PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/35579
GOGF 12/02 Al o

(43) International Publication Date: 15 July 1999 (15.07.99)

(21) International Application Number: PCT/US99/00320 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,

(22) International Filing Date: 6 January 1999 (06.01.99)

(30) Priority Data:
60/070,650
Not furnished

7 January 1998 (07.01.98)
30 December 1998 (30.12.98)

Us
Us

TANDEM COMPUTERS INCORPORATED
200-16,

(71) Applicant:
[US/US]; 10435 North Tantau Avenue, Loc.
Cupertino, CA 95014-0709 (US).

(72) Inventors: GARCIA, David, J.; 24100 Hutchinson Road,
Los Gatos, CA 95033 (US). FOWLER, Daniel, L.; 303
Norwood Drive, Georgetown, TX 78628 (US).

(74) Agents: KRUEGER, Charles, E. et al., Townsend and
Townsend and Crew LLP, 8th floor, Two Embarcadero
Center, San Francisco, CA 94111-3834 (US).

DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.

(54) Titlee TWO-LEVEL ADDRESS TRANSLATION AND MEMORY REGISTRATION SYSTEM AND METHOD

(57) Abstract

A two-level memory region registration and address translation method includes a memory handle table and a translation and
protection table (TPT). Each memory region registered is associated with a unique memory handle index which accesses one entry of the
memory handle table. The accessed entry in the memory handle table stores a memory handle that is combined with virtual addresses in
the registered memory region to access TPT entries storing translation data for the virtual addresses in the registered memory region.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

Spain

PFinland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Stovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 99/35579 PCT/US99/00320

TWO LEVEL ADDRESS TRANSLATION AND MEMORY
REGISTRATION SYSTEM AND METHOD

CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims priority from Provisional Appin. No. 60/070,650,

filed January 7, 1998, the disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

The virtual interface architecture (VIA) has been jointly developed by a
number of computer and software companies. VIA provides consumer processes with a
protected, directly accessible interface to network hardware, termed a virtual interface.
VIA is especially designed to provide low latency message communication over a system
area network (SAN) to facilitate multi- processing utilizing clusters of processors.

A SAN is used to interconnect nodes within a distributed computer system,
such as a cluster. The SAN is a type of network that provides high bandwidth, low
latency communication with a very low error rate. SANSs often utilize fault-tolerant
technology to assure high availability. The performance of a SAN resembles a memory
subsystem more than a traditional local area network (LAN).

The VIA is described in the Virtual Interface Architecture Specification,
Draft Revision 1.0, December 4, 1997. The VI Architecture is comprised of four basic
components: Virtual Interfaces, Completion Queues, VI Providers, and VI Consumers.
The VI Provider is composed of a physical network adapter and a software Kernel Agent.
The VI Consumer is generally composed of an application program and an operating
system communication facility. The organization of these components is illustrated in
Figure 1.

A Vlis depicted in Fig. 2 and consists of a pair of Work Queues: a send
queue and a receive queue. VI Consumers post requests, in the form of Descriptors, on

the Work Queues to send or receive data. A Descriptor is a memory structure that



10

15

20

25

30

WO 99/35579 PCT/US99/00320

2
contains all of the information that the VI Provider needs to process the request, such as
pointers to data buffers.

The VI Provider is the set of hardware and software components
responsible for instantiating a Virtual Interface. The VI Provider consists of a network
interface controller (NIC) and a Kernel Agent (KA).

The VINIC implements the Virtual Interfaces and directly performs data
transfer functions. The NIC provides an electro-mechanical attachment of a computer to
anetwork. Under program control, a NIC copies data from memory to the network
medium, i.e., transmission, and from the medium to the memory, 1.€., reception.

The Kernel Agent is a privileged part of the operating system, usually a
driver supplied by the VI NIC vendor, that performs the setup and resource management
functions needed to maintain a Virtual Interface between VI Consumers and VI NICs.
These functions include the creation/destruction of VIs, VI connection setup/teardown,
interrupt management and/or processing, management of system memory used by the VI
NIC, and error handling. VI Consumers access the Kernel Agent using standard operating
system mechanisms such as system calls. Kernel Agents interact with VI NICs through
standard operating system device management mechanisms.

