US006925520B2

a2 United States Patent

10y Patent No.: US 6,925,520 B2

Ma et al. 5) Date of Patent: Aug. 2, 2005
(54) SELF-OPTIMIZING CROSSBAR SWITCH 5,613,146 A 3/1997 Gove et al.
5,896,516 A 4/1999 Powell et al. 710/317
(75) Inventors: James H. Ma, San Jose, CA (US); Lisa 6,038,630 A 3/2000 Foster et al.oeueeeeee 710/317
C. Grenier, San Jose, CA (US) 6,072,772 A 6/2000 Charny et al.
6,289,409 B1 * 9/2001 Bacigalupo 710/305
(73) Assignee: Sun Microsystems, Inc., Santa Clara, g’zgg’ggé gi . Sgggg SB‘;LICI:;]' 710317
CA (US) 6625160 Bl 9/2003 Suzuki
. 2001/0050916 Al 12/2001 Krish
(*) Notice: Subject to any disclaimer, the term of this / ’ e
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 607 days.
(b) by as TechEncyclopedia, definition for “glue logic” and “opera-
ti de”, http: techweb.com.*
(21) Appl. No.: 09/871,277 ion code”, hittp://www.techweb.com
* cited b i
(22) Filed: May 31, 2001 cited by exatinet
. L Primary Examiner—Mark H. Rinehart
(65) Prior Publication Data Assistant Examiner—Justin King
US 2004/0225787 Al Nov. 11, 2004 (74) Antorney, Agent, or Firm—Meyertons Hood Kivlin
5 Kowert & Goetzel, P.C.; B. Noél Kivlin
(51) Inmt. CL7 ot GO6F 13/00
(52) US.CL .o, 710/317; 710/311; 710/241; (57) ABSTRACT
710244 e .
. A crossbar switch is disclosed. The crossbar switch com-
(58) Field of Se§;31136036371053135()%821()11’331760@?;’ prises a plurality of input sorting units and a plurality of
/360, > /5, > > 2 1’ 5 44 merge and interleave units. Each input sorting unit is capable
’ of receiving from a respective device an access request to
(56) References Cited any one of a plurality of physical memory devices. Each
merge and interleave unit is capable of arbitrating among
U.S. PATENT DOCUMENTS competing access requests received from any of the input
. sorting units, selecting one of the competing access requests
j’gg’ii;‘ 2 . %ﬁggf SBCelrﬂg(l)ltltr?crleZt.;l. """"""" 712/1204;; and forwarding the selected request for implementation on a
5210829 A * 5/1993 Bitner T10/57 reSpeCé“t’)e mﬁ’mory ‘fvm' Alflo disclosed is method imple-
5300426 A * 5/1994 Crouse et al. ..o......... 370/427 ~ mented Dy the crossbar switch.
5,436,886 A 7/1995 McGill
5,559,970 A 9/1996 Sharma 33 Claims, 13 Drawing Sheets
¢)
/500 7T 420 [] 3007T [l 500 7T 500 T
7 va ya
Cow J— el =
T L Ir L ir L i = L
| isu, ' Iomuo | l Isu, | | oMU, | ‘ su, | IOMU2 | | IsU, | | oMU, |
TT rrONT T7 TT rRONT T T " FRONT | | ‘T FRONT | T
END END END L_END ‘
| T =1 — | =
4 b ' 2 L =5 i 2 b L
| Miu, |€J| RB, I | MIU, |C]| ks, I I M, |(:]| RE, l | MIU, ‘(:]| RE, |
LI AS R L
i, M
BACK END BACK END BACK END BACK END
|
<= <= _4 25 4 <~
TO TO TO TO
MEMORY MEMORY, MEMORY, MEMORY,

US 6,925,520 B2

I "Old

091

Sheet 1 of 13

Aug. 2, 2005

U.S. Patent

-\ ‘
R H¥411TOULNOD S
AYOWIW 4O W
- ﬁv N391A1q
o ¢ ° T
o o HOLIMS | @ ®
dvassoyD | @ ®
®) ° ®
0
o YITTOYLNOD
AYOWIW Aﬂv YO WM @ Amv ﬁv °151A10
T 7 /l
\un —7 ‘ Ol1l
mm_/acu_of oiu\ <~
os1—

U.S. Patent Aug. 2, 2005 Sheet 2 of 13 US 6,925,520 B2

140 —a

200 _\@ i}/_zoo

LT3 4=

M]U0 e o @ Mll.lM

FiGg. 2

300 —

RECEIVE A PLURALITY OF ACCESS REQUESTS

PRESENT A PLURALITY OF CHARACTERISTICS
FOR EACH ACCESS REQUEST

ASCERTAIN A PLURALITY OF
OPERATIONAL CHARACTERISTICS FOR
EACH ACCESS REQUEST

SELECT ONE OF THE ACCESS REQUESTS FOR PROCESSING UPON
CONSIDERATION OF THE ACCESS REQUEST CHARACTERISTICS
AND THE OPERATIONAL CHARACTERISTICS

Fic. 3

U.S. Patent Aug. 2, 2005 Sheet 3 of 13 US 6,925,520 B2

400 — 405
SYSTEM
INTERFACE
T U W\T?
412 412 412 412
Z hN [) e
PP PP PP PP
413 413 413 413
ii ii ii ii >RENDI-ZR[NG
UNITS
FBCo FBC, FBCZ FBC3 410
415 415 415 415
= e e 5T

[A= il

BUS
SYSTEM

U resr oo

=L 425
CROSSBAR SWITCH CROSSBAR SWITCH |~

445

FRAME BUFFER

FiG. 4

US 6,925,520 B2

Sheet 4 of 13

Aug. 2, 2005

U.S. Patent

vYSg "Oid

SAMOWINW EAYOWIN "AYOWINW O YOWINW
ol oL ol oL
s < A v./ =
aN3 MDV4 AN3 XIV aN3 DV aNi Mov4g
I 1M MW o1
< —r r Sy
‘ay & ‘NI gy ﬁv “Nin 'y a 'NiW gy Q NIn
! == 1 == M - =
I | I | [
-
p A
E] aN3 dN3 aNg
1| INOoWs | | J | LNowd | | J [LNo¥d | | 1] INowt | |
‘nWo fnsi ‘nWwo “nsi '‘NnWo 'nsi ‘nwo ‘nsi
- TT : N T =] ==
‘n1o . “n1o 'n1o ‘n1o
e s P e
/- / / V4
1L o0s” 1.l 005/ 1L o0s~ 02y ~ <+~ oos/ U

{‘».

-~

U.S. Patent Aug. 2, 2005 Sheet 5 of 13 US 6,925,520 B2

FROM
DEVICE,
T T 500
505 —
515 —
N GLu, ||
200 | = -~ {l-530
N 1su omMu, |
TT rRONT | [
END
S N
510 —~ ASL
210 — — — /,—520
| miu, (O] rB,
525 —| L1 1T
| Mmi [
=
BACK END
~~—
TO
MEMORY,

Fic. 5B

US 6,925,520 B2

Sheet 6 of 13

Aug. 2, 2005

U.S. Patent

*nsi ol
p .
aviyviva sl 1o .
A nsi WoY4
® / ~ N
m w—m 11VLS 1D SI
A A 11VLS ATY4V3 1D Sl
- L
ISYHdAVIY WO 19
— ™S cz9
Z Al N1D WO 19
L, NID DVl 0Z9 nion
1T1VYLS 19 Si e
< i
NWO OL SOVL | ONIddVH
ssI¥aAqy
519
7 ¥ e Y
NOILVISNVIL|,
340240 |
TOYLNOD
S¥3LSIDIY| | NOISNVdX3
0£9-"| N19 OYIV I) A
x \ S¢9
/ 019~/
S1§ 009" !
X
121A31d
WOYd VLIVdQ 11V1S

