400
M

REVERSION REQUEST

1402 DETERMINEDESIRED REVERSION TIME

IDENTIFY UNDOLOGS HAVING TIMESTAMPS BACK TO THE DESRED
REVERSION TIME

APPLY UNDOLOGS IN REVERSE CHRONOLOGICAL ORDER TO THE
VIRTUAL DISK TO REVERT THE VIRTUAL DISK TO THE REQUESTED TIME

FIG. 14

1404

1406

-T

EOLAECI

US 2014/02080 12 A1 Jul. 24, 2014 Sheet 14 of 14

HOSSE OOHd

Patent Application Publication

US 2014/02080 12 A1

VIRTUAL DISK REPLICATION USINGLOG
FILES

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation of U.S. patent
application Ser. No. 13/188,480, filed Jul. 22, 2011, entitled
VIRTUAL DISK REPLICATION USING LOG FILES

(Atty. Docket No. 332616.01). The entirety of this afore
mentioned application is incorporated herein by reference.

BACKGROUND

0002 With the heavy reliance on computing needs by
businesses and individuals, the need for uninterrupted com
puting service has become increasingly vital. Many organi
Zations develop business continuity plans to ensure that criti
cal business functions will enjoy continuous operation and
remain available in the face of machine malfunctions, power
outages, natural disasters, and other disruptions that can sever
normal business continuity.
0003 Local disruptions may be caused, for example, by
hardware or other failures in local servers, software or firm
ware issues that result in System stoppage and/or re-boot, etc.
Local solutions may include server clustering and virtualiza
tion techniques to facilitate failover. Local failover tech
niques using virtualization provide the ability to continue
operating on a different machine or virtual machine if the
original machine or virtual machine fails. Software can rec
ognize that an operating system and/or application is no
longer working, and another instance of the operating system
and application(s) can be initiated in another machine or
virtual machine to pickup where the previous one left off. For
example, a hypervisor may be configured to determine that an
operating system is no longer running, or application man
agement software may determine that an application is no
longer working which may in turn notify a hypervisor or
operating system that an application is no longer running.
High availability Solutions may configure failover to occur,
for example, from one machine to another at a common site,
or as described below from one site to another.

0004 Disaster recovery relates to maintaining business
continuity on a larger scale. Certain failure scenarios impact
more than an operating system, virtual machine, or physical
machine. Malfunctions at a higher level can cause power
failures or other problems that affect an entire site, such as a
business’s information technology (IT) or other computing
center. Natural and other disasters can impact an enterprise
that can cause some, and often all, of a site's computing
systems to go down. To provide disaster recovery, enterprises
today may back up a running system onto tape or other physi
cal media, and mail or otherwise deliver it to another site. The
backup copies can also be electronically provided to a remote
location. By providing a duplicate copy of the data, applica
tions can be resumed at the remote location when disaster
strikes the source server site.

0005. When using virtual machines, disaster recovery may
involve tracking changes to virtual disks in order to replicate
these changes at the remote site. Current approaches for
tracking changes result in additional read and write overhead
for data that has changed. These change tracking mechanisms
consume additional storage input/output operations per sec
ond (IOPS) from those otherwise available for server work
loads. For example, differencing disks have primary purposes

Jul. 24, 2014

in areas such as test and development, and may not have been
developed with tracking changes and replication in mind
While differencing disks enable changes to be written to
them, processing differencing disks for the purpose of repli
cation is I/O-intensive. Where response times of the work
loads are impacted, the overall value of a replication Solution
is adversely affected.
0006 Limited network bandwidth can affect a replication
Solution and negatively impact the recovery point objective
(RPO). If the network bandwidth is insufficient, it can take a
longtime to transfer large virtual disk files. Compounding the
problem is that a virtual disk block identified as changed may
be larger than the actual quantity of data that changed, result
ing in even higher quantities of data needing transfer. For
example, a two megabyte (2 Mb) block may be created to
capture changes. Even if only a small change is made (e.g., 4
Kb), the 2 Mb block is used. These and other inefficiencies
and shortcomings of the prior art create still more concern for
the RPO.

SUMMARY

0007 Techniques involving replication of virtual
machines at a target site are described. One representative
technique includes an apparatus including a virtual machine
configured to provide storage access requests targeting a vir
tual disk. A storage request processing module is coupled to
the virtual machine to receive the storage access requests and
update the virtual disk as directed by the storage access
requests. A replication management module is coupled to the
virtual machine to receive the storage access requests in par
allel with the storage request processing module, and to store
information associated with the storage access requests in a
log file(s). A transmitter may be configured to transfer the log
file to a destination as a recovery replica of at least a portion
of the virtual disk.
0008. In another representative implementation, a com
puter-implemented method is provided for facilitating repli
cation of virtual machines. The computer-implemented
method includes receiving a log file of changes duplicating
changes made to primary virtual storage of a primary virtual
machine, where the log file includes a log file header, blocks
of data that changed in the primary virtual storage, and meta
data blocks to specify locations of the data in the log file. A
first metadata block in the log file is located using information
from the log file header, and the address of the first metadata
block is stored. One or more additional metadata blocks in the
log file are located, each metadata block being located using
information from its respectively preceding one of the meta
data blocks in the log file. The addresses of each of the one or
more additional metadata blocks that are located in the log file
are stored. The data identified by each of the stored metadata
blocks are located, and the located data is stored in replicated
virtual storage operable by a recovery virtual machine to
replicate the primary virtual machine.
0009 Instill another representative implementation, com
puter-readable media is provided with instructions stored
thereon, the instructions being executable by a computing
system for performing functions. The functions include queu
ing write requests issued by a primary virtual machine in a
first queue, and queuing the write requests issued by the
virtual machine in a second queue in parallel with queuing the
write requests in the first queue. Data in a virtual disk utilized
by the virtual machine is updated using the write requests
from the first queue. A log file is updated using the write

US 2014/02080 12 A1

requests in the second queue. The log file is transferred for use
in generating replicated virtual storage accessed by a recov
ery virtual machine.
0010. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIGS. 1A and 1B are block diagrams generally illus
trating representative embodiments of techniques for track
ing changes to a virtual disk;
0012 FIG. 2 is a block diagram of a representative archi
tecture for creating replication log files inaccordance with the
disclosure;
0013 FIGS. 3 and 4 are flow diagrams of representative
methods for creating replication log files in accordance with
the disclosure;
0014 FIG. 5 is a flow diagram of an embodiment for
creating replication log files;
0015 FIGS. 6A-6E illustrate representative log file and
metadata formats;
0016 FIGS. 7A and 7B depict representative embodi
ments for Switching to a new log file when a current log file is
to be transferred for replication purposes:
0017 FIG. 8 is a block diagram generally illustrating the
use of log files in view of storage migration;
0018 FIG.9 is a flow diagram illustrating a representative
manner in which a recovery server can apply virtual machine
changes recorded in a log file to the replicated virtual machine
to make it correspond to the virtual machine that it is repli
cating:
0019 FIG. 10 is a flow diagram of an embodiment in
which a recovery server applies primary virtual machine
changes to the replicated virtual machine;
0020 FIG. 11 is a block diagram illustrating an exemplary
use of one or more undo log files at a recovery site;
0021 FIG. 12 depicts an exemplary undo log file;
0022 FIGS. 13 and 14 illustrate an example of creating
and using an undo log file; and
0023 FIG. 15 depicts a representative computing system
for a source or recovery server in which the principles
described herein may be implemented.

