
(19) United States
US 2012O066694A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0066694 A1
Jennings et al. (43) Pub. Date: Mar. 15, 2012

(54) EVENT OVERFLOW HANDLING BY
COALESCING AND UPDATING
PREVIOUSLY-QUEUED EVENT
NOTIFICATION

(75) Inventors: Cheryl L. Jennings, Austin, TX
(US); Rajeev Mishra, Bangalore
(IN); Trishali Nayar, Pune (IN);
Lance W. Russell, Austin, TX (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

(21) Appl. No.: 12/879,365

(22) Filed: Sep. 10, 2010

Publication Classification

Event
Producer
32A

Event
Processing

34

Event
Producer
32B

Event
Producer
32B

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.9/318

(57) ABSTRACT

An event notification system for distributed processing sys
tems provides reduction of queue space and event processing
bandwidth associated with duplicate events such as a particu
lar event that is duplicated and results in multiple event noti
fications propagated for multiple consumers. When a dupli
cate event notification is received at an input to an event
notification queue, rather than queuing the duplicate event
notification, a sequence number of the event notification
already in the queue is updated to indicate to the event con
Sumer, exactly how many duplicate events have been
received. The timestamp of the updated event notification
may also be set to the timestamp of the most recently received
duplicate event notification.

Event
COnSUmer

38A

Event
COnSUmer

38B

Patent Application Publication Mar. 15, 2012 Sheet 1 of 4 US 2012/0066694 A1

Physical Node 10A Physical Node 10B

Physical Node 10 Physical Node 10D

V
Other NOdes

Patent Application Publication Mar. 15, 2012 Sheet 2 of 4 US 2012/0066694 A1

20

O O 22 O

Patent Application Publication Mar. 15, 2012 Sheet 3 of 4 US 2012/0066694 A1

Event
Producer
32A

Event
Processing Event

COnSUmer
38A

34

Event
Producer
32B

Event
Consumer

38B Event
Producer
32B

Fig. 3

Patent Application Publication Mar. 15, 2012 Sheet 4 of 4 US 2012/0066694 A1

Receive event notification
50

Peek queue for corresponding
event Consumer to Obtain event
Data of most-recently received
event notification 51

Coalesce event
notification by
incrementing sequence
number of event

Event Data
matches new

Event Data? 52
notification in queue 54

N Set timestamp of event
notification in dueue to : timestamp of received Queue event notification in queue Imestamp or receive

53 event notification 55

Event reporting
terminating?

56

US 2012/0066694 A1

EVENT OVERFLOW HANDLING BY
COALESCING AND UPDATING
PREVIOUSLY-QUEUED EVENT

NOTIFICATION

BACKGROUND

0001 1. Field of the Invention
0002 The present invention is related to handling of event
notification overflow or potential overflow conditions incom
puter systems, and more specifically to handling of duplicate
events so that additional queue Space is not required.
0003 2. Description of Related Art
0004. In large-scale distributed computer systems, such as
those using distributed Software models to perform tasks,
multiple nodes provide independent execution of Sub-tasks.
In order to keep Such a system operational, and further, to
provide indication of events occurring at one node that either
require a reaction from another node or indicate to the other
node that either an erroneous operating condition has
occurred, or that a phase of processing is complete. In par
ticular, event notification and event logging are operations
used to indicate system health to system administrators or
Software applications, including operating systems compo
nentS.

0005 Health monitoring techniques employed in distrib
uted processing systems perform an important function in
that connections to other nodes must be reliable and all of the
active nodes that have been assigned tasks need to perform
those tasks in order to ensure that the totality of the processing
requirements are met, and in a timely fashion. The health of a
node-based distributed processing system is typically moni
tored by: 1) a heartbeat messaging system, which passes
messages between the nodes and a central monitoring com
ponent; and 2) an event notification system that signals inter
ested nodes when events occur on other nodes. Event notifi
cation systems in node-based distributed processing systems
typically require an interested application (a consumer) to
register to receive event notifications either with a centralized
event manager, or with the processes or objects that generate
the events (an event producer).
0006 Events in such a system may be reported multiple
times. For example, an event may be reported for each inter
ested event consumer. With the large number of events that
may be generated, in particular where the event itself is trig
gered multiple times due to a resource change or a hardware
or media failure, a large number of duplicate events may be
buffered at a node, causing event queue overflow and/or con
Suming processing bandwidth that could be used to handle
other events. While the duplicate events could simply be
removed from the queue, information about how many events
have occurred and the timing of the events may be lost.