The VI Architecture requires the VI Consumer to identify memory used
for a data transfer prior to submitting the request. Only memory that has been registered
with the VI Provider can be used for data transfers. This memory registration process
allows the VI Consumer to reuse registered memory buffers, thereby avoiding duplication
of locking and translation operations. Memory registration also takes this processing
overhead out of the performance-critical data transfer path.

Memory registration enables the VI Provider to transfer data directly
between the buffers of a VI Consumer and the network without copying any data to or
from intermediate buffers.

Memory registration consists of locking the pages of a virtually conti guous
memory region into physical memory and providing the virtual to physical translations to
the VINIC. The VI Consumer gets an opaque handle for each memory region registered.
The VI Consumer can reference all registered memory by its virtual address and its

associated handle.



10

15

20

25

30

WO 99/35579 PCT/US99/00320

3

Memory is registered with the VI NIC for two reasons:

1) to allow the NIC to perform virtual to physical address translation

2) to allow the NIC to perform protection checking.

Consumers are able to use virtual addresses to refer to VI Descriptors and
communication buffers. The VI NIC is able to translate from virtual to physical addresses
through the use of its Translation and Protection Table (TPT). The TPT of the NIC
described in the VIA Specification resides on the NIC in order to assure fast, non-
contentious access and because it is accessed during performance critical data movement.
A TPT and method of accessing the TPT are depicted in Fig. 3. The fields of each TPT
entry are:

a) a valid indication bit

b) a physical page address

¢) a protection tag

d) an RDMA Write Enable Bit

¢) an RDMA Read Enable Bit

f) a Memory Write Enable Bit

The size of the TPT is configurable. There is one entry in the TPT for each
page that can be registered by the user. A memory region of N contiguous virtual pages
consumes N contiguous entries in the TPT.

When a memory region is registered with the NIC, the Kernel Agent
allocates a contiguous set of entries from the TPT and initializes them with the
corresponding physical page addresses and protection tag specified by the process that
registered the memory region. The protection tag specified by the process when it creates
a Vlis stored in the context memory of the VI. The NIC has access to the protection tag
in both of these areas, allowing it to compare these values to detect invalid accesses.
Page sizes larger than 4KB are supported and page size may differ among nodes of the
SAN.

The above-described implementation of the TPT has several
disadvantages. If TPT entries are allowed to exist anywhere in memory, an application
could set-up bogus TPT entries which point to any physical address. A RDMA Write
descriptor could then be set up, given appropriate Virtual Address and Memory Handle to
use this bogus TPT entry and scribble anywhere in memory. The standard solution is to

limit the locations of legal TPT entries. The requirement of allocation of contiguous



10

15

20

25

30

WO 99/35579 PCT/US99/00320

4
memory to facilitate bounds checking consumes a large amount of memory. Another
problem resulting from the standard solution is that it may lead to fragmentation of entries
in the TPT which can result in a failure when attempting to find multiple consecutive
entries required when registering large memory regions.

The fragmentation problem is illustrated in Fig. 4 which depicts an
exaggerated example where the TPT range is limited to only eight entries. There are
three active registered memory regions, with TPT owner IDs X, Y, and Z, which
differentiate the registered memory regions. An application cannot register a new two
page memory region, Mem Region 4, because, due to previous fragmentation of the TPT,
no two TPT entries are contiguous. Thus, Mem Region 4 cannot be registered even
though there are three available entries in the TPT.

If the Memory Handles could be reassigned, then larger contiguous sets of
free locations could be found. Unfortunately, this is not possible because the Memory
Handles returned to the applications earlier are already in use in descriptors and it would

be undesirable to stop VI processing and update all the descriptors.

SUMMARY OF THE INVENTION

According to one aspect of the invention, a two-level look-up scheme
utilizes a Memory Handle Index to obtain an index into a table of Memory Handles, the
Memory Handle Table (MHT), used for accessing the TPT.

According to another aspect of the invention, an application receives a
Memory Handle Index when it registers memory. The TPT entries for the registered area
of memory can be moved and the Memory Handles reassigned without requiring the
descriptors, which use the Memory Handle Index, to be updated.

According to another aspect of the invention, the TPT can be stored in any
place in memory and fields for base/bounds checking are included in each MHT entry.