‘ss3yaayv ‘3d0DdO

US 6,925,520 B2

Sheet 7 of 13

Aug. 2, 2005

U.S. Patent

ALIWILON EIW Sl e ALdWILON OIW §I
o [0:hZINAVIN MH EIW SI eee [0:HZINYVIN MH OILW Sl qyuny 0414 SIS W
dNIaviIy SIW SI [0:11713S4NG SIW ST eee [0:1]17354N9 OIW SI -y
_EIN _EIA i _IN 3 gy 04did SE 2N
ANIaV3IY ZIW S] [0:£]13d0DdO SIW SI »oe [0:£]13A0DdO OIW SI AvIY o414~ SI LI W
azaﬁ_g”:zum_ [0:S9OVLVYA SIW SI eoe [0:59V.LVA OIW SI AvVIE0Ild s 0l W
aNIdv3id OIW SI [0:4219AAV EIW Sl see [o:¢Z]daav OIW SI
A Ar Ar
¥
XY A
| LINN LNdLNO <
dNI aV3Y 004 / o4l
] fo414| ‘o414 tod1d| 0414
007 1 00.
4ISYVd NSl
y _
. o 11VL1S 19 SI
aviiviva si 1o [0:11d3IHSA SI 1D qqvis A1AVI 1D 7SI

[0:1]171354N4 SI" 19D
[0:£13Q0Dd0O SI 19

00— [0:591vLiva sl 19 L 'Old

[o:pzlMa@av SI 19

U.S. Patent Aug. 2, 2005 Sheet 8 of 13 US 6,925,520 B2

FROM
425 —a RBs
TO AND FROM ISUs
N
7 \
T i A l i_ t
REQ, REQ,| REQ, REQ,
835 835 8351835
» PG, r PG, | PG, PG,
Tt Y 3 * Y -1 FIFO READ
840 NOT EMPTY
\[REQUEST| | PRIORITY
Mux | COMPARE [*
815
MIu RB FULL/NOT FULL
REGISTERS 845/
820
PRIORITY [} 1 850
REGISTER |l [Decope V.
ACTIVEAB |
REGISTER |[823
ACTIVECD |
REGISTER [[830 855
: ouTPuUT |/
MUX
Y N0

TO

MEMORY FlG. 8

INTERFACE

U.S. Patent

905

PAGE HIT PRIORITY

Aug. 2, 2005

Sheet 9 of 13

US 6,925,520 B2

915

FIFO HW PRIORITY

920

210 250
PAGE HIT INC/DEC FIFO HW
245
L4 /_
DEFAULT PRIORITY
= 0, IF FIFO HW = O;
= FIFO HW PRIORITY,
925 IF FIFO HW = 1
\ o
BANK MISS PRIORITY FIFO READ PRIORITY
¢ 935
PAGE MISS
a 240
BANK MISS
h h 4 Y
930 _~

ADDER o5t
/_
l RB FIFO FULL
COMPOSITE

REQUEST PRIORITY

Fic. 9

N 900

U.S. Patent Aug. 2, 2005

900
/_

ISU, REQ PRIORITY

900
AN

ISU, REQ PRIORITY

1010
\

HIGHEST PRIORITY

525 —\

Sheet 10 of 13 US 6,925,520 B2

900

~

ISU, REQ PRIORITY

/—900

ISU, REQ PRIORITY

COMPARE

l

REQUEST

1000

Fic. 10

210

MIU

/1205

4

MEMORY INTERFACE
CORE LOGIC

2

=

DRAM

RB READ
HEADER
QUEUES

Fic. 12

U.S. Patent Aug. 2, 2005 Sheet 11 of 13 US 6,925,520 B2

ACTIVE 1100

REQUEST”
FROM ISU,
1105 535
ISU, REQUEST
‘ ACTIVE PAGE
REQUESTED ADDRESSES
PAGE 910
ACTIVE OTHER
REQUEST — PAGE HIT)WEIGHTS
FROM ISU, 1105 960
I
900
N COMPOSITE
ACTIVE PRIORITY
1000
REQUEST —1100 | |

FROM (SU
y ¢ —1105 »(COMPARE

ISU, REQUEST

ACTIVE

REQUEST —
FROM ISU 1105
v >

ISU; REQUEST

v

SELECTED REQUEST
FlGo 1 1 1010_/

US 6,925,520 B2

Sheet 12 of 13

Aug. 2, 2005

U.S. Patent

[0:§9]lvLivVa Q¥ 1

inind [

[0:s¥1VLiVADIY 94 WZ

YILSIDIY |«
_/

01£1

AM VIVADIY 94 WZ

11SV1IVvd

ISVYHIAVIY 9¥ WZ

Z AIATID Y WZ

[0:sINTYVLVYA

AdQVIYVLIVA 9Y !

141D [« ————
[0:£INIMVYLVA 11VLS Oa WZ 9¥
A AQVINAYIY 94 WZ
— Y A aviyisvi WZ Wi
IL cig _.\ 11vL1s D3d ¥3aviH WZ 94
+
ZEX99 11N4 ¥43avIHY
1NINd b b |
vivda S 0zZ¢ 1 AV OTYIaVIH 94 WZ
1nInd B
¥3dVIHGY "z NOILDVX €Y WZ
L_\ “NOILVNILSIA 94 WZ
I~ 00¢1 =
TVO MIVIM
/ ||
\AAA _ Y mwm_l\ v_&<2>>._|_2..mm
[0:§9]VIVA £WO gy dVIY 84 WO AN °
. v MAVIWMH TN Y m —. G—h—

[0:69]lVLVA OWO Y

NMYAVVLIVE WO 9%

¥— 02§

U.S. Patent Aug. 2, 2005 Sheet 13 of 13 US 6,925,520 B2

412

DEVICE

v 1

J OM O _OP RET[3:0]

TO GLU, (ONLY TO DEVICE)
[

OM O DATAOUT[65:0]

l 1420
| OUTPUT UNIT |/
\ A
READ INFO |
REGISTERS
N
RDINFO[31:0] 1410
RBORIGIN[1:0] l MUXDATA[65:0] MUXOP[3:0]
| — CONTROL |,
| 1 uNIT
TAG] MUXING
i i UNIT \
1415
| QUEUE GLUOPCODE[3:0] k i
L \-1405

GL_OM_RDTAG[5:0]
~ ’ RBO_OM_DATA[65:0]
FROM GLU, :
RB3_OM_DATA[65:0]

~\

/

N

FIG. 1 V) FROM RBS

US 6,925,520 B2

1
SELF-OPTIMIZING CROSSBAR SWITCH

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to a crossbar switch, and,
more particularly, a self-optimizing crossbar switch capable
of selecting and distributing multiple concurrent memory
requests to a shared memory system such that the memory
access are optimized and the selection of requests are
optimized.

2. Description of the Related Art

The evolution of electronic computing systems has
included the development of more sophisticated techniques
for utilizing their computing resources. Consider, for
example, a shared memory. A shared memory may be read
from and written to by more than one device, ¢.g., several
processors. The devices perform their assigned functions,
reading from and writing to the shared memory. The devices
request access to the shared memory through a memory
controller that controls the operation of the shared memory.
Typically, several devices are trying to access the shared
memory in this fashion at any given time. However, for a
variety of reasons, the devices generally are permitted to
access the shared memory only one at a time. The memory
controller, or some electronic circuitry associated with the
memory controller, must select one of the access requests to
process at any given time.

Consider, for instance, a graphics processing system. One
memory intensive operation associated with graphics pro-
cessing is “rendering.” “Rendering” is the process by which
a graphics system adds realism to video data by adding
three-dimensional qualities such as shadows and variations
in color and shade. Because of the high rate at which the
graphics data is processed, a rendering machine will typi-
cally include multiple “rendering pipelines” operating in
parallel. A rendering machine may also employ multiple
physical memory devices, each with its own controller, to
implement a “frame buffer pixel memory,” or “frame
buffer,” in conjunction with the rendering pipelines.

Management of this memory is important to the overall
performance of the graphics processing system. One way to
manage the memory is to restrict each rendering pipeline to
a certain subset of the graphics data to process and a certain
portion of the frame buffer. The assigned portion of the
frame buffer is accessible through an assigned memory
controller. However, higher performance can be obtained if
the rendering pipelines are not restricted in this manner, i.c.,
if they can work on any part of the graphics data stored in
any part of the frame buffer. Lifting this restriction, however,
includes instituting measures for proper management of the
access to the memory. As each rendering pipeline begins
issuing requests to access the various portions of the
memory, it will at some point try to access a portion that
another rendering pipeline wishes to access at the same time.
Since access can be granted to only one rendering pipeline
at a time, they compete for the access and one or the other
is selected.

