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MACHINE LEARNING TECHNIQUES FOR ESTIMATING MECHANICAL
PROPERTIES OF MATERIALS

BACKGROUND

[0001] Hardness (H) has long been used to estimate material strength (oy), although
the widely used relation H = 3 oy (where H is the Vickers or Berkovich hardness) is
considered only an approximation. Instrumented indentation, where both the penetration
depth (%) into the material surface and the corresponding loading force (P) of the
indenter tip are continuously documented during loading and/or unloading, has been a
topic of experimental and theoretical research throughout the past several decades.
Dimensional analysis and scaling functions have been adopted, and explicit universal
scaling functions have been established for indentation forward and inverse problems
using single and multiple sharp indenter tip geometries for extracting elasto-plastic
material properties from instrumented indentation responses. Additionally, efforts have
been made to extract elasto-plastic properties from spherical indentation load-

displacement curves as well as to quantify the influences of residual stresses.

SUMMARY

[0002] Instrumented indentation, where both the penetration depth into the material
surface and the corresponding loading force of the indenter tip are continuously
documented during loading and/or unloading, has been an important engineering tool for
evaluating material properties. Solving the inverse indentation problem (e.g., estimating
mechanical properties of the material based on measured load-displacement curves
determined from one or more indentation experiments) enables the extraction of elasto-
plastic properties from a given set of indentation data. The inverse indentation problem is
known for its high sensitivity with small experimental errors in indentation curve
characteristics, especially using only a single indenter tip geometry. The high sensitivity
in extracting elasto-plastic properties from indentation responses is related to the
particular functional nonlinearity of the inverse indentation problem. The inventors have

recognized that there is still a great need to significantly improve the accuracy and
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reduce the sensitivity in solving the indentation inverse problem for obtaining elasto-
plastic properties. To this end, some embodiments are directed to using machine learning
(ML) techniques, including a multi-fidelity approach, to significantly improve the
accuracy and predictability of indentation inverse analyses. As discussed in more detail
below, some embodiments relate to the use of one or more of the following ML-based
techniques to solve single, dual and multiple indentation inverse problems.
[0003] Some embodiments are directed to multi-fidelity ML techniques that
achieve one or more of the following:
¢ significantly reduce the required number of high-fidelity data sets to
achieve the same or higher accuracy;
¢ utilize previously-established equations and/or physical laws to improve
the accuracy; and
® integrate simulation data and experimental data for training and
significantly reduce material and/or experimental setup related systematic
erTors.
[0004] Some embodiments relate to a computer system configured to train a neural
network to extract one or more mechanical properties of a material from indentation
parameters for the material. The computer system comprises at least one computer
processor, and at least one non-transitory computer readable medium encoded with
instructions that, when executed by the at least one computer processor, perform a
method. The method comprises providing as input to the neural network, the indentation
parameters for the material, training the neural network to map the input indentation
parameters to the one or more mechanical properties of the material, and storing the
trained neural network on the at least one non-transitory computer readable medium.
[0005] In one aspect, the neural network includes a first portion configured to
receive as input low-fidelity indentation parameters, a second portion configured to
receive as input high-fidelity indentation parameters, and an integration portion that
integrates one or more outputs of the first portion and one or more outputs of the second
portion.
[0006] In another aspect, training the neural network comprises training the first

portion of the neural network based on the low-fidelity indentation parameters and
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training the second portion of the neural network based on the high-fidelity indentation
parameters.

[0007] In another aspect, training the neural network further comprises integrating
both the high-fidelity indentation parameters and the low-fidelity implementation
parameters using convolution and/or recursion.

[0008] In another aspect, a number of datum in the high-fidelity indentation
parameters used to train the first portion of the neural network is less than a number of
datum in the low-fidelity indentation parameters used to train the second portion of the
neural network.

[0009] In another aspect, the high-fidelity indentation parameters include first
indentation parameters determined from one or more simulations and second indentation
parameters determined from one or more indentation tests on the material.

[0010] In another aspect, training the neural network comprises training the neural
network to reduce at least one systematic error by using data determined from one or
more indentation tests on the material to determine at least some of the high-fidelity
indentation parameters.

[0011] In another aspect, the low-fidelity indentation parameters include
indentation parameters determined using one or more simulations.

[0012] In another aspect, the first portion and/or the second portion of the neural
network are pre-trained using a baseline training process, and training the neural network
to map the input indentation parameters to the one or more mechanical properties of the
material comprises training only the second portion of the neural network with high-
fidelity indentation parameters.

[0013] In another aspect, the neural network includes convolutional and recursive
linear and/or nonlinear integration of training data with at least three levels of fidelities.
[0014] In another aspect, the indentation parameters include indentation parameters
for multiple indenter geometries.

[0015] In another aspect, the multiple indenter geometries have different half-
included tip angles.

[0016] In another aspect, the multiple indenter geometries include multiple

indenter shapes.
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[0017] In another aspect, the one or more mechanical properties include a reduced
Young’s modulus, a yield strength, and/or a strain hardening parameter.

[0018] In another aspect, the one or more mechanical properties include at least
two of a reduced Young’s modulus, a yield strength, and a strain hardening parameters.
[0019] In another aspect, the one or more mechanical properties include a plurality
of points on a stress-strain curve.

[0020] In another aspect, the one or more mechanical properties include a plurality
of strain values at different plastic strains.

[0021] In another aspect, the one or more indentation parameters include one or
more indentation parameters extracted from a loading portion of an indentation curve, an
unloading portion of the indentation curve, and/or both the loading and the unloading
portion of the indentation curve.

[0022] In another aspect, the one or more indentation parameters include one or
more of loading curvature, initial unloading slope, and plastic work ratio.

[0023] In another aspect, the one or more indentation parameters include the
loading curvature, the initial unloading slope and the plastic work ratio.

[0024] In another aspect, the method further comprises receiving load-
displacement data for the material, and determining the one or more indentation
parameters from the received load-displacement data.

[0025] In another aspect, the material comprises a 3D printed material.

[0026] In another aspect, training the neural network comprises training the neural
network using training data having more than two levels of fidelities.

[0027] In another aspect, the neural network includes N portions wherein N is
greater than two, each of the N portions being configured to receive as input indentation
parameters having a different fidelity, and at least one integration portion configured to
integrate one or more outputs of the N portions.

[0028] In another aspect, training the neural network comprises training the N
portions of the neural network based on indentation parameters having respective
fidelities.

[0029] Some embodiments relate to a computer system configured to extract one or

more mechanical properties for a material based on one or more indentation parameters
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for the material. The system comprises at least one computer processor, and at least one
non-transitory computer readable medium encoded with instructions that, when executed
by the at least one computer processor, perform a method. The method comprises
receiving load-displacement data from one or more instrumented indentation tests on the
material, determining the indentation parameters for the material based, at least in part,
on the received load-displacement data, providing as input to a trained neural network,
the indentation parameters for the material, determining, based on an output of the
trained neural network, the one or more mechanical properties of the material, and
displaying an indication of the determined one or more mechanical properties of the
material to a user of the computer system.

[0030] In one aspect, the trained neural network was trained using high-fidelity
indentation parameters and low-fidelity indentation parameters.

[0031] In another aspect, the received load-displacement data comprises load-
displacement data from instrumented indentation tests having different indenter
geometries.

[0032] In another aspect, the different indenter geometries have different half-
included tip angles.

[0033] In another aspect, the different indenter geometries include different
indenter shapes.

[0034] In another aspect, the one or more mechanical properties include a reduced
Young’s modulus, a yield strength, and/or a strain hardening parameter.

[0035] In another aspect, the one or more mechanical properties include two or
more of a reduced Young’s modulus, a yield strength, and a strain hardening parameter.
[0036] In another aspect, the one or more mechanical properties include a plurality
of points on a stress-strain curve.

[0037] In another aspect, the one or more mechanical properties include a plurality
of strain values at different plastic strains.

[0038] In another aspect, the one or more indentation parameters include one or
more indentation parameters extracted from a loading portion of an indentation curve, an
unloading portion of the indentation curve, and/or both the loading portion and the

unloading portion of the indentation curve.
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[0039] In another aspect, the one or more indentation parameters include one or
more of loading curvature, initial unloading slope, and plastic work ratio.

[0040] In another aspect, the material comprises a 3D printed material.

[0041] In another aspect, the system further comprises an instrumented indentation
system configured to perform at least one of the one or more instrumented indentation

tests on the material to generate the load-displacement data.

[0042] In another aspect, the instrumented indentation system comprises a robotic
arm.
[0043] In another aspect, the received load-displacement data comprises one or

more load-displacement curves, and wherein the indentation parameters comprise values
derived from the one or more load-displacement curves.

[0044] Some embodiments relate to a method of training a neural network to
extract one or more mechanical properties of a material from indentation parameters for
the material. The method comprises providing as input to the neural network, the
indentation parameters for the material, training, using at least one computer processor,
the neural network to map the input indentation parameters to the one or more
mechanical properties of the material, and storing the trained neural network on at least
one non-transitory computer readable medium.

[0045] Some embodiments relate to a method of extracting one or more
mechanical properties for a material based on one or more indentation parameters for the
material. The method comprises receiving load-displacement data from one or more
instrumented indentation tests on the material, determining, by at least one computer
processor, the indentation parameters for the material based, at least in part, on the
received load-displacement data, providing as input to a trained neural network, the
indentation parameters for the material, determining, based on an output of the trained
neural network, the one or more mechanical properties of the material, and displaying an
indication of the determined one or more mechanical properties of the material to a user
of the computer system.

[0046] It should be appreciated that all combinations of the foregoing concepts and
additional concepts discussed in greater detail below (provided such concepts are not

mutually inconsistent) are contemplated as being part of the inventive subject matter
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disclosed herein. In particular, all combinations of claimed subject matter appearing at
the end of this disclosure are contemplated as being part of the inventive subject matter

disclosed herein.

