(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

13 February 2003 (13.02.2003) PCT WO 03/012639 A2

(51) International Patent Classification”: GOG6F 9/445 14074 Davenport Avenue, San Diego, CA 92129 (US).
KAPLAN, Diego; 5288 Soledad Mt. Road, San Diego,
(21) International Application Number: PCT/IB02/02889 CA 92109 (US).

(22) International Filing Date: 23 July 2002 (23.07.2002) (81) Designated States (national): AL, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, H, GB, GD, GE, GH,

(25) Filing Language: English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
(30) Priority Data: YU, ZA, ZM, ZW.
09/917,026 26 July 2001 (26.07.2001) US
09/916,460 26 July 2001 (26.07.2001) ~ US (84) Designated States (regional): ARIPO patent (GH, GM,
09/916,900 26 July 2001 (26.07.2001) UsS KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, 7ZM, ZW),
09/927,131 10 August 2001 (10.08.2001) UsS Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
09/969,305 2 October 2001 (02.10.2001) UsS European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
(71) Applicant: KYOCERA WIRELESS CORPORATION TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
[US/US]; 10300 Campus Point Drive, San Diego, CA GW, ML, MR, NE, SN, TD, TG).
92121 (US).
Published:
(72) Inventors: RAJARAM, Gowri; 3520 LEbon Drive, Apt. — without international search report and to be republished
5330, San Diego, CA 92122 (US). SECKENDOREF, Paul; upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR COMPACTING FIELD UPGRADEABLE WIRELESS COMMUNICATION DEVICE
SOFTWARE CODE SECTIONS

190

&7y uhteless deviee 7
<7 o4
i

h

fad —'-qg.i’g Aa‘:«’ ’/

B | /
5+a;;m‘ ‘J ; T Tes ode Secton [1
[[2 vBhated code, Seetron address, ;J‘umg_f i
T |

L !; N symbol ofet] |
Iy "1(i yx @ Storege S&-*W"‘v iM‘h’ 5, bable | 1
S i ;

! update 1\ ! Toie dan || pach Library ‘
| - E 23¢ |

Z sretn ! _— ? | i

) 2 \ 1\ ¢3¢ - : o) |
I} ! g code s:«:t'hl\ | pecessor, g,;,y\ij i (

\[9 Symba | | i

I Iy shlihae
\ [pdo sechion 4y i [oddvese 2L |

i Compactor | t

1‘ J patehn mna3§:- 2 '! “

| T T ——— 1

volatile Moo d - i |

"‘""“f‘d\" frematy Volatite ¢ i

A W \

9 A2

€7, (57) Abstract: A system and method are provided for reorganizing software instructions stored in a wireless communications device
memory. The method comprises: storing wireless device system software in a plurality of current code sections with the start of
code sections at corresponding start addresses by creating a second plurality of contiguously addressed memory blocks, identifying
each memory block with a corresponding code section, and storing code sections in identified memory blocks; receiving a new code

~~ section via a wireless communications device air interface; identifying a current code section for updating; calculating the code
section sizes; in response to calculating the code section sizes, generating a compaction schedule; resizing current code sections;
following the resizing of the current code sections, changing the code section start addresses; temporarily moving code sections into
a file system section; replacing the identified current code section with the new code section by storing the code sections from the
file system section into memory blocks to maintain contiguous addressing, in response to the compaction schedule; and, executing
the updated system software.

w0 03/012639 A2 NI 00OV 0O RO O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/012639 PCT/1B02/02889

SYSTEM AND METHOD FOR
COMPACTING FIELD UPGRADEABLE WIRELESS COMMUNICATION DEVICE
SOFTWARE CODE SECTIONS

BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention generally relates to wireless communications devices and, more particularly, to a system
and method for compacting code sections in the system software of a wireless communication device in
the field, updated via an airlink interface.

2, Description of the Related Art

It is not uncommon to release software updates for phones that are already in the field. These updates
may relate to problems found in the software once the phones have been manufactured and distributed to
tixe public. Some updates may involve the use of new features on the phone, or services provided by the
service provider. Yet other updates may involve regional problems, or problems associated with certain
carriers. For example, in certain regions the network layout of carriers may impose airlink interface
conditions on the handset that cause the handset to demonstrate unexpected behavior such as improper
channel searching, improper call termination, improper audio, or the like. |

The traditional approach to such updates has been to recall the wireless communications device,
also referred to herein as a wireless device, phone, telephone, or handset, to the nearest carrier
retail/service outlet, or to the manufacturer to process the changes. The costs involved in such updates are
extensive and eat into the bottom line. Further, the customer is inconvenienced and likely to be irritated.
Often times, the practical solution is to issue the customer new phones.

It would be advantageous if wireless communications device software could be upgraded cheaply,
and without inconvenience to the customer. -

It would be advantageous if wireless communications device software could be upgraded without
the customer losing the use of their phones for a significant period of time.

It would be advantageous if wireless communications device software could be updated with a
minimum of technician service time, or without the need to send the device into a service facility.
It would be advantageous if the wireless device system software could be differentiated into code sections,
so that only specific code sections of system software would need to be replaced, to update the system
software. It would be advantageous if these code sections could be communicated to the wireless device
via the airlink.

It would be advantageous if the system software could be updated with code sections larger in size
than the currently residing code sections. It would also be advantageous if the system software could be

rearranged to accommodate these larger updated code sections.