Several techniques are conventionally employed for
deciding the order in which simultaneously pending access
requests are processed. One conventional technique is a
“round robin” method, wherein access requests are handled
in some round robin order, depending on the hardware
involved. Another conventional technique processes access
requests in order of an assigned priority. Still other conven-
tional techniques process access requests in random order, or
on a first-come, first-served basis.

10

15

20

25

30

35

40

45

50

55

60

65

2

Each of these conventional techniques is built around and
implements a rigid set of ordering rules that are predefined
and then rigorously implemented. The wooden, mechanical
application of the ordering rules inherent in these conven-
tional techniques frequently adversely impacts performance.
More particularly, the order in which access requests are
processed can significantly impact the bandwidth of the
information processed responsive to the access requests.

For instance, the internal design of the dynamic random
access memory (“DRAM”) devices from which shared
memories are typically constructed favor accesses to data in
the same “page.” A page is a block of data that the internal
DRAM control logic operates on for each access. Internal
DRAM data is organized as pages, so that successive
accesses to data bits that are in the same page are faster than
successive accesses to data bits that are not in the same page.
Because of this characteristic of DRAMS, it is more efficient
to select memory requests that access data bits in the same
DRAM page. Higher memory bandwidth can be achieved if
successive memory requests are all accessing the same page
of data. Thus, increased performance can be realized by
ordering accesses to maximize the number of successive
accesses to the same page(s).

Similarly, the total request throughput rate may be
impacted by the selection order. It is common for requesting
ports to have first-in, first-out (“FIFO”) queues that buffer
memory requests and FIFOs that buffer the memory data
returned by read memory requests. As long as these FIFOs
are not filled, additional request may be generated and new
memory read data returned. If a request FIFO is filled, then
the corresponding port must stop and wait until the FIFO has
room again. Thus, the request throughput rate will be lower.
Likewise, if the memory read data FIFO is filled, then the
memory controller must stop and wait until there is room in
the FIFO. Again, the request throughput rate suffers.
Because of the finite capacity of FIFOs used to store requests
and memory read data, it is more efficient to select requests
such that the FIFOs will not be filled. By avoiding the full
condition, requests may be continually processed with no
interruption. Thus, a higher request throughput rate is
achieved.

To maximize efficiency and throughput rate under these
types of constraints, arbitration and select logic used to
decide the selection order should dynamically consider these
types of factors. During each operational cycle, the requests
should be examined for impact on performance and the more
favorable request selected. It is also desirable to adjust the
importance of priority of each of these constraints. This
allows the various constraints to be weighed differently in
making the selection.

However, conventional arbitration and select techniques
consider none of these factors in a dynamic fashion. If they
are considered at all, they are considered only in a mechani-
cal fashion. Predetermined rules are woodenly applied. If a
technique considers, for instance, two successive requesting
access to the same page, whether a third request resides in
a full FIFO is considered in the same fashion every time.
Thus, although the shared memory might appreciate higher
utilization, its performance is typically less than what it
could be.

SUMMARY OF THE INVENTION

The invention includes a method and apparatus imple-
menting a self-optimizing crossbar bar switch. Note that, in
the context of the invention, the term “optimized” does not
imply the highest possible degree. Instead, the term “opti-

US 6,925,520 B2

3

mized” is used as it is in the art, i.e., to imply an improved
degree of performance.

In a first aspect, the invention includes a crossbar switch,
comprising a plurality of input sorting units and a plurality
of merge and interleave units. Each input sorting unit is
capable of receiving from a respective device an access
request to any one of a plurality of physical memory devices.
Each merge and interleave unit is capable of arbitrating
among competing access requests received from any of the
input sorting units, selecting one of the competing access
requests and forwarding the selected request for implemen-
tation on a respective memory device.

In a second aspect, the invention includes a method for
accessing a shared memory. The method begins by receiving
a plurality of access requests from a plurality of devices,
each access request being received by a respective input
sorting unit associated with the respective one of the devices
issuing the respective access request. Next, the method
forwards a plurality of received access requests to a plurality
of merge and interleave units, each merge and interleave unit
being associated with a respective one of a plurality of
memory devices. This is followed by receiving at one of the
merge and interleave units a plurality of forwarded access
requests. Next, a respective one is dynamically selected
from among forwarded access requests. Then, the selected
access request is forwarded to a respective one among a
plurality of memory devices associated with the merge and
interleave unit.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be understood by reference to the
following description taken in conjunction with the accom-
panying drawings, in which like reference numerals identify
like elements, and in which:

FIG. 1 depicts, in conceptual block diagram, a memory
subsystem of a computing device, not otherwise shown,
constructed and operated in accordance with the present
invention;

FIG. 2 depicts, again in a conceptual block diagram, the
arbitration and selection logic of the memory subsystem of
FIG. 1,

FIG. 3 illustrates one particular embodiment of a method
for arbitrating and selecting one access request to a shared
memory from among multiple contenders in accordance
with the present invention;

FIG. 4 depicts, in another conceptual block diagram, one
particular embodiment of the memory subsystem of FIG. 1;

FIG. 5A depicts, in a conceptual block diagram, a crossbar
switch from the embodiment of FIG. 4;

FIG. 5B illustrates the arbitration and select logic unit of
the crossbar switch in FIG. 5A;

FIG. 6 illustrates the Glue logic unit of the arbitration and
select logic unit of FIG. 5B;

FIG. 7 illustrates the input sorting unit of the arbitration
and select logic unit of FIG. 5B;

FIG. 8 illustrates the merge and interleave unit of the
arbitration and select logic unit of FIG. 5B;

FIGS. 9-11 illustrate the process by which the arbitration
and selection logic, in the particular embodiment of FIGS. 4,
5A, and 5B, arbitrates and selects one access request to a
shared memory from among multiple contenders in accor-
dance with the present invention;

FIG. 12 illustrates the memory interface of the arbitration
and select logic unit of FIG. 5B;

10

30

35

40

45

50

55

60

65

4

FIG. 13 illustrates the read buffers of the arbitration and
select logic unit of FIG. 5B; and

FIG. 14 illustrates the output management unit of the
arbitration and select logic unit of FIG. 5B.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
have been shown by way of example in the drawings and are
herein described in detail. It should be understood, however,
that the description herein of specific embodiments is not
intended to limit the invention to the particular forms
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
INVENTION

Iustrative embodiments of the invention are described
below. In the interest of clarity, not all features of an actual
implementation are described in this specification. It will of
course be appreciated that in the development of any such
actual embodiment, numerous implementation-specific
decisions must be made to achieve the developers’ specific
goals, such as compliance with system-related and business-
related constraints, which will vary from one implementa-
tion to another. Moreover, it will be appreciated that such a
development effort, even if complex and time-consuming,
would be a routine undertaking for those of ordinary skill in
the art having the benefit of this disclosure.

FIG. 1 conceptually illustrates in a block diagram a
memory subsystem 100 of a computing device, not other-
wise shown, constructed and operated in accordance with
the present invention. The computing device in the illus-
trated embodiment is a Sun UltraSPARC workstation (e.g.,
from the Sun Blade™ or the Ultra™ line of workstations)
employing a UNIX-based operating system (e.g., a
Solaris™ OS) commercially available from the assignee of
this application, Sun Microsystems, Inc. However, the
invention is not so limited. The computing device may be
implemented in virtually any type of electronic computing
device such as a laptop computer, a desktop computer, a
mini-computer, a mainframe computer, or a supercomputer.
The workstation is built around an UltraSPARC™ 64-bit
processor available from Sun Microsystems, but the
invention, again, is not so limited. The microSPARC™ from
Sun Microsystems, any of the Itanium™ or Pentium™-class
processor from Intel Corporation, the Athlon™ or Duron™
class processors from Advanced Micro Devices, Inc., or the
Alpha™ processor from Compaq Computer Corporation
might also be employed in alternative embodiments.

The memory subsystem 100 includes a plurality of
devices 110 generating access requests for a shared memory
120, which includes several physical memory devices 1285.
Each physical memory device 125 operates in accordance
with commands from a respective memory controller 160. In
one particular embodiment, discussed more fully below, the
memory subsystem 100 is a portion of a graphics processing
system. In this particular embodiment, the devices 110 are
frame buffer controllers outputting access requests from a
rendering pipeline and the shared memory 120 is a frame
buffer. However, the invention is not so limited. The inven-
tion may be employed in any type of electronic computing
system having a shared memory.