BRIEF DESCRIPTION OF DRAWINGS

[0047] The accompanying drawings are not intended to be drawn to scale. In the
drawings, each identical or nearly identical component that is illustrated in various
figures is represented by a like numeral. For purposes of clarity, not every component
may be labeled in every drawing. In the drawings:

[0048] FIG. 1A illustrates a load-displacement response of an elasto-plastic
material subject to sharp indentation in accordance with some embodiments;

[0049] FIG. 1B illustrates a stress-strain response of a power law material in
accordance with some embodiments;

[0050] FIG. 2A illustrates a neural network architecture for determining a material
property based on single indentation data in accordance with some embodiments;

[0051] FIG. 2B illustrates a neural network architecture for determining a material
property based on multi-indentation data in accordance with some embodiments;

[0052] FIG. 2C illustrates a neural network architecture for determining a material
property based on multi-fidelity indentation data in accordance with some embodiments;
[0053] FIG. 2D illustrates a generalized neural network architecture for
determining a material property based on multi-fidelity indentation data in accordance
with some embodiments;

[0054] FIG. 3 illustrates a plot showing results of training a neural network having
the architecture shown in FIG. 2A on low-fidelity indentation data in accordance with
some embodiments;

[0055] FIG. 4 illustrates a plot showing results of training a neural network having
the architecture shown in FIG. 2A on high-fidelity indentation data in accordance with
some embodiments;

[0056] FIGS. 5A and 5B illustrate results of training a neural network having the
architecture shown in FIG. 2B on high-fidelity indentation data for the mechanical

properties £~ and o, respectively in accordance with some embodiments;
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[0057] FIGS. 6A and 6B illustrate results of training a neural network having the
architecture shown in FIG. 2C on multi-fidelity indentation data for the mechanical
properties £~ and o, respectively in accordance with some embodiments;

[0058] FIGS. 7A and 7B illustrate results of training a neural network having the
architecture shown in FIG. 2C on multi-fidelity indentation data for the mechanical
properties £~ and o, respectively in accordance with some embodiments;

[0059] FIG. 8 schematically illustrates a load-displacement curve generated from a
loading-unloading test performed by an instrumented indentation system in accordance
with some embodiments;

[0060] FIG. 9 illustrates a flowchart of a process for training a neural network to
map measured indentation parameters to one or more mechanical properties of a material
in accordance with some embodiments;

[0061] FIG. 10 illustrates a flowchart of a process for using a trained neural
network to determine one or more mechanical properties of a material based on
measured indentation parameters in accordance with some embodiments;

[0062] FIGS 11A and 11B illustrate inverse analysis results of mean average
percentage error (MAPE) for predicting different material properties (including yield
strength and any selected points on the stress-strain curve) for two different aluminum
alloys in accordance with some embodiments;

[0063] FIGS. 12A and 12B illustrate inverse analysis results of predicting any
selected data points on the stress-strain curve and hardening exponent for two different
aluminum alloys in accordance with some embodiments;

[0064] FIGS. 13A, 13B and 13C illustrate inverse analysis results of predicting
hardening exponent for two 3D printed alloys in accordance with some embodiments;
[0065] FIGS. 14A and 14B illustrate inverse analysis results for predicting material
properties of two aluminum allows via transfer learning in accordance with some
embodiments; and

[0066] FIG. 15 illustrates an example of a computer system on which some

embodiments may be implemented.
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DETAILED DESCRIPTION

[0067] In recent decades, machine learning has been used very effectively in
diverse applications. Deep learning (e.g., the use of deep neural networks (dNNs)) in
particular has achieved remarkable success. A number of attempts have been made to use
neural networks (NNs) to solve both forward and inverse problems in computational
mechanics, and in particular, trained NNs have been developed to extract material
properties from instrumented indentation data. Training the NN is typically performed
using a large number of numerical simulation data. For example, based on data points of
spherical indentation load-displacement curves from finite element simulations, a trained

neural network can be established to estimate the material parameters.

[0068] FIG. 8 schematically illustrates an example of a typical load-displacement
curve generated from a sharp instrumented indentation experiment. As shown, the load-
displacement curve includes a loading part 810 measured as the indenter is pressed into
the material, and an unloading part 820 measured as the indenter is withdrawn from the
material. Some previous trained NNs were generated to reproduce the loading part of
sharp nanoindentation load-displacement curves. In one implementation, a NN-based
surrogate model was used in order to reduce the number of FEM conical indentation
simulations to extract material properties. Machine learning approaches other than those
that use NNs can also be used to solve inverse indentation problems. For example,
plastic properties of a material may be identified from conical indentation using a
Bayesian-type analysis. The inventors have recognized that previous NN methods used
to solve the inverse indentation problem are generally cumbersome to use in practice and
involve fitting of the indentation loading (and/or unloading) curves or extensive
iterations with finite element simulations. Additionally, such approaches are typically not
systematically tested throughout the broad parameter space for characterizing mechanical

properties of engineering materials.

[0069] In addition to applications of artificial intelligence (AI) and ML algorithms
in image/video analysis, natural language processing, etc., ML has also been used for
various engineering problems, such as discovery of new materials and in healthcare. ML

methods, especially those involve deep learning, typically require large amounts of high-
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fidelity data for training, which may lead to significantly added costs for acquiring the
data, or may be computationally prohibitive to obtain. To reduce the requirements for
large amounts of high-fidelity data, some embodiments use multi-fidelity modeling to
achieve high accuracy by leveraging both low-fidelity, but relatively low-cost data, and a
smaller amount of high-fidelity, but expensive data. Examples of the multi-fidelity
modeling techniques used to train a neural network for solving the inverse indentation

problem are described in more detail below.

[0070] FIG. 1A schematically shows a typical force-displacement (P—#) response
of an elasto-plastic material subject to sharp indentation. The theoretical loading

response for a sharp indenter tip is governed by Kick's Law,
P=Ch® (1),

where C is the loading curvature. At the maximum depth /m, the indentation load

P makes a projected contact area of Am. The average contact pressure is thus defined as

P . L
P... =—= , commonly referred as the hardness of the indented material, in accordance

with the standard for a commercially available indenter. Upon unloading, the initial

u

unloading slope is defined as , where Py is the unloading force. At the complete

hﬂl
unloading, the residual depth is 4;. The area under the loading portion is defined as the
total work Wi; the area under the unloading portion is defined as the recovered elastic
work We; and the area enclosed by the loading and unloading portions is defined as the

residual plastic work W, = W, — We.

[0071] FIG. 1B schematically shows a typical stress-strain response of a power law
material, which, to a good approximation, can be used for many engineering materials.
The elasticity follows Hooke’s law, whereas the plasticity follows von Mises yield
criterion and power-law hardening. True stress and true strain are related via the

following equation.

O =

{Ee, for o < o, )

Re", foro 2 o,

- 10 -
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where FE is the Young's modulus, R is a strength coefficient, # is a strain
hardening exponent, and oy is the initial yield stress at zero offset strain, also referred to
herein as the “yield strength.” In the plastic region, true strain can be further decomposed

to strain at yield and true plastic strain: € = &, +¢&,. For continuity at yielding, the

following condition must hold.
o, =Ee, =Re; (3).
Thus when ¢ > oy, eqs. (2) — (3) yield

Oy

o =0, £1+£gpj 4).

[0072] In contact mechanics involving an indenter in contact with a substrate
material surface, the reduced modulus, E, is often used to simplify the problem, and is

defined as

1

£ {1 v: o1 Vi}

where E is Young’s modulus of the substrate material, and v is its Poisson’s ratio;

while E; is Young’s modulus of the indenter, and v;is its Poisson’s ratio.

[0073] In general, forward modeling techniques allow for the calculation of a
unique indentation response for a given set of elasto-plastic properties, whereas inverse
modeling techniques enable the extraction of elasto-plastic properties from a given set of
indentation data. A representative plastic strain & can be defined as a strain level which
allows for the construction of a dimensionless description of indentation loading
response for a particular sharp indenter tip geometry, independent of strain hardening
exponent n. A comprehensive framework using dimensional analysis to extract closed
form universal functions was previously developed. Values of representative plastic

strain & were identified versus different indenter geometries among others. It should be

noted that & also depends on how exactly it is defined.

- 11 -
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[0074] Previously, universal dimensionless functions were constructed for single
sharp indentation and dual/multiple indentation with two indenter tip geometries to
formulate forward and inverse modeling techniques. In brief, the forward modeling
techniques were found to be robust with low sensitivity, whereas the inverse modeling
techniques were found to be more sensitive to small experimental errors in extracting
elasto-plastic properties. Also it was found that the uniqueness of the solution was not
always guaranteed at certain parameter ranges, especially for solving the single

indentation inverse problem.

[0075] Instead of directly using data points within individual indentation curves for
training a NN, as in some previous approaches, some embodiments described herein
train a NN by mapping well-established indentation parameters such as loading curvature

P
C, initial unloading slope, d—}: , plastic work ratio, W,/ W, etc., provided as input to
h,

the NN to elasto-plastic material parameters such as Young’s modulus, E (or reduced
modulus, E), yield strength, &, any or all data points on the stress-strain curve,
hardening exponent, n, etc., defined in eqn. (2), or other material parameters
characterized by the stress-strain curve, as the output of the NN. Training a NN in this

way implicitly utilizes physically-based scaling laws such as Kick’s law to simplify the

inverse problem and reduce data noise.

[0076] In some embodiments, NNs are trained using data generated using finite
element conical indentation models and/or data estimated from previous inverse
modeling techniques. In the examples described herein, additional finite element

simulations were also performed to add more data sets.

[0077] For solving the single indentation inverse problem, two fully-connected
neural networks (NNs) were trained separately to represent the mapping from input
parameters x; (e.g., load-displacement parameters {, i—f . %3}) to material mechanical
properties y; (e.g., £* and &), respectively. FIG. 2A illustrates a neural network

architecture used in accordance with some embodiments to solve the single indentation
inverse problem. In one implementation, the NN architecture had three layers with 32

neurons per layer. The selected nonlinear activation function connecting the nodes

- 12 -
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between layers was the scaled exponential linear unit (SELU). To avoid over-fitting, L
regularization with strength 0.01 was used. The loss function minimized during training
was the mean absolute percentage error (MAPE). The NNs were optimized using the

Adam optimization algorithm with a learning rate 0.0001 for 30000 steps.

[0078] For solving the dual/multiple indentation inverse problem, the NN

architecture shown in FIG. 2B was used. In this architecture, the load-displacement

o BE W .. ) )
parameters {, = f} measured using indenter tip(s) with a half-angle of 70.3 degree,

and the load-displacement parameters (represented as C') measured using indenter tip(s)
with a half angle of 50, 60 and 80 degree were used as the input parameters x; of neural
network, as shown. For the dual/multiple indentation problem, the same neural network
architecture as described above for the single indentation problem (e.g., 3 layers, 32
neurons per layer) was used, with the exception of a larger learning rate = 0.001. For
both the single indentation inverse problem and the dual/multiple indentation inverse
problem, only the mechanical property E* is shown as the neural network output y;.
However, a similar neural network architecture was also used for obtaining the
mechanical property ,, of the material tested. In some embodiments, the NN techniques
described in herein may be used to determine any suitable mechanical property of the

material including, but not limited to any or all data associated with a stress-strain curve.

