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MULTI-SCALE FINITE-VOLUME METHOD
FOR USE IN SUBSURFACE FLOW SIMULATION

RELATED APPLICATIONS

This application is a continuation-in-part of co-pending U.S. Patent Application
Serial No. 10/383,908, entitled "Multi-Scale Finite-Volume Method for Use in
Subsurface Flow Simulation”, filed on March 6, 2003 and is a

continuation-in-part of co-pending application entitled "Multi-Scale

' Finite-Volume Method for Use in Subsurface Flow Simulation”, filed on

September 22, 2004, which is a continuation of co-pending U.S. Patent
Application Serial No. 10/383,908, entitled "Multi-Scale Finite-Volume Method
for Use in Subsurface Flow Simulation”, filed on March 6, 2003.

TECHNICAL FIELD

The present invention relates generally to subsurface reservoir simulators,
and more particularly, to those simulators which use multi-scale physics to

simulate flow in an underground reservoir.

BACKGROUND OF THE INVENTION

The level of detail available in reservoir description often exceeds the

~ computational capability of existing reservoir simulators. This resolution gap is

usually tackled by upscaling the fine-scale descﬁption to sizes that can be
treated by a full-featured simulator. In upscaling, the original model is

coarsened using a computationally inexpensive process. In flow-based

- methods, the process is based on single-phase flow. A simulation study is

then performed using the coarsened model. Upscaling methods such as these
havé proven to be quite successful. However, it is not possible to have a prior
estimate of the errors that are present when complex flow processes are
investigated using coarse models constructed via these simplified settings.

-1-
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Various fundamentally different multi-scale approaches for flow in

porous media have been proposed to accommodate the fine-scale
description directly. As opposed to upscaling, the multi-scale approach
targets the full problem with the original resolution. The upscaling
methodology is typically based on resolving the length and time-scales

of interest by maximizing local operations. Arbogast et al. (T. Arbogast,
Numerical subgrid upscaling of two phase flow in porous media,

Technical report, Texas Institute for Computational and Applied Mathematics,
The University of Texas at Austin, 1999, and T. Arbogast and S.L. Bryant,
Numerical subgrid upscaling for waterflood simulations, SPE 66375, 2001)
presented a mixed finite-element method where fine-scale effects are
localized by a boundary condition assumption at the coarse element
boundaries. Then the small-scale influence is coupled with the coarse-scale
effects by numerical Greens functions. Hou and Wu (T. Hou and X.H. Wu,

A multiscale finite element method for elliptic problems in composite materials
and porous media, J. Comp. Phys., 134:169-189, 1997) employed a
finite-element approach and constructed spécific basis functions which
capture the small scales. Again, localization is achieved by boundary
condition assumptions for the coarse elements. To reduce the effects of these
boundary conditions, an oversampling technique can be applied. Chen and
Hou (Z. Chen and T.Y. Hou, A mixed finite element method for elliptic
problems with rapidly oscillating coefficients, Math. Comput., June 2002)
utilized these ideas in combination with a mixed finite-element approach.
Another approach by Beckie et al. (R. Beckie, A.A. Aldama, and E.F. Wood,
Modeling the large-scale dynamics of saturated groundwater flow using
spatial fiftering, Water Resources Research, 32:1269-1280, 1996) is based on
large eddy simulation (LES) techniques which are commonly used for

turbulence modeling.

Lee et al. (S.H. Lee, L.J. Durlofsky, M.F. Lough, and W.H. Chen,
Finite difference simulation of geologically complex reservoirs with tensor
permeadbilities, SPERE&E, pages 567-574, 1998) developed a flux-continuous

-2
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finite-difference (FCFD) scheme for 2D models. Lee et al. further developed a
method to address 3D models (S.H. Lee, H. Tchelepi, P. Jenny and

L. Dechant, Implementation of a flux continuous finite-difference method for
stratigraphic, hexahedron grids, SPE Journal, September, pages 269-277,
2002). Jenny et al. (P. Jenny, C. Wolfsteiner, S.H. Lee and L.J. Durlofsky,
Modeling flow in geometrically complex reservoirs using hexahedral
multi-block grids, SPE Journal, June, pages 149-157, 2002) later

implemented this scheme in a multi-block simulator.

In light of the above modeling efforts, there is a need for a simulation method
which more efficiently captures the effects of small scales on a coarse grid.
Ideally, the method would be conservative and also treat tensor permeabilities
correctly. Further, preferably the reconstructed fine-scale solution would
satisfy the proper mass balance on the fine-scale. The present invention

provides such a simulation method.

SUMMARY OF THE INVENTION

A multi-scale finite-volume (MSFV) approach is taught for solving elliptic or
parabolic problems such as those found in subsurface flow simulators.
Advantages of the present MSFV method are that it fits nicely into a
finite-volume framework, it allows for computing effective coarse-scale
transmissibilities, treaté tensor permeabilities properly, and is conservative at
both the coarse and fine-scales. The present method is computationally
efficient relative to reservoir simulation now in use and is well suited for
massive parallel computation. The present invention can be applied to 3D
unstructured grids and also to multi-phase flow. Further, the reconstructed
fine-scale solution satisfies the proper mass balance on the fine-scale.