According to another aspect of the invention, the TPT can be
defragmented by moving fragmented entries to free locations and updating the Memory
Handle to point to the new location. Since descriptors in use hold Memory Handle
Indices, the descriptors do not need to be updated.

Other features and advantages of the invention will be apparent in view of

the following detailed description and appended drawings.



10

15

20

25

30

WO 99/35579 PCT/US99/00320

5
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of the Virtual Interface Architecture (VIA);

Fig. 2 is a block diagram of a Virtual Interface (VI);

Fig. 3 is a block diagram of the VIA address translation scheme;

Fig. 4 is a block diagram depicting a fragmented TPT;

Fig. 5 is a schematic diagram of a preferred embodiment of the two-level
address translation mechanism;

Fig. 6 is a block diagram of the MHT entry format and the TPT entry
format;

Fig. 7 is a block diagram of a fragmented TPT utilizing the two level look-
up table scheme; and

Figs. 8A-8C depict the steps of defragmenting the TPT.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

A preferred embodiment of the invention will now be described with
reference to Fig. 5 which depicts a novel two-level scheme for accessing a translation
protection table (TPT) implemented by the network interface card (NIC) and kernel agent
(KA) of the VI consumer as depicted in Fig. 1.

Applications access memory using virtual addresses 50 and Memory
Handle Indices (MHI) 52. The NIC provides the translation to physical addresses. The
MHI value 52 is returned from the VI User Agent during memory registration.

The MHI 52 is an offset into a first level table called the Memory Handle
Table 54. This first level table contains the Memory Handles (MH) 55. The MH is
subtracted from the Virtual Page Number (VPN) 50 to generate a pointer into the second
level Translation and Protection Table (TPT) 56 . This pointer is called the Pseudo
Address (PSA). Note that in the VIA Specification and Fig. 3 this pointer is denoted the
“protection index”. The TPT holds the Physical Page Number (PPN). The MHI is 20 bits,
allowing for up to IM Memory Handles. The present embodiment requires the Memory
Handle Table to reside in physically contiguous memory which begins at the Memory
Handle Base register value.

Each Memory Handle Table entry is 8 bytes. The Memory Handle is 32
bits allowing 4G TPT Entries. Each TPT entry is 8 bytes. Protection checks which limit



10

15

20

25

30

WO 99/35579 PCT/US99/00320

6
the start and extent of TPT entries force them to begin in the lower 8GBytes of memory
because of the size of the TPT Start field in the present embodiment.

The VIA Specification uses terminology which is different from that used
with the presently described NIC regarding the Memory Handle, since the VIA
Specification describes only a one table lookup implementation whereas the present NIC
uses a 2 table lookup implementation for calculating physical addresses. Both the
implementation described in the VIA specification and the preferred embodiments
subtract the Memory Handle from the virtual address to obtain the pseudo-address(PSA).

But the NIC of the preferred embodiment does not get the Memory Handle
from the descriptor, it gets the memory handle from the 1st level MHI table 54 which is
pointed to by the Memory Handle index 52 which is gotten from the descriptor.
Therefore, in the preferred embodiment, the Memory Handle Index 52 is returned by the
VI User Agent RegisterMem call, but in VIA VI User Agent terms the Memory Handle is
returned by the VI User Agent RegisterMem call. As noted, the Memory Handle Index
(MHI) and Memory Handle (MH) are not the same even though the VIA implementation
and the preferred embodiment describe the same VI User Agent call (RegisterMem) as
returning the value the implementation needs.

Fig. 6 depicts the Memory Handle Table entry format 60 and TPT entry
format 70. The TPT Start field 62 is a 4K byte physical address pointer to the beginning
of the block of TPT entries allocated as part of the memory registration. This field is 21
bits in width, requiring TPT entries to start in within the lower 8G bytes of memory. The
TPT Extent field 64 indicates how many 4K byte pages of TPT entries are valid for this
registration. Each page can hold 512 TPT entries. The TPT Extent field is 10 bits in
width, allowing up to 1023 pages, each page containing 512 TPT entries. Therefore, the
maximum memory a single memory registration can handle is 1023 x 512 x Pegasus. For
a Pegasus of 4Kbytes, this is 2G bytes - 2M bytes.