The access requests are communicated from the devices
110 over the bus system 130. The memory subsystem 100
includes a crossbar switch 140 constructed and operated in

US 6,925,520 B2

5

accordance with the present invention that receives the
access requests off the bus system 130. The crossbar switch
140 directs the access requests to their appropriate destina-
tion. This includes arbitrating among competing access
requests for the same physical memory device 125 and
selecting one for implementation. The crossbar switch 140
outputs the selected access requests to the memory control-
lers 160, which implements the access requests to or from
the memory 120, depending on whether the access is a write
or aread. The devices 110, shared memory 120, and memory
controllers 160 may be implemented using any conventional
technique known to the art so long as the memory 120 is
implemented as a shared memory.

FIG. 2 conceptually illustrates in a block diagram the
crossbar switch 140 of the memory subsystem 100 of FIG.
1. The crossbar switch 140 generally comprises a plurality of
input sorting units (“ISU”) 200, one for each of the devices
110. The ISUs 200 may be implemented using any suitable
technique known to the art. One particular embodiment
discussed further below implements the ISUs 200 in first-in,
first-out (“FIFO”) queues accompanied by circuitry for
address determining and manipulation. The crossbar switch
140 also includes a merge and interleave unit (“MIU”) 210
for each physical memory device 125, to which each ISU
200 is, in the illustrated embodiment, hardwired. Each ISU
200 receives access requests over the bus system 130 from
its respective device 110 and determines for which physical
memory device 125 access requests are directed. The ISUs
200 then forward the received access requests to the MIU
210 as as they are received. In each operational cycle, each
MIU 210 looks at each of the access requests presented by
the ISUs 200 and selects one for further processing.

The MIUs 210 dynamically consider a number of factors
in each selection, such as:

factors maximizing the bandwidth efficiency of the shared

memory 120, i.e., the operational characteristics of the
requests themselves;

factors minimizing stalls on requests processed through

the ISUs 200, i.e., the operational characteristics of the
crossbar switch 140 itself; and

fairness, meaning that, all other things being equal, no

ISU 200 is favored over another.
As will be appreciated by those skilled in the art having the
benefit of this disclosure, the exact identity of the factors
considered and the weight given them will be implementa-
tion specific. The invention therefore admits wide variation
in the manner in which these and other factors can be
weighed and considered.

FIG. 3 illustrates one particular method 300 implemented
by the crossbar switch 140 as shown in FIG. 2 in accordance
with the present invention. As set forth in box 310, the
method 300 begins when the ISUs 200 receive access
requests. As each ISU 200 receives an access request, it
presents certain characteristics of the access request to the
MIU 210, as set forth in box 320. The factors influencing the
selection of these requests are discussed further below. Next,
the MIU 210 ascertains selected operational characteristics
associated with the request, e.g., whether the ISU 200 in
which it resides is full, as is set forth in box 330. Finally, as
set forth in box 340, the MIU 210 selects one of the access
requests for processing upon consideration of the access
request characteristics and the operational characteristics.
Note that, because the operational characteristics are ascer-
tained at the time the access request is presented, and
because the access request characteristics are presented as
the access requests are received, the MIU 210 is considering
these factors dynamically.

10

15

20

25

30

35

40

45

50

55

60

65

6

Turning now to FIGS. 4-12, one particular embodiment
400 of the present invention is presented to further an
understanding of the present invention. The embodiment
400 is a graphics processing system. The graphics process-
ing system 400 interfaces with the host computing device
(not otherwise shown) through a system interface 405 and
includes four rendering pipelines 410. Note that the number
of rendering pipelines 410 is not material to the practice of
the invention. The graphics processing system 400 includes
four devices 412 that are, in the illustrated embodiment,
rendering units. Each rendering unit further includes pixel
processor (“PP”) 413 and a frame buffer controller (“FBC”)
415, i.e., FBC,—FBC;, each with a rendering pipeline (not
shown). The FBCs 415 generate memory access requests
that are communicated over the bus system 420 and per-
formed through the two crossbar switches 425 in the frame
buffer 440. The frame buffer 440 includes eight physical
memory devices 434. Each physical memory device 434
comprises multiple DRAM devices 445 arranged in banks in
a conventional interleaved memory technique. The memory
controllers (not shown in FIG. 4) comprise a portion of the
crossbar switch 425 in this particular embodiment, as will be
discussed further below.

Note that the graphics processing system 400 includes
two crossbar switches 425, each servicing four physical
memory devices 434 in the frame buffer 440. As indicated
by the arrow 442, the crossbar switches 425 are hardwired,
in the illustrated embodiment, to permit communication
between the various components of the crossbar switches
425. Note that this interconnection can be implemented
differently in alternative embodiments. For instance, such an
interconnection may be implemented in software or through
functional logic. Thus, the ISUs 200 (shown in FIG. 2) of the
first crossbar switch 425 and the MIUs 210 (also shown in
FIG. 2) of the second crossbar switch 425 can communicate
as can the ISUs 200 of the second crossbar switch 425 and
the MIUs 210 of the first crossbar switch 425. This is an
implementation specific feature. In theory, a single crossbar
switch 425 can service any number of rendering units 410
and any number of physical memory devices 434 simply by
scaling the number of ISUs 200 and MIUs 210 appropri-
ately. As will be recognized by those skilled in the art having
the benefit of this disclosure, this type of scaling may impact
performance or commercial feasibility. Also, there are
extremes in numbers of ISUs 200 and MIUSs 210 that are not
feasible as a practical matter. Nevertheless, the present
invention is readily scalable and the number of crossbar
switches 425 in any given implementation is not material to
the practice of the invention.

FIG. 5A illustrates the internal organization of the cross-
bar switches 425 of FIG. 4. Each crossbar switch 425
includes four arbitration and select logic (“ASL”) units 500.
Turning now to FIG. 5B, each ASL unit 500 includes a front
end 505 built around an ISU 200 and a back end 510 build
around a MIU 210. Each front end 505 is hardwired to each
back end 510 of each crossbar switch 425 and each back end
510 of each crossbar switch 425 is, in this particular
embodiment, hardwired to each front end 505 as was dis-
cussed above. More precisely, each ISU 200 is hardwired in
an exclusive point-to-point connection to each MIU 210 that
is not shared by any other ISU 200. This connection may be
made using any suitable technique known to the art so long
as the front ends 505 and back ends 510 can communicate
with one another.

Each front end 505 is associated with and handles access
requests generated from a particular rendering pipeline 410.
Each back end 510 is associated with and handles access

US 6,925,520 B2

7

requests destined for a particular physical memory device
434. Thus, the front end 505 handles the interface with the
rendering units 410, massages and buffers the received
requests, and returns data to the rendering units 410. The
back end 510 receives access requests for its respective
memory device from the front ends 505, selects one from
among those requests, executes the operations associated
with the selected request, and returns data to the front end
505 that generated the access request.

More particularly, each front end 505 comprises a trans-
lation circuit, implemented as a Glue logic unit (“GLU”) 515
in this particular implementation, and ISU 200, and an
output management unit (“OMU”) 530. Each back end
comprises a MIU 210, a memory interface 525, and a read
buffer (“RB”) 520. The rendering units 410 generate access
requests. The GLU 5185 receives the requests intended for its
respective ISU 200, massages it, and forwards it to the ISU
200. The ISU 200 receives the request, determines the
destination physical memory device 434 for the request, and
forwards it to the appropriate MIU 210, i.e., the MIU 210
associated with the destination physical memory device 434.
The MIU 210 receives multiple, competing access requests
destined for its respective physical memory 434, arbitrates
among them, and selects one for implementation. The MIU
210 forwards the selected access request to the memory
interface 525, which then implements the access request.

Read data returned from the physical memory device 434
is temporarily stored in the read buffer 520, until it can be
transmitted to the appropriate OMU 530, i.e., the OMU 530
associated with the rendering unit 412 that originated the
access request. Each RB 520 is, in this particular
implementation, hardwired in an exclusive point-to-point
connection with each OMU 530 that is not shared by any
other RB 520. Note that this type of connection is not
material to the practice of the invention and suitable alter-
natives may be employed in other embodiments. The OMU
530 multiplexes read data returned from the multiple physi-
cal memory devices 434 via the read buffers 520 back to the
respective rendering unit 412.