A multi-scale approach is described which results in effective transmissibilities
for the coarse-scale problem. Once the transmissibilities are constructed, the

MSFV method uses a finite-volume scheme employing multi-point stencils for

-3-
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flux discretization. The approach is conservative and treats tensor
permeabilities correctly. This method is easily applied using existing
finite-volume codes, and once the transmissibilities are computed, the method
is computationally very efficient. In computing the effective transmissibilities,

closure assumptions are employed.

A significant characteristic of the present multi-scale method is that two sets
of basis functions are employed. A first set of dual basis functions is
computed to construct transmissibilities between coarse cells. A second set of
locally computed fine-scale basis functions is utilized to reconstruct a
fine-scale velocity field from a coarse scale solution. This second set of
fine-scale basis functions is designed such that the reconstructed fine-scale
velocity solution is fully consistent with the transmissibilities. Further, the

solution satisfies the proper mass balance on the small scale.

The MSFV method may be used in modeling a subsurface reservoir. A fine
grid is first created defining a plurality of fine cells. A permeability field and
other fine-scale properties are associated with the fine cells. Next, a coarse
grid is created which defines a plurality of coarse cells having interfaces
between the coarse cells. The coarse cells are ideally aggregates of the fine
cells. A dual coarse grid is constructed defining a plurality of dual coarse
control volumes. The dual coarse control volumes are ideally also aggregates

of the fine cells. Boundaries surround the dual coarse control volumes.

Dual basis functions are then calculated on the dual coarse control volumes
by solving local elliptic or parabolic problems, preferably using boundary
conditions obtained from solving reduced problems along the interfaces of the
course cells. Fluxes, preferably integral fluxes, are then extracted across the
interfaces of the coarse cells from the dual basis functions. These fluxes are
assembled to obtain effective transmissibilities between coarse cells of the
coarse cell grid. The transmissibilities can be used for coarse scale finite

volume calculations.
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A fine-scale velocity field may be established. A finite volume method is used
to calculate pressures in the coarse cells utilizing the transmissibilities
between cells. Fine-scale basis functions are computed by solving local
elliptic or parabolic flow problems on the coarse cells and by utilizing
fine-scale fluxes across the interfaces of the coarse cells which are extracted
from the dual basis functions. Finally, the fine-scale basis functions and the
corresponding coarse cell pressures are combined to extract the fine-scale

velocity field.

A transport problem may be solved on the fine grid by using the fine-scale
velocity field. ldeally, the transport problem is solved iteratively in two stages.
In the first stage, a fine-scale velocity field is obtained from solving a pressure
equation. In the second stage, the transport problem is solved on the fine cells
using the fine-scale velocity field. A Schwartz overlap technique can be
applied to solve the transport problem locally on each coarse cell with an

implicit upwind scheme.

A solution may be computed on the coarse cells at an incremental time and
properties, such as a mobility coefficient, may be generated for the fine cells
at the incremental time. If a predetermined condition is not met for all fine cells
inside a dual coarse control volume, then the dual and fine-scale basis

functions in that dual coarse control volume are reconstructed.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the present invention
will become better understood with regard to the following description,

pending claims and accompanying drawings where:

FIG. 1 illustrates a coarse 2D grid of coarse cells with an overlying dual
coarse grid including a dual coarse control volume and an underlying fine grid

of fine cells;



WO 2006/058171 PCT/US2005/042632

0o N O O AW N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

FIG. 2 illustrates a coarse grid including nine adjacent coarse cells (bold solid
lines) with a corresponding overlying dual coarse grid (bold dashed lines)
including dual coarse control volumes and an underlying fine grid (thin dotted

lines) of fine cells;

FIG. 3 shows flux contribution ¢ and ¢ due to the pressure in a particular

coarse cell 2;
FIG. 4 is a flowchart describing the overall steps used in a preferred
embodiment of a reservoir simulation which employs a multi-scale

finite-volume (MSFV) method made in accordance with this invention;

FIG. 5 is a flowchart further detailing steps used to determine transmissibilities
T between coarse cells;

FIG. 6 is a flow chart further describing steps used to construct a set of

fine-scale basis functions and to extract a fine-scale velocity field;

FIG. 7 is a flowchart depicting coupling between pressure and the saturation
equations which utilize an implicit solution scheme and wherein [Tand 3 are
operators used to update total velocity and saturation, respectively, during a

single time step;

FIG. 8 is an illustration of the use of an adaptive scheme to selectively update
basis functions;
FIG. 9 is an illustration of a permeability field associated with a SPE 10

problem;

FIGS. 10A-B are illustrations of permeability fields of a top layer and a bottom
layer of cells from the SPE 10 problem;
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FIGS. 11A-B are illustrations of saturation fields of top layers of cells created
using the MSFV method and FIG. 11C is an illustration of a saturation field

computed by a conventional fine-scale reservoir simulator;

FIGS. 12A-B are illustrations of saturation fields of bottom layers of cells
created using the MSFV method and FIG. 12C is an illustration of a saturation
field computed by a conventional fine-scale reservoir computer;

FIGS. 13A-B are graphs of oil cut and oil recovery;

FIG. 14 is an illustration of a 3D test case having a grid of 10 x 22 x 17 grid

cells and including injector and producer wells; and

" FIG. 15 is a graph of oil cut and oil recovery.