All Memory Handle table entries must be appropriately programmed by
the Kernel Agent. Any unused entry must have its TPT Extent field set to all zeros. The
second level TPT Entries indicated by the TPT Start, TPT Extent pair must also be
programmed by the Kernel Agent. Unused entries must have their valid bits (V) cleared,
this includes unused entries beyond those used for the memory registration, but within the

same 4K byte page as the last valid entry.



10

15

20

25

30

WO 99/35579 PCT/US99/00320

7

Referring back to Fig. 5, the use of the TPT start and Extent fields to
implement base/bound checking will now be described. The Pseudo-Address (PSA)is a
pointer into the TPT. The magnitude of the PSA generated for a particular Memory
Handle is compared to the TPT start field and the sum of the TPT Start and Extent fields
(which sum gives the bound of the TPT). If the generated PSA is less than TPT start or
greater than the sum of TPT Start and Extent than a TPT Extent Violation is signaled.

The use of the two level-level accessing scheme to rearrange TPT entries
to eliminate fragmentation will now be described with reference to Fig. 4, 7, and 8A-8C.
As previously described, a new region of memory must be registered utilizing contiguous
entries in the TPT. Fig. 4 depicts a TPT having three unused entries, but due to previous
assignment of Memory Handles, no two entries are contiguous and a new memory region
of two pages cannot be registered.

Fig. 7 depicts the same memory regions and TPT entries of Fig. 1, but
which utilize the two-level table look-up scheme described above. Thus, a MHI, Ayp to
Anps, has been returned for each memory region registered. Each of these MHIs obtains
an MH from the MH table 54, which, when combined with the Virtual Address provided
by an application, form a PSA (Ay - Ay) that accesses the correct entry in the TPT.

The defragmentation of the TPT to provide contiguous entries will now be
described with reference to Figs. 8A-8C. In Step 1, Fig. 84, is to copy the TPT entry(ies)
to be relocated. In this case the entry from entry[6] is copied to entry[3].

Next, in Step 2, Fig. 8B, the Memory Handles for the relocated TPT
entry(ies) are reassigned. In this case, the MH that previously formed a PSA pointing to
entry[6] is changed to an MH that forms a PSA pointing to entry[3]. Note that the
reassigned MH is still located in the same entry in the Memory Handle table so the MHI
indexes the correct MH to access the correct translation data. vThus, the entries in the TPT
can be moved without having to update the descriptors.

Finally, in Step 3, a new handle, AHg, is added which forms a PSA
pointing to entry[5] and the translation data for Mem Region 4 is stored in entry[5] and
entry[6] of the TPT. The MHI Ayp, is returned to the application registering Mem
Region 4.

In the preferred embodiment, the KA copies the Mem Region 3 data to the
new TPT entry and the changes the data in the Memory Handle table to access the newly



WO 99/35579 PCT/US99/00320

8
copied entry. This freed up three consecutive TPT entry locations which can then be used
for the newly registered Mem Region 4.

The invention has now been described with reference to the preferred
embodiments. Alternatives and substitutions will now be apparent to persons of skill in
art. For example, the particular size of the fields described are not critical to the
invention. In addition, different algorithms for combining a Memory Handle and virtual
address could be utilized. Accordingly, it is not intended to limit the invention except as

provided by the appended claims.



O 00 1 O B~ W N =

[ N e T e Y S e S CRF U Sy
0 3 N U kA W N~ O

O 00 N O W s W N =

WO 99/35579 PCT/US99/00320

WHAT IS CLAIMED IS:

1. A memory registration and two-level address translation and
protection method implemented by a network interface card (NIC) and kernel agent
forming a virtual interface provider, said method comprising the steps of:

providing a memory handle index corresponding to each region of memory
registered;

maintaining a memory handle table with each entry accessed by a memory
handle index and storing a memory handle;

maintaining a translation and protection table including a plurality of TPT
entries, each TPT entry storing a physical address which is the translation of a virtual
address utilized by a virtual interface consumer to access registered memory;

providing a first virtual address to be translated, with the first virtual
address included in a first registered memory region, and also providing a first memory
handle index corresponding to the first registered region;

utilizing the first memory handle to access an entry in the memory handle
table holding a first memory handle;

combining the first memory handle and the first virtual address to form a
pseudo-address for accessing a first entry in the TPT holding a first physical address that

translates the first virtual address.