DETAILED DESCRIPTION

0024. In the following description, reference is made to
the accompanying drawings that depict representative imple
mentation examples. It is to be understood that other embodi
ments and implementations may be utilized, as structural
and/or operational changes may be made without departing
from the scope of the disclosure.
0025. The disclosure is generally directed to data replica
tion and recovery. While the principles described herein are
applicable to any replication from one device or facility to
another device or facility, numerous embodiments in this
disclosure are described in the context off-site disaster recov
ery where replicated data and processing resources are pro
vided remotely from the primary computing center. It should
be recognized, however, that the principles described herein
are applicable regardless of the distance or manner in which
replicated data is transferred to a recovery target (s). Certain

Jul. 24, 2014

embodiments are also described in the context of virtual
machines, although the principles are equally applicable to
physical machines and their available storage.
0026 Various embodiments below are described in terms
of virtual machines. Virtualization generally refers to an
abstraction from physical resources, which can be utilized in
client and server scenarios. Hardware emulation involves the
use of software that represents hardware the operating system
would typically interact with. Hardware emulation software
can Support guest operating systems, and virtualization soft
ware such as a hypervisor can establish a virtual machine
(VM) on which a guest operating system operates. Much of
the description herein is described in the context of virtual
machines, but the principles are equally applicable to physi
cal machines that do not employ virtualization.
0027. To enable a recovery or other target server(s) to
begin running a system or virtual machine when its replicated
Source server fails, the information associated with that sys
tem or virtual machine is provided to the recovery server. In
the context of virtual machines, a base replication can be
provided, and updates or changes to that base replication can
be provided as the virtual machine is running on its primary
SeVe.

0028. As noted above, current approaches for tracking
changes result in additional read and write overhead for data
that has changed. These change tracking mechanisms con
sume storage IOPS that would otherwise be used for primary
server workloads. For example, differencing disks may be
used to capture changes relative to a base virtual disk. Each
differencing disk is configured as a “child' virtual disk of
changes relative to its respective “parent disk in the chain of
disks and differencing disks. The differencing disk stores the
changes that would otherwise be made to the base or other
parent disk if the differencing disk was not used. However, the
use of differencing in replication situations results in the
utilization of IOPS that could otherwise be used for normal
workload processing. Differencing disks have primary pur
poses in areas such as testand development, and may not have
been developed with tracking changes and replication in mind
as their use is quite I/O-intensive.
0029. For example, when using differencing disks, extra
overhead in the form of consumed IOPS is involved in taking
Snapshots, transferring the Snapshots, replacing the Snapshot
with a new differencing disk, etc. Further, differencing disks
are typically dynamically expandable Such that they expand
to accommodate newly stored changes, which involves pro
cessing to manage the expansion. Changes recorded to a
differencing disk are marked on a sector bitmap that shows
which sectors are associated with the child disk and which
with the parent disk, which again consumes some of the
available IOPS. Change tracking mechanisms may keep
metadata to describe the changes. The organization of meta
data also consumes some storage IOPS, and can thus impact
a replication solution. As these examples illustrate, the over
head associated with creating, managing and maintaining
differencing disks may result in many I/O operations for a
lesser quantity of virtual machine write operations.
0030. Further latencies may be experienced with differ
encing disks and other prior Solutions. In one example, a
virtual disk block that is identified as changed may be signifi
cantly larger than the quantity of data that actually changed.
For example, a2Mb block may be created to capture changes,
which is dealt with in its entirety even though only a small
change may have been made (e.g., 4. Kb). A significant

US 2014/02080 12 A1

amount of unchanged data may end up getting stored and/or
transferred, and such unchanged data is superfluous data that
takes time to unnecessarily process, store, transmit, etc.
0031. In the case of virtual machines, a virtual disk storage
location can dynamically change while a virtual machine is
running. A change tracking mechanism should see that infor
mation regarding those changes is not lost when a virtual disk
migrates to new storage location. If storage migration is not
properly handled by a change tracking mechanism, virtual
disks in source and target servers will be out of synchroniza
tion following any such storage migration. Any mechanism to
get a target virtual storage synchronized with the source Vir
tual storage could take a long time, and impact the RPO.
0032. The present disclosure addresses these and other
needs relating to replication and recovery, such as the repli
cation of a primary virtual machine(s) and its recovery else
where if the primary virtual machine becomes inoperative.
The disclosure describes mechanisms and techniques in
which differencing disks or other similar mechanisms are not
needed to provide virtual storage replication and virtual
machine recovery. In one example described herein, log files
are created that capture changes being made to a storage
device, including a virtual disk. In one virtual machine
embodiment, the log file(s) can be created by preserving
duplicates of change requests that are queued for inclusion
into the virtual disk. In one embodiment the log file process
ing and updating is performed in parallel with the processing
that updates the virtual disk, such that replicated data is cre
ated without additional latencies, and prepares the log file in
such a way that it is easily transferred to a recovery site(s)
while limiting the impact of IOPS to the running workload.
Thus, while the mechanisms and techniques described herein
may be used in addition to technologies such as differencing
disks when used for other purposes, replication may be
effected without the existence of any differencing disks in
accordance with the disclosure.

0033. In one embodiment, a virtual machine's write
requests that are destined for a virtual disk are copied to a log
data structure, such as a log queue. The log entries are taken
from the queue and processed into a log file. In one embodi
ment, writes to the log file are accumulated in memory, Versus
storage such as a virtual disk, disk or other physical storage.
The write request information may be accumulated in
memory before writing to the physical disk in order to, for
example, reduce the impact on workload performance and
response times inside the virtual machine. The writes to the
log file may be coordinated with the writes to the virtual disk
file (e.g. virtual hard disk or “VHD file) to, among other
things, facilitate application-consistent snapshots of virtual
machines. Some embodiments involve replicating the log file
writes within a virtual disk parser module to facilitate seam
less change tracking across storage migrations. The log file
may be defined in a manner to reduce the storage require
ments and total network transfer time of the virtual disk
changes to the target location. One embodiment provides the
ability to switch to a new log file for capturing virtual disk
changes without holding writes to the virtual hard disk. Fur
ther, an embodiment of the log file format is agnostic to
virtual hard disk file format and type, such that it can be used
to capture changes to a virtual disk of any type and format.
These representative solutions to problems associated with
existing replication techniques are described in greater detail
below.

Jul. 24, 2014

0034 FIG. 1A is a block diagram generally illustrating a
representative embodiment of a technique for tracking
changes to a virtual disk. Storage access requests 102 may be
provided by any source, such as the virtual machine (VM)
100. The description applies to processors and other sources
of storage access requests, but in the representative example
of FIG. 1A, the source of the requests is a VM 100. The
storage access requests 102 may be any type of storage access
request, such as write requests, a request to expand or contract
the disk, or any other storage operation that will result in
changes to the disk. In one embodiment, the storage access
requests 102 represent write requests to store data.
0035) In the illustrated embodiment, the data is stored in a
virtual disk 104, which in one embodiment represents a file(s)
stored on physical storage media. The storage request pro
cessing module 106A is configured to direct and process
incoming requests 102 to the virtual disk 104. For example,
the requests 102 may represent write requests that are tem
porarily buffered at the storage request processing 106B until
they can be used to update the virtual disk 104. It should be
recognized that the virtual disk 104 may include a single
virtual storage file (e.g. VHD file) or multiple files (e.g. VHD
file and one or more AVHD or other differencing disk files).
For example, in one embodiment, changes to the virtual disk
104 may be made to a single file representing the virtual disk
104. In such an embodiment, log files as described herein may
be used in lieu of differencing disks or similar states of the
virtual disk 104 for replication purposes.
0036) The replication management module 108 is config
ured to receive the same storage access requests 102 that are
being received at the storage request processing module
106A. In various embodiments, the storage access requests
102 may be received from the VM 100, an intermediate mod
ule (not shown), or from the storage request processing mod
ule 106A itself In one embodiment, the replication manage
ment module 108 is implemented integrally with the storage
request processing module 106B. In such a case, the replica
tion management module 108 may receive a copy of the
storage access request 102 upon receipt at the storage request
processing module 106A, or the storage request processing
module 106A may create and provide a copy of the storage
access requests 102 to the replication management module
108. It should be noted that modules such as the storage
request processing module 106A/B and the replication man
agement module 108 may be provided within the VM 100 as
depicted by box 101, or may be provided by a hypervisor,
parent partition operating system or other operating system,
etc. The log file may be transmitted, such as via transmitter
112, to a target system where a recovery system or virtual
machine may be instantiated to replicate the virtual machine
100.