BEST MODES FOR CARRYING OQUT THE INVENTION

. FLOWPROBLEM
A. One Phase Flow
Fluid flow in a porous media can be described by the elliptic problem:
V-(1-Vp)=1 on Q : (1)
where p is the pressure, A is the mobility coefficient (permeability, K, divided
by fluid viscosity, p) and Q is a volume or region of a subsurface which is to
be simulated. A source term f represents wells, and in the compressible
case, time derivatives. Permeability heterogeneity is a dominant factor in
dictating the flow behavior in natural porous formations. The heterogeneity of
permeability K is usually represented as a complex multi-scale function of
space. Moreover, permeability K tends to be a highly discontinuous full tensor.
Resolving the spatial correlation structures and capturing the variability of
permeability requires a highly detailed reservoir description.



WO 2006/058171 PCT/US2005/042632

© 0 ~N O A W N -

N G
g A W N A~ O

16

17

18

19
20
21
22

23
24
25

26

27

The velocity u of fluid flow is related to the pressure field through Darcy's law:
u=—-41-Vp. (2)
On the boundary of a volume, 8Q2, the flux g =u-v is specified, where v is the
boundary unit normal vector pointing outward. Equations (1) and (2) describe
incompressible flow in a porous media. These equations apply for both single
and multi-phase flows when appropriate interpretations of the mobility
coefficient A and velocity u are made. This elliptic problem is a simple, yet .
representative, description of the type of systems that should be handled
efficiently by a subsurface flow simulator. Moreover, the ability to handle this
limiting case of incompressible flow ensures that compressible systems can

be treated as a subset.

B. Two Phase Flow
The flow of two incompressible phases in a heterogeneous domain may be
mathematically described by the following:

k
%o 0\ 0 0P |__
Ot Oxj\ Wy Ox;

3)

8y o[, kn, op
i AR e 0
ot Oxp\ pyy Ox;

on a volume Q, where p is the pressure, S, ,, are the saturations (the
subscripts 0 and w stand for oil and water, respectively) with 0 < S,.,<1and
S, +8, =1, k is the heterogeneous permeability, k, = are the relative
permeabilities (which are functions of S, ., ), 4,,, the viscosities and ¢, ,, are

source terms which represent the wells. The system assumes that capillary

pressure and gravity are negligible. Equivalently, system (3) can be written as:

-V-u=g,+qy 4)

as k
oPo vy | _Fo 5
ot (ko-{—kw ) 2o ©®)

on Q with
-8-
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u=-AVp. (6)
and the total mobility
A=k(ky +ky), (7)

where &, =k, /u,for je{o,w}.

Equation (4) is known as the “pressure equation” and equation (5) as the
“hyperbolic transport equation.” Again, equations (4) and (5) are a
representative description of the type of systems that should be handled
efficiently by a subsurface flow simulator. Such flow simulators, and
techniques employed to simulate flow, are well known to those skilled in the
art and are described in publications such as Petroleum Reservoir Simulation,
K. Aziz and A. Settari, Stanford Bookstore Custom Publishing,-1999.

1. MULTI-SCALE FINITE-VOLUME (MSFV) METHOD
A. MSFV Method for One Phase Flow
1. Finite-Volume Method

A cell centered finite-volume method will now be briefly described. To solve

the problem of equatioh (1), the overall domain or volume Q is partitiohed into

smaller volumes {ﬁ,. } A finite-volume solution then satisfies .
kv-wn:j%i u-17dF=—‘gifdQ (8)
for each control volume Q,, where 7 is the unit normal vector of the volume

boundary 8Q; pointing outward. The challenge is to find a good

approximation for u-v at 8Q, . In general, the flux is expressed as:
u-v= z T"p". 9)

Equation (9) is a linear combination of the pressure values, 7, in the volumes
{,} of the domain Q. The total number of volumes is » and T* denotes

transmissibility between volumes {ﬁ,} By definition, the fluxes of equation (9)



WO 2006/058171 PCT/US2005/042632

are continuous across the interfaces of the volumes {Q,} and, as a result, the

finite-volume method is conservative.

2. Construction of the Effective Transmissibilities

The MSFV method resulits in multi-point stencils for coarse-scale fluxes. For
the following description, an orthogonal 2D grid 20 of grid cells 22 is used, as
shown in FIG. 1. An underlying fine grid 24 of fine grid cells 26 contains the
fine-scale permeability K information. To compute the transmissibilities T

between coarse grid cells 22, a dual coarse grid 30 of dual coarse control

volumes 32 is used. A control volume 32 of the dual grid 30,Q, is constructed
by connecting the mid-points of four adjacent coarse grid cells 22. To relate

the fluxes across the coarse grid cell interfaces 34 which lie inside a particular
control volume 32, or G, to the finite-volume pressures p*(k=1,4) in the four

adjacent coarse grid cells 22, a local elliptical problem in the preferred

embodiment is defined as

V-(1-Vp)=00n Q. (10)
For one skilled in the art, the method can easily be adapted to use a local
parabolic problem.

For an elliptic problem, Dirichlet or Neumann boundary conditions are to be

specified on boundary 6Q . Ideally, the imposed boundary conditions should
approximate the true flow conditions experienced by the sub-domain in the full
system. These boundary conditions can be time and flow dependent. Since
the sub-domain is embedded in the whole system, Wallstrom et al.