As was mentioned above, the ISU 200 may be associated
with circuitry for address determining and manipulation,
which function is performed by the GLU 515. The internal
organization of the GLU 5185 is illustrated in FIG. 6. The
GLU 5185 accepts incoming requests and translates the pixel
sample address in the request to a physical address. The
physical address determines which of the physical memory
devices 434 is to be accessed, and therefore to which one of
the memory controllers 432 the request should be for-
warded.

More particularly, the GLU 515 receives the requests over
the bus system 420 and the line 600. As a general
proposition, the GLU 515 functionality may be implemented
using any technique known to the art. In the illustrated
embodiment, the rendering units 412 and the frame buffer

10

15

20

25

30

35

40

45

50

8

addresses of the requests from the rendering units 412 into
the addressing scheme of the frame buffer 440. Thus, in
embodiments where the rendering units 412 and the frame
buffer 440 use the same addressing scheme, the GLUs 515
can be omitted.

Returning now to FIG. 6, the request received over the
line 600 includes an opcode defining the type of access (i.e.
read or write), the address for the access, and any data that
needs to be written if the access is a write. The macro
expansion circuit 610 breaks the request down into the
opcode, which is forwarded to the opcode translation circuit
615, the address, which is forwarded to the address mapping
circuit 620 and the tag generating circuit 625. The data, if
present, is temporarily stored in the GLU registers 630. The
opcode translation and mapped address output by the cir-
cuits 615, 620 are forwarded to the ISU 500. The data is also
forwarded to the ISU 500 with the mapped address through
the address mapping circuit 620. The mapped address is also
forwarded to the tag generator 625. The tags are output by
the tag generator circuit 625 to the OMU 530 for use as is
discussed further below. The control circuit 635 receives and
implements the stall signals early stall and stall signals
IS _GL_EARLY STALL and IS _GL_STALL,
respectively, and relays the stall signal IS_ GL_ STALL
when received.

The internal organization of the ISU 200 is illustrated in
FIG. 7. The ISU 200 comprises multiple identical FIFO
queues 700. Note, however, that alternative implementations
and alternative embodiments might employ other types of
data structures. In the illustrated embodiment, the ISU 200
includes four FIFO queues 700 in which it may buffer up to
four requests from its respective rendering unit 412. The ISU
200 receives the address, data, opcode, buffer select, and
originating device data signals GL_IS_ADDR[24:0],
GL_IS_DATA[65:0], GL_IS_OPCODE[3:0], GL_IS__
BUFSEL[1:0], and GL_IS_ DSHED[1:0], and the signal
GL_IS_DATAREAD from the GLU 515. The signal
GL_IS DATAREAD is a control signal indicating that the
GL_IS_OPCODE[3:0] signal contains a read opcode.

Turning now to FIG. 8, the MIU 210 is responsible for
arbitrating among the various access requests presented to it
by the various ISUs 200. The MIU 210 includes a priority
generator (“PG”) circuit 835, i.e., PG;—PG;, one for each
ISU 200. The priority generator circuits 835 determine the
priority for their respective access request. Although the
factors contributing to good performance can be readily
identified, it is not always easy to tell which are the most
important in a given application. Thus, the MIU 210 in this
particular implementation includes some programmable
MIU registers 815. The identification, address, and func-
tionality of each of the registers 815 is set forth in table 1
below. The selection by the MIU 210 is based on the
characteristics of the requests and various operational

440 use slightly different addressing scheme. The ISUs 500 55 characteristics, e.g., the status of the ISU,~ISU;, configu-
employ the addressing scheme of the frame buffer 440. The ration registers (not shown), and programmed priority con-
principle purpose of the GLU 515 is to “translate” the trol determined by the content of the MIU Registers 815.
TABLE 1
MIU Programmed Priority Registers

Register Register

Name Address Bits Field Functionality

Priority 8h'80 [15:12] FIFO Highwater Priority weight of FIFO Highwater

Register

Mark Priority Mark; set to 4'h3 by reset

US 6,925,520 B2

9

TABLE 1-continued

MIU Programmed Priority Registers

Register Register
Name Address Bits Field Functionality
8h'80 [11:8] Page Hit Priority Priority weight of Page Hit; set to
4'hF by reset
8h'80 [7:4] Bank Miss Priority weight of Bank Miss; set to
Priority 4'h3 by reset
8h'80 [3:0] Pending Read Priority weight of Pending Read;
Priority set to 4h0 by reset
ActiveAB 8h'81 [19:18] Current Active Contains the current active 3DRAM
Register Bank bank; used for scheduling purposes
8h'81 [17:9] Bank A Current Contains the Bank A current active
3DRAM Page 3DRAM page number; used for
scheduling purposes
8h'81 [8:0] Bank B Current Contains the Bank B current active
3DRAM Page 3DRAM page number; used for
scheduling purposes
ActiveCD 8h'82 [17:9] Bank C Current Contains the Bank C current active
Register 3DRAM Page 3DRAM page number; used for
scheduling purposes
8h'82 [9:0] Bank D Current Contains the Bank D current active

3DRAM Page
scheduling purposes

3DRAM page number; used for

Referring now to FIG. 8 and Table 1, the MIU registers
815 include, in this particular implementation, at least three
registers with multiple fields in each register. A Priority
Register 820 has four fields of four bits each. Each four-bit
field is set to a value which is the weight of that condition.
For example, if a signal ISO_ MI__ HW_ MARK is received
from the ISU 500 ISU, and set to a 1, indication that ISU,
FIFO is almost full, then the weight of or priority of this
condition is the value in bit 15 to bit 12 of the Priority
Register 820. An ActiveAB register 825 has three field of
varying size. The bits [19:18] indicate the current DRAM
bank. An ActiveCD Register 830 is structured similarly.
Note that, in the present implementation, the terms “high
water” and “low water” denote the fullness of the respective
ISU, i.e., “high water” meaning full and “low water” mean-
ing empty.

The ActiveAB and ActiveCD registers 825, 830 are
updated after every request selection. So if a request is
selected which chose bank 2 (=bank C) and page=1BF (in
hex) then the bits [17:9] of the ActiveCD register 830 would
be set to IBF and the bits [19:18] of the ActiveAB register
825 are set to 2. These updates occur immediately. The
reason for changing banks in this particular embodiment
when there is a page miss is that the DRAMS a 445 used in
this particular embodiment are slower when changing pages
after having been previously accessed. The active bank
identifier indicates the most recently accessed bank.

Each of the ISUs 200 present a command and date packet
(not shown) to the MIU 210. Each ISU 200 provides various
FIFO status bits, not empty, read indicator, and high water
mark information to the MIU 210 for FIFO reads and
priority determination. Table 2 sets forth the content of the
requests from the ISUs 200 to the MIU 210.

TABLE 2

Request Signal Content

Signal Name Bits Meaning
ISO_MI__DATA[65:0] 66 Write Data bus from ISU,
ISO_MI__ADDR[24:0] 25 Address bus from ISU,

25

30

35

40

45

50

60

65

10

TABLE 2-continued

Request Signal Content

Signal Name Bits Meaning
IS0__MI__ OPCODE]|3:0] 4 Opcode from ISU,
ISO__MI__BUFSEL[1:0] 2 Buffer select from ISU,
ISO_MI_HW_MARK 1 Indicates ISU, FIFO condition of
almost full, high water mark has
been reached
ISO_MI_NOTEMPTY 1 Indicates ISU, FIFO condition of
not empty
ISO_MI__READIND 1 Indicates ISU, FIFO condition of read
operations waiting
IS1__MI__DATA[65:0] 66 Write Data bus from ISU,
IS1__MI__ADDR[24:0] 25 Address bus from I[SU,;
IS1_MI__OPCODE|3:0] 4 Opcode from ISU,
IS1__MI__BUFSEL[1:0] 2 Buffer select from ISU,
IS1_MI_HW_MARK 1 Indicates ISU, FIFO condition of
almost full, high water mark has
been reached
IS1_MI_NOTEMPTY 1 Indicates ISU, FIFO condition of
not empty
IS1_MI_READIND 1 Indicates ISU, FIFO condition of read
operations waiting
IS2_MI__DATA[65:0] 66 Write Data bus from ISU,
IS2__MI__ADDR[24:0] 25 Address bus from ISU,
IS2__MI__OPCODE]|3:0] 4 Opcode from ISU,
IS2_MI_BUFSEL[1:0] 2 Buffer select from ISU,
IS2_MI_HW_MARK 1 Indicates ISU, FIFO condition of
almost full, high water mark has
been reached
1S2__MI__NOTEMPTY 1 Indicates ISU, FIFO condition of
not empty
IS2__MI_READIND 1 Indicates ISU, FIFO condition of read
operations waiting
IS3__MI_ DATA[65:0] 66 Write Data bus from ISU;
IS3__MI__ADDR[24:0] 25 Address bus from I[SU;
IS3__MI__OPCODE]|3:0] 4 Opcode from ISU,
IS3__MI_BUFSEL[1:0] 2 Buffer select from ISU,
IS3_MI_HW_MARK 1 Indicates ISU; FIFO condition of
almost full, high water mark has
been reached
IS3_MI_NOTEMPTY 1 Indicates ISU; FIFO condition of
not empty
1S3__MI__READIND 1 Indicates ISU; FIFO condition of read