BRIEF SUMMARY

0007. The invention provides an event notification system
and method that is embodied in a computer-performed
method, a computer program product and computer systems.
The method, which is implemented by the computer program
product and computer system, provides queuing of events to
event consumers, while coalescing duplicate events.
0008. Whena duplicate event notification is detected at the
input to a queue that stores event notifications for delivery to
an event consumer, rather than queuing the event notification,
a previously-received event notification is updated by incre

Mar. 15, 2012

menting the sequence number of the previously-received
event notification. Therefore, when the event consumer
receives the event notification, the event consumer can deter
mine exactly how many events the coalesced event notifica
tion represents. The timestamp of the event notification may
also be updated to match the timestamp of the most recently
received duplicate event notification.
0009. The foregoing and other objectives, features, and
advantages of the invention will be apparent from the follow
ing, more particular, description of the preferred embodi
ments of the invention, as illustrated in the accompanying
drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

0010. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives, and advantages thereof, will best be understood by
reference to the following detailed description of the inven
tion when read in conjunction with the accompanying Fig
ures, wherein like reference numerals indicate like compo
nents, and:
0011 FIG. 1 is a block diagram of a distributed computer
system in which techniques according to an embodiment of
the present invention are practiced.
0012 FIG. 2 is a pictorial diagram depicting communica
tion between nodes of a computer system in accordance with
an embodiment of the present invention.
0013 FIG. 3 is a pictorial diagram depicting information
flow in a computer system inaccordance with an embodiment
of the present invention.
0014 FIG. 4 is a flowchart of a method in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

0015 The present invention encompasses techniques for
event notification inclusters of nodes within distributed com
puting systems. In particular, embodiments of the invention
can be used to reduce event processing bandwidth and storage
requirements by coalescing duplicate events that are being
queued for delivery to event consumers. Information about
how many duplicate events is preserved by incrementing a
sequence number within the event notification when a dupli
cate event is combined with a previously queued event noti
fication. The timestamp of the event notification can be
updated with the timestamp of the most recently received
duplicate event.
0016 Referring now to FIG. 1, a distributed computer
system in accordance with an embodiment of the present
invention is shown. A first physical processing node 10A
includes a processor core 12 coupled to a memory 14 that
stores program instructions for execution by processor 12.
The program instructions include program instructions form
ing computer program products in accordance with embodi
ments of the invention that provide event notification between
either physical processing nodes 10A-10D, virtual process
ing nodes partitioned within the depicted computer system as
will be described in further detail below, or both. Processing
node 10A also includes a network interface (NWI) 16 that
couples processing node 10A to a wired, wireless or hybrid
network, which may be a standardized network such as Eth
ernet, or a proprietary network or interconnect bus. Other

US 2012/0066694 A1

processing nodes 10B-10D are of identical construction in the
exemplary embodiment, but embodiments of the invention
may be practiced in asymmetric distributed systems having
nodes with differing features. Although only four compute
nodes 10A-10D are illustrated, a distributed computer system
in accordance with an embodiment of the present invention
will generally include a large number of compute nodes con
nected via one or more networks. The distributed computer
system of FIG. 1 also includes other resources such as I/O
devices 19, including graphical display devices, printers,
scanners, keyboards, mice, which may be coupled to the
network or one of nodes 10A-10D via workstation computers
that provide a user interface to administrative personnel and
other users. Nodes 10A-10D are also coupled to storage
devices 18, for storing and retrieving data and program
instructions, such as storing computer program products in
accordance with an embodiment of the invention.