2. The method of claim 1 further comprising the steps of:

including start and extent fields in each entry of the TPT;

after generating the first pseudo-address to access the TPT:

comparing the first pseudo-address to the start field and indicating an
extent violation if the magnitude of the of the start field is greater than the magnitude of
the first pseudo-address;

comparing the first pseudo-address to the sum of the start and extent fields
and indicating an extent violation of the magnitude of the start and extent fields is less

than the magnitude of the first pseudo-address.



O 0 ~1I O B~ W N

NN N N N RN /e a3 e 3 e s e e

WO 99/35579 PCT/US99/060320

10

3. A method for defragmenting a translation protection table
comprising the steps of:
providing a translation protection table (TPT), having a plurality of TPT
entries, with each TPT entry holding translation data for a virtual address included in a
registered memory region;
providing a memory handle table (MHT), having a plurality of MHT
entries, each MHT entry associated with a registered memory region, with each MHT
entry holding a memory handle, with the memory handle used in conjunction with a
virtual address to access the TPT entry holding translation data for the virtual address;
providing a unique memory handle index for each memory region
registered, with each unique memory handle index for accessing the entry of the memory
handle table holding the memory handle for accessing TPT entries holding translation
data for virtual addresses in the registered memory region;
storing translation data for each page of a first registered memory region
as the content of contiguous entries of the translation protection table, with the first
memory region associated with a first memory handle index;
if sufficient unused entries for storing translation data for a second
memory region, associated with a second memory handle index, exist in the TPT but the
entries are not contiguous:
copying contents of fragmented entries, storing translation data for
the first registered memory region, to selected unused entries in the TPT, to form a
contiguous region of unused TPT entries for storing translation data for the second
memory region;
updating the memory handle, stored in the MHI table entry indexed
by the first MHI, to access the selected TPT entries now storing translation data
for the first registered memory region
storing translation data for the second memory region in the
contiguous region of TPT entries that previously stored translation data for the
first memory region;
storing a memory handle in the entry to the MHT entry accessed by the
second MHI to access the contiguous region of TPT entries holding translation data for

the second memory region.



O 00 ] Y i s W N

L e T e T o Sy ——y
AW = O

WO 99/35579 PCT/US99/00320
1"

4. A system for performing address translation that utilizes a memory
handle index provided to a user application, with memory handle index associated with a
memory region registered by the user application, and with the memory region
comprising a plurality of contiguous virtual addresses, said system comprising:

a memory handle table, having a plurality of MHT entries, with each MHT
entry accessed by a unique memory handle index and holding a memory handle;

a translation and protection table (TPT), having a plurality of TPT entries,
with each TPT entry accessed by a TPT pointer and holding translation data for a virtual
address in a registered memory region;

pointer generating logic, responsive to a particular virtual address and a
particular memory handle index provided by a user application, for combining a memory
handle, accessed from the memory handle table by the particular memory handle index,
with the particular virtual address to generate a particular TPT pointer that accesses

translation data for the particular virtual address from the TPT.



WO 99/35579 PCT/US99/00320
1/4

VI Architectural Model

Application

Vi 0S Communication Interface

Consumer Sockets, MPI,Cluster, Other
Vi User Agent
g OpernvConnect/ Send/Receive/ ‘
M Register Memory RDMARead/RDMAWrite
vi vi vi ca
Kemel Mode ' * * ‘f * 3
€
-3
2 €
. . ' . ]
i i ; . el -' ' || |l :
- Vi Kernel Agent * y ‘ 3 ’ A
M1 Provider | o bl |
B = . "\1 Network Adapter -

Vi Consumer I

v

Send Q Recv Q
[ Deseriotor | ((Bescriptor

| Oescriptor [ Descriptor ]

b » 1L

Send Doorbell

119Q100Q eA[eI8Y

Status Status
v A hd

Network Interface Controtler

!