0037. The replication management module 108 may
buffer the storage access requests 102 in parallel with the
buffering and/or processing of the storage access requests 102
by the storage request processing module 106A. The buffered
storage access requests 102 are written to a log 110. Such as a
log file, for replication purposes without significantly impact
ing storage IOPS. Therefore, as write requests or other stor
age access requests 102 are being processed to update the
virtual disk 104 in response to VM 100 processing, the rep
lication management module tracks changes to the virtual
disk 104 in a log 110.
0038. In one embodiment, a replication module such as
that depicted in FIG. 1A can include a VM 100 that is con

US 2014/02080 12 A1

figured to provide storage access requests 102 that target a
virtual disk(s) 104. The storage request processing module
106A may be coupled to the VM 100 to receive the storage
access requests 102, and update the virtual disk 104 as
directed by the storage access requests. The replication man
agement module 108 may be coupled to the VM 100 to
receive the storage access requests 102 in parallel with the
storage request processing module 106A. The replication
management module 108 can store the storage access
requests in a log(s) 110. Such as a log file, that can be stored
in memory, internal storage, external storage, remote storage,
etc. A transmitter 112, which may be a stand-alone transmit
ter or associated with another device (e.g. transceiver, net
work interface module, etc.), that can provide the log110 to a
destination Such as a recovery server as a recovery replica of
at least a portion of the virtual disk 104.
0039 FIG. 1B is a block diagram illustrating another rep
resentative embodiment of a technique for tracking changes
to a virtual disk. In this example, reference numbers corre
sponding to those in FIG. 1A are used to identify like mod
ules. In this embodiment, the VM 100 issues write requests
102 that will ultimately change the virtual disk 104 with the
data being written thereto. Both the storage request process
ing module 106A and the replication management module
108 receive the write requests 102. As the storage request
processing module 106A processes the write requests 102 for
inclusion on the virtual disk 104, the replication management
module 108 queues the write requests 102 for ultimate writ
ing to a log file(s) 110A.
0040. In one embodiment, the log file 110A is captured in
memory 114 to reduce I/O processing and improve IOPS
relative to prior Solutions involving writing to disk Such as
differencing disks. The log file 110A may be written to stor
age 116 at desired intervals such as, for example, fixed inter
vals, random intervals, intervals based on triggered events,
etc. The storage write control module 118 may determine
when a log file(s) 110A in memory 114 will be written to
storage 116 as depicted by log file(s) 110B. In one embodi
ment, the storage write control 118 writes the log file 110A to
the storage 116 as depicted by log file 110B, when the
memory 114 that has been allocated for the log file(s) 110A
reaches a threshold. As merely an example, a write of the log
file 110A from memory 114 to log file 110B in storage 116
may occur when the allocated memory for the log file 110A
reaches 90% capacity. By accumulating write requests 102 in
memory 114 and infrequently writing to the physical storage
116, the impact on VM 100 workload performance and
response times inside the VM 100 can be reduced.
0041 FIG. 2 is a block diagram of a representative archi
tecture for creating replication log files inaccordance with the
disclosure. The storage access requests may be input/output
(I/O) write requests, and in the particular illustrated embodi
ment the write requests are small computer system interface
(SCSI) request blocks (SRB) 202. The SRB 202 is a repre
sentative manner in which an I/O request can be submitted to
a storage device. The SRB 202 may include information such
as the command to send to the device, the buffer location and
size, etc. In one embodiment, each change request to a virtual
disk comes in the form of an SRB 202. While SRBs are used
in the present example, the description is equally applicable
to other I/O request types to access storage devices.
0042. In the illustrated example, the SRB 202 is provided
by an interface to upper layers, shown as the VHDParser.sys
200A in the present example. In this example, the VHDParser.

Jul. 24, 2014

sys 200 represents an internal interface to the upper layers,
which performs internal translation and sends the SRB 202 to
a replication management module, which in FIG. 2 is pro
vided by a virtual disk parser 204. Storage requests may also
be provided via the VHDParser.sys 200B which again is an
interface to upper layers, where the storage requests may be
provided via an input/output control (IOCTL) call 206 which
is handled by the IOCTL handler 208. The IOCTL handler
208 provides an interface through which an application on the
virtual machine can communicate directly with a device
driver using control codes. Thus, storage access requests may
be received via one or more different input types.
0043. In the illustrated embodiment, the virtual disk parser
204 may be an adaptation of a virtual hard disk (VHD) mini
port, such as VHDMP.sys available in HYPER-VTM by
MICROSOFTR Corporation. Assuming in this example that
the virtual disk is represented by a VHD file 210, the storage
stack for such VHD files 210 can include a mini-port driver
such as VHDMPsys, which represents the VHD parser 204.
The VHD parser 204 enables I/O requests to the VHD file 210
in storage 211 to be sent to the host file system, Such as, for
example, a new technology file system (NTFS) 212.
0044) For purposes of example, it is assumed in the
description of FIG.2 that the SRBs 202 include write requests
to change a virtual disk such as the VHD file 210. The SRBs
202, which originate inside the VM, reach the virtual disk
parser 204 at the SRB request handler 214. In one embodi
ment, the SRB request handler 214 creates an instance of a
custom data structure for each SRB 202, and embeds the SRB
202 inside this instance which is added to the VHD request
queue 216. This VHD request queue 216 maintains the write
requests to the VHD file 210 that are pending for processing.
The SRB request handler 214 adds these SRBs 202 to this
queue 216, and as described below the VHD request process
ing module 218 removes the write requests from this VHD
request queue 216 to process them. A few representative VHD
request queue 216 entries are depicted as V1220, V2 221 V3
222 and V4 223.

0045. In one embodiment, the IOCTL handler 208 may
also receive requests from management modules, such as
virtual machine management service (VMMS) 224 (e.g.
VMMS.exe) provided as part of HYPER-VTM by
MICROSOFTR Corporation. The VMMS 224 generally rep
resents a management service that serves as a point of inter
action for incoming management requests. The VMMS 224
can provide requests to the IOCTL handler 208 for enabling
and disabling change tracking for a virtual disk in accordance
with the disclosure. For example, the VMMS 224 may issue a
request via an IOCTL call 206 to the IOCTL handler 208,
which causes the log request queue 226 and log request pro
cessing module 228 to be initialized. The IOCTL handler 208
also enables changing log files that are used for storing
changes while the VM is running.
0046 When change tracking is enabled, another instance
of the custom data structure for the SRB 202 added to the
VHD request queue 216 is created and added to the log
request queue 226. In one embodiment, a data buffer of write
requests (e.g. SRBs 202) may be shared by the custom data
structure instances for the SRBs 202 in both the VHD request
queue 216 and the log request queue 226. The log request
queue 226 maintains the log write requests that are pending
for processing. Representative log request queue 226 entries
are depicted as L1 230, L2231, L3 232 and L4233.

US 2014/02080 12 A1

0047. The VHD request processing module 218 will
remove queued write requests from queue entries 220-223 of
the VHD request queue 216 to process them. Based on the
virtual hard disk format and type, in one embodiment the
VHD request processing module 218 will send one or more
I/O request packets (IRPs) to the VHD file 210 via NTFS 212
to complete the write request. When all of the issued IRPs are
completed for a particular queued write request (e.g. request
in queue entry V4 223), the write request is considered com
plete, and a completion response for this write request can be
returned.
0048. The log request processing module 228 will remove
queued write requests from log queue entries 230-233 of the
log request queue 226 to process them. The log request queue
226 is copied to the log file 234 that, in the illustrated embodi
ment, is stored in storage 236. The storage 236 may be the
same or different storage as the storage 211 in which the VHD
files are stored. It should be noted that in one embodiment,
while the log file(s) 234 may be stored in some storage 236,
the log files are cached or otherwise buffered in memory until
a time when they will be sent to storage 236. In one embodi
ment, a metadata entry is written in current metadata. If the
current metadata is full, it is written to a new log file and a new
metadata is allocated to store new entries.
0049. In the example of FIG. 2, a virtual machine's write
requests (e.g. SRB 202) that are destined for a virtual disk
(e.g. VHD file 210) are copied to a log data structure, such as
the log request queue 226. The log entries 230-233 are taken
from the log request queue 226 and processed into a log file
234. In one embodiment, writes to the log file 234 are accu
mulated in memory prior to being stored in storage 236.
0050 FIGS. 3 and 4 are flow diagrams of representative
methods for creating replication log files in accordance with
the disclosure. Referring to FIG. 3, block 300 depicts write
requests received from a virtual machine. Block 302 shows
that the write requests may be queued in a virtual disk queue.
The queue may be processed and prepared for writing to the
virtual diskatblock 304, and as shown at block 306 the virtual
disk may be updated based on the write requests. In accor
dance with the disclosure, block 308 shows that the write
requests are also queued in a log queue in parallel with the
queuing of the write requests in the virtual disk queue. For
example, the write requests may be copied from the virtual
disk queue to the log queue, or alternatively the log queue
may receive the write requests from upstream modules Such
as a request handler. In one embodiment, the log queue is
processed and prepared for writing to a log file, as shown at
block 310. The log file is updated to record data updates at
block 312, and the log file may be provided to a recovery
server or other destination as shown at block 314.