(T.C. Wallstrom, T.Y. Hou, M.A. Christie, L.J. Durlofsky, and D.H. Sharp,
Application of a new two-phase upscaling technique to realistic reservoir cross
sections, SPE 51939, presented at the SPE Symposium on Reservoir
Simulation, Houston, 1999) found that a constant pressure condition at the
sub-domain boundary tends to overestimate flow contributions from high
permeability areas. If the correlation length of permeability is not much larger
than the grid size, the flow contribution from high permeability areas is not

-10 -
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proportional to the nominal permeability ratio. The transmissibility between
two cells is a harmonic mean that is closer to the lower permeability. As a
result, uniform flux conditions along the boundary often yield much better
numerical results for a sub-domain problem than linear or constant pressure

conditions.

Hou and Wu (T. Hou and W.H. Wu; A multiscale finite element method for
elliptic problems in composite materials and porous media, J. Comp. Phys,

134:169-189, 1997) also proposed solving a reduced problem

0 Op
A Ry 11
6x,[ d 6xj1 (n

to specify the boundary conditions for the local problem. The subscript ¢
denotes the component parallel to the boundary of the dual coarse control

volume 32 or8Q. For equation (11) and for the following part of this

specification, Einstein summation convention will be used. The elliptic
problem on a control volume O with boundary conditions of equation (1 1) on
8Q can be solved by any appropriate numerical method. In order to obtain a
pressure solution that depends linearly on the pressures 5*(j =1,4), this
preferred embodiment solves four elliptic problems, one for each cell-center

pressure. For instance, to get the solution for the pressure ' in the coarse

grid cell having node 1 at its center, p* = §,, is set. The four solutions provide

the dual basis functions &% (k =1,4) in control volume {3, and the pressure

solution of the local elliptic problem in a control volume Q is the linear

combination

4 .
p= SpF Bk, (12)
k=1

Accordingly, the flux ¢ across the grid cell interfaces can be written as a

linear combination

-11 -
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4_
g= 2D
k=1

kgt (13)

where ¢*(k =1,4) are the flux contributions from the corresponding dual basis

functions, given all & (k =1,4) from all control volumes &. The effective

transmissibilities T are computed, which can be used for finite-volume
simulations, by assembling the flux contributions, in the preferred embodiment

integral flux contributions across the cell interfaces 34.

Note that the domain Q can have any fine-scale distribution of mobility
coefficients 4 . Of course the boundary condition given by equation (11) is an
approximation that allows one to decouple the local problems. The MSFV and
global fine-scale solutions are identical, only if equation (11) happens to
capture the exact fine-scale pressure solution. However, numerical
experiments have been performed which indicate that equation (11) is an

excellent approximation of the boundary condition.

Although the MSFV approach is a finite-volume method, it resembles the
multi-scale finite-element method of Wu and Hou, briefly mentioned above.
The construction of the dual basis functions is similar, though in the present
MSFV method they are represented on the dual coarse grid rather than on the
boundary of a finite element.AA significant difference is that the present MSFV
method is a cell-centered finite-volume method and is conservative. On the
other hand, the mass matrix in the multi-scale finite-element method is
constructed based on a variational principle and does not ensure local
conservation. In the next section, the importance is illustrated of a fine-scale

velocity field that is conservative.

3. Reconstruction of a Conservative Fine-Scale Velocity Field

Fluxes across the coarse cell interfaces 34 can be accurately computed by
multi-scale transmissibilities 7. In some cases, it is interesting to accurately

represent the small-scale velocities u (e.g., to predict the distribution of solute

-12-
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transported by a fluid). A straightforward approach might appear to be to use

the dual basis functions @ of equation (12). However, then the reconstructed
fine-scale velocity field is, in general, discontinuous at the cell interfaces of the
dual grid 30. Therefore, large errors can occur in the divergence field, and
local mass balance is violated. Note that mass conservation is always
satisfied for the coarse solution using the present MSFV method.

The construction of a second set of local fine-scale basis functions ® will now

be described which is fully consistent with the fluxes ¢ across the cell

interfaces given by the dual basis functions @ . This second set of fine-scale
basis functions @ allows a conservative fine-scale velocity field to be

reconstructed.

FIG. 2 shows a coarse grid 20 with nine adjacent grid cells 22 and a

corresponding dual grid 30 of dual coarse control volumes 32 or Q. For
indexing purposes, these particular cells and corresponding dual volumes
shall now be identified with numerals “1-9” and letters “A-D” at their respective
centers. Also shown is the underlying fine grid 24 of fine grid cells 26. The
coarse grid, having the nine adjacent coarse cells 1-9, is shown in bold solid
lines. The corresponding dual grid 30 of dual coarse control volumes A-D are
depicted with bold dashed lines. The underlying fine grid 24 of fine grid cells

26 is shown with thin dotted lines.

To explain the reconstruction of the fine-scale velocity, the mass balance of

the center grid cell 5 is examined. The coarse scale pressure solution,
together with the dual basis functions ®, provides the fine-scale fluxes q

across the interfaces of coarse cell 5.