[0079] For solving the multi-fidelity neural network inverse problem, the NN
architecture shown in FIG. 2C was used. Low fidelity ¥, is the output of a neural

network with input x directly, and high fidelity v, is a function of x and 3:
Ve ld} = wyy {x) + wi PN "\-k-}}s
where £{x, v, {x}}is a weighted summation of linear function g and

nonlinear function £,

NEVLENESET

J iﬁ‘ ¥y X } - W j §§?Sv8°ﬂ?"i'§" ¥ ii} iT E“““'%'f sorimear U0 YL "\‘&} E

[0080] The following equation was used to correlate the high- and low-fidelity
data:

ro= . +eltanbha, - £ Eoo ne Y A $ambrer - £ e s 1}

¥ = ¥ T E IR ] iiﬂam"{*\'?}"éx" T iannas f}‘;ﬂ-m&sm*}“i“‘?}"f.:»“‘;"? (6)

- 13 -
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where fpeqr oy} and Fignimeqs (% ¥} are linear and nonlinear functions of
{x. ¥}, respectively; £ = (3{1}is a preselected small positive number, and s, . are
parameters to be trained with initial values 0. The term ¥; was added explicitly because
the residual ¥, — ¥ between two indenters is usually small, and thus it is easier to learn
the residual than to learn v, directly. Because the residual v, — 37 is usually at least one
order smaller than ¥, € = 0.1 was used. Additionally, the multi-fidelity architecture
illustrated in FIG. 2C can be used for multiple indentation with different tip geometries
as well. Secondly, when there are data sets that have different levels of fidelity (in
additional to the simple low and high fidelities), the multi-fidelity architecture can be
extended for properly utilizing such complex multi-fidelity data sets; a generalized multi-
fidelity architecture is shown in Fig. 2D as an example. Thirdly, all these approaches can

be used for extracting plastic properties other than yield strength (e.g., hardening

exponent 7).

[0081] FIG. 2D illustrates a generalized multi-fidelity architecture in accordance
with some embodiments. Consider & models of increasing fidelity 1, ¥z, ..., ¥ With
input x. ¥ is a function of x directly: v {x} = Ff{x}, and =, is constructed recursively for
£

X} = oy veoq (81w fie sy (03, where

#

4

Fx {x, Fe—1 {ISL::} = wzf kiinsse {\}{, Fe-1 {xi}+ Wy f&,z@mai imsar {k"f ¥Fe—3 ‘\1‘}; & and the nonlinear

5.

parts i .oeiswess Can be chosen as neural networks. The same function for § and f.44 can

be shared in some cases, e.g., when the dataset size of §, or fi+4 1s very small, or when

the fidelity of 1, and =y, ;4 are similar.

Example Approach #1: Integrating data generated from previously established equations

(low-fidelity data) and finite element simulations data (high-fidelity data) for improved
ML results.

[0082] The multi-fidelity approach was tested using conical single indentation data
for materials with # < .3, which covers the material parameter space for the majority of
engineering metals. The many low-fidelity data sets are generated by using the
established formulas described in Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA,

Suresh S. Computational modeling of the forward and reverse problems in instrumented
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sharp indentation. Acta Materialia 2001; 49(19):3899-3918 (“Dao 2001”). The high-
fidelity data sets were generated from finite element simulations. By using the multi-
fidelity approach, a higher accuracy was achieved than using only low-fidelity data sets

or using only high-fidelity data sets, as described in more detail below

Example Approach #2: Solving the 3D indentation problem (e.g., with Berkovich tip),

integrating 2D axisymmetric finite element data sets (low-fidelity data) and 3D finite

element data sets (high-fidelity data) for improved ML results.

[0083] Previous inverse modeling techniques based on conical indentation finite
element results were used to obtain approximate solutions of Vickers or Berkovich 3D
indentation problems. Some embodiments integrate a large number (e.g., 100) of low-
cost 2D axisymmetric finite element data sets (low-fidelity data) and a limited number
(e.g., fifteen) higher-cost 3D finite element simulation data sets (high-fidelity data) to
solve the Berkovich indentation inverse problem. With the multi-fidelity approach, very
good accuracy was achieved with only a small number of high-fidelity data sets, as
described in more detail below, and the multi-fidelity approach outperformed the

previously established techniques based on only 2D axisymmetric finite element data.

Example Approach #3: Learning and correcting material and/or setup specific

systematic errors, including some experimental data sets as part of the high-fidelity data

sets for improved ML results.

[0084] For engineers who have extensive experiences with instrumented-
indentation experiments, material-specific (e.g., for a material that is not well-
represented by power law hardening) and/or equipment-specific (e.g., nonlinear machine
compliance) systematic errors can be exaggerated when performing inverse analyses.
Instead of using the inverse analysis results (especially the extracted plastic properties) at
their face values, these results obtained by indentation are more often used for ranking
material properties. The high sensitivity in solving the indentation inverse problem only

makes the situation worse. In some embodiments, this issue is at least partially overcome
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by adding some experimental data into the high-fidelity data sets used to train the NN for
multi-fidelity training Example Approach #2, described above. Specifically, the low-cost
2D axisymmetric finite element data sets were still used as low-fidelity data, and the
limited number of 3D Berkovich indentation finite element data sets were used together
with part of the experimental data sets as high-fidelity data. This “hybrid” multi-fidelity
approach with the high-fidelity data sets including both simulated data and actual
experimental data was tested using Berkovich indentation experiments from Al-6061,
Al-7075 and a 3D-printed Ti alloy, with significantly improved results, as discussed in

more detail below.

Experimental results

[0085] The results of using ML and the NN architectures shown in FIGS. 2A and
2B are first described, followed by the results using different variations of the multi-
fidelity approach (e.g., using the architectures shown in FIGS. 2C and 2D). In most
cases, the results are compared with high-fidelity finite element simulation data for
evaluating the performance of the NN. In addition, verification and performance

evaluation were carried out using Berkovich indentation experimental data sets from Al-

6061, Al-7075 and a 3D-printed Ti alloy.

Training NNs using data generated from previously established equations

[0086] To demonstrate that NNs are capable of representing the correlations

7

¥

(=]

|

between input parameters x; {C, "} and output elastoplastic parameters (e.g., E or

§}.;|Fx

NUOW

P2
o

oy), a data set based on the formulas established in Dao 2001 for conical indentation was
generated, and the NNs were trained using these data points, as shown in FIG. 3. The
dotted lines 310 and 312 in FIG. 3 show the average error of directly applying the
equations in Dao 2001 to estimate mean absolute percentage error (MAPE), and the solid
lines 314 and 316 show the errors of the NNs in estimating E” and oy, respectively,
versus different training data set size. All data in FIG. 3 assumes a conical indenter with

a half-included tip angle of 70.3°. MAPE was calculated using a high-fidelity data set
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generated by finite element method (FEM) simulations (see Dao 2001 for model setup).
The FEM dataset was of size 100, and 3 data points with n > 0.3 and oy/E" > 0.03 where
the inverse problem may have non-unique solutions were removed. As shown in FIG. 3,
errors for extracting oy (~50% or higher) were much larger than those for extracting E”
(~10%), showing the inherent high sensitivity of the inverse problem, especially for
plastic properties. As expected, using only data generated from the equations in Dao
2001 for training, the trained NNs did not perform better than the performance of those

formulas even with a high number of training data points.

Training NNs using data obtained from high-fidelity finite element simulations.

[0087] FIG. 4 shows the results of training NN to extract the mechanical
parameters E~ and oy from load-displacement characteristics using different numbers of
conical indentation finite element simulation data points (high-fidelity data). The same
conical finite element simulation data mentioned above for FIG. 3 was used. The dotted
lines 410 and 412 show the average error of directly applying the previous established
equations in Dao 2001, and the solid lines 414 and 416 show the errors of E and oy,
respectively, versus different training data set size. All data in FIG. 4 assume a conical

indenter with a half-included tip angle of 70.3°.

[0088] As shown, even when only twenty high-fidelity data points were used for
training the NN to extract E”, the trained NN performed better than using the previously
established technique in Dao 2001. For extracting oy, fifty or more data points were
required to achieve better accuracy than the Dao 2001 technique established by direct
fitting of the finite element data points. With eighty data points for training the NN, the
average error for extracting E~ was improved to ~5%, which is significantly lower than

~8% MAPE from using the technique in Dao 2001.

Training NNs using finite element data obtained from multiple indenter geometries.

[0089] FIGS. 5A and 5B show the results of training NNs for E" and Oy,

respectively, using finite element (high fidelity) data recorded using 2 or 4 indenters with
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different tip geometries (e.g., using the NN architecture shown in FIG. 2B). The conical
finite element simulations were performed using 100 different elasto-plastic parameter
combinations as used above for obtaining single-indentation results. The dotted lines 510
and the dash-dotted lines 512 show the average error of directly applying the previous
established single-indentation formulas in Dao 2001 and dual-indentation formulas in
Chollacoop N, Dao M, Suresh S. Depth-sensing instrumented indentation with dual
sharp indenters. Acta Materialia 2003; 51(13):3713-3729 (“‘Chollacoop 2003”),
respectively. The solid lines 514 and solid lines 516 show the errors of 2-indenters and 4-
indenters results, respectively, versus different training data set size. The 2-indenters data
were obtained using conical tips with 70.3° and 60° half-included tip angles, and the 4-
indenters data were obtained using conical tips with 70.3°, 50°, 60° and 80° half-included

tip angles.

[0090] The trained NN for 2 indenters (solid lines 514) and 4 indenters (solid
lines 516) performed better than the NN trained on single indenter data, shown in FIG.
4. Accordingly, FIGS. 5A and 5B demonstrate that multiple indenter geometries improve
the accuracy of the mechanical property estimation. With large enough training data size
(>20 for E*, >60 for oy with 2 indenters, and >90 for gy with 4 indenters), the trained
NNs began to outperform the dual indentation technique established in Chollacoop 2003.
For the trained 2-indenters NN, the average error for E achieved an accuracy of ~2%,
which is better than the accuracy achieved in both Dao 2001 and Chollacoop 2003 using
conventional fitting functions. For the trained 4-indenters NNs, the average error for E°
achieved an accuracy of < 2%, and for oy the average error was < 7%. Note that with the
traditional algorithms, it is not straightforward to utilize “redundant” information for
solving unknown variables, while in the case of training the 2-indenters or 4-indenters

NNs more input variables can be used.

Improving inverse analysis results using multi-fidelity ML approaches

Example Approach #1: Integrating data generated from previously established equations
(low-fidelity data) and finite element simulations data (high-fidelity data) for improved
ML results.
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[0091] In this example, the multi-fidelity approach described above was tested
using the conical single indentation data using only materials with = < 8.3, which covers
the material parameter space for the majority of engineering metals, with the result
shown in FIGS. 6A and 6B. The NNs were trained by integrating low-cost low-fidelity
data using the previously established equations in Dao 2001 together with a limited
number of high-fidelity FEM data for extracting E” (FIG. 6A) and oy (FIG. 6B). The
low-fidelity data used 10,000 data points (for extracting E") or 100,000 data points (for
extracting oy) determined from the formulas in Dao 2001. The high-fidelity data were
from the finite element simulations. All data in FIGS. 6A and 6B assumed a conical

indenter with a half-included tip angle of 70.3°.