0017 Referring now to FIG. 2, communication between
multiple nodes 20 of the distributed computer system of FIG.
1 is shown. As mentioned above, nodes 20 may correspond
exactly on a one-to-one basis with processing nodes 10A
10D (and other nodes) of FIG. 1, or nodes 20 may be parti
tioned in a different manner as virtual processing nodes. For
example, a single node 20 may have exclusive use of multiple
processing nodes, e.g. nodes 10A-10B, and result in a system
having a greater number of virtual nodes than processing
nodes, or alternatively, multiple nodes 20 may be imple
mented on a single processing node, e.g., node 10A. In the
present invention, each of nodes 20 represents at least one
operating system image and one or more applications execut
ing within the operating system image. In general, the entire
system as depicted may execute a single application, but
Sub-tasks within the application are apportioned to the vari
ous nodes 20, which may be identical sub-tasks or different
Sub-tasks. The present invention concerns event notification
within the computer system of FIG. 1, in which events are
communicated between nodes 20 via event notification mes
sages. Other messages are also passed between nodes 20,
including data and program code transmissions, and mes
sages as needed to Support features of embodiments of the
present invention, such as indications to remote nodes that
event notifications of a particular event type are of interest to
another node. A separate physical network may be provided
for administrative tasks Such as event notification and heart
beat messaging, or the same physical networks may be used.
Nodes are generally arranged in a cluster, which is a group of
virtual or physical processing nodes organized to perform a
particular task or group of tasks, e.g., for a particular cus
tomer. As illustrated, communication between nodes in a
cluster may be accomplished by direct node to node commu
nications 22 or by next-neighbor communications 24 in
which nodes 20 pass along messages to other nodes 20.
Another alternative is to use a central facility for inter-node
communication. However, since the present invention pro
vides a high availability event notification system having low
latency, it is generally preferable not to use a central clear
inghouse for events and other messages.
0.018 While event notification in accordance with
embodiments of the present invention may be implemented
using a variety of event notification mechanisms, such as
direct object-to-object interfaces, using operating system
maintained signaling object such as semaphores, in the
depicted embodiment, the event notification is provided by a
special file system that implements an event manager. Event

Mar. 15, 2012

consumers, i.e., the applications or objects interested in
receiving event notifications, register to receive event notifi
cations by calling file operation functions/methods on an
interface to the file system. Event producers notify the file
system of events via a separate application programming
interface (API) provided by the event manager. The event
manager then provides the event notifications to the event
consumers interested in the particular events represented by
the event notifications. In the depicted embodiment, the file
system is a kernel extension, which facilitates availability and
uniformity of the event manager at each node in the system.
Further details of a file-system based event manager are pro
vided in U.S. Patent Application Publication U.S.
200901991051, which is incorporated herein by reference.
The event notification system the “Autonomic Health Advisor
File System’ (AHAFS) disclosed in the above-incorporated
U.S. patent Application does not provide direct event notifi
cation between the nodes, so a separate layer is used for
inter-node event communication. The generic methods open.(
) and write() described below are understood to include
specific file operations fopen() andfwrite() as alternatives, or
other operations provided in a file system interface that can be
used to provide the same type of information flow.
0019 Referring now to FIG.3, information flow within an
event notification system according to an embodiment of the
invention is shown. Event producers 32A-32C generate event
notifications that are provided to an event processing block34
within an AHAFS software component 30, which is generally
distributed among nodes 20. Instances of an AHAFS interface
on each node 20 receive event notifications from event pro
ducers 32A-32C and either queue them for local consumption
or transmit them for remote consumption. AHAFS software
component 30 also receives remote event notifications from
remote instances of AHAFS interfaces. Both local events and
remote event notifications are queued by AHAFS software
component 30 in per-consumer queues 36A and 36B, which
are implemented as circular buffers in the depicted embodi
ment, but may alternatively be implemented using other type
of storage organization. Event consumers 38A-38B process
events de-queued from their corresponding queues 36A and
36B, and perform any responsive actions.
0020. The present invention provides reduction in pro
cessing overhead and the chance of overflow of queues 36A
and 36B, by detecting that a duplicate event notification is
about to be inserted in one of queues 36A and 36B, and
altering the event notification to indicate to the corresponding
event consumer 38A-38B, the number of event notifications
represented by the modified event notification, and the times
tamp of the latest such event notification received.

TABLE I

Event Notification Tag
Event type (per consumer) e
Event sequence number 1
Timestamp
Event Data ...
End Tag

Table I above illustrates an event notification received for a
first event e, which has an event sequence number of 1. If
additional identical event notifications having the same data
are received, the AHAFS according to an embodiment of the
present invention will increment the event sequence number
for each duplicate event that is then received and discarded.