To obtain a proper representation of the fine-scale velocity field in coarse
cell 5, (i) the fine-scale fluxes across an interface of coarse cell 5 must match,
and (ii) the divergence of the fine-scale velocity field within the coarse volume

satisfies
-13-
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where Qs is the coarse grid cell 5. The fine-scale flux g across the boundary

of grid cell 5 depends on the coarse pressure solutions in grid cells 1-9.

Therefore, the fine-scale velocity field within coarse grid cell 5 can be

expressed as a superposition of fine-scale basis functions @? (i=1,9). With

the help of FIG. 3, which depicts the needed dual coarse control volumes, the
néeded dual coarse control volumes, the construction the needed dual coarse
control volumes, the construction of the fine-scale the needed dual coarse
control volumes, the construction of the fine-scale the needed dual coarse

control volumes, the construction of the fine-scaletion in construction of the

fine-scale basis functions @' will be described. Each coarse cell pressure

p(i =1,9) contributes to the fine-scale fluxg . For example, let the contribution
of the pressure in cell 2 to the flux ¢ in grid cell 5 beq(z). Note that q(z) is

composed of contributions qff) and qg‘) coming from the dual basis functions
associated with node 2 of volume A and volume B, respectively. To compute

the fine-scale basis function @’ associated with the pressure in a coarse cell

i, ﬁj = J;; Is set, and the pressure field is constructed according to the

following equation.

9 _inj
p= z WZLYE (15)
ke{d,B,C,D }j=1

The fine-scale fluxes ¢ are computed from the pressure field. These fluxes

provide the proper boundary condition for computing the fine-scale basis

function @° . To solve the elliptic problem

V-(4-Vp)=f' on Qs (16)
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with the boundary conditions described above, solvability must be ensured.
This is achieved by setting
logyg 2t

= , 17
S (17)

which is an equally distributed source term within Q. Finally, the solution of
the elliptic problem, (16) and (17), is the fine-scale basis function @’ for

coarse cell 5 associated with the pressure in volume i. The small-scale
velocity field is extracted from the superposition
9 . j
p=Y p/ Dy - (18)
Jj=1

For incompressible flow, this velocity field is divergence free everywhere.

Computing the fine-scale basis functions @l requires solving nine small

elliptic problems, which are of the same size as those for the transmissibility
calculations. Note that this step is a preprocessing step and has to be done

only once. Furthermore, the construction of the fine-scale basis functions

@' is independent and therefore well suited for parallel computation. The

reconstruction of the fine-scale velocity field is a simple superposition and is
ideally performed only in regions of interest.

Alternatively, a conservative fine-scale velocity field may also be constructed
directly in place. This construction may be performed as follows: (i) compute
the fine-scale fluxes across the coarse cell interfaces using the dual basis
functions with the pressures for the coarse cells; (i) solve a pressure equation
on each of the coarse cells using the fine-scale fluxes computed in step (i) as
boundary conditions to obtain fine-scale pressures; (i) compute the fine-scale
velocity field from Darcy’s law using the fine-scale pressures obtained in step
(ii) with the underlying fine-scale permeability. The pressure solution of step
(ii) may be performed on a system with larger support (e.g., by over-sampling

around the coarse cell).
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IMPLEMENTATION OF 'i'HE MSFV METHOD

FIG. 4 is a flow chart summarizing the steps employed in a preferred

embodiment in simulating a reservoir using the MSFV algorithm of this

invention. The MSFV algorithm consists of six major steps:

A

compute transmissibilities T for coarse-scale fluxes (step 100);

construct fine-scale basis functions (step 200);

compute a coarse solution at a new time level; (step 300);

reconstructs the fine-scale velocity field in regions of interest
(step 400);

solve transport equations (step 500); and
recomputes transmissibilities and also the fine-scale basis functions in

regions where the total mobility has changed more than a

predetermined amount (step 600).

Steps A-D describes a two-scale approach. The methodology can be applied

recursively with successive levels of coarsening. In cases of extremely fine

resolution, this multi-level approach should yield scalable solutions. Parts E

and F account for transport and mobility changes due to evolving phases and

will be described in more detail below.

A.

Computing Transmissibilities for Coarse-Scale Fluxes — Step 100

The transmissibility calculations can be done in a stand alone module

(T-module) and are well suited for parallel computation. The transmissibilities

T can be written to a file for use by any finite-volume simulator that can handle

multi-point flux discretization.
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Referring now to FIG. 5, a flowchart describes the individual steps which are
undertaken to compute the transmissibilities T for a coarse scale model. First,
a fine-scale grid having fine cells with an associated permeability field K are
created (step 110). Next, a coarse grid, having coarse cells corresponding to
the fine-scale grid, is created (step 120). The fine and coarse grids are then

passed into a transmissibility or T-module.
Dual coarse control volumes Q are constructed (step 130), one for each node

of the coarse grid. For each dual coarse control volume Q, dual or coarse
scale basis functions @ are constructed (step 140) by solving local elliptic

problems (equation (10)) for each volume Q. This local elliptic problem, as
described in section I.A.2 above, and the permeability field K associated with
the fine grid are used and the boundary conditions corresponding to equation
(11) are utilized (step 135) in solving the elliptic problem. In cases where the
fine and coarse grids are nonconforming (e.qg., if unstructured grids are used),
oversampling may be applied. Finally, the integral coarse scale fluxes

g across the interfaces of the coarse cells are extracted (step 150) from the

dual basis functions @. These integral coarse scale fluxes g are then

assembled (step 160) to obtain MSFV-transmissibilities T between grid cells

of the coarse grid.