0051 FIG. 4 illustrates another representative method,
which includes queuing write requests issued by a primary
virtual machine in a first queue, as block 400 depicts. At block
402, the write requests issued by the virtual machine are
queued in a second queue in parallel with the queuing of the
write requests in the first queue. At block 404, the data in the
virtual disk utilized by the virtual machine is updated using
the write requests from the first queue. A log file is updated
using the write requests in the second queue, as shown at
block 406. At block 408, the log file is transferred for use in
generating replicated virtual storage accessed by a recovery
virtual machine.

0052. The embodiments of FIGS. 3 and 4, in addition to
other methods and techniques described herein, may be

Jul. 24, 2014

implemented at computer-implemented methods for carrying
out the various functions. The functions may also be per
formed by instructions stored on computer-readable media,
as later described in greater detail.
0053 FIG. 5 is a flow diagram of an embodiment for
creating replication log files. In one embodiment, the VHD
parser functionality, such as that provided by the VHD parser
204 of FIG. 2 (e.g. VHDMPsys), is extended to capture
virtual disk writes in a log file(s). As previously notes, one
embodiment involves enhancing the VHD parser (e.g. VHD
MPsys) to support IOCTLs to enable and disable tracking
virtual disk changes. If change tracking is not enabled as
determined at block 500, no change tracking will be imple
mented as shown at block 502. When VHDMP is enabled for
tracking virtual hard disk changes as determined at block 500,
a log request queue is created 504. A worker routine is ini
tialized at block 506 to process the log request queue. When
a storage request (e.g. SRB) is received as determined at
block 508, a request handler enters the request on the virtual
hard disk queue for ultimate entry into the VHD file as shown
at block 510. A new log entry is created for each new storage
request and placed on the log request queue as shown at block
512, substantially in parallel with the processing of the virtual
hard disk queue of block 510. The next write request on the
log request queue is removed and copied to a log file as shown
at block 514. In one embodiment, the log file is stored in
system memory, as is associated metadata as shown at block
516.

0054. In one embodiment, the write requests written to the
VHD file and the log file are issued contemporaneously
within the VHDMP (e.g. by request processing modules 218
and 228 of FIG. 2), but the storage request response is
returned to the VM when both the VHD write as well as the
log write are completed, as shown at block 518. Since in one
embodiment the log file is written to System memory, the
writing to the log file is performed faster than performing the
VHD write that is sent to disk. Thus, the SRB response time
measured inside the VM is not affected by this additional
writing to the log file. In one embodiment, failure in writing
the log file is considered a tracking failure that does not affect
the storage request completion Success status; while failure in
writing the VHD file is considered a failure regardless of the
status of log file write.
0055. In one embodiment, the log file stored in system
memory can be directly transmitted to a recovery server(s)
from memory. In another embodiment, the log file can be
written to a physical storage medium. In these or other sce
narios, a condition may dictate when the log file in memory
will be stored elsewhere. The condition may be, for example,
a time, time duration, triggering event, etc. In the embodiment
illustrated in FIG. 5, a condition serves as the criterion in
which the log file will be moved from memory to a storage
medium, as shown at block 520. For example, the criterion
may involve the total size of the logs in the system memory,
Such that when they reacha threshold size, the logs in memory
will be flushed to the log file on a physical medium. Since the
write operations to the log file may be batched together in a
single write request, it will consume fewer storage I/O opera
tions and have less impact on storage IOPS available to work
loads. When the threshold is met, the log file is moved from
memory to storage as shown at block 522. If change tracking
has not been disabled as determined at block 524, the process
may continue as shown at block 508, where it is determined

US 2014/02080 12 A1

when another storage request is received. Otherwise, change
tracking may be disabled as shown at block 502.
0056. In one embodiment, log file flushing from memory
to physical storage, as depicted at block 522, can occur as a
background operation. In Such an embodiment, new storage
requests may be written to the buffer in memory while the log
file flushing operation is happening. In other embodiments,
new storage request processing could be suspended until the
log file flushing has completed.
0057 Examples of the log file data and metadata are now
described. FIGS. 6A-6E illustrate representative log file and
metadata formats. It is noted that the examples of FIGS.
6A-6E are provided as representative examples only, as vari
ous alternatives may be provided to provide the information
described in this example. It is also noted that in the examples
of FIGS. 6A-6E, like reference numbers are used to identify
corresponding fields or other items.
0058. A representative log file 600 format is illustrated in
FIG. 6A. The representative log file format has three types of
fields including a header, metadata and data. In one embodi
ment, the log file 600 has a header 602 that includes informa
tion to at least identify the log file 600, indicate the size of the
metadata field 604A, 604B, 604C, and indicate the location of
the last valid data of the log file (EOL) 606. The log file 600
includes the data 608A-608H from the write requests (or
other storage requests). A representative log file 600 header
602 is shown in FIG. 6B. The header may include header
fields 610, size 612 of field, value 614 associated with the
field, etc. Various header fields 610 may be provided as shown
in FIG. 6B, including the EOL location 615, error code 616,
metadata size 617, log file unique ID 618, last modified times
tamp 619, and total metadata entries 620, of which some are
described in greater detail below.
0059. The error code 616 provides information relating to
a reason in which the EOL location may show an invalid
value. For example, if the EOL location 615 is a first value
corresponding to an invalid EOL location (e.g., value 0), then
the log file is considered invalid in one embodiment. This can
happen for various reasons. Such as a tracking error occurring
and thus tracking is marked as failed, or the machine crashed
or otherwise failed rendering the log file invalid. Where a
tracking error occurred and thus tracking was marked as
failed, one embodiment involves storing a reason for that
tracking failure in the error code field 616. Another represen
tative field is the last modified timestamp field 619, which
includes a time corresponding to the changes to the virtual
disk that are captured in this log file. In one embodiment, the
total metadata entries field 620 includes the total number of
metadata entries present in the entire log file.
0060 FIG. 6C illustrates an example of the log file meta
data format for representative metadata 604A of the log file
600. The metadata includes at least a metadata header 622 and
one or more metadata entries 624A, 624B, 624n. FIGS. 6D
and 6E depict a representative metadata header 622 format
and a representative metadata entry 624A format respec
tively.
0061 The metadata provides, among other things, infor
mation describing the changes to the virtual disk that is the
subject of the replication. In FIG. 6D, the metadata header
622 includes fields 630 and the size 638 of the fields 630. The
fields 630 include the previous metadata location field 632,
which canassist in traversing the metadata structures from the
end of log (EOL) 606 of the log file 600. The fields 630 also
include a valid metadata entries field 634 that provides infor