[0092] By using the multi-fidelity approach (solid lines 614), (i) a higher accuracy
was achieved than using only low-fidelity data (dashed lines 610) or using only high-
fidelity data (solid lines 612), and (ii) the required number of high-fidelity data points for
achieving a high accuracy was significantly reduced. For example, only ten high-fidelity
data points were needed to achieve a 5% average error for extracting E*, and only forty
high-fidelity data were needed to achieve better accuracy for extracting 6y compared to

the previously-described function-fitting technique described in Dao 2001.

Example Approach #2: For solving 3D indentation problem (e.g., with Berkovich tip),
integrating 2D axisymmetric finite element data sets (low-fidelity) and 3D finite element

data sets (high-fidelity) for improved ML results.

[0093] FIGS. 7A and 7B show the results of multi-fidelity NNs trained by
integrating 2D axisymmetric FEM simulation results (low-fidelity data) together with 3D
FEM simulation data (high-fidelity data) for extracting the mechanical properties E*
(FIG. 7A) and oy (FIG. 7B). The low-fidelity data included 97 axisymmetric FEM
simulations with different elasto-plastic parameters. All data in the figure were simulated

using a 3D Berkovich indenter.

[0094] Although conical indentation finite element results with a 70.3° included
half-angle is considered as a good approximation of actual indentation results from a 3D

Berkovich or Vickers tip, significant errors can still occur due to the inherent high
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sensitivity of the inverse problem, especially for extracting plastic properties, as shown
in FIGS. 7A and 7B. With the multi-fidelity approach, better results were obtained with a
small number of high-fidelity data points, and the multi-fidelity approach outperformed

the previously established algorithm based on 2D axisymmetric finite element results.

Example Approach #3: For learning and correcting material and/or setup specific

systematic errors, including some experimental data sets as part of the high-fidelity data

sets for improved ML results.

[0095] In this example, the trained NNs obtained above for Example Approach #2
for a Berkovich indenter tip were tested using two indentation experimental data sets
from Aluminum alloys Al6061 (Table 1) and Al7075 (Table 2). The indentation data sets

used were the same as those used in Dao 2001, with a slightly different way of accessing

& per its definition. The results are better than using the previously-established
h‘ﬂl

equations in Dao 2001. Both sets of results shown in Tables 1 and 2 seem to have

systematic errors, especially for ay.

AT
R
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H N
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R, QR 3
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67,2

13.92%

Std/X | 2.61% 9.46%
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Table 1. Inverse analysis results for A16061 using trained NNs through a multi-fidelity
approach. The tip geometry is Berkovich. The average errors are evaluated as absolute

values.

Test 1] TLY

33 ~35,
Test ¥ | TLO 37 =36,
Test 3 | T21 323 35,
Test & | 737 334 =32,
Test & 1 Thd 350 ~33
Jost &6 | T8 d47 -3
Ave 3 3% 33.4
Std L.67 id
Sl /N 2.27% 2.85%

Table 2. Inverse analysis results for A17075 using trained NNs through a multi-fidelity
approach. The tip geometry is Berkovich. The average errors are evaluated as absolute

values.

[0096] In some embodiments, ML was used to learn and reduce the incurred
systematic errors observed in the results by randomly picking three experimental data
points as added high-fidelity data in the NN training process described above in multi-
fidelity Experimental Approach #2. Specifically, the low-cost 2D axisymmetric finite
element data sets were still used as low-fidelity data, and the limited number of 3D
Berkovich indentation finite element data were used together with three additional

experimental data points as the high-fidelity data used to train the multi-fidelity NN.

[0097] Using this approach, there were twenty total unique combinations: for all
twenty groups of Al6061 results, the combined error of E~ was 2.44+/-0.80%, and the
combined error of oy was 3.61+/-3.42%; for all twenty groups of Al7075 results, the
combined error of E” was 3.514/-2.37%, and the combined error of oy was 3.89+/-2.38%.

Tables 3 and 4 show the results for three separate tests using this approach for A16061
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and Al 7075, respectively. It appears that significant improved accuracy can be achieved

for oy with this approach.

E* {GPa) ¥

71

T

67,0
PR2
7.08%

Table 3. Inverse analysis results for A16061 using trained NNs through a “hybrid” multi-
fidelity approach. The tip geometry is Berkovich. The average errors were evaluated as

absolute values.

Awe

S
S /X

Table 4. Inverse analysis results for A17075 using trained NNs through a “hybrid” multi-
fidelity approach. The tip geometry is Berkovich. The average errors were evaluated as

absolute values.

[0098] The ML methods and NN techniques described herein were also tested on
two sets of experiments performed on 3D printed Ti-6Al-4V alloys. For indentations
made on Ti-6Al-4V B3067 surface, Table 5 shows the P-A curve characteristics extracted
from the raw indentation data. Table 6 shows the inverse analysis results using
indentation P-h curve characteristics in Table 5, using equations in Dao 2001 (Table
6(a)), and trained NNs (Example Approach #2) through a multi-fidelity approach (Table
6(b)). The tip geometry in both cases had a Berkovich geometry. The average errors
were evaluated as absolute values. Both methods exhibited an accuracy of ~20% in

estimating £, but high errors in estimating oy, averaging 137% and 96% respectively.
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The trained NNs results did show smaller standard deviations in estimating both £ and

oy, and had better performance in estimating oy.

B30&7 € {GPa} dP/dh {kN/m) W/ Wit A {pm) PN}

Test1 128.376 205.53 0.727352 0.263752 0.009
Test 2 144,354 201.097 0.71536%9 (0.245694 0.009
Test 3 133.248 201.712 0.737831 0.2558891 0.009
Test 4 127.094 208.297 0.738523 0.26611 0.009
Test 5 129.878 210.01 0.731975 0.263242 0.009
Test6 132,799 189.346 0.736772 (0.260331 0.009
Test 7 126.814 212.563 0.736888 0.266403 0.009
Test 8 137.354 211.219 0732194 0.255978 0.009
Test9 130.028 201.245 0.735786 0.26309 0.009

Table 5. Indentation characteristics extracted from a set of raw indentation curves of a

3D printed Ti-6Al1-4V alloy (B3067).

(a) (b)

83067 E*{GPa} err% o {MPa} err% B3067 E*{GPa) err % 7 {MPa} err%
Testl 132 20.62% 2487 121.81% Test 1 129 17.72% 2141 80.95%
Test 2 133 21.30% 3062 173.13% Test 2 135 23.08% 2442 117.83%
Test3 122 11.30% 2849 154.16% Test 3 130 18.58% 2251 100.84%
Test 4 128 18.12% 2449 118.50% Test 4 129 17.86% 2091 86.56%
Tests 135 23.50% 2454 118.94% Test 5 131 19.83% 2116 88.72%
Test & 120 9.01% 2887 157.56% Test &6 129 17.43% 2264 102.00%
Test7 136 23.88% 2344 109.08% Test7 131 19.22% 2048 82.72%
Test 8 137 24.81% 2701 140.82% Test 8 136 24.31% 2230 98.96%
Test9 122 11.57% 2700 140.84% Test 9 128 16.77% 2203 96.48%
Ave 130 18.21% 2659 137.22% Ave 131 18.42% 23198 86.12%
Std 6.3 228 Std 2.7 111

Std/X 5% 9% Std/X 2% 5%

Table 6. Inverse analysis results using input data from Table 5 for a 3D printed Ti-6Al-
4V alloy (B3067), using (a) equations in Dao 2001, and (b) trained NNs through a multi-
fidelity approach. The tip geometry is Berkovich. The average errors are evaluated as

absolute values.

[0099] Table 7 shows the P-h curve characteristics obtained after correcting the
raw indentation data with an estimated indenter tip radius of 0.5 pm. Table 8 shows the
inverse analysis results using the trained NNs obtained above (multi-fidelity Example
Approach #2) for a Berkovich tip with the input data from Table 7. As shown, careful tip

radius correction reduced the errors for extracted £~ and oy.
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83067 C {GPa} dP/dh (kN/m}  Wp/wt A {pm} P (N)

TJest 1 §5.8243 205.53 0.727352 0.306308 0.00%
Test 2 102.87 201.097 0.715367 0.285786 0.009
Test 3 964741 201.712 0.737828 0.305434 G.00%
Test 4 94.3045 208.297 .738523 0.308928 .00
Test 5 95,6925 210.01 0.731974 0.306679 $.009
Test & 088.4949% 199.346 0.736771 0.302285 0.00%
Test 7 93.4397 2312.563 (0.736889 0.310354 0.00%
Test 8 93,3014 211,219 0.732193 0.301055 $5.009
Test 9 96.785 201.245 0.735786 0.304943 0.009

Table 7. Indentation characteristics extracted from a set of indentation curves of a 3D

printed Ti-6Al1-4V alloy (B3067), after tip radius correction.

B30R7 £7* {GPa) are % 7, {MPa} ery %

Test 1 103 5.30% 1516 35%.20%
Test d 106 3.76% 1558 39.08%
Test 3 104 5.51% 1608 43.54%
Test 4 104 5.45% 1503 34,00%
Test & 104 4,93% 1497 33.52%
Test & 104 4.83% 1650 47 2%
Test 7 104 5.32% 1429 27.48%
Test 8 107 2.23% i561 38,22%
Test S 103 5.64% 1608 43.41%
Ave 104 4.8%% 1548 338.08%
&td 1.3 &5

Sted 1% 4%

Table 8. Inverse analysis results using input data from Table 7 for a 3D printed Ti-6Al-
4V alloy (B3067), using trained NNs through a multi-fidelity approach. The tip geometry

is Berkovich. The average errors were evaluated as absolute values.

[00100] It is noted that the results shown in Table 6 appear to have systematic bias
for estimating both E” and oy, and the results in Table 8 appear to have systematic bias
for estimating oy. In some embodiments, ML is used to learn and reduce the incurred
systematic errors by randomly picking three out of nine experimental data points as
added high-fidelity data in the NN training process described above in multi-fidelity
Example Approach #2. Specifically, the low-cost 2D axisymmetric finite element data
sets were used as low-fidelity data input, and the limited number of 3D Berkovich

indentation finite element data were used together with three additional experimental
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data points as high-fidelity data input in the multi-fidelity NN architecture shown in FIG.
2C. There were 84 total unique combinations for randomly selecting the three
experimental data points to include in the high-fidelity data input. When the data in
Table 5 were taken as input (without tip radius correction), for all 84 groups of 3D
printed Ti-6Al1-4V B3067 results, the combined error for extracting E~ was 6.8+/-1.8%,
and the combined error for extracting oy was 5.9+4/-2.8%. Taking the data in Table 7 as
input (with radius correction), for all 84 groups of 3D printed Ti-6Al-4V B3067 results,
the combined error for extracting E~ was 1.4+/-0.4%, and the combined error for
extracting oy was 6.04/-2.4%. In each case, a significant improvement in extracting both
E" and oy was observed with this “hybrid”” multi-fidelity approach. In this case, the
“hybrid” multi-fidelity approach learns and corrects the errors from tip radius and other

systematic biases.