The computation of transmissibilities T can be viewed as an upscaling
procedure. That is, the constructed coarse pressure solutions are designed to
account for, in some manner, the fine-scale description of the permeability K
in the original fine-scale grid model. Thus, part A — step 100 - computing
transmissibilities, is preferably a separate preprocessing step used to coarsen
the original fine-scale model to a size manageable by a conventional reservoir

simulator.

These transmissibilities T may be written to a file for later use. A finite-volume
simulator that can handle multi-point flux discretization can then use these

transmissibilities T.
-17 -
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B. Construction of Fine-Scale Basis Function and Fine-scale Velocity
Field— Step 200
FIG. 6 is a flowchart describing the steps taken to construct a set of fine-scale

basis functions ® which can be isolated in a separate fine-scale basis

function ® module. These fine-scale basis functions ® can then be used to

create a fine-scale velocity field. This module is only neceésary if there is an
interest in reconstructing the fine-scale velocity field from the coarse pressure

solution. As described in Section II.A.3 above, if the original dual basis

functions @ are used in reconstructing the fine-scale velocity field, large mass
balance errors can occur. Here, steps are described to compute the fine-scale
basis functions @, which can be used to reconstruct a conservative fine-scale
velocity field. The procedure (step 200) of FIG. 4 follows the description of
Section Il.A.3 and has to be performed only once at the beginning of a

simulation and is well suited for parallel computation.

The fine-scale grid (step 210), with its corresponding permeability field K, the
coarse grid (step~ 220), and the dual basis functions @ (step 230) are passed
into a fine-scale basis function ®. A pressure field is constructed from the

coarse scale pressure solution and dual basis functions (step 250). The fine-

scale fluxes for the coarse cells are then computed (step 260). For each

control volume, elliptic problems are solved, using the fine-scale fluxes as
boundary conditions, to determine fine-scale basis functions (step 270). The
fine-scale velocity field can then be computed from the superposition of cell
pressures and fine-scale basis functions. The results may then be output from
the module. Alternatively, the fine-scale velocity field can be computed directly
in place as has been described above in section 11.A.3. In many cases, the
fine-scale velocity field has to be reconstructed in certain regions only, as will
be described in fuller detail below. Therefore, in order to save memory and
computing time, one can think of an in situ computation of the fine-scale basis
functions @, which, once computed, can be reused.
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C. Computation of the Coarse Solution at the New Time — Step 300
Step 300 can be performed by virtually any multi-point stencil finite-volume
code by using the MSFV-transmissibilities T for the flux calculation. These
coarse fluxes effectively capture the large-scale behavior of the solution

without resolving the small scales.

D.  Reconstruction of the Fine-Scale Velocity Field — Step 400
Step 400 is straight forward. Reconstruction of the fine-scale velocity field in
regions of interest is achieved by superposition of the fine-scale basis FIG. 6.

Alternatively, the fine-scale velocity field can be computed directly in functions

@’ as described in section l1.A.3, step B above and as shown in place as

described above in section I1.A.3. Of course, many variations of the MSFV

method can be devised. It may be advantageous; however, that construction

of the transmissibilities T and fine-scale basis functions @ can be done in

modules separate from the simulator.

E. Solving Pressure and Transport Equations

1. Numerical solution algorithm — explicit solution

Multi-phase flow problems may be solved in two stages. First, the total
velocity field is obtained from solving the pressure equation (4), and then the
hyperbolic transport equation (5) is solved. To solve the pressure equation,
the MSFV method, which has been described above is used. The difference
from single phase flow is that in this case the mobility term 1 reflects the total
mobility of both phases, and then the obtained velocity field u is the total
velocity in thg domain. The reconstructed fine-scale velocity field u is then

used to solve the transport equation on the fine grid. The values of ko,w are

taken from the upwind direction; time integration may be obtained using a

backward Euler scheme. Note that, in general, the dual and fine-scale basis

functions (@, ®) must be recomputed each time step due to changes in the

saturation (mobility) field.

-19-



WO 2006/058171 PCT/US2005/042632

0 N O O AW N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27
28

2. Numerical Solution Algorithm - Implicit Coupling

In the preferred embodiment of this invention, the MSFV method utilizes an
algorithm with implicit calculations. The multi-phase flow problem is solved
iteratively in two stages. See FIG. 7 for a diagram of this method illustrating

the coupling between the pressure and saturation equations.

First, in each Newton step, a saturation field S is established — either initial
input or through iteration (step 510). Next, a pressun;e equation (see equation
(19) below) is solved (step 520) using the MSFV techniques described above
to obtain (step 530) the total velocity field. Then a transport equation (see
equation (20) below) is solved (step 540) on the fine grid by using the
reconstructed fine-scale velocity field u. In this solution, a Schwarz overlap
technique is applied, i.e., the transport problem is solved locally on each
coarse volume with an implicit upwind scheme, where the saturation values
from the neighboring coarse volumes at the previous iteration level are used
for the boundary conditions. Once the Schwarz overlap scheme has
converged (steps 550, 560) — for hyperbolic systems this method is very
efficient — the new saturation distribution determines the new total mobility
field for the pressure problem of the next Newton iteration. Note that, in

general, some of the basis functions have to be recomputed each iteration.