operations waiting

US 6,925,520 B2

11

Note that, in this particular implementation, the MIU 210
should give a higher priority to an ISU 200, indicating it has
read operations pending. This is because the FBCs in the
rendering pipelines 410 (shown in FIG. 4) used in this
particular implementation cannot perform any writes until
the last read is completed. Thus, the MIU 210 should
dispatch read operations as quickly as possible to avoid
holding up the FBC 415 that has issued the read. The ISU
200 uses one of its condition code bits to indicate it has read
operations in its FIFO. However, this is not necessary to the
invention. Recall that earlier it was stated that determining
priority will to some degree be implementation specific, and
this is one example of such.

The MIU 210 also receives read buffer (“RB”) high water
signals and low water mark signals from the associated RBs
520 shown in FIG. 5. The RBs 520 buffer read memory data
returned from the memory interface 535. The high water
mark signals indicate that the respective RBs 520 are almost
full and that the MIU 210 should stop selecting requests
from the ISU 200. The low water mark signals indicate that
the respective RBs 520 are almost empty and the MIU 210
may start selecting requests from that ISU 200 again. Table
3 shows the RB read data FIFO almost full signals
RB_MI_HW_MARK[3:0] and the RB read data FIFO
almost empty signals RB_ MI__ LW MARK[3:0}.

TABLE 3

Inputs from Read Buffers

Signal Name Bits Meaning

RB_MI_HW_ MARK][3:0] 4 RB data queue[3:0] is almost full.
Stop selecting from corresponding
ISU.

Each bit corresponds to one RB
queue.

RB data queue[3:0] is almost
empty. Can select from the
corresponding ISU again. Each bit
corresponds to one RB queue.

RB_MI_LW_MARK[3:0] 4

The MIU 210 in this implementation is designed to:

dispatch one request each cycle from either the same ISU
200 or a different ISU 200,

consider up to six factors for each request in the selection
process; and
allow programmable priority control of each of these
factors.
Still referring to FIG. 8, in addition to the MIU registers 815
discussed earlier, the MIU 210 also includes a priority
generator (“PG”) circuit 835 for each ISU 200 (i.e.,
PG4PG;), a request multiplexer (“MUX”) 840, a priority
compare 845, a decode unit 850, and an output multiplexer
(“MUX”) 855. In the MIU 210:

the priority generator circuit 835 determine the composite
priority of its respective request;

the compare priority module 845 compares the composite
priority from all four priority generator circuit 835 and
controls the request MUX 840 to select the request that
is to be processed;

the decode unit 850 examines the selected request to
determine if it is a MIU register 815 operation and, if
so, sends the needed control signals and data to the
MIU registers 815; and

the output MUX 855 combines possible MIU register read
data with other request data to be sent to the memory
interface 535.

10

15

20

25

30

35

40

45

50

55

60

65

12

In this implementation, each of the priority generator circuit
835, the compare priority module 845, the request MUX
840, the decode unit 850, the MIU registers 815, and the
output MUX 855 are implemented using digital logic cir-
cuits. Similarly, the ISUs 200 and the RBs 520 are also
implemented as digital logical circuits.

FIG. 9 illustrates how the priority of each composite
request priority 900 is determined by the PGs 835. The six
factors considered in this implementation are:

Page Hit Priority 905—it is desirable to stay within the
same page, S0 requests going to the same page get a
higher priority. By looking at the address bits from the
ISU 200, the requested bank and the page address can
be determined. Then, the requested page address is
compared to the current active page address of the
requested bank. If the two match, then there is a page
hit 910.

FIFO HW 915—if a FIFO is near full, then it needs higher
priority of access. The ISU 200 FIFO HW signal 920
indicates if its FIFO is almost full.

Bank Miss 925—if there is a page miss, then it would be
desirable to change banks, so requests going to a
different bank get a higher priority 930. If there is no
page hit, then the requested bank is compared to the
current active bank identified in the ActiveAB Register
825 (shown in FIG. 8).

FIFO Read Indicator 935—if reads are pending, then that
FIFO needs a higher priority 940.

Default Priority 945—a default priority is assigned when
a request is first presented in the event none of the other
factors applies. If the request is carried over from a
previous cycle, the default priority may also be carried
over from a previously determined composite request
priority. If the request from an ISU 200 is not selected,
then its priority should be incremented 950 so that it
will be more likely to be selected in the next cycle. If
the request of an ISU 200 is selected, then the default
priority should be decremented 950 so that requests
from other ISUs 200 may be selected.

RB FIFO Full 955—acts as a disable, setting any priority
to 0 if the RB FIFO 43S is full, regardless of any other
input to the adder 960. If the respective RB FIFO 520
for the ISU 200 is full, then that ISU 200 should not be
selected until the RB FIFO 520 can be cleared out.
Once the ISU 200 is excluded from the selection
process, only a corresponding RB low water mark
signal will release the exclusion.

The adder 960 then sums the six factors. Note that the above
is for pixel operation requests only. For operations unrelated
to pixel operations, e.g., write/read registers, the priority is
determined by FIFO HW+FIFO Read Indicator+Default
Priority.

More particularly, each of the factors 905, 915, 925, 935,
945, 955 has a programmable priority associated therewith
and stored in a field of one of the MIU registers 815 as was
discussed above. The programmable priority is a weight that
is attributed to that factor. If that factor is true for a given
request, then the priority of the request is increased by the
weight assigned to that factor. For each request, all of the
associated weights are summed by the adder 960 to form the
composite priority of that request. There is also the default
priority 945 for each request. The default priority is initial-
ized to zero during reset as well as anytime the NotEmpty
flag is deasserted. Thereafter, this default priority 945 is
incremented every fourth time the ISU 200 °s request is not
selected. The default priority 945 is decremented by two

US 6,925,520 B2

13

each time the request is selected, unless the priority is 1 or
0. In that case, the priority is not changed.

FIG. 10 illustrates the four composite request priorities
960 being compared against each other by a comparator
1000 to determine a highest composite priority request 1010.
In the event of a tie, the number of the ISU 200 is used to
select the request. For example, if the request for the ISU,
ties with the request for the ISU;, the request for the ISU,
will be selected because 3>2. The comparison is an arith-
metic compare and is completed in less than one clock cycle.
FIG. 11 illustrates the selection of one request 1100 (in the
illustrated instance, from the ISU,) in a single clock cycle.
Note that, in this particular embodiment, the active requests
1000 are buffered in request registers 1105. The request
registers 1105 are used to hold the signals from the ISUs 500
because of the relatively high frequency at which the logic
is operating, i.e., 180 MHz. At higher frequencies, register
are also used to re-synchronize signals. Otherwise the vary-
ing delay of each signal would cause the signals to be out of
sync with each other. The composite request priority 900 for
each ISU 200 request is determined in the priority generator
835 and then compared against the other three composite
request priorities 900. As will be appreciated by those in the
art having the benefit of this disclosure, not every cycle will
have four active requests presented.