US 2012/0066694 A1

When the corresponding event consumer processes the event
notification, the consumer can determine the number of event
notifications received by the value of the event sequence
number. Since the field (event sequence number) used to store
the indication that more than one event has been received is a
field already within the event notification, the event consum
ers do not have to handle a new?clifferent format that includes
additional fields to indicate a duplicate event. Therefore, the
same parsing format can be used to interpret the event noti
fication, since the coalesced event notification has the same
format as an individual event notification.

0021. The event consumer can also determine the most
recent occurrence of the event by noting the timestamp, which
has been replaced with the timestamps of the incoming event
notifications as they are received and discarded. In the par
ticular embodiment depicted herein, if a different event noti
fication is received between duplicate event notifications,
then the more recent event notifications are not discarded, so
the event consumer can rely that no other events have tran
spired between the event notifications that have been coa
lesced. The updating of timestamps can be user settable in
accordance with an embodiment of the present invention to
update with the latest timestamp, or retain the timestamp of
the first occurrence of the event, which may be selected on a
per-customer basis. As another alternative embodiment,
event consumers, when registering to receive notifications for
a particular event, may be provided the option of specifying a
flag, e.g., TIMESTAMP=FIRST or TIMESTAMP=LAST,
which in the depicted embodiment are written to the file that
represents the event. The flag indicates, for each event con
Sumer and on a per event-type basis, whether the timestamp
field is updated with each received event notification that is
coalesced, or whether the original timestamp is preserved.
0022 Referring now to FIG. 4, a method in accordance
with an embodiment of the invention is shown in a flowchart.
When an event notification is received for an event consumer
(step 50), the corresponding queue tail is peeked (step 51) to
determine if the event data matches the event data of the event
notification received in step 50 (decision 52). If the event data
matches (decision 52), the event notifications are coalesced
by incrementing the sequence number of the event stored in
the queue tail (step 54) and the timestamp of the event
received in step 50 is optionally used to replace the timestamp
in the queue tail event notification (step 55). Whether or not
the timestamp is replaced can be determined from a user
settable flag that indicates whether timestamp updating
should be employed. If the event data does not match (deci
sion 52), then the received event notification is enqueued in
the queue (step 53). Until event reporting is terminated (deci
sion 56) the process of steps 50-56 are repeated as event
notifications arrive at each queue.
0023. As noted above, the present invention may be
embodied as a system, method, and/or a computer program
product. A computer program product may be embodied in
firmware, an image in System memory or another memory/
cache, stored on a fixed or re-writable media Such as an
optical disc having computer-readable code stored thereon.
Any combination of one or more computer readable medium
(s) may be used to store the program instructions in accor
dance with an embodiment of the invention. The computer
readable medium may be a computer readable signal medium
ora computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or

Mar. 15, 2012

semiconductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a por
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any Suitable
combination of the foregoing.
0024. In the context of the present application, a computer
readable storage medium may be any tangible medium that
can contain, or store a program for use by or in connection
with an instruction execution system, apparatus, or device. A
computer readable signal medium may include a propagated
data signal with computer readable program code embodied
therein, for example, in baseband or as part of a carrier wave.
Such a propagated signal may take any of a variety of forms,
including, but not limited to, electro-magnetic, optical, or any
Suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a
computer readable storage medium and that can communi
cate, propagate, or transport a program for use by or in con
nection with an instruction execution system, apparatus, or
device. Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, or any suitable combination of the foregoing.
0025 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. Further, while the illus
trative embodiment is directed to an AIX (AIX is a trademark
of IBM) or other type of UNIX operating system (UNIX is a
trademark of The Open Group), in which the event notifica
tion is provided by a mountable file system provided as a
kernel extension, it is understood that the techniques of the
present invention can be applied in event monitoring systems
executing under any operating system and can be imple
mented using proprietary or standardized signaling interfaces
as an alternative to the file system interface provided in the
depicted embodiments.
0026. While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that the
foregoing and other changes inform and details may be made
therein without departing from the spirit and scope of the
invention.