[00101] For indentations made on Ti-6Al1-4V B3090 surface, the P-/ curve
characteristics are shown in Table 9, obtained after correcting the raw data with
estimated indenter tip radius of 0.5 um. Table 10 shows the inverse analysis results using
the trained NNs obtained above (Example Approach #2) for a Berkovich indenter tip
geometry taking input data from Table 9. The results for oy appear to have systematic
bias. For a different microstructure resulting from a different printing condition (B3090),
the same approach with ML was used to learn and reduce the incurred systematic errors
by randomly picking three out of nine experimental data points as added high-fidelity
data in the NN training process described above in multi-fidelity Example Approach #2.
There were 84 total unique combinations: for all 84 groups of 3D printed Ti-6Al-4V
B3090 results, the combined error for extracting E" was 2.74/-0.7%, and the combined
error for extracting oy was 6.8+/-3.0%. Improved accuracy for extracting both E” and oy
was observed with this “hybrid” multi-fidelity approach, demonstrating again the

effectiveness of this approach.
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B30DO C{GPal  dPidh (kN/m)  Woiwt B, um) AL (N
Test 1 97 5508 189.343 (.737209 0.303744  0.009
Test 2 95,2768 203.147 0720715 0.307347  0.009
Test3 51,1717 193,866 (.739234 0314191  0.009
Test4 84.6713 205276 0752419 0.326028  0.009
Test S 93,3834 206378 0725744 0.310447  0.009
Test 6 100,69 187204 0,722895 0.298072  0.009
Test 7 96,3438 191.464 0714822 0.30564 0009
Test 8 97.3653 194.4 (.726444 0304032  0.009
Test 9 101.336 193,795 0720861 0298017  0.009

Table 9. Indentation characteristics extracted from a set of indentation curves of a 3D

printed Ti-6Al1-4V alloy (B3090), after tip radius correction.

B3040 £* {GPa} err % 0Pl err %
Test 1 Q2 §5.87% 1H5% 41.848%
Tast 2 103 £.29% 152¢ 30.89%
Test 3 94 2.56% 1428 28.36%
Test 4 aR 10.89% 1206 3.22%
Test 5 103 5.32% 1501 2R.48%
Tast & 102 £.54% 1688 44.56%
Test 7 a9 Q.29% 1569 34.37%
Test 8 103 5,48% 1633 38.85%
Test @ 105 &, 49% 1664 42 44%
Ave 0y 7.48% 1548 32.50%
Sted 2.2 138

S fX 29k 9%

Table 10. Inverse analysis results for a 3D printed Ti alloy using trained NNs through a
multi-fidelity approach. The tip geometry is Berkovich. The average errors were

evaluated as absolute values.

[00102] Another variation of the “hybrid” multi-fidelity approach was also tested. In
this test, ML was used to learn and reduce the incurred systematic errors by randomly
picking some indentation experimental data points from a different material (while using
the same experimental/post-processing setup) as added high-fidelity data in the NN
training process described above in multi-fidelity Example Approach #2. Specifically,
the low-cost 2D axisymmetric finite element data sets were still used as low-fidelity data,
and the limited number of 3D Berkovich indentation finite element data were used

together with some additional experimental data points from B3067 (here 3 or 9 are
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selected from Table 7) as high-fidelity data, while the trained NNs were used to analyze
B3090 indentation data shown in Table 9. When all nine B3067 data points shown in
Table 7 were used as additional high-fidelity training data, Table 11 shows the typical
results from using the trained NNs: the average error of E* was 2.9+/-1. 9%, and the
average error of gy was 4.6+/-3.9%. If 3 out of 9 B3067 data points shown in Table 7
were randomly selected as additional high-fidelity training data, there were totally 84
unique combinations for doing so in this case: for all possible combinations, the
combined error of E” was 3.3+/-0.6%, and the combined error of oy was 8.2+/-1.7%.
Compared with the results of using 3 out of 9 B3090 data as additional training data, the
results were slightly less accurate using 3 out of 9 B3067 data as additional training data.
However, comparing with the results of using only 2D + 3D FEM data for training, the
hybrid multi-fidelity approach using indentation experimental data from a different
material (while using the same experimental/post-processing setup) can still perform

significantly better.

83090 E* {GPa) err% o,(MPa) err %

Test1 109 0.18% 1652 2.21%
Test 2 105 4.45% 1529 5.02%
Test 3 105 4.26% 1498 6.22%
Test 4 108 1.62% 1206 14.48%
Test5 105 3.93% 1501 6.07%
Test6 108 1.75% 1688 2.22%
Test7 103 6.35% 1569 2.64%
Test 8 107 2.68% 1622 1.87%
Test9 109 0.99% 1664 0.88%
Ave 106 2.91% 1548 4.62%
Std 2.0 138

Std/X 2% 9%

Table 11. Inverse analysis results for a 3D printed Ti alloy (B3090) using trained NNs
through a “hybrid” multi-fidelity approach, where experimental data for another 3D
printed T1 alloy (B3067) were used as part of the training data. The tip geometry is

Berkovich. The errors were evaluated as absolute values.

[00103] FIG. 9 illustrates a flowchart of a process for training a neural network to
determine one or more mechanical properties of a material based on measured
indentation parameters in accordance with some embodiments. In act 910, one or more

indentation parameters are provided as input to a neural network. Example architectures
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of neural networks that may be trained in accordance with some embodiments are shown
in FIGS. 2A-D, described in more detail above. The process then proceeds to act 920,
where the neural network is trained to map the indentation parameters to one or more
mechanical properties of the material. As described above, any suitable mechanical
properties associated with a stress-strain curve for a material may be used examples of
which include, but are not limited to, E” and ay. The process then proceeds to act 930,
where the trained neural network is stored for use in determining mechanical properties

of a material, for example, using the process illustrated in FIG. 10.

[00104] FIG. 10 illustrates a flowchart of a process for using a trained neural
network to determine one or more mechanical properties of a material in accordance with
some embodiments. In act 1010 load-displacement data from one or more instrumented
indentation tests is received. The load-displacement data may be represented as a
loading-unloading curve that includes data from an instrumented indentation test. The
process then proceeds to act 1020 where one or more indentation parameters are
determined based on the received load-displacement data. The one or more indentation
parameters may be determined based on a loading portion of a load-displacement curve,
an unloading portion of a load-displacement curve, or both the loading and unloading
portions of a load-displacement curve. The determined indentation parameters may
include indentation parameters having different levels of fidelity, as described herein.
For example, the indentation parameters may include low-fidelity indentation parameters
and high-fidelity indentation parameters. In some embodiments, indentation parameters

having at least three levels of fidelity are determined.

[00105] The process then proceeds to act 1030, where the determined one or more
indentation parameters are provided as input to a neural network trained to map
indentation parameter(s) to mechanical properties of a material, where the training is
performed, for example, using the process described in FIG. 9. The process then
proceeds to act 1040, where the one or more material properties of the material are
determined based on the output of the trained neural network using one or more of the
techniques described herein. The process then proceeds to act 1050, where an indication
of the one or more determined material properties are displayed or otherwise presented to

da uscr.
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[00106] With the different multi-fidelity approaches and the exercises using
different multi-fidelity data sets discussed above, the fidelity levels can roughly be
ranked from low to high. For example, taking the most accurate correlation between
Berkovich indentation data of B3090 alloy and the uniaxial stress-strain behavior
(including both elastic and plastic parts) as the highest fidelity function (ultimate goal),
then from the increasing accuracies from utilizing different combinations of these data
sets, the fidelity levels can be roughly ranked from low to high: data generated directly
from using equations in Dao 2001, 2D axisymmetric FEM conical indentation data, 3D
FEM Berkovich indentation data, 3D-printed B3067 Ti alloy Berkovich indentation data
(with the same experimental and post-processing setup), and 3D-printed B3090 Ti alloy
Berkovich indentation data (with the same experimental and post-processing setup).
When there are complex multi-fidelity data sets in engineering problems, the generalized

architecture shown in FIG. 2D can be utilized.

[00107] In some embodiments, the ML and NN techniques described herein may be
used to predict any or all points on a stress-strain curve of a material to, for example,
more fully characterize the elasto-plastic properties of the material. For instance, data
points on the stress-strain curve beyond the yield strength oy may be predicted to more

fully characterize the plastic behavior of the material.

[00108] FIG. 11A summarizes inverse analysis results for two different aluminum
alloys using different approaches. The results labeled “fitting functions” were obtained
directly using previously established equations in Dao 2001. The results labeled as “NN
(2D+3D FEM)” were obtained using NN trained by integrating 2D axisymmetric FEM
data (low fidelity) with 3D Berkovich FEM data (high fidelity). The results labeled “NN
(2D+3D FEM+EXP)” were obtained using neural networks trained by adding
experimental results as high-fidelity training data in addition to the 2D and 3D FEM

training data.

[00109] As shown, the neural networks trained by 2D axisymmetric FEM results
(low fidelity) together with 3D FEM simulation data (high fidelity) perform better than
the previous established equations in Dao 2001. The NN trained by adding experimental
results as high-fidelity training data to the 2D and 3D FEM data perform very well for
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both E” and oy with MAPE less than 4% for both alloys A16061-T6511 and Al7075-
T651, leading to significantly improved accuracy for oy with this “hybrid” multi-fidelity

approach.

[00110] Assuming, for example, power-law strain-hardening behavior, some
embodiments can also be used to extract strain-hardening characteristics from
instrumented indentation. To achieve that, NNs are first trained to predict stresses at
different plastic strains, and then the strain-hardening exponent is computed by least-

squares fitting of the power-law hardening function.

[00111] FIG. 11B shows inverse analysis results of using multi-fidelity NNs to
extract additional data points from the stress-strain curve (e.g., to determine strain-
hardening behavior), where selected stress values at 3.3%, 6.6% and 10% plastic strains
are obtained. The NNs trained by adding experimental results as part of the high-fidelity
training data also perform very well for o33%, 06.6% and o107 (where the subscripts 3.3%,
6.6% and 10% represent plastic strains on the stress-strain curve) with MAPE less than
4% for both Al6061-T6511 and Al7075-T651, significantly improving the accuracy for

evaluating stresses at different plastic strain using the “hybrid” multi-fidelity approach.