Jul. 24, 2014

mation about the valid number of metadata entries in that
particular metadata, Such as the number of metadata entries
624A through 624n shown in FIG. 6C.
0062. The metadata entries themselves may include fields
640 and a size 650 of the fields 640 as depicted in FIG. 6E.
Each metadata entry 624A, 624B, 624n may provide infor
mation about the virtual disk address range that is modified.
In one embodiment, each metadata entry 624A, 624B, 624n
includes a byte offset, 642, data length 644, timestamp 646
and meta operation 648. Since the log file in one embodiment
is sequential, the log file offset can be calculated using the
data length in the data length field 644. Thus, the first meta
data entry 624A follows the log file header 622, and the log
file offset for the second metadata entry 624B may be calcu
lated by adding the size of the first metadata entry to the first
metadata location. The byte offset field 642 can provide a
value that indicates an actual physical address on the virtual
disk that was modified, and thus this field 644 value may be
used to apply the data back to the virtual disk on the recovery
server. In one embodiment, the meta operation field 648 indi
cates the meta operation of this log entry, where in one
embodiment two values are provided including a write opera
tion corresponds to value “1” and a no operation (NOOP)
corresponds to a “O).
0063 New data in the changed address range is stored as
data entry 608A-608H in the log file 600. The representative
log file 600 format facilitates sequential writing. In one
embodiment, each metadata describing each data entry is
written after a set of data entries is written to the log file. For
example, metadata 604C may be written after a set of data
entries 609 has been written to the log file 600.
0064. Referring briefly to FIG. 2 in connection with FIGS.
6A-6E, when an SRB 202 or other storage request that
changes a virtual disk is received at the virtual disk parser
204, the data associated with the SRB 202 may be written as
a data entry at the EOL 606 of the log file 600. A metadata
entry 604C is created in the current metadata with the address
range specified in the SRB. If the metadata is full, it is written
to the log file before processing the next SRB 202. Since in
one embodiment the amount of data that goes to the log file
600 is same as the amount of that is changed in the virtual
machine, transferring extra tracking data over the network to
the target locations can be avoided.
0065. In one embodiment, metadata entries are grouped in
batches, and efficiencies in parsing the log file 600 by the
virtual disk parser 204 can be achieved with fewer I/O opera
tions. Writing data and corresponding metadata entry one
after another in contiguous locations, Versus in batches,
would involve more I/O operations to parse the log file 600, if
the log file 600 is to be parsed before start applying the
changes in log file on any virtual disk.
0066. It is possible that the log file and the virtual disk file
(e.g. VHD file) will become out of synchronization. Since the
log file and virtual disk file are written contemporaneously so
that storage request response time is not affected, any failure
in writing either the log file or the virtual disk file will make
the log file out of sync with the virtual disk file. In one
embodiment this is detected using the EOL location field 615
in the log file header 600. Before writing any new data to the
log file 600, the EOL location field 615 is set to an invalid
value. When a log file is closed, and there is no error, a valid
value is entered into the EOL location field 615. If there is an
error while writing to either the virtual disk file or the log file,
the EOL location field 615 is not updated with a valid value,

US 2014/02080 12 A1

and the log file becomes invalid indicating that it is not in Sync
with the virtual disk file. Also if the primary server crashes or
otherwise exhibits a failure, the EOL location field 615 will
still hold an invalid value as the file was not closed properly.
When the log file is examined after the machine is restarted,
it will indicate that the log file could not capture all the
changes and was out of sync with the virtual disk.
0067. As changes to a virtual machine are accumulated
into a log file at a primary server, that log file will at Some
point be transferred to a recovery server to carry out the
replication. FIGS. 7A and 7B depict representative embodi
ments for Switching to a new log file when a current log file is
to be transferred for replication purposes. Like reference
numbers are used for analogous functions in FIGS. 7A and
TB.

0068 Particularly, FIG. 7A is a flow diagram illustrating
one manner of Switching to a new log file and sending the
prior log file to the intended recipient. At block 700, a virtual
machine management service (e.g., VMMS) or other module
requests that a set of virtual machine changes in a log file be
transferred to a target server. In one embodiment, this request
also involves a request for the replication management mod
ule to use a new log file for capturing changes, as shown at
block 702. When the log file switch request is received, all
new log SRB requests are redirected to the new log file as
shown at block 704. It may be determined, as shown at block
706, whether all pending writes to the old log file have been
completed. For example, a reference count mechanism may
be used to keep track of pending writes to the old log file (i.e.
the log file to be transferred to the target server). A module,
such as the IOCTL handler 208, can wait until the reference
count on the old log file becomes a predetermined value (e.g.,
counts down to Zero). When this threshold has been reached,
the IOCTL handler 208 can send a completion response for
the log file switch request, as shown at block 708. In one
embodiment shown at block 710, the old log file will be
transferred to the target location after Switching to the new log
file is successful.
0069 Embodiments also provide application-consistent
Snapshot Support, which generally refers to a Snapshot of the
virtual storage of the running system that has prepared itself
to have a copy obtained. Where the storage is prepared in this
fashion, the Snapshot is coherent in that it facilitates a high
likelihood of Successful reanimation at the replication site.
Thus, application-consistent points in time may be generated
for the replicated copy of the virtual machine. For example,
an application-consistent Snapshot may be obtained using an
operating system service such as the Volume shadow copy
service (VSS) by MICROSOFTR Corporation that coordi
nates between the backup functionality and the user applica
tions that update data on the disk. The running software (i.e.,
the data writers) can be notified of an impending copy, and
bring their files to a consistent state. This type of copy may
provide a higher likelihood of proper reanimation at a recov
ery server, relative to an unprepared copy (e.g., crash-consis
tent copy) of the virtual storage.
0070 FIG.7B is a flow diagram illustrating one manner of
Switching to a new log file where an application-consistent
snapshot is to be obtained of the current log file that is to be
transferred. A management module, such as a VMMS, may
make a request to particular components inside a VM to create
an application-consistent Snapshot, as shown at block 712.
When the application-consistent Snapshot is taken inside the
VM, block 714 shows that writes will be issued to the virtual

Jul. 24, 2014

disks. When a response to these writes are received inside the
VMas determined at block 716, the call will return to the VM
at block 718, and the VM will issue a switch log file request as
shown at block 720. Since a response to the VM write opera
tions is sent after the corresponding writes to the log file are
completed, all required changes will be present in the log file
that is to be transferred for recovery purposes in one embodi
ment.

(0071. When the VM (or other module) has indicated that a
log file Switch can be made, the management module may
send a request to cause the replication management module
(e.g., virtual disk parser 204) to use a new log file for captur
ing changes. From this point, the process may correspond to
that of FIG. 7A. For example, all new log storage (e.g., SRB)
requests are redirected to the new log file as shown at block
704. It may be determined, as shown at block 706, whether all
pending writes to the old log file have been completed. When
this threshold has been reached, a completion response may
be sent for the log file switch request, as shown at block 708.
The old log file will be transferred to the target location after
a successful switch to the new log file, as shown at block 710.
0072 A virtual disk storage location can dynamically
change while a virtual machine is running This is generally
referred to as storage migration, which is commonly used for
optimizing resource consumption, for maintenance, etc. FIG.
8 is a block diagram generally illustrating the use of log files
in view of storage migration. Migration of storage may be, for
example, between servers at the same site 800, such as
between a source server 802 and at least one of the other local
servers 804, 806, 808. Each server may have its own physical
storage 810, 812 to store virtual storage, or the storage may be
shared or other storage available via a storage area network
(SAN) 814. Migration of storage could also occur to a remote
site 830 that includes one or more remote servers 832, 834.
The log file techniques described herein can facilitate change
tracking across storage migrations.
0073. In accordance with one embodiment, when storage
migration is in process, a new log file is created in the storage
migration target location. For example, assume that a virtual
hard disk (VHD) 814A stored at the storage 810 of the source
server 802 is migrating to the storage 812 of server 804 at the
same site 800, as depicted by VHD 814B. A new log file 816
is created in the storage 812 of the migration target, which is
server 804 in this example.
0074. In one embodiment, all write requests that are being
captured into the source log file 818 are duplicated by the
replication management module (RMM) 820, and provided
to the target log file 816. The custom data structure instance
that represents the duplicated log write request (e.g., dupli
cated SRB) will point to the target log file 816, and the log
processing routine automatically writes this log information
to that target file. Once the storage migration is completed, the
new log file 816 at the new server 804 can begin being used.
In this manner, no changes are missed even when the virtual
disk migrates to a new storage location.
0075 When a log file has been provided to a target system,

it can be used to update a replicated virtual machine at that
target system. For example, a primary server at a primary site
can generate log files as described above. Those log files can
be transmitted to a recovery server at an off-site location to
facilitate disaster recovery efforts. In one embodiment, the
recovery server applies the changes made to the primary
server's virtual machine by updating a replicated virtual
machine on the recovery server using the received log files.