The superscripts » and v denote the old time and iteration levels,
respectively. Saturation is represented by S, the total velocity field by u, the
computation of the velocity by the operatorII, and the computation of the

saturation byX . The new pressure field pv+l

V-(k(ko(SV)+kW(SVJva+1]= do +dws (19)

is obtained by solving

v+l

from which the new velocity field u is computed. The new saturation field

sV*1 s obtained by solving
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Sv+1 _gsn ko (Sw-l) 1
o +V- w’t=—g, (20)

At ko(SV+1)+kw(SV+l)v

F. Recomputing Transmissibilities and Fine-Scale Basis Functions —

Adaptive Scheme
The most expensive part of the MSFV algorithm for multi-phase flow is the

reconstruction of the coarse scale and fine-scale basis functions (CT),CD ).

Therefore, to obtain higher efficiency, it is desirable to recompute the basis
functions only where it is absolutely necessary. An adaptive scheme can be
used to update these basis functions. In the preferred exemplary embodiment,

if the condition

1
(

I+ey /11'2—-1

(+ey (23)

is not fulfilled (the superscripts # and n—1 denote the previoué two time steps

and ¢, is a defined value) for all fine cells inside a coarse dual volume, then

the dual basis functions of that control volume have to be reconstructed. Note

that condition (23) is true if 4 changes by a factor which is larger than

1/(1+&7) and smaller than 1+ & . An illustration of this scheme is shown in

FIG. 8, where the fine and the coarse grid cells are drawn with thin and bold
lines, respectively. The black squares represent the fine cells in which
condition (23) is not fulfilled. The squares with bold dashed lines are the
control volumes for which the dual basis functions have to be reconstructed.
The shaded regions represent the coarse cells for which the fine-scale basis
functions have to be updated. In the schematic 2D example of FIG. 8, only 20
of 196 total dual basis functions and 117 of 324 total fine-scale basis functions
have to be reconstructed. Of course, these numbers depend heavily on the

defined threshold ¢, . In general, a smaller threshold triggers more fine

volumes, and as a consequence more basis functions are recomputed each

time step. For a wide variety of test cases, it has been found that taking ¢ to

be (0.2 yields marginal changes in the obtained results.
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IV. NUMERICAL RESULTS
This MSFV method, combined the implicit coupling scheme shown in FIG. 7,
has been tested for two phase flow ( u o/ H#y,=10) in a stiff 3D model with

more than 140,000 fine cells. It has been demonstrated that the multi-scale
results are in excellent agreement with the fine-scale solution. Moreover, the
MSFV method has proven to be approximately 27 times more efficient than
the established oil reservoir simulator Chears. However, in many cases the
computational efficiency is compromised due to the time step size restrictions
inherent for IMPES schemes. This problem may be resolved by applying the
fully implicit MSFV method, which was described in the previous section. Here
numerical studies show the following:

(1)  The results obtained with the implicit MSFV method are in excellent
agreement with the fine-scale results.

(2)  The results obtained with the implicit MSFV method are not very

sensitive to the choice of the coarse grid.

(3)  The implicit MSFV for two phase flow overcomes the time step size
restriction and therefore very large time steps can be applied.

(4)  The results obtained with the implicit MSFV method are, to a large
extent, insensitive to the time step size.

(6)  The implicit MSFV method is very efficient.
For the fine-scale comparison runs, the established reservoir simulator
Chears was used. The efficiency of both the implicit MSFV method and the

fine-scale reservoir simulator depends on the choice of various parameter

settings which were not fully optimized.
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A. Test Case J

To study the accuracy and efficiency of the fully implicit MSFV algorithm,

2D and 3D test cases with uniformly spaced orthogonal 60 x 220 and

60 x 220 x 85 grids were used. The 3D grid and permeability field are the
same as for the SPE 10 test case, which is regarded as being extremely
difficult for reservoir simulators. While this 3D test case is used for
computational efficiency assessment, the 2D test cases, which consist of top
and bottom layers, serves to study the accuracy of the MSFV method. FIG. 9
illustrates the 3D test case posed by the permeability field of the SPE 10
problem. The darker areas indicate lower permeability. An injector well is
placed in the center of the field and four producers in the corners. These well

locations are used for all of the following studies. The reservoir is initially filled

with oil and x,/ u,,=10and krow=S%,W'

B. 2D Simulation of the Top and Bottom Layers

The MSFV simulator used lacked a sophisticated well model. That is, wells
are modeled by defining the total rates for each perforated coarse volume.
Therefore, in order to make accuracy comparisons between MSFV and
fine-scale (Chears reservoir simulator) results, each fine-scale volume inside
each perforated coarse volume becomes a well in the Chears runs. For large
3D models, this poses a technical problem since Chears reservoir simulator is
not designed to handle an arbitrary large number of individual wells. For this
reason, it was determined to do‘ an accuracy assessment in 2D, i.e., with the
top and the bottom layers of the 3D model. These two layers, for which the
permeability fields are shown in FIGS. 10A and 10B, are representative for

the two characteristically different regions of the full model.