What is claimed is:
1. A method for event notification within a computer sys

tem processing cluster comprising a plurality of physical or
virtual processing modes, the method comprising:

receiving event notifications corresponding to events
occurring on one or more of the processing nodes;

queuing the received event notifications in one or more
queues for delivery to event consumers;

coalescing duplicate event notifications in a single result
ing event notification, wherein the event notifications
contain a event sequence number, wherein the coalesc
ing further increments the event sequence number in the

US 2012/0066694 A1

resulting event notification to indicate to a correspond
ing one of the event consumers the total number of
original and duplicate events that have been received;
and

at an event consumer, determining whether the event noti
fications have been duplicated one or more times by
reading the event sequence number of the event notifi
cations.

2. The method of claim 1, wherein the queuing the event
notifications queues the event notifications in multiple queues
corresponding to event consumers.

3. The method of claim 1, wherein the coalescing only
coalesces sequential duplicate events.

4. The method of claim 3, wherein the coalescing com
prises:

responsive to the receiving having received an event noti
fication;

peeking in a corresponding queue to determine whether a
most recently queued event notification is a duplicate of
the received event notification;

responsive to the peeking determining that the most
recently queued event notification is not a duplicate of
the received event notification, queuing the event noti
fication in the corresponding queue without altering the
sequence number of the event notification; and

responsive to the peeking determining that the most
recently queued event notification is a duplicate of the
received event notification, incrementing the sequence
number of the most recently queued event notification
without queuing the received event notification in the
queue.

5. The method of claim 4, further responsive to the peeking
determining that the most recently queued event notification
is a duplicate of the received event notification, updating a
timestamp of the most recently queued event notification.

6. The method of claim 1, wherein the coalescing further
sets a timestamp of the single resulting event notification to
match the timestamp of the most recent of the duplicate event
notifications.

7. The method of claim 6, wherein the setting a timestamp
is performed selectively in response to an indication that
event notification timestamps should be updated.

8. The method of claim 1, wherein the event notifications
are received as callbacks to an application programming
interface provided by the file system that implements at least
a portion of the event notification method, and wherein the
queuing is performed in response to receiving the callbacks.

9. A computer system comprising a processing cluster
including a plurality of physical or virtual processing modes,
the computer system comprising at least one processor for
executing program instructions and at least one memory
coupled to the processor for executing the program instruc
tions, wherein the program instructions are program instruc
tions for providing event notification within the computer
system, the program instructions comprising program
instructions for:

receiving event notifications corresponding to events
occurring on one or more of the processing nodes;

queuing the received event notifications in one or more
queues for delivery to event consumers;

coalescing duplicate event notifications in a single result
ing event notification, wherein the event notifications
contain a event sequence number, wherein the coalesc
ing further increments the event sequence number in the

Mar. 15, 2012

resulting event notification to indicate to a correspond
ing one of the event consumers the total number of
original and duplicate events that have been received;
and

at an event consumer, determining whether the event noti
fications have been duplicated one or more times by
reading the event sequence number of the event notifi
cations.

10. The computer system of claim 9, wherein the program
instructions for queuing the event notifications queue the
event notifications in multiple queues corresponding to event
COSU.S.

11. The computer system of claim 9, wherein the program
instructions for coalescing only coalesce sequential duplicate
eVentS.

12. The computer system of claim 11, wherein the program
instructions for coalescing comprise program instructions
for:

responsive to the receiving having received an event noti
fication;

peeking in a corresponding queue to determine whether a
most recently queued event notification is a duplicate of
the received event notification;

responsive to the peeking determining that the most
recently queued event notification is not a duplicate of
the received event notification, queuing the event noti
fication in the corresponding queue without altering the
sequence number of the event notification; and

responsive to the peeking determining that the most
recently queued event notification is a duplicate of the
received event notification, incrementing the sequence
number of the most recently queued event notification
without queuing the received event notification in the
queue.

13. The computer system of claim 12, further comprising
program instructions for responsive to the peeking determin
ing that the most recently queued event notification is a dupli
cate of the received event notification, updating a timestamp
of the most recently queued event notification.

14. The computer system of claim 9, wherein the program
instructions for coalescing further set a timestamp of the
single resulting event notification to match the timestamp of
the most recent of the duplicate event notifications.

15. The computer system of claim 9, wherein the program
instructions for setting a timestamp are selectively executed
in response to an indication that event notification timestamps
should be updated.