[00112] FIGS. 12A and 12B shows the corresponding stress-strain curves obtained
by least-squares fitting of the power-law hardening behavior for two aluminum alloys.
The hardening exponent was obtained by least-squares fitting of oy, 03.3%, 06.6% and o10%
predicted by NN trained using 2D and 3D FEM data (FIG. 12A) and 2D, 3D FEM data
and 3 experimental data points (FIG. 12B). The subscripts 3.3%, 6.6% and 10% for o
represent plastic strains. Although power law behavior is assumed for this example, any
suitable physical law may alternatively be used to characterize the strain behavior for a

particular material for which strain behavior is being predicted.

[00113] As shown in FIG. 12B, there was good matching of the dashed lines
representing experimental data (with experimentally extracted hardening exponent n =
0.08 and 0.122) and the solid lines for the hardening exponent n = 0.073 and 0.127 for
Al6061-T6511 and Al7075-T651, respectively, predicted using the “hybrid” multi-
fidelity approach. Note that when hardening is low (i.e. n = 0), directly estimated errors

of n can be misleading because very small variations in hardening response can lead to

- 30 -



WO 2020/263358 PCT/US2020/021401

large fractional errors for elastic-perfectly plastic metal alloys. Comparing errors in
stresses at different plastic stains is a more objective way in evaluating the accuracy with

respect to the stress-strain behavior or the hardening behavior.

[00114] Assuming, for example, power-law strain-hardening behavior, the
techniques described herein can be used to evaluate stresses at different plastic strain
values, and then compute the strain-hardening exponent by least-squares fitting of the
power-law hardening function for 3D-printed titanium alloys. FIGS. 13A-C show
inverse analysis results of selected stresses at 0% (i.e., 6y), 0.8%, 1.5 and 3.3% plastic
strains and the fitted stress-strain curves for two 3D-printed Ti-6Al-4V alloys using the

“hybrid” multi-fidelity approach.

[00115] FIG. 13A shows the mean average percentage error of o6y, 00.8%, 01.5% and
03.3% for the 3D printed material B3090 predicted by NN trained by 2D axisymmetric
FEM data (low fidelity) with 3D Berkovich FEM data and five randomly picked “self”
and “peer” experimental indentation curves (high fidelity). FIGS. 13B and 13C show
that the hardening exponent is obtained by least squares fitting of oy, 60.s%, 01.5% and 03.3%
for “self” experimental indentation curve (FIG. 13B) and “peer” experimental
indentation curve (FIG. 13C). The experimentally extracted best fit hardening exponent
was n = 0.068 for both B3090 and B3067 uniaxial experiments, i.e. near zero low
hardening. With additional experimental data added for training, the NNs predict
accurately the yield strength and low hardening behaviors. The subscripts 0.8%, 1.5%
and 3.3% for o represent plastic strains. Analogous to evaluating the yield strength oy
(stress at zero plastic strain), the predicted stress-strain curves using the NN techniques
described herein are close to the experimental curves when a few experimental data

points are added as part of the high-fidelity data for the training of NNs.

[00116] The inventors have recognized and appreciated that training a neural
network from scratch (e.g., with randomly-assigned variables for the weights) to predict
material properties in accordance with the techniques described herein takes a substantial
amount of the training data and processing resources. The inventors have also recognized
that baseline training can be performed to establish a trained neural network that can be

used to represent the material parameter space for the majority of engineering metals
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under an idealized testing condition. When given the additional experimental data for
materials under a specific experimental setup, the baseline neural network can be further
trained. Accordingly, some embodiments employ a transfer learning approach in which
one or more previously-trained NNs (e.g., a baseline NN) are further trained using new
experimental data to tune the weights of the NN(s) to provide accurate prediction of
material properties for particular materials. In particular, in the examples discussed
above, the “hybrid” training of neural networks for each aluminum alloy and each 3D-
printed titanium alloy was conducted with a fresh start without any direct connections to
the other trained neural networks. In some embodiments, a transfer learning technique is
used, in which the entire multi-fidelity network (both low- and high-fidelity sub-
networks) is first trained using all the 2D and 3D FEM data as baseline training. Next
given the additional new experimental data, only the high-fidelity sub-network is further

trained using these additional experimental data points.

[00117] FIGS. 14A and 14B show the errors from the NNs for two aluminum alloys
and two 3D printed titanium alloys before (labeled as “2D+3D FEM”) and after transfer
learning (labeled as “Transfer learning”) in accordance with some embodiments. FIG.
14A shows the errors for predicting E”, and FIG. 14B shows the errors for predicting
yield strain oy. As shown, a comprehensive baseline training can be established by
training the low-fidelity and high-fidelity portions of the NN, and then additional case-
specific training can be subsequently used to improve training efficiency and take
advantage of accumulated learning rather than having to train the NN from scratch for
each new material. With a small number of high-fidelity experimental data points added

for training, significant improvements are achieved.

[00118] An illustrative implementation of a computer system 1500 that may be used
in connection with any of the embodiments of the disclosure provided herein is shown in
FIG. 15. The computer system 1500 may include one or more computer hardware
processors 1500 and one or more articles of manufacture that comprise non-transitory
computer-readable storage media (e.g., memory 1520 and one or more non-volatile
storage devices 1530). The processor 1510(s) may control writing data to and reading
data from the memory 1520 and the non-volatile storage device(s) 1530 in any suitable

manner. To perform any of the functionality described herein, the processor(s) 1510
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may execute one or more processor-executable instructions stored in one or more non-
transitory computer-readable storage media (e.g., the memory 1520), which may serve as
non-transitory computer-readable storage media storing processor-executable
instructions for execution by the processor(s) 1510. As shown, computer system 1500
may include and/or be in communication with instrumented indentation system 1550
configured to perform one or more instrumented indentation tests on a material to
determined indentation data. In some embodiments, the instrumented indentation system
1550 includes a robotic arm. The indentation data may be used to determine indentation
parameters used to train a neural network model using one or more of the techniques
described herein. At least some of the indentation parameters may be provided to a
trained neural network to determine or more mechanical properties of a material using

one or more of the techniques described herein.

[00119] The various methods or processes outlined herein may be implemented in
any suitable hardware. Additionally, the various methods or processes outlined herein
may be implemented in a combination of hardware and of software executable on one or
more processors that employ any one of a variety of operating systems or platforms.
Any suitable combination of hardware and software may be employed to realize any of

the embodiments discussed herein.

[00120] In this respect, various inventive concepts may be embodied as at least one
non-transitory computer readable storage medium (e.g., a computer memory, one or
more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit
configurations in Field Programmable Gate Arrays or other semiconductor devices, etc.)
encoded with one or more programs that, when executed on one or more computers or
other processors, implement the various embodiments of the present invention. The non-
transitory computer-readable medium or media may be transportable, such that the
program or programs stored thereon may be loaded onto any computer resource to

implement various aspects of the present invention as discussed above.

[00121] The terms “program” or “software” are used herein in a generic sense to
refer to any type of computer code or set of computer-executable instructions that can be

employed to program a computer or other processor to implement various aspects of
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embodiments as discussed above. Additionally, it should be appreciated that according to
one aspect, one or more computer programs that when executed perform methods of the
present invention need not reside on a single computer or processor, but may be
distributed in a modular fashion among different computers or processors to implement

various aspects of the present invention.

[00122] Computer-executable instructions may be in many forms, such as program
modules, executed by one or more computers or other devices. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Typically, the
functionality of the program modules may be combined or distributed as desired in

various embodiments.

[00123] Having herein described several embodiments, several advantages of
embodiments of the present application should be apparent. One advantage is that an
object may be designed based on any number of available materials such that the object,
when fabricated, exhibits one or more desired properties. A non-limiting list of
applications for which embodiments described herein may be used include optics,
mechanical engineering, industrial design, aerospace design, musical instruments, toys

and games, and combinations thereof.

[00124] Furthermore, the techniques described herein may, in some embodiments,
provide in an approach to designing an object that is modular, extensible, independent of
object geometry and/or independent of a fabrication device which may be used to
subsequently fabricate the object. In some embodiments, a design of an object may be
determined independently of a type of fabrication device that may be subsequently used
to fabricate the designed object. For example, while one or more material properties
may be provided as input to the design process, these materials may not uniquely

correspond to a particular fabrication device or fabrication process.

[00125] Various inventive concepts may be embodied as one or more methods, of
which examples have been provided. The acts performed as part of any method
described herein may be ordered in any suitable way. Accordingly, embodiments may be

constructed in which acts are performed in an order different than illustrated, which may
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include performing some acts simultaneously, even though shown as sequential acts in

illustrative embodiments.

[00126] All definitions, as defined and used herein, should be understood to control
over dictionary definitions, definitions in documents incorporated by reference, and/or

ordinary meanings of the defined terms.

[00127] The indefinite articles “a” and “an,” as used herein, unless clearly indicated

to the contrary, should be understood to mean “at least one.”

[00128] As used herein, the phrase “at least one,” in reference to a list of one or
more elements, should be understood to mean at least one element selected from any one
or more of the elements in the list of elements, but not necessarily including at least one
of each and every element specifically listed within the list of elements and not
excluding any combinations of elements in the list of elements. This definition also
allows that elements may optionally be present other than the elements specifically
identified within the list of elements to which the phrase “at least one” refers, whether

related or unrelated to those elements specifically identified.

[00129] The phrase “and/or,” as used herein, should be understood to mean “either
or both” of the elements so conjoined, i.e., elements that are conjunctively present in
some cases and disjunctively present in other cases. Multiple elements listed with
“and/or” should be construed in the same fashion, i.e., “one or more” of the elements so
conjoined. Other elements may optionally be present other than the elements specifically
identified by the “and/or” clause, whether related or unrelated to those elements
specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”,
when used in conjunction with open-ended language such as “comprising” can refer, in
one embodiment, to A only (optionally including elements other than B); in another
embodiment, to B only (optionally including elements other than A); in yet another

embodiment, to both A and B (optionally including other elements); etc.

[00130] As used herein, “or” should be understood to have the same meaning as
“and/or” as defined above. For example, when separating items in a list, “or” or “and/or”
shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also

including more than one, of a number or list of elements, and, optionally, additional
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unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or
“exactly one of,” will refer to the inclusion of exactly one element of a number or list of
elements. In general, the term “or” as used herein shall only be interpreted as indicating
exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of

b INTS

exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”

[00131] The phraseology and terminology used herein is for the purpose of

EEINT3

description and should not be regarded as limiting. The use of “including,” “comprising,”

EEINT3 bR ENNT3

“having,” “containing”, “involving”, and variations thereof, is meant to encompass the

items listed thereafter and additional items.