Packats to/from network

E%,L e(s\]'o()\ 4@\/




WO 99/35579 PCT/US99/00320
2/4
Process using
Viwith Tag X ! NiC
Physical Virtual E Physical
Pages Pages Page Prdtection
Memory : Address Tag
2000 9000 Handle i
— 4000 Tag X
A000 Virtual Protedtion |_2000 Tag X
4000 Address Indéx 7000 Tag X
B000 §
7000 / TPT

‘ TR0k AT
Fia ™

Ay - Virtual Page Address
Ay - Memory Handle

(
Mem Region 3, 1 page, {
(
[Av

Mem Region 1, 3 pages,

Mem Region 4, 2 pages, [Ay - Anal:
Ay - Apgl:
Mem Region 2, 1 page, [Ay - Ana):

TPT Entries:
D Addr

IR E SIS
/9 Z 1 pACdf
RPN
Y l PAccr free

X PAccr
X | PAddr
X_ I PACdr

TPT Bound

AH1] TPT Base

Fon o PRIOR AQT



WO 99/35579 PCT/US99/00320

3/4
Address Translation Mechanism
= 2
Vi V% 50 Physical Address [? 4
[(MHING:0] | voM wa(a3:0] A [Pov/maraz:x)  [@Ayx-1):0]|
z /s
X VA[(X-1):0
VA[43:X] ((x-1):01 X==iog base 2 of page size
+)
b\ : ‘3’(” MHI
" R PSA[43: -M Handle Table Ind
[MbB2h0] | MH@31:0] | \PSA43:X] // M - Memory Handle Table Index
VA - Virtual Address
o Transiatiorv PSA - Pseudo Addrass
b1 — protection PA - Physical Address .
Table X - log base 2 of the Page Size
Memory 4KB minimum size MHS - Memory Handle Table Base
?:l;}gle Ll = peoe 4KB aligned VPN~ Victun! ?...‘g
4KB aligned WYL 8B entry size Wrmbbes
8B entry size (| pe* vaia Pen - ‘PM‘-«‘;J ?“‘f’
[ FOMARW () Wrt, RDMA Access Violtion PAPAN. o
Packet and Access Type
| Tag g Protection Tag Violation
) VI#.PTag
TPT Start /7 TPT Extent Violation
2/
/_E_\ < TPT Extent Violation
TPT Exten
/>\ e hd Memory Handle Table Size Violation
Protection Checks
Fia. <

Memory Handle Table Entry Format (8 bytes) P QO
P
[[ tprex [ TPTSan@a1zy | MH(31:0] |

) TPT Start - Beginning Address (4K byta pointer) to start of TPT entries )
S O U TPT Ext[3:0] - ?PT Extent. The number of consacutive 4K byte pages ot TPT entries
CQ L\L for this TPT block. A value of 0 indicates an invalid entry.
MH - Memory Handie .
P - Page Size Indication. Use large size (VCS.LPS) else use small size (VCS.SPS)
Affects VA bits used in PPA calculation (not shown) 1 bit

TPT Entry Format (8 byte) P 10

v~V
[ Taghia:o) []]] Pad | ‘smpa3nz) |

R
- Physical Addresd page VL m&e¢
V - Valid. It clear then protection check fails; 1 bit

RDMAWTrt - ROMA Write Permission: 1 bit
ADMARead - RDMA Read Permission: 1 bit .
PPTWrt - Processor Page Tatle Write Permission: 1 bit (should always be setin CQ2)

‘Tag - Owner 10 protection check fieid

F;”B* (s




WO 99/35579

4/4

PCT/US99/00320

Mem Region 4, 2 pages, [Aypal:

Ay - Virtual Page Address App - Memory Handle Pointer
Ay - Memory Handle

Handle Table

IEEM_

e

Z [W\ddr
; / Y IPAddr free
F S SEEL
r—-

-—— TPT Bound

Mem Region 4, 2 pages, [Anpal:
Mem Region 3, 1 page, [Anpal:
Mem Region 2, 1 page, (Aypal —~""AH

Mem Region 1, 3 pages, [Anpil

Fog -oA

Handie Table 7/»{

=

(@ F{e) B8

A

Mem Region 3, 1 page, [AHp3]:\ AH?
Mem Region 2, 1 page, [Appa): ~—% A )X( e sl
Mem Region 1, 3 pages, [Appy]: —_AHD __AvAw————{X A(c:g::
-— TPT Base
"/'g\( 7
Step 1: Copy TPT Entry(ies) to be relocated TPTEnties: tpT Bound