16. The computer system of claim 9, wherein the event
notifications are received as callbacks to an application pro
gramming interface provided by the file system that imple
ments at least a portion of the event notification method, and
wherein the program instructions for queuing are executed in
response to receiving the callbacks.

17. A computer program product comprising a computer
readable storage media storing program instructions for
execution within a computer system, the computer system
comprising a processing cluster including a plurality of
physical or virtual processing modes, wherein the program
instructions are program instructions for providing event
notification within the computer system, the program instruc
tions comprising program instructions for:

receiving event notifications corresponding to events
occurring on one or more of the processing nodes;

US 2012/0066694 A1

queuing the received event notifications in one or more
queues for delivery to event consumers;

coalescing duplicate event notifications in a single result
ing event notification, wherein the event notifications
contain a event sequence number, wherein the coalesc
ing further increments the event sequence number in the
resulting event notification to indicate to a correspond
ing one of the event consumers the total number of
original and duplicate events that have been received;
and

at an event consumer, determining whether the event noti
fications have been duplicated one or more times by
reading the event sequence number of the event notifi
cations.

18. The computer program product of claim 17, wherein
the program instructions for queuing the event notifications
queue the event notifications in multiple queues correspond
ing to event consumers.

19. The computer program product of claim 17, wherein
the program instructions for coalescing only coalesce sequen
tial duplicate events.

20. The computer program product of claim 19, wherein
the program instructions for coalescing comprise program
instructions for:

responsive to the receiving having received an event noti
fication;

peeking in a corresponding queue to determine whether a
most recently queued event notification is a duplicate of
the received event notification;

responsive to the peeking determining that the most
recently queued event notification is not a duplicate of
the received event notification, queuing the event noti
fication in the corresponding queue without altering the
sequence number of the event notification; and

responsive to the peeking determining that the most
recently queued event notification is a duplicate of the
received event notification, incrementing the sequence
number of the most recently queued event notification
without queuing the received event notification in the
queue.

21. The computer program product of claim 20, further
comprising program instructions for responsive to the peek
ing determining that the most recently queued event notifica
tion is a duplicate of the received event notification, updating
a timestamp of the most recently queued event notification.

22. The computer program product of claim 17, wherein
the program instructions for setting a timestamp are selec
tively executed in response to an indication that event notifi
cation timestamps should be updated.

23. The computer program product of claim 17, wherein
the event notifications are received as callbacks to an appli
cation programming interface provided by the file system that
implements at least a portion of the event notification method,
and wherein the program instructions for queuing are
executed in response to receiving the callbacks.

Mar. 15, 2012

24. A computer system comprising a processing cluster
including a plurality of physical or virtual processing modes,
the computer system comprising at least one processor and at
least one memory coupled to the processor, and wherein the
computer system further comprises a file system device
implementing an event notification system that includes one
or more program modules having program instructions for:

receiving event notifications corresponding to events
occurring on one or more of the processing nodes as
callbacks to an application programming interface of the
file system device:

queuing the received event notifications in one or more
queues for delivery to event consumers;

coalescing duplicate event notifications in a single result
ing event notification, wherein the event notifications
contain a event sequence number, wherein the coalesc
ing further increments the event sequence number in the
resulting event notification to indicate to a correspond
ing one of the event consumers the total number of
original and duplicate events that have been received;
and

at an event consumer, determining whether the event noti
fications have been duplicated one or more times by
reading the event sequence number of the event notifi
cations.

25. A computer program product comprising a computer
readable storage media storing program instructions for
execution within a computer system, the computer system
comprising a processing cluster including a plurality of
physical or virtual processing modes, wherein the program
instructions comprise program instructions forming a file
system device implementing an event notification system that
includes one or more program modules having program
instructions for:

receiving event notifications corresponding to events
occurring on one or more of the processing nodes as
callbacks to an application programming interface of the
file system device:

queuing the received event notifications in one or more
queues for delivery to event consumers;

coalescing duplicate event notifications in a single result
ing event notification, wherein the event notifications
contain a event sequence number, wherein the coalesc
ing further increments the event sequence number in the
resulting event notification to indicate to a correspond
ing one of the event consumers the total number of
original and duplicate events that have been received;
and

at an event consumer, determining whether the event noti
fications have been duplicated one or more times by
reading the event sequence number of the event
notifications.