Thus, the MIU 210 selects one of the four valid packets
to be processed based on a programmable priority mecha-
nism. The selected packet is dispatched to the memory
interface 535. The MIU 210 also sends a FIFO read signal
to the ISU 200 generating the selected request to indicate
that the request has been dispatched and that the ISU should
present another request if one is available. Table 4 shows the
four FIFO read acknowledgement signals sent back to the
ISUs 200

TABLE 4

Acknowledgements Qutput to Input Sorting Units

Signal Name Bits Meaning

MI_ISO_FIFOREAD
MI_IS1_FIFOREAD
MI_IS2_ FIFOREAD
MI_IS3_FIFOREAD

FIFO read signal to ISU,
FIFO read signal to ISU;
FIFO read signal to ISU,
FIFO read signal to ISU,

s

The request selected by the MIU 210 is forwarded to the
memory interface 525. FIG. 12 illustrates the internal orga-
nization of the memory interfaces 525. Note that, in this
particular embodiment, the memory interface 525 includes a
memory interface core logic 1205 that maps the addresses
into the physical memory device 434. Note, however, that in
alternative embodiments, the memory interface may be
implemented using any suitable technique known to the art.

Returned read data is stored in the read buffers 520. FIG.
13 illustrates the internal organization of the read buffers
520. The four data queues 1300 receive data via a MUX
1305 from the physical memory device 434 (shown in FIG.
12, the signals I__RB__DATA[65:0]) or the register queue
1310 and outputs data to the OMUs 530 (RB_OMO0_DATA
[65:0], RB_OMI1_DATA[65:0], RB__OM2_DATA[65:0],
RB_OM3_ DATA[65:0]). The control circuit 1315 enables
the data queues 1300 (DATAWEN[3:0], DATAREN[3:0)),
selects the data input for the MUX 1305 (DATASEL), and
indicates to the OMU 530 that data is available for reading
(RB_OM__DATAVAIL, OM__RB_ READ). The RB header
queue 1320 indicates to the control circuit 1315 when it is
full (RBHEADER_FULL) provides information to the
WMARK__CAL circuit 1325. The WMARK__ CAL circuit

10

15

20

25

30

35

40

45

50

55

60

65

14

1325 then generates the RB__MI_HWMARK and
RB_MI LWMARK signals indicating when the read
buffer 520 is about to be full or empty, respectively.

The read buffers 520 forward the stored read data to the
OMUs 530. FIG. 14 illustrates the internal organization of
the OMUs 530. In this particular embodiment, the memory
interface 525 forwards the source tags received from the ISU
500 via the MIU 510 to the read buffers 520. The source tags
permit the read buffers 520 to determine which rendering
pipeline made the original read request. The OMU 530
stores the tags in the tag queue 1405, a FIFO queue. The tags
are used by the control unit 1410 and the muxing unit 1415
to coordinate output to the device 412 through the output
unit 1420. The OMU 530 multiplexes the possible read
buffer data for returning data to the appropriate rendering
pipeline.

More particularly, each OMU 530 receives GL__OM__
RDTAG(5:0] from the respective GLU 515. This 6 bit tag is
composed of 2 upper bits, [5:4] which indicates which read
buffer 520 the read data is to come from, and 4 lower bits
[3:0] which indicate what type of read opcode made the
original request. The opcode is also returned to the rendering
unit 410 along with the read data so the rendering unit 410
can track which read operation the data belongs to.

The crossbar switch 425 returns the read data in the
original order of request. The tag queue 1405 is the mecha-
nism by which request order can be tracked by the OMU
530. The GLU 515 sends a tag to the OMU 530 for each read
type of opcode received in the order in which it was
received. The OMU 530 looks at the output of the tag queue
1405 to decide which read buffer data to read next. In this
way, the read data is returned in the same order as originally
requested.

For example, if the GLU 515 receives a read request for
data that will map to MI, followed by a read request for data
which will map to MI;, then the GLU 515 will send a
RDTAG[5:4] of 1 to the OMU 530 followed by a RDTAG
[5:4] of 3. The MI, and MI; will return the read data to RB;
and RB;, respectively. However, the MI; may perform the
read faster than MI,, so the RB; may indicate to the OMU
530 that data is available. But the OMU 530 will look at the
tag queue 1405 output and realize that the next read data
should be from the RB;. So, the RB; data will not be taken
until RB, indicates read data is available. Then RB, data and
the read opcode type, RDTAG[3:0], are selected and sent to
the output unit 1420 for transmission to the respective
device 412. The following tag queue 1405 output will
indicate that the next read data should be from RB;. The RB;
data is already available and will then be selected by OMU
530 for transmission back to the rendering unit 410.

Some portions of the detailed descriptions herein are
consequently presented in terms of a software implemented
process involving symbolic representations of operations on
data bits within a memory in a computing system or a
computing device. For example, the embodiment illustrated
in FIGS. 4-12 employs programmable registers. These
descriptions and representations are the means used by those
in the art to most effectively convey the substance of their
work to others skilled in the art. The process and operation
require physical manipulations of physical quantities.
Usually, though not necessarily, these quantities take the
form of electrical, magnetic, or optical signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, prin-
cipally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

US 6,925,520 B2

15

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantifies. Unless specifically stated or otherwise as
may be apparent, throughout the present disclosure, these
descriptions refer to the action and processes of an electronic
device, that manipulates and transforms data represented as
physical (electronic, magnetic, or optical) quantities within
some electronic device’s storage into other data similarly
represented as physical quantities within the storage, or in
transmission or display devices. Exemplary of the terms
denoting such a description are, without limitation, the terms
“processing,” “computing,” “calculating,” “determining,”
“displaying,” and the like.

This concludes the detailed description. The particular
embodiments disclosed above are illustrative only, as the
invention may be modified and practiced in different but
equivalent manners apparent to those skilled in the art
having the benefit of the teachings herein. Furthermore, no
limitations are intended to the details of construction or
design herein shown, other than as described in the claims
below. It is therefore evident that the particular embodiments
disclosed above may be altered or modified and all such
variations are considered within the scope and spirit of the
invention. Accordingly, the protection sought herein is as set
forth in the claims below.

What is claimed:

1. A crossbar switch, comprising:

a plurality of input sorting units, each input sorting unit
capable of receiving from a respective device an access
request to any one of a plurality of physical memory
devices;

a plurality of merge and interleave units, each merge and
interleave unit capable of arbitrating among competing
access requests received from any of the input sorting
units, selecting one of the competing access requests
and forwarding the selected request for implementation
on a respective memory device;

wherein each merge and interleave unit includes:

a priority generator for each input sorting unit capable
of generating a composite request priority from a
plurality of characteristics of the access requests and
a plurality of operational characteristics;

a priority compare circuit capable of selecting one
access request;

a request multiplexer controlled by the priority com-
pare circuit to output the selected access request;

a plurality of programmable registers;

a decode unit receiving the selected request from the
request multiplexer to determine whether the
selected request is a register operation and, if so, to
send a plurality of control and data signals to the
registers; and

an output multiplexer for combining register read data
with request data for output.

2. The crossbar switch of claim 1, further comprising a
plurality of translation circuits and wherein each of the input
sorting units receives the access requests through a respec-
tive one of the translation circuits.

3. The crossbar switch of claim 2, wherein each of the
translation circuits is capable of receiving an opcode and a
virtual address from their respective device, translating the
opcode to determine whether the access request is a read or
a write, and mapping the virtual address into a physical
address, and forwarding the translated opcode and mapped
physical address to its respective input sorting unit.

4. The crossbar switch of claim 1, wherein each of the
input sorting units includes a buffer and is capable of

15

20

25

30

35

40

45

50

55

60

65

16

buffering the access requests from its respective physical
memory device.

5. The crossbar switch of claim 4, wherein the buffer is a
first-in, first-out queue.

6. The crossbar switch of claim 4, wherein each of the
input sorting units is capable of stalling its respective device
when its buffer is full.

7. The crossbar switch of claim 1, wherein each merge
and interleave unit further includes:

the priority generator for each input sorting unit being

further capable of:

receiving the plurality of characteristics for the access
request received by the input sorting unit;

receiving the plurality of operational characteristics;
and

generating the composite request priority from the
characteristics of the access requests and the opera-
tional characteristics;

the priority compare circuit being further capable of:
comparing the composite request priorities generated

by the priority generators; and

selecting the one access request predicated on the
comparison of the composite request priorities.

8. The crossbar switch of claim 1, further comprising:

a plurality of read buffers capable of receiving and buff-
ering read data from a respective one of the physical
memory devices; and

a plurality of output management units capable of receiv-
ing read data from the read buffers and forwarding the
received read data to a respective one of the devices
that generated the access request associated with the
read data.