[00132] Having described several embodiments of the invention in detail, various
modifications and improvements will readily occur to those skilled in the art. Such
modifications and improvements are intended to be within the spirit and scope of the
invention. Accordingly, the foregoing description is by way of example only, and is not

intended as limiting.
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CLAIMS
1. A computer system configured to train a neural network to extract one or more
mechanical properties of a material from indentation parameters for the material, the
computer system comprising:
at least one computer processor; and
at least one non-transitory computer readable medium encoded with instructions
that, when executed by the at least one computer processor, perform a method,
comprising:
providing as input to the neural network, the indentation parameters for
the material;
training the neural network to map the input indentation parameters to the
one or more mechanical properties of the material; and
storing the trained neural network on the at least one non-transitory

computer readable medium.

2. The computer system of claim 1, wherein the neural network includes a first
portion configured to receive as input low-fidelity indentation parameters, a second
portion configured to receive as input high-fidelity indentation parameters, and an
integration portion that integrates one or more outputs of the first portion and one or

more outputs of the second portion.

3. The computer system of claim 2, wherein training the neural network comprises
training the first portion of the neural network based on the low-fidelity indentation
parameters and training the second portion of the neural network based on the high-

fidelity indentation parameters.
4. The computer system of claim 3, wherein training the neural network further

comprises integrating both the high-fidelity indentation parameters and the low-fidelity

implementation parameters using convolution and/or recursion.
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5. The computer system of claim 3, wherein a number of datum in the high-fidelity
indentation parameters used to train the first portion of the neural network is less than a
number of datum in the low-fidelity indentation parameters used to train the second

portion of the neural network.

6. The computer system of claim 2, wherein the high-fidelity indentation parameters
include first indentation parameters determined from one or more simulations and second

indentation parameters determined from one or more indentation tests on the material.

7. The computer system of claim 2, wherein training the neural network comprises
training the neural network to reduce at least one systematic error by using data
determined from one or more indentation tests on the material to determine at least some

of the high-fidelity indentation parameters.

8. The computer system of claim 2, wherein the low-fidelity indentation parameters

include indentation parameters determined using one or more simulations.

9. The computer system of claim 2, wherein

the first portion and/or the second portion of the neural network are pre-trained
using a baseline training process; and

training the neural network to map the input indentation parameters to the one or
more mechanical properties of the material comprises training only the second portion of

the neural network with high-fidelity indentation parameters.
10. The computer system of claim 1, wherein the neural network includes
convolutional and recursive linear and/or nonlinear integration of training data with at

least three levels of fidelities.

11. The computer system of claim 1, wherein the indentation parameters include

indentation parameters for multiple indenter geometries.
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12. The computer system of claim 11, wherein the multiple indenter geometries have

different half-included tip angles.

13. The computer system of claim 11, wherein the multiple indenter geometries

include multiple indenter shapes.

14. The computer system of claim 1, wherein the one or more mechanical properties
include a reduced Young’s modulus, a yield strength, and/or a strain hardening

parameter.

15. The computer system of claim 14, wherein the one or more mechanical properties
include at least two of a reduced Young’s modulus, a yield strength, and a strain

hardening parameters.

16. The computer system of claim 1, wherein the one or more mechanical properties

include a plurality of points on a stress-strain curve.

17. The computer system of claim 16, wherein the one or more mechanical properties

include a plurality of strain values at different plastic strains.

18. The computer system of claim 1, wherein the one or more indentation parameters
include one or more indentation parameters extracted from a loading portion of an
indentation curve, an unloading portion of the indentation curve, and/or both the loading

and the unloading portion of the indentation curve.

19. The computer system of claim 1, wherein the one or more indentation parameters

include one or more of loading curvature, initial unloading slope, and plastic work ratio.
20. The computer system of claim 19, wherein the one or more indentation

parameters include the loading curvature, the initial unloading slope and the plastic work

ratio.
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21. The computer system of claim 1, wherein the method further comprises:
receiving load-displacement data for the material; and
determining the one or more indentation parameters from the received load-

displacement data.

22. The computer system of claim 1, wherein the material comprises a 3D printed
material.
23. The computer system of claim 1, wherein training the neural network comprises

training the neural network using training data having more than two levels of fidelities.

24. The computer system of claim 1, wherein the neural network includes:

N portions wherein N is greater than two, each of the N portions being configured
to receive as input indentation parameters having a different fidelity, and

at least one integration portion configured to integrate one or more outputs of the

N portions.

25. The computer system of claim 24, wherein training the neural network comprises
training the N portions of the neural network based on indentation parameters having

respective fidelities.

26. A computer system configured to extract one or more mechanical properties for a
material based on one or more indentation parameters for the material, the system
comprising:

at least one computer processor; and

at least one non-transitory computer readable medium encoded with instructions
that, when executed by the at least one computer processor, perform a method,
comprising:

receiving load-displacement data from one or more instrumented

indentation tests on the material;
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determining the indentation parameters for the material based, at least in
part, on the received load-displacement data;

providing as input to a trained neural network, the indentation parameters
for the material;

determining, based on an output of the trained neural network, the one or
more mechanical properties of the material; and

displaying an indication of the determined one or more mechanical

properties of the material to a user of the computer system.

27. The computer system of claim 26, wherein the trained neural network was trained

using high-fidelity indentation parameters and low-fidelity indentation parameters.

28. The computer system of claim 26, wherein the received load-displacement data
comprises load-displacement data from instrumented indentation tests having different

indenter geometries.

29. The computer system of claim 28, wherein the different indenter geometries have

different half-included tip angles.

30. The computer system of claim 29, wherein the different indenter geometries

include different indenter shapes.

31. The computer system of claim 26, wherein the one or more mechanical properties
include a reduced Young’s modulus, a yield strength, and/or a strain hardening

parameter.
32. The computer system of claim 31, wherein the one or more mechanical properties

include two or more of a reduced Young’s modulus, a yield strength, and a strain

hardening parameter.
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33. The computer system of claim 26, wherein the one or more mechanical properties

include a plurality of points on a stress-strain curve.

34. The computer system of claim 33, wherein the one or more mechanical properties

include a plurality of strain values at different plastic strains.

35. The computer system of claim 26, wherein the one or more indentation
parameters include one or more indentation parameters extracted from a loading portion
of an indentation curve, an unloading portion of the indentation curve, and/or both the

loading portion and the unloading portion of the indentation curve.

36. The computer system of claim 26, wherein the one or more indentation
parameters include one or more of loading curvature, initial unloading slope, and plastic

work ratio.

37. The computer system of claim 26, wherein the material comprises a 3D printed

material.

38. The computer system of claim 26, further comprising:
an instrumented indentation system configured to perform at least one of the one
or more instrumented indentation tests on the material to generate the load-displacement

data.

39. The computer system of claim 38, wherein the instrumented indentation system

comprises a robotic arm.
40. The computer system of claim 26, wherein the received load-displacement data

comprises one or more load-displacement curves, and wherein the indentation

parameters comprise values derived from the one or more load-displacement curves.
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41. A method of training a neural network to extract one or more mechanical
properties of a material from indentation parameters for the material, the method
comprising:

providing as input to the neural network, the indentation parameters for the
material;

training, using at least one computer processor, the neural network to map the
input indentation parameters to the one or more mechanical properties of the material;
and

storing the trained neural network on at least one non-transitory computer

readable medium.

42. The method of claim 41, wherein the neural network includes a first portion
configured to receive as input low-fidelity indentation parameters, a second portion
configured to receive as input high-fidelity indentation parameters, and an integration
portion that integrates one or more outputs of the first portion and one or more outputs of

the second portion.

43. The method of claim 42, wherein training the neural network comprises training
the first portion of the neural network based on the low-fidelity indentation parameters
and training the second portion of the neural network based on the high-fidelity

indentation parameters.

44, The method of claim 43, wherein training the neural network further comprises
integrating both the high-fidelity indentation parameters and the low-fidelity

implementation parameters using convolution and/or recursion.

45. The method of claim 43, wherein a number of datum in the high-fidelity
indentation parameters used to train the first portion of the neural network is less than a
number of datum in the low-fidelity indentation parameters used to train the second

portion of the neural network.
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46. The method of claim 42, wherein the high-fidelity indentation parameters include
first indentation parameters determined from one or more simulations and second

indentation parameters determined from one or more indentation tests on the material.

47. The method of claim 42, wherein training the neural network comprises training
the neural network to reduce at least one systematic error by using data determined from
one or more indentation tests on the material to determine at least some of the high-

fidelity indentation parameters.

48. The method of claim 42, wherein the low-fidelity indentation parameters include

indentation parameters determined using one or more simulations.

49. The method of claim 42, wherein

the first portion and/or the second portion of the neural network are pre-trained
using a baseline training process, and

training the neural network to map the input indentation parameters to the one or
more mechanical properties of the material comprises training only the second portion of

the neural network with high-fidelity indentation parameters.
50. The method of claim 41, wherein the neural network includes convolutional and
recursive linear and/or nonlinear integration of training data with at least three levels of

fidelities.

51. The method of claim 41, wherein the indentation parameters include indentation

parameters for multiple indenter geometries.

52. The method of claim 51, wherein the multiple indenter geometries have different

half-included tip angles.

53. The method of claim 51, wherein the multiple indenter geometries include

multiple indenter shapes.

- 44 -



WO 2020/263358 PCT/US2020/021401

54. The method of claim 41, wherein the one or more mechanical properties include

areduced Young’s modulus, a yield strength, and/or a strain hardening parameter.

55. The method of claim 54, wherein the one or more mechanical properties include
at least two of a reduced Young’s modulus, a yield strength, and a strain hardening

parameters.

56. The method of claim 41, wherein the one or more mechanical properties include

a plurality of points on a stress-strain curve.

57. The method of claim 56, wherein the one or more mechanical properties include

a plurality of strain values at different plastic strains.

58. The method of claim 41, further comprising:
extracting the one or more indentation parameters from a loading portion of an
indentation curve, an unloading portion of the indentation curve, and/or both the loading

and the unloading portion of the indentation curve.

59. The method of claim 41, wherein the one or more indentation parameters include

one or more of loading curvature, initial unloading slope, and plastic work ratio.

60. The method of claim 59, wherein the one or more indentation parameters include

the loading curvature, the initial unloading slope and the plastic work ratio.
61. The method of claim 41, further comprising:
receiving load-displacement data for the material; and
determining the one or more indentation parameters from the received load-

displacement data.

62. The method of claim 41, wherein the material comprises a 3D printed material.
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63. The method of claim 41, wherein training the neural network comprises training

the neural network using training data having more than two levels of fidelities.