US 2014/02080 12 A1

FIG. 9 is a flow diagram illustrating a representative manner
in which a recovery server or other target device can apply
those changes to the replicated virtual machine to make it
correspond to the virtual machine that it is replicating. Any of
FIGS. 6A-6E may be referenced in connection with the
description of FIG.9.
0076 A stack may be initialized for storing metadata loca
tion offsets, as shown at block 900. Block 902 involves read
ing the log file header 602 to obtain the location of the end of
log (EOL) 606 from field 615, and the metadata 604A/B/C
size from field 617. Block 904 shows that the value of the
EOL field 615 and the value of the metadata size field 617 are
used to calculate the location of the last metadata of the log
file 600, shown as metadata 604C in FIG. 6A. For example,
the location of the last metadata 604C in the log file 600
would be equal to the EOL location (i.e. address) minus the
value in the metadata size field 617. This would provide a
location at which the metadata 604C begins. It should be
noted that the present example assumes metadata that follows
(from an addressing point of view) its associated data in the
log file 600, else such a calculation would also subtract the
data size to which the metadata is associated.

0077. The located metadata 604C is considered at least
temporarily to be the “current metadata, and its value is
pushed onto the initialized stack as shown at block 906. At
block 908, the metadata header 622 is read from the location
of the “current metadata” (which at this time is the location of
the last metadata 604C), and the location of the previous
metadata 608B in the log file 600 is obtained. More particu
larly, the previous metadata field 632 of the metadata header
622 provides the address of the previous metadata 608B. As
determined at block 910, if a previous metadata location
exists in the field 632 (i.e. the current metadata is not the first
metadata of the log file 600), processing returns to block 906
where the newly identified metadata 608B is considered the
“current metadata” and its value is pushed onto the stack. This
continues as until the last metadata, which is metadata 604A
in the example of FIG. 6A, is at the top of the stack. When this
occurs, the offsets of the metadata structures 604A, 604B,
604C are on the stack in an ascending order, as depicted at
block 912.

0078. With this stack at the recover server now having the
metadata offsets retrieved from the log file 600, the recovery
server can begin to replicate the virtual storage using the data
608A-608H in the log file 600. Particularly, the value at the
top of the stack is obtained as shown at block 914. The
metadata structure is read by traversing to the location of the
metadata obtained from the stack as shown at block 916. As
was depicted at FIGS. 6C and 6E, metadata entries 624A,
624B through 624n include the details of a data field in the log
file 600 that can be read from the log file 600 and applied to
the recovery virtual storage as depicted at block 918.
007.9 For example, each metadata 624A, 624B through
624n provides the length of the data written in the log, as
shown at data length field 644 of FIG. 6E. As the data (e.g.
data 608F, 608G, 608H) are written sequentially, the start of
a data field 608H may immediately follow the end of an
immediately preceding data field 608G, the end of the log file
header 602, or the previous metadata header 604B. With this
information, the start of each data 608F-608H can be obtained
in order to read that data 608F-608H pointed to by metadata
structure 604C. If the stack is not empty at determined at
block 920, processing returns to block 914 where the next
value (now at the top of the Stack) is popped, its metadata read

Jul. 24, 2014

at block 916, and its data read at block 918. This continues
until the stack is empty as determined at block 920, which
indicates that all of the data has been read from the log file
600.

0080 FIG. 10 is a flow diagram of another embodiment in
which a recovery server applies primary virtual machine
changes to the replicated virtual machine. This embodiment
may be a computer-implemented embodiment for facilitating
replication of virtual machines. The computer-implemented
method includes, as shown at block 1000, receiving a log file
of changes duplicating changes made to primary virtual stor
age of a primary virtual machine. In one embodiment, the file
includes a log file header, blocks of data that changed in the
primary virtual storage, and metadata blocks to specify loca
tions of the data in the log file. A first metadata block is
located in the log file using information from the log file
header, and the address of the first metadata block is stored as
shown at block 1002. One or more additional metadata blocks
in the log file are located, each metadata block being located
using information from its respectively preceding one of the
metadata blocks in the log file. For example, block 1004
depicts that the next metadata block in the log file may be
located using information from its immediately preceding
metadata block. If there is more metadata in the log file as
determined at block 1006, the next metadata block is again
located at block 1004. This continues until no further meta
data is in the log file.
0081. The addresses of each of the metadata blocks
located in the log file are stored, as shown at block 1008. In
one embodiment, the metadata blocks are pushed onto a
stack, although they may be stored in any fashion. The stored
metadata blocks are then used to locate the data identified by
those metadata blocks, as shown at block 1010. Block 1012
shows that the located data is stored in replicated virtual
storage operable by a recovery virtual machine to replicate
the primary virtual machine.
I0082 In one embodiment, the log file may be received at
block 1000 by a receiver, such as a stand-alone receiver,
transceiver, network interface, or other receiving mechanism.
A processor may be used in connection with Software instruc
tions to locate the first and next metadata blocks shown at
blocks 1002, 1004. The processor may also be used to deter
mine whether there is more metadata to be located in the log
file, as determined at block 1006. The processor can direct the
storing of the addresses of the metadata blocks described at
block 1008, where the addresses may be stored to memory,
storage, etc. As previously noted, one representative manner
of storing Such metadata addresses is to push them onto a
stack. The processor may assist in locating the data identified
by each of the stored metadata blocks shown at block 1010.
The processor may perform the functions of block 1012 to
store the located data in replicated virtual storage.
I0083 Solutions described herein also contemplate
enabling recovery of a virtual machine at a recovery site from
a desired time. For example, if a plurality of log files are
provided to a recovery site, recovery may be initiated from a
desired one of the log files that corresponds to a particular
time, and therefore state of the virtual machine. In one
embodiment, when a log file described herein is applied to a
recovery server virtual disk, a new log file may be generated
on the recovery server that captures the current set of changes
made to the virtual disk. This new log file generated on the
recovery server(s) is referred to herein as an undo log. An
undo log as described herein may be used to revert the data in

US 2014/02080 12 A1

the virtual disk to some prior time. As described below, in one
embodiment the same format used for log files is used for
undo log files as well, but the logs may be applied in reverse
chronological order to revert the virtual disk data to a particu
lar time. In one embodiment, these “undo logs are not gen
erated where workloads are running, but rather are generated
in replication target locations as described below.
0084 More particularly, the use of log files as described
herein provides an option for the user to maintain multiple
recovery points on a recovery server(s). Each recovery point
can represent a Snapshot or other copy of storage at a particu
lar prior point in time. Differencing disks used for accessing
prior recovery or reversion points may be inefficient in terms
of IOPS, as one write operation can lead to multiple IOPS,
Such as differencing disk metadata operations, actual write
operations, virtual disk expansion and extra IOPS due to
merge operations. Among other things, the use of undo logs as
described herein mitigates storage IOPS degradation. Fur
ther, the storage requirements using undo logs as a manner of
reaching desired recovery points are significantly lower rela
tive to the use of differencing disks. The amount of storage
utilized when using undo logs as described herein scales
Substantially linearly to the amount of changes that are to be
stored over that recovery window. On the other hand, in the
case of differencing disks, the storage requirement scales in a
non-linear fashion.

0085. Referring to FIG. 11, a block diagram illustrates the
use of one or more undo log files at a recovery site including
one or more recovery servers 1100. Log files 1102A, such as
those previously described, are provided by a primary site
1104 to the recovery server 1100 as depicted by log files
1102B. When a change tracking log file 1102B is applied on
virtual disks (e.g. VHD 1106) in the recovery server 1100, the
current data 1108 in the recovery server VHD 1106 may be
captured inside a new log file; i.e. the undo log file 1110. In
one embodiment, the format of this undo log file 1110 is the
same as the log file 1102A/1102B that is used for capturing
changes in the replication primary server 1104. When the log
file 1102A that is transferred from primary server 1104 and
received as log file 1102B at the recovery server 1100 is read,
and a write operation is to be issued to a virtual disk 1106 on
the recovery server 1100, the current data 1108 in the virtual
disk 1106 at the same virtual disk offset is read. A new log is
added to the “undo log file 1110 that captures information
Such as the disk offset, write request length, etc., and the prior
timestamp from the log file 1102B and data that is read from
virtual disk 1106 are preserved. The disk offset and write
request length goes to the metadata portion of the undo log file
1110 and data goes to data portion of the undo log file 1110.
In one embodiment, the resultant undo log file 1110 will have
its log entries sorted by their timestamp field. The new data
1112 from the log file 1102B can then become the current data
1108 for subsequent generation of additional undo log entries
if desired.