9. The crossbar switch of claim 1, further comprising a
plurality of memory interfaces capable of receiving the
selected access request from a respective one of the plurality
of merge and interleave units and forwarding the selected
access request to a respective one of the physical memory
devices.

10. A crossbar switch, comprising a plurality of arbitration
and select units, each arbitration and select unit including:

a plurality of front ends, each front end comprising:

a translation circuit capable of processing an access
request received from a respective device;

an input sorting unit capable of buffering and forward-
ing the processed access request;

an output management unit capable of receiving read
data generated by the access request and forwarding
the received read data to the respective device; and

a plurality of back ends, each back end comprising:

a merge and interleave unit capable of arbitrating
among competing access requests received from any
of the input sorting units, selecting one of the com-
peting access requests, and forwarding the selected
request for implementation on a respective memory
device;

wherein each merge and interleave unit includes:

a priority generator for each input sorting unit
capable of generating a composite request priority
from a plurality of characteristics of the access
requests and a plurality of received operational
characteristics;

a priority compare circuit capable of selecting one
access request;

a request multiplexer controlled by the priority com-
pare circuit to output the selected access request;

a plurality of programmable registers;

US 6,925,520 B2

17

a decode unit receiving the selected request from the
request multiplexer to determine whether the
selected request is a register operation and, if so,
to send a plurality of control and data signals to the
registers; and

an output multiplexer for combining register read
data with request data for output; and

a read buffer capable of receiving, buffering, and for-
warding read data received from the respective
memory device to the output management unit of the
front end that issued a previously selected access
request that generated the read data.

11. The crossbar switch of claim 10, wherein each back
end further comprises a memory interface through which the
merge and interleave unit forwards the selected request.

12. The crossbar switch of claim 10, wherein each of the
translation circuits is capable of receiving an opcode and a
virtual address from their respective device, translating the
opcode to determine whether the access request is a read or
a write, and mapping the virtual address into a physical
address, and forwarding the translated opcode and mapped
physical address to its respective input sorting unit.

13. The crossbar switch of claim 10, wherein each of the
input sorting units includes a request buffer and is capable of
buffering the access requests from its respective physical
memory device.

14. The crossbar switch of claim 13, wherein the request
buffer is a first-in, first-out queue.

15. The crossbar switch of claim 13, wherein each of the
input sorting units is capable of stalling its respective device
when its request buffer is full.

16. The crossbar switch of claim 10, wherein each merge
and interleave unit further includes:

the priority generator for each input sorting unit being
further capable of:
receiving the plurality of characteristics for the access

request received by the input sorting unit;

receiving the plurality of operational characteristics;
and

generating the composite request priority from the
characteristics of the access requests and the opera-
tional characteristics;

the priority compare circuit being further capable of:
comparing the composite request priorities generated

by the priority generators; and

selecting the one access request predicated on the
comparison of the composite request priorities.

17. A crossbar switch, comprising a plurality of arbitration
and select units, each arbitration and select unit including:

a plurality of front ends, each front end further including
an input sorting unit capable of receiving from a
respective device an access request to any one of a
plurality of physical memory devices;

a plurality of back ends, each back end further including
merge and interleave unit capable of arbitrating among
competing access requests received from any of the
input sorting units, selecting one of the competing
access requests and forwarding the selected request for
implementation on a respective memory device;
wherein each merge and interleave unit includes:

a priority generator for each input sorting unit
capable of generating a composite request priority
from a plurality of characteristics of the access
requests and a plurality of received operational
characteristics;

a priority compare circuit capable of selecting one
access request;

10

15

20

25

30

35

45

50

55

60

65

18

a request multiplexer controlled by the priority com-
pare circuit to output the selected access request;

a plurality of programmable registers;

a decode unit receiving the selected request from the
request multiplexer to determine whether the
selected request is a register operation and, if so,
to send a plurality of control and data signals to the
registers; and

an output multiplexer for combining register read
data with request data for output.

18. The crossbar switch of claim 17, wherein each front
end further comprises a Glue logic unit and wherein each of
the input sorting units receives the access requests through
a respective one of the Glue logic units.

19. The crossbar switch of claim 18, wherein each of the
translation circuits is capable of receiving an opcode and a
virtual address from their respective device, translating the
opcode to determine whether the access request is a read or
a write, and mapping the virtual address into a physical
address, and forwarding the translated opcode and mapped
physical address to its respective input sorting unit.

20. The crossbar switch of claim 17, wherein each of the
input sorting units includes a buffer and is capable of
buffering the access requests from its respective physical
memory device.

21. The crossbar switch of claim 20, wherein the buffer is
a first-in, first-out queue.

22. The crossbar switch of claim 20, wherein each of the
input sorting units is capable of stalling its respective device
when its buffer is full.

23. The crossbar switch of claim 17, wherein each merge
and interleave unit further includes:

the priority generator for each input sorting unit being

further capable of:

receiving the plurality of characteristics for the access
request received by the input sorting unit;

receiving the plurality of operational characteristics;
and

generating the composite request priority from the
characteristics of the access requests and the opera-
tional characteristics;

the priority compare circuit being further capable of:

comparing the composite request priorities generated
by the priority generators; and

selecting the one access request predicated on the
comparison of the composite request priorities.

24. The crossbar switch of claim 17, wherein:

each back end further includes a read buffer capable of

receiving and buffering read data from a respective one
of the physical memory devices; and

each front end further includes an output management

unit capable of receiving read data from the read buffers
and forwarding the received read data to a respective
one of the devices that generated the access request
associated with the read data.

25. The crossbar switch of claim 17, wherein each back
end further comprises a memory interface capable of receiv-
ing the selected access request from the merge and interleave
unit and forwarding the selected access request to a respec-
tive one of the physical memory devices.

26. A crossbar switch, comprising a plurality of arbitration
and select units, each arbitration and select unit including:

a plurality of front ends, each front end comprising:

means for processing an access request received from

a respective device;

means for buffering and forwarding the processed
access request;

US 6,925,520 B2

19

means for receiving read data generated by the access
request and forwarding the received read data to the
respective device; and

a plurality of back ends, each back end comprising:

means for arbitrating among competing access requests
received from the means for processing an access
request, selecting one of the competing access
requests, and forwarding the selected request for
implementation on a respective memory device; and

means for receiving, buffering, and forwarding read
data received from the respective memory device to
the output management unit of the front end that
issued a previously selected access request that gen-
erated the read data;

means for generating a composite request priority from a
plurality of characteristics for the access requests and a
plurality of operational characteristics;

means for selecting one access request; and

means for outputting the selected access request via a
multiplexing means, the multiplexing means being
controlled by the means for selecting the one access
request;

means for storing programmable weights;

a decode unit receiving the selected request from the
multiplexing means to determine whether the selected
request is a register operation and, if so, to send a
plurality of control and data signals to the storage
means; and

means for combining register read data with request data
for output.

27. The crossbar switch of claim 26, wherein each back
end further comprises a memory interface through which the
merge and interleave unit forwards the selected request.

28. The crossbar switch of claim 26, wherein each pro-
cessing means is further capable of receiving an opcode and
a virtual address from their respective device, translating the

10

15

20

25

30

35

20

opcode to determine whether the access request is a read or
a write, and mapping the virtual address into a physical
address, and forwarding the translated opcode and mapped
physical address to its respective input sorting unit.

29. The crossbar switch of claim 26, wherein each of the
processed access request buffering means includes a buffer
and is capable of buffering the access requests from its
respective physical memory device.

30. The crossbar switch of claim 29, wherein the buffer is
a first-in, first-out queue.

31. The crossbar switch of claim 29, wherein each of the
processed access request buffering means is capable of
stalling its respective device when its buffer is full.

32. The crossbar switch of claim 26, wherein each arbi-
tration and selection unit further includes:

means for receiving the plurality of characteristics for the

access request received by the input sorting unit,
receiving the plurality of operational characteristics,
and generating the composite request priority from the
characteristics of the access requests and the opera-
tional characteristics;

means for comparing the composite request priorities

generated by the priority generators, and selecting the
one access request predicated on the comparison of the
composite request priorities.

33. The crossbar switch of claim 26, wherein:

each back end further includes means for receiving and

buffering read data from a respective one of the physi-
cal memory devices; and

each front end further includes means for receiving read

data from the read buffers and forwarding the received
read data to a respective one of the devices that
generated the access request associated with the read
data.