64. The method of claim 41, wherein the neural network includes:

N portions wherein N is greater than two, each of the N portions being configured
to receive as input indentation parameters having a different fidelity, and

at least one integration portion configured to integrate one or more outputs of the

N portions.

65. The method of claim 64, wherein training the neural network comprises training
the N portions of the neural network based on indentation parameters having respective

fidelities.

66. A method of extracting one or more mechanical properties for a material based
on one or more indentation parameters for the material, the method comprising:

receiving load-displacement data from one or more instrumented indentation tests
on the material;

determining, by at least one computer processor, the indentation parameters for
the material based, at least in part, on the received load-displacement data;

providing as input to a trained neural network, the indentation parameters for the
material;

determining, based on an output of the trained neural network, the one or more
mechanical properties of the material; and

displaying an indication of the determined one or more mechanical properties of

the material to a user of the computer system.

67. The method of claim 66, wherein the trained neural network was trained using

high-fidelity indentation parameters and low-fidelity indentation parameters.
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68. The method of claim 66, wherein the received load-displacement data comprises
load-displacement data from instrumented indentation tests having different indenter

geometries.

69. The method of claim 68, wherein the different indenter geometries have different

half-included tip angles.

70. The method of claim 68, wherein the different indenter geometries include

different indenter shapes.

71. The method of claim 66, wherein the one or more mechanical properties include

areduced Young’s modulus, a yield strength, and/or a strain hardening parameter.

72. The method of claim 71, wherein the one or more mechanical properties include
two or more of a reduced Young’s modulus, a yield strength, and a strain hardening

parameter.

73. The method of claim 66, wherein the one or more mechanical properties include

a plurality of points on a stress-strain curve.

74. The method of claim 73, wherein the one or more mechanical properties include

a plurality of strain values at different plastic strains.

75. The method of claim 66, further comprising:
extracting the one or more indentation parameters from a loading portion of an
indentation curve, an unloading portion of the indentation curve, and/or both the loading

portion and the unloading portion of the indentation curve.

76. The method of claim 66, wherein the one or more indentation parameters include

one or more of loading curvature, initial unloading slope, and plastic work ratio.
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77. The method of claim 66, wherein the material comprises a 3D printed material.

78. The method of claim 66, further comprising:
using an instrumented indentation system to perform at least one of the one or
more instrumented indentation tests on the material to generate the load-displacement

data.

79. The method of claim 78, wherein the instrumented indentation system comprises

a robotic arm.
80. The method of claim 66, wherein the received load-displacement data comprises

one or more load-displacement curves, and wherein the indentation parameters comprise

values derived from the one or more load-displacement curves.

- 48 -



1/16

A
Rca
» Ay
iy,
»
iy,
AL AA A IS AT ASSISISSSSLLLALAL LS
%,
g
%

b

i -

T

i
LG,

5

N

B

PCT/US2020/021401

; WO 2020/263358

RN
RN

R

FIG. 1B



2/16

PCT/US2020/021401

WO 2020/263358




PCT/US2020/021401

3/16

WO 2020/263358

N
X

tanh ey

NNy

&

. 0% www

% B

. 7

o .m

= 7

‘\\‘

N\

FIG. 2D



4/16

PCT/US2020/021401

WO 2020/263358

¢ Ol

azis urel]

00001 0001

001

| LR %

gre o/ e N

- NN «xd
1002 “e 1e oeQ .. 3
- NN Ao —
1002 “le 1@ oeq fo - - -

PRI ¥

oo o 6 4 o 3

ﬂ/:! 4142

8

OV

08

08

001

(%) AdVIN



5/16

PCT/US2020/021401

WO 2020/263358

¥ Ol
9ZIS ulel |

001 08 09

Oy

iy

NN 5.3
1002 "l @ oeQ g - - -
- NN o

08

001

0cl

(%) VI



6/16

«PCT/US2020/021401
510

512

WO 2020/263358

Sy
i

BN

g

S5A

FIG.

g

¥

s e

i

S
516

Sy,

FIG. 5B



PCT/US2020/021401

7/16

.

&

%z
P

L

610

G, Ay,
s

o 5
Wt

\u

g
;.

Eiia

W

6A

G

F

e

FIG. 6B

Yt

7%,
il

a

WO 2020/263358




8/16

WO 2020/263358 ™2

”mu

B

%

PCT/US2020/021401
SN

RN

it
g

-2
kA
o

N aiccd
s

K 7
g

R
BRI \ﬁ%
A B3

A
X
g «
X

%

g

7
Z
7
7
4
Z

K 7 § %,
G, Wy
A - S 3

A

FIG. 7A

\‘.\\i\\\&\\\i\\i\\\\\%

AN
L >
N

X

e

S
e

&
N

B
S

W K2

NN

A

£

g

7,

e
7

S
L




9/16

WO 2020/263358 PCT/US2020/021401




10/16

WO 2020/263358 PCT/US2020/021401

PROVIDE INDENTATION / 910
PARAMETERS AS INPUT TO
NEURAL NETWORK

INDENTATION PARAMETERS TO ONE
OR MORE MATERIAL MECHANICAL
PROPERTIES

TRAIN NEURAL NETWORK TO MAP / 920

A 4

530
STORE TRAINED NEURAL //
NETWORK




11/16

WO 2020/263358 PCT/US2020/021401

RECEIVE LOAD-DISPLACEMENT DATA / 1010
FROM ONE OR MORE INDUSTRIAL
INDENTATION TESTS

l

1020
DETERMINE INDENTATION PARAMETERS //
BASED ON LOAD-DISPLACEMENT DATA

¥
PROVIDE INDENTATION // 1030

PARAMETERS ASINPUTTO
TRAINED NEURAL NETWORK

I

DETERMINE ONE OR MORE

MECHANICAL PROPERTIES OF / 1040

MATERIAL BASED ON QUTPUT OF
TRAINED NEURAL NETWORK

i

1050
DISPLAY INDICATION OF DETERMINED /
ONE OR MORE MATERIAL PROPERTIES

FiG. 10



PCT/US2020/021401

12/16

Y
. g

WO 2020/263358

N

W

3 §\ A
¥

N

o

n

X

FIG. 11A
FIG. 11B




13/16

ROSN

PCT/US2020/021401F

R

=3

A

wmmmwmw‘mmmm

ATRRREREE L &

S
R




FIG. 13A

14/16

WO 2020/263358

s
S99

s

%,

7%

£
FIG. 13B

SN
et

o




15/16

PCT/US2020/021407 s

§

FIG. 14A

FlG. 14B



16/16

WO 2020/263358 PCT/US2020/021401

INSTRUMENTED / 1550
INDENTATION
SYSTEM

! ¢~ 1510 1520

PROCESSOR(S) ey MEMORY

1530

NON-VOLATILE
STORAGE

FIG. 15



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US20/21401

A.
IPC

CLASSIFICATION OF SUBJECT MATTER
GO1N 3/42, 3/44; GOBN 3/02, 3/08 (2020.01)

CPC - GO1N 3/42, 3/44; GO6N 3/02, 3/08

According to International Patent Classification (IPC) or to both national classification and [PC

B.  FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the intenational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6,134,954 A (SURESH, S et al.) 24 October 2000, figs 10 & 11, column 5 lines 20-30, 1, 11-22, 41, 51-62
- column 9 lines 1-25, column 19 lines 20-30, column 20 lines 1-67, column 21 lines 1-20, | ~——ecemmomeommenennees
A column 22 lines 5-45, column 23 lines 1-20 2-10, 23-25, 42-50, 63-65
Y US 2017/0200063 A1 (FORD GLOBAL TECHNOLOGIES, LLC) 13 July 2017, abstract 1, 11-22, 41, 51-62
A 210, 23.25, 42-50, 63-65
Y US 2003/0060987 A1 (DAO, M et al.) 27 March 2003, paragraphs [0085}-{0086] 19-20, 59-60
A US 2004/0019469 (LEARY, S et al.) 29 January 2004, entire document 1-25, 41-65
A US 2004/0220891 A1 (DODGSON) 04 November 2004, entire document 1-25, 41-65

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A”  document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other
special reason (as specified)

“O" documentreferring toan oral disclosure, use, exhibition or other means

“p”  document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the apﬁligauon but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot

be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

28 April 2020 (28.04.2020)

Date of mailing of the international search report

26 JUN 2020

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Shane Thomas

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)




INTERNATIONAL SEARCH REPORT International application No.

PCT/US20/21401

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. [:I Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos..

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

*** Continued in Extra Sheet ***

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international seaich report covers
only those claims for which fees were paid, specifically claims Nos.:

4. K{ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted
to the invention first mentioned in the claims; it is covered by claims Nos.:

1-25, 41-65

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2019)



INTERNATIONAL SEARCH REPORT International application No.

PCT/US20/21401

-***.Continued from Box 1ll -***-

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fee must be paid.

Group |: Claims 1-25 and 41-65 are directed a system and method of training a neural network and mapping input parameters.
Group li: Claims 26-40 and 66-80 are directed are directed towards a system and method of determining indentation parameters for a
material based on load-displacement data.

The inventions listed as Groups !-1l do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical features of Group | include at least training the neural network to map the input indentation parameters to the one
or more mechanical properties of the material; and storing the trained neural network on the at least one non-transitory computer
readable mediums, which are not present in Group |l.

The special technical features of Group Il include at least receiving load-displacement data from one or more instrumented indentation
tests on the material; determining the indentation parameters for the material based, at least in part, on the received load-displacement
data, determining, based on an output of trained neural network, the one or more mechanical properties of the material; and displaying an
indication of the determined one or more mechanical properties of the material to a user of the computer system which are not present in
Group |.

The common technical features shared by Groups I-ll are a computer system comprising: at least one computer processor; and at least
one non-transitory computer readable medium encoded with instructions that, when executed by the at least one computer processor,
perform a method, comprising: providing as input, the indentation parameters for the material.

However, these common features are previously disclosed by US 6,134,954 to SURESH, S et al. (hereinafter “Suresh”). Suresh
discloses a computer system comprising: at least one computer processor (the computer having a processor, column 189 lines 20-30);
and at least one non-transitory computer readable medium encoded with instructions that, when executed by the at least one computer
processor, perform a method, comprising (a computer readable medium having an application program sorted, column 20 lines 1-30):
providing as input, the indentation parameters for the material (defining the indentation load and a microstructural parameter for the
indenter for the analysis module, fig. 10, column 20 lines 45-67).

Since the common technical features are previously disclosed by the Suresh reference, these common features are not special and so
Groups I-il lack unity.

Form PCT/ISA/210 (extra sheet) (July 2019)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - wo-search-report
	Page 68 - wo-search-report
	Page 69 - wo-search-report