I0086 FIG. 12 depicts an exemplary undo log file, such as
undo log file 1110 of FIG. 11, illustrating that logs in the undo
log file may be stored in a chronological order. As noted
above, in one embodiment log entries are sorted by their
timestamp field, resulting in undo logs 1200, 1202, 1204
being Sorted in chronological or reverse chronological order,
t(O), t(1)... tOn). In one embodiment, the format of the undo
log file 1110 may be analogous to that of a log file, such as the
log file 600 shown in FIG. 6A. If an administrator or other
user chooses to revert a virtual disk (e.g. VHD 1106) to some

Jul. 24, 2014

earlier point in time, the undo log file 1110 may be used. In
this case, logs 1200, 1202, 1204 in the undo log file 1110 are
applied in reverse chronological order using timestamp field
in log metadata. Since in one embodiment the log entries
1200, 1202, 1204 in undo log file 1110 are already sorted on
their timestamp field, the undo log entries 1200, 1202,1204 in
the undo log file 1110 may be read in reverse chronological
order. Write requests may be issued to the virtual disk (e.g.
VHD 1106) using disk offset, length and data information in
the individual undo logs 1200, 1202, 1204. If the administra
tor or other user chooses to revert the undo log file 1100 to a
time T1, the timestamp field in undo log metadata entry can be
compared to the value T1. If the timestamp field is greater
than T1, the log will be applied to the virtual disk. Further
processing may end when an undo log entry that has times
tamp less than T1 is found.
I0087 FIGS. 13 and 14 illustrate an example of creating
and using an undo log file. Referring to FIG. 13, when a log
file is received at a recovery server as shown at block 1300, it
can be applied directly to the virtual disk as shown at block
1302. Using this approach, changes may be directly applied
to the original virtual disk, while an undo log file is also
created as shown at block 1304. In one embodiment, the undo
log file is created Substantially contemporaneously with the
application of the log file changes to the virtual disk. Thus,
when a log file is applied to a recovery server virtual disk, a
new undo log file may be generated on the recovery server
that captures the current set of changes made to virtual disk.
I0088. When a user wants to revert to a particular point in
time of the virtual disk, a reversion request 1400 may be
provided to indicate at least the point in time in which the
recovery virtual disk is to be reverted. The desired reversion
time may be determined as depicted at block 1402. In one
embodiment, undo logs having timestamps back to the
desired reversion time are identified as shown at block 1404.
For example, if an administrator chooses to revert the log file
to a time T1, the timestamp field in log metadata entries can be
compared to the value T1, and those having a timestamp
greater than T1 can be applied to the virtual disk. In one
embodiment shown at block 1406, the undo logs are applied
in reverse chronological order to the virtual disk to revert the
virtual disk to the requested time.
I0089. In one embodiment, applying a log to revert to a
particular time (e.g., time T1) involves once again storing the
information in a similar undo log file so that this change can
also be reverted. Thus, creation of an undo log when reverting
to a prior time such as T1 allows the user to disregard the
attempted reversion to time T1. As a result, the user could
revert and “un-revert' back and forth in time until the user is
satisfied with the recovery time choice.
0090. Using an undo logs approach as described herein, it
can be seen that there is no impact on workload performance.
A workload could provide an undo feature by generating
separate logs while modifying their data. However, since Such
logs would be generated where the workload is running, it
would impact the workload performance due to additional log
writes, and/or involve overprovisioning of storage. In the
proposed approach, the undo logs are not generated on pri
mary server where workload is currently running, and there
fore there is no overhead on active workloads to have multiple
recovery points.
0091. As demonstrated in the foregoing examples, the
embodiments described herein facilitate disaster recovery
and other replication features. In various embodiments,

US 2014/02080 12 A1

method are described that can be executed on a computing
device. Such as by providing Software modules that are
executable via a processor (which includes a physical proces
sor and/or logical processor, controller, etc.). The methods
may also be stored on computer-readable media that can be
accessed and read by the processor and/or circuitry that pre
pares the information for processing via the processor. Hav
ing instructions stored on a computer-readable media as
described herein is distinguishable from having instructions
propagated or transmitted, as the propagation transfers the
instructions versus Stores the instructions such as can occur
with a computer-readable medium having instructions stored
thereon. Therefore, unless otherwise noted, references to
computer-readable media/medium having instructions stored
thereon, in this or an analogous form, references tangible
media on which data may be stored or retained.
0092 FIG. 15 depicts a representative computing system
1500 in which the principles described herein may be imple
mented. The computing environment described in connection
with FIG. 15 is described for purposes of example, as the
structural and operational disclosure for replicating storage or
virtual storage is applicable in any computing environment.
The computing arrangement of FIG.15 may, in Some embodi
ments, be distributed across multiple devices. Further, the
description of FIG. 15 may represent a server or other com
puting device at a primary site, or recovery or other destina
tion site.
0093. The representative computing system 1500 includes
a processor 1502 coupled to numerous modules via a system
bus 1504. The depicted system bus 1504 represents any type
of bus structure(s) that may be directly or indirectly coupled
to the various components and modules of the computing
environment. Among the various components are storage
devices, any of which may store the Subject to the replication.
0094. A read only memory (ROM) 1506 may be provided
to store firmware used by the processor 1502. The ROM 1506
represents any type of read-only memory, such as program
mable ROM (PROM), erasable PROM (EPROM), or the like.
The host or system bus 1504 may be coupled to a memory
controller 1514, which in turn is coupled to the memory 1508
via a memory bus 1516. The exemplary memory 1508 may
store, for example, all or portions of a hypervisor 1510 or
other virtualization software, an operating system 1518, and
a module. Such as a replication management module (RMM)
1512 that performs at least those functions described herein.
The RMM 1512 may be implemented as part of, for example,
the hypervisor 1510 and/or operating system 1518, as may
other management modules such as a VMMS (not shown).
0095. The memory may also store application programs
1520 and other programs 1522, and data 1524. Additionally,
all or part of the virtual storage 1526A may be stored in the
memory 1508. However, due to the potential size of the vir
tual storage disks, one embodiment involves storing virtual
storage disks in storage devices versus memory, as depicted
by the virtual storage 1526B associated with any one or more
of the representative storage devices 1534, 1540, 1544, 1548.
The virtual storage 1526A in the memory 1508 may also
represent any part of the virtual storage that is temporarily
cached or otherwise stored in memory as an intermediate step
to being processed, transmitted, or stored in a storage device
(s) 1534, 1540, 1544, 1548.
0096. The memory may store the queues (not shown),
including one or both of the virtual disk storage request queue
and the log request queue. The memory may also store the log

Jul. 24, 2014

files 1527A described herein. The log files may be stored in
memory 1508 until being transmitted to a recovery site, or
until being stored in storage, etc. For example, one embodi
ment involves storing log files in storage devices instead of
memory, or perhaps after being stored in memory, as depicted
by the log file (LF) 1527B associated with any one or more of
the representative storage devices 1534, 1540, 1544, 1548.
0097 FIG. 15 illustrates various representative storage
devices in which data, virtual storage, and/or log files may be
stored. For example, the system bus may be coupled to an
internal storage interface 1530, which can be coupled to a
drive(s) 1532 such as a hard drive. Storage media 1534 is
associated with or otherwise operable with the drives.
Examples of Such storage include hard disks and other mag
netic or optical media, flash memory and other solid-state
devices, etc. The internal storage interface 1530 may utilize
any type of Volatile or non-volatile storage. Data, including
virtual hard disks (e.g., VHD files) and log files may be stored
on such storage media 1534.
(0098. Similarly, an interface 1536 for removable media
may also be coupled to the bus 1504. Drives 1538 may be
coupled to the removable storage interface 1536 to acceptand
act on removable storage 1540 such as, for example, floppy
disks, optical disks, memory cards, flash memory, external
hard disks, etc. Virtual storage files, log files, and other data
may be stored on such removable storage 1540.
0099. In some cases, a host adaptor 1542 may be provided
to access external storage 1544. For example, the host adaptor
1542 may interface with external storage devices via small
computer system interface (SCSI), Fibre Channel, serial
advanced technology attachment (SATA) or eSATA, and/or
other analogous interfaces capable of connecting to external
storage 1544. By way of a network interface 1546, still other
remote storage may be accessible to the computing system
1500. For example, wired and wireless transceivers associ
ated with the network interface 1546 enable communications
with storage devices 1548 through one or more networks
1550. Storage devices 1548 may represent discrete storage
devices, or storage associated with another computing sys
tem, server, etc. Communications with remote storage
devices and systems may be accomplished via wired local
area networks (LANs), wireless LANs, and/or larger net
works including global area networks (GANs) Such as the
Internet. Virtual storage files, log files, and other data may be
stored on such external storage devices 1544, 1548.
0100. As described herein, the primary and recovery serv
ers communicate information, Such as log files. Communica
tions between the servers can be implemented by direct wir
ing, peer-to-peer networks, local infrastructure-based
networks (e.g., wired and/or wireless local area networks),
off-site networks such as metropolitan area networks and
other wide area networks, global area networks, etc. A trans
mitter 1552 and receiver 1554 are depicted in FIG. 15 to
depict the computing device's structural ability to transmit
and/or receive data in any of these or other communication
methodologies. The transmitter 1552 and/or receiver 1554
devices may be stand-alone components, may be integrated
as a transceiver(s), may be integrated into or already-existing
part of other communication devices such as the network
interface 1546, etc. Where the computing system 1500 rep
resents a server or other computing device at the primary site,
all or part of the virtual disk or other stored data to be repli
cated may be transmitted via the transmitter 1552, whether it
is a stand-alone device, integrated with a receiver 1554, inte