3 : .
mm“mk
free

Adar

AvAn T PAddE
AV-A/ Addr e
ArA Accr’vg

dar

Ay Appere——] Ad
- Changed or Added by the Kemel Agent

-— TPT Base

Step 2

- Reassign Memory Handles for

relocated TPT(s)

Mem Region 4, 2 pages, (Anpal
Mem Region 3, 1 page, {Aupal:
Mem Region 2, 1 page, (Anpal: —

Mem Region 1, 3 pages, [Appil—
== - Changed or Added by the Kemal Agent

Fig 4P

TPT Entries:
[T —TPT BOURd
Handle Table £ «j&tmx
~ Al g PAddr free
. A X ﬁcc ; =l
i A A A adr
AHA 1A raar °
AHO Ay-Ap———e{_X_| PAQdr - TPT Base

Step 3: Add New Handle(s) and TPT Entry(ies)

| Mem Region 4, 2 pages, [Anp4l:
‘ Mem Region 3, 1 page, [AHP3}:\W T AAA
|

Mem Region 2, 1 page,

Appali ~—

(
Mem Region 1, 3 pages, (Appil—

Handle Table

A

1ArA
TAA

LS

12 pbab:

d

/ Add

A | X | PAdd
X TPAdd

d

TPT Entries:

l—D/L( f -PA \
] Addr.
Ad free

S e B E fal in]

ol - Changed or Added by the Kemal Agent

- TPT Bound

50
-— TPT Base

|

F:\\; &KC



INMNATIONAL SEARCH REPORT inter.  Jnai Application No

PCT/US 99/00320

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F12/02

According to intemational Patent Classification (IPC) or to both national ciassification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 555 405 A (GRIESMER MARTIN E ET AL) 3
10 September 1996
see column 5, line 41 - column 6, line 19
A US 5 386 524 A (LARY RICHARD ET AL) 1-4
31 January 1995
see column 9, line 17 - column 10, line
68; figure 5A
A EICKEN VON T ET AL: "U-NET: A USER-LEVEL 1-4
NETWORK INTERFACE FOR PARALLEL AND
DISTRIBUTED COMPUTING"
OPERATING SYSTEMS REVIEW (SIGOPS),
vol. 29, no. 5, 1 December 1995, pages
40-53, XP000584816
see page 43, left-hand column, Tine 41 -
page 44, Teft-hand column, Tine 61
-/-=
m Further documents are listad in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents

“T" later document published after the intemational filing date

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, :
Fax: (+31-70) 340-3016 Nielsen, 0

. " . or priority date and not in confiict with the application but
A" documant defining the general state of the art which is not citapd to ‘anerstam the principle or theory upn‘::ieriying the
congidered to be of particular relevance invention
"E" eqnjlier document but published on or after the international "X* document of particular relevance: the claimed invention
filing date cannot be considered novel or cannot be considered to
"L* document which may th|rohw doubts on pn‘o::ijty c!a’im(s) r?r involve an inventive step when the document is taken alone
which is cited to establish the publication date of another " documant of : . . ; :
Pl : P particular relevance; the claimed invention
chtation or other special reason (as specified) cannot be considered to involve an inventive step when the
0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means mants, such combination being obvious to a person skilled
“P* document published prior to the intemational filing date but in the art.
fater than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the intemnational search Date of mailing of the international search report
23 April 1999 29/04/1999
Name and mailing address of the ISA Authorized officer

Fomm PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

intes onal Application No

PCT/US 99/00320

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.

P,A DUNNING D ET AL: "THE VIRTUAL INTERFACE 1-4
ARCHITECTURE"

IEEE MICRO,

vol. 18, no. 2, March 1998, pages 66-76,
XP000751588

see page 71, left-hand column, line 11 -
right-hand column, line 46

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2



INTERNATIONAL SEARCH REPORT

information on patent family members

Inter.  .nal Application No

PCT/US 99/00320

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5555405 A 10-09-1996 NONE
US 5386524 A 31-01-1995 NONE

Form PCT/ISA/210 (patent family annex) (Jkaty 1992)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