MSFV simulations were performed with uniformly spaced 10 x 22 and

20 x 44 coarse grids. The results were compared with the fine-scale solution

on a 60 x 220 grid. As in the full 3D test case, there are four producers at the

corners which are distributed over an area of 6 x 10 fine-scale volumes. The

injector is located in the center of the domain and is distributed over an area
-23 .
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of 12vx 12 fine-scale volumes. The rates are the same for all fine-scale
volumes (positive for the producer volumes and negative for the injector
volumes). FIGS. 11A-C and 12A-C show the permeability fields of the
respective top and the bottom layers. The black is indicative of low
permeability. These two layers are representative for the two characteristically
different regions of the full 3D model. FIGS. 11A-C and 12A-C show the
computed saturation fields after 0.0933 PVI (pore volume injected) for the top
and the bottom layers, respectively. While FIGS. 11C and 12C show the
fine-scale reference solutions, FIGS 11A and 11B and 12A and 12B show the
MSFV results for 10 x 22 and 20 x 44 coarse grids, respectively. For both
layers, it can be observed that the agreement is excellent and that the
multi-scale method is hardly sensitive to the choice of the coarse grid. A more
quantitative comparison is shown in FIGS. 13A and 13B where the fine-scale
and multi-scale oil cut and oil recovery curves are plotted. Considering the
difficulty of these test problems and the fact that two independently
implemented simulators are used for the comparisons, this agreement is quite
good. In the following studies, it will be demonstrated that for a model with
1,122,000 cells, the MSFV method is significantly more efficient than
fine-scale simulations and the results remain accurate for very large time

steps.

C. 3D Simulations

While 2D studies are appropriate to study the accuracy of the implicit MSFV
method, large and stiff 3D computations are required for a meaningful
efficiency assessment. A 3D test case was employed as described above. A
coarse 10 x 22 x 17 grid, shown in FIG.14, was used and 0.5 pore volumes
were injected. Opposed to the MSFV runs, the wells for the CHEARS
simulations were defined on the fine-scale. Table 1 below shows CPU time
and required number of times steps for the CHEARS simulation and two
MSFV runs.
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TABLE 1

PCT/US2005/042632

Efficiency Comparison Between Msfv And Fine-Scale Simulations

Simulator

CPU TIME

Time

Recomputed Basis

Coarse Pressure

(minutes) steps Functions (%) Computations (%)
Chears 3325 790
MSFV 297 200 10 98
MSFV 123 50 26 100

While Chears uses a control algorithm, the time step size in the multi-scale

simulations was fixed. It is due to the size and stiffness of the problem that

much smaller time steps have to be applied for a successful Chears

simulation. The table shows that the implicit MSFV method can compute the

solution approximately 27 times faster than CHEARS. FIG. 15 shows the oil

cut and recovery curves obtained with multi-scale simulations using 50 and

200 time steps. The close agreement between the results confirms that the

method is very robust in respect to time step size. Since the cost for MSFV

simulation scales almost linearly with the problem size and since the dual and

fine-scale basis function can be computed independently, the method is

ideally suited for massive parallel computaﬁons and huge problems.

While in the foregoing specification this invention has been described in

relation to certain preferred embodiments thereof, and many details have

been set forth for purpose of illustration, it will be apparent to those skilled in

the art that the invention is susceptible to alteration and that certain other

details described herein can vary considerably without departing from the

basic principles of the invention.
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WHAT IS CLAIMED IS:

A multi-scale finite-volume method for use in modeling a subsurface

reservoir comprising:

(@)

(b)

()

(d)

(e)

creating a fine grid defining a plurality of fine cells and having a
permeability field associated with the fine cells;

creating a coarse grid defining a plurality of coarse cells having
interfaces between the coarse cells, the coarse cells being

aggregates of the fine cells;

creating a dual coarse grid defining a plurality of dual coarse
control volumes, the dual coarse control volumes being
aggregates of the fine cells and having boundaries bounding the

dual coarse control volumes;

calculating dual basis functions on the dual coarse control

volumes by solving local elliptic or parabolic problems;

extracting fluxes across the interfaces of the coarse cells from
the dual basis functions;

assembling the fluxes to calculate effective transmissibilities

between coarse cells;
calculating pressure in the coarse cells using a finite volume
method and utilizing the effective transmissibilities between

coarse cells; and

computing a fine-scale velocity'ﬁeld.
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The method of claim 1 wherein:
the fine-scale velocity field is computed directly in place.
The method of claim 2 wherein:

the step of computing a fine-scale velocity field directly in place

includes:
(i) computing fine-scale fluxes across the coarse cell interfaces
using the dual basis functions with the pressures the coarse

cells;

(i)  solving a pressure equation on each of the coarse cells using

the fine-scale fluxes computed in step (i) as boundary conditions

to obtain fine-scale pressures; and

(iif)  computing the fine-scale velocity field from Darcy’s law using the

fine-scale pressure obtained in step (ii).
The method of claim 3 wherein:

the solving of the pressure equation of step (ii) to obtain fine-scale

pressures is performed on a system with larger support.
The method of claim 4 wherein:

the solving of the pressure equation of step (ii) may be performed by

over-sampling around the coarse cells.
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6. The method of claim 3 wherein:

the solving of the pressure equation of step (ii) may be performed by

0N =

over-sampling around the coarse cells.
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FIG. 15

MSFV with a 10x22x17
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