US 2014/02080 12 A1

gral to the network interface 1546, etc. Analogously, where
the computing system 1500 represents a server or other com
puting device at the recovery site, all or part of the virtual disk
or other stored data to be replicated may be received via the
receiver 1554, whether it is a stand-alone device, integrated
with a transmitter 1552, integral to the network interface
1546, etc. As computing system 1500 can represent a server
(s) at either the primary or recovery site, block 1556 repre
sents the primary or recovery server(s) that is communicating
with the computing system 1500 that represents the other of
the primary or recovery server(s).
0101. As demonstrated in the foregoing examples, the
embodiments described herein facilitate disaster recovery
and other replication features. In various embodiments, meth
ods are described that can be executed on a computing device,
Such as by providing software modules that are executable via
a processor (which includes a physical processor and/or logi
cal processor, controller, etc.). The methods may also be
stored on computer-readable media that can be accessed and
read by the processor and/or circuitry that prepares the infor
mation for processing via the processor. Having instructions
stored on a computer-readable media as described herein is
distinguishable from having instructions propagated or trans
mitted, as the propagation transfers the instructions versus
stores the instructions such as can occur with a computer
readable medium having instructions stored thereon. There
fore, unless otherwise noted, references to computer-readable
media/medium having instructions stored thereon, in this or
an analogous form, references tangible media on which data
may be stored or retained.
0102 Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe
cific features or acts described above. Rather, the specific
features and acts described above are disclosed as represen
tative forms of implementing the claims.

1-20. (canceled)
21. Computer-readable media having computer-execut

able instructions stored thereon, wherein the computer-ex
ecutable instructions, in response to execution, cause a virtual
machine host device to perform operations, the operations
comprising:

queuing write requests of a primary virtual machine into a
first queue;

queuing the write requests issued by the primary virtual
machine into a second queue;

updating a virtual disk utilized by the primary virtual
machine according to the queued write requests of the
first queue;

updatingalog file according to the queued write requests of
the second queue; and

transferring the log file to facilitate generation of a repli
cated virtual disk of a target virtual machine.

22. The computer-readable media of claim 21, wherein the
operations further comprise:

requesting that the log file be transferred for use by the
recovery virtual machine;

redirecting new write requests to at least one new log file;
writing write requests that were pending prior to the redi

rection to the at least one new log file;
providing a completion response after the write requests

that were pending prior to the redirection are all written
to the at least one new log file; and

Jul. 24, 2014

in response to the completion response, transferring the at
least one new log file.

23. The computer-readable media of claim 21, wherein the
operations further comprise:

requesting an application-consistent Snapshot of one or
more components of the primary virtual machine; and

completing write operations to the virtual disk according to
the application-consistent Snapshot.

24. The computer-readable media of claim 21, wherein the
computer-executable instructions further cause the log file to
be stored in memory as it is being updated.

25. The computer-readable media of claim 24, wherein the
operations further comprise:

transferring the log file from the memory to an address
associated with the recovery virtual machine.

26. The computer-readable media of claim 24, wherein the
operations further comprise:

transferring the log file from the memory to a non-volatile
storage device in response to an occurrence of a trigger
ing event.

27. The computer-readable media of claim 26, wherein the
triggering event is associated with a threshold size for the log
file.

28. The computer-readable media of claim 21, wherein the
operations further comprise:

creating a second log file at a target server in response to a
request to migrate the primary virtual machine to the
target server;

updating the second log file using duplications of the write
requests that are being used to update the log file; and

utilizing the second log file in connection with the target
virtual machine at the target server.

29. A computing device, comprising:
a memory and a processor that respectively store and

execute instructions, including instructions that imple
ment:

a virtual machine that generates a plurality of storage
access requests targeted to a virtual disk;

a storage request processing module that receives the
plurality of storage access requests and that updates
the virtual disk according to the storage access
requests;

a replication management module that also receives the
storage access requests and that stores information
associated with the storage access requests in at least
one log file; and

a transfer module that transfers the at least one log file to
a destination as a recovery log for at least a portion of
the virtual disk.

30. The computing device of claim 29, wherein:
the storage request processing module comprises:

a virtual disk request queue that queues the received
storage access requests; and

a virtual disk request processing module that updates the
virtual disk with data associated with the storage
access requests queued in the virtual disk request
queue; and

the replication management module comprises:
a log request queue that queues the received storage

access requests; and
a log file request processing module that updates the at

least one log file based on the storage access requests
queued in the log request queue.

US 2014/02080 12 A1

31. The computing device of claim 29, wherein the instruc
tions also implement:

a virtual disk parser module that includes both the virtual
disk request queue and the log request queue.

32. The computing device of claim 29, wherein the
memory also stores the at least one log file.

33. The computing device of claim 32, wherein the instruc
tions also implement:

a storage write control module that initiates the transfer of
the at least one log file from the memory to a non-volatile
storage device in response to an occurrence of a trigger
ing event.

34. The computing device of claim 29, wherein the at least
one log file includes a data structure comprising:

a log file header that includes an address of an end of the at
least one log file and a size of metadata blocks of the at
least one log file;

a plurality of metadata blocks, each including a metadata
header and one or more metadata entries, wherein the
metadata header includes a location of a previous meta
data block, and each metadata entry includes a location
and length of the data associated with each metadata
block; and

a plurality of data blocks reflecting the updates to the
virtual disk.

35. A method of migrating a virtual disk from a source
server to a destination server comprising:

queuing write requests of a virtual machine into a first
queue while the virtual machine is executing on the
Source Server,

queuing the write requests issued by the virtual machine
into a second queue while the virtual machine is execut
ing on the source server;

updating the virtual disk according to the queued write
requests of the first queue;

updatingalog file according to the queued write requests of
the second queue;

transferring the log file to the destination server; and

Jul. 24, 2014

replicating the virtual disk on the destination server
according to the log file.

36. The method of claim 35, wherein the method further
comprises:

requesting that the log file be transferred for use by the
recovery virtual machine;

redirecting new write requests to at least one new log file;
writing write requests that were pending prior to the redi

rection to the at least one new log file;
providing a completion response after the write requests

that were pending prior to the redirection are all written
to the at least one new log file; and

in response to the completion response, transferring the at
least one new log file.

37. The method of claim 35, wherein the method further
comprises:

requesting an application-consistent Snapshot of one or
more components of the virtual machine; and

completing write operations to the virtual disk according to
the application-consistent Snapshot.

38. The method of claim 37, wherein the method further
comprises:

transferring the log file from a memory of the source server
to a non-volatile storage device in response to an occur
rence of a triggering event.

39. The computer-readable media of claim 26, wherein the
triggering event is associated with a threshold size for the log
file.

40. The method of claim 35, wherein the method further
comprises:

creating a second log file at the destination server in
response to a request to migrate the virtual machine to
the destination server;

updating the second log file via duplication of the write
requests that are being used to update the log file; and

utilizing the second log file in connection with execution of
the virtual machine on the destination server.

k k k k k