1

WO 03/012639 PCT/IB02/02889

SUMMARY OF THE INVENTION

Wireless communications device software updates give customers the best possible product and user

experience. An expensive component of the business involves the recall of handsets to update the
software. These updates may be necessary to offer the user additional services or to address problems
discovered in the use of the phone after it has been manufactured. The present invention makes it possible
to practically upgrade handset software in the field, via the airlink interface, when the upgrade code
sections are larger than the code sections they are replacing.

Accordingly, a method is provided for reorganizing software instructions stored in a wireless
communications device memory. The method comprises: storing wireless device system software in a
plurality of current code sections with the start of code sections at corresponding start addresses by
creating a second plurality of contiguously addressed memory blocks, identifying each memory block
with a corresponding code section, and storing code sections in identified memory blocks; receiving a new
code section via a wireless communications device air interface; identifying a current code section for
updating; calculating the code section sizes; in response to calculating the code section sizes, generating a
compaction schedule; resizing current code sections; following the resizing of the current code sections,
changing the code section start addresses; temporarily moving code sections into a file system section;
replacing the identified current code section with the new code section by storing the code sections from
the file system section into memory blocks to maintain contiguous addressing, in reéponse to the
compaction schedule; and, executing the updated system software.

Additional details of the above-described method for reorganizing software instructions in
wireless device system software, and a wireless device system for reorganizing software instructions are

presented in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic block diagram of the overall wireless device software maintenancesystem.

Fig. 2 is a schematic block diagram of the software maintenance system, highlighting the
installation of instruction sets via the airlink interface.

Fig. 3 is a schematic block diagram illustrating the present invention system for reorganizing
software instructions in a wireless communications device. |
Fig. 4 is a schematic block diagram of the wireless device memory.

Fig. 5 is a table representing the code section address table of Fig. 3.
Fig. 6 is a detailed depiction of symbol library one of Fig. 3, with symbols.
Fig. 7 is a table representing the symbol offset address table of Fig. 3.

Fig. 8 is a schematic block diagram illustrating the results of exemplary compacting operation.

2

WO 03/012639 PCT/1B02/02889

Figs. 9a through 9e illustrate the operation of an exemplary compaction schedule.
Figs. 10a through 10b are a flowchart illustrating the present invention method for reorganizing
software instructions stored in a wireless communications device memory.

Fig. 11 is a flowchart illustrating an alternate aspect of the method of Figs. 10a through 10b.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Some portions of the detailed descriptions that follow are presented in terms of procedures, steps, logic

blocks, codes, processing, and other symbolic representations of operations on data bits within a wireless
device microprocessor or memory. These descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey the substance of their work to others skilled
in the art. A procedure, microprocessor executed step, application, logic block, process, etc., is here, and
generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired resuit.
The steps are those requiring physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated in a microprocessor based wireless device.
It has proven convenient at times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like. Where physical devices, such as a
memory are mentioned, they are connected to other physical devices through a bus or other electrical
connection. These physical devices can be considered to interact with logical procésses or applications
and, therefore, are “connected” to logical operations. For example, a memory can store or access code to
further a logical operation, or an application can call a code section from memory for execution.

It should be borne in mind, however, that all of these and similar terms are to be associated with
the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless
specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout
the present invention, discussions utilizing terms such as "processing" or "connecting" or "translating" or
"displaying” or “prompting" or "determining" or "displaying" or "recognizing" or the like, refer to the
action and processes of in a wireless device microprocessor system that manipulates and transforms data
represented as physical (electronic) quantities within the computer system's registers and memories into
other data similarly represented as physical quantities within the wireless device memories or registers or
other such information storage, transmission or display devices. 7

Fig. 1 is a schematic block diagram of the overall wireless device software maintenance system
100. The present invention system software organization is presented in detail below, following a general
overview of the software maintenance system 100. The general system 100 describes a process of
delivering system software updates and instruction sets (programs), and installing the delivered software

in a wireless device. System software updates or patch manager run time instructions (PMRTI) that are

3

WO 03/012639 PCT/1B02/02889

more generally known as instruction sets, are created by the manufacturer of the handsets. The system
software is organized into symbol libraries. The symbol libraries are arranged into code sections. When
symbol libraries are to be updated, the software update 102 is transported as one or more code sections.
The software update is broadcast to wireless devices in the field, of which wireless communications
device 104 is representative, or transmitted in separate communications from a base station 106 using well
known, conventional air, data or message transport protocols. The invention is not limited to any
particular transportation format, as the wireless communications device can be easily modified to process
any available over-the-air transport protocol for the purpese of receiving system software and PMRTI
updates.

The system software can be viewed as a collection of different subsystems. Code objects can be
tightly coupled into one of these abstract subsystems and the resulting collection can be labeled as a
symbol library. This provides a logical breakdown of the code base and software patches and fixes can be
associated with one of these symbol libraries. In most cases, a single update is associated with one, or at
most two, symbol libraries. The rest of the code base, the other symbol libraries, remain unchanged.

The notion of symbol libraries provides a mechanism to deal with code and constants. The read-write
(RW) data, on the other hand, fits into a uniéue individual RW library that contains RAM based data for
all libraries.

Once received by the wireless device 104, the transported code section must be processed. This
wireless device over-writes a specific code section of nonvolatile memory 108. Thé nonvolatile memory
108 includes a file system section (FSS) 110 and a code storage section 112. The code section is typically
compressed before transport in order to minimize occupancy in the FSS 110. Often the updated code
section will be accompanied by its RW data, which is another kind of symbol library that contains all the
RW data for each symbol library. Although loaded in random access volatile read-write memory 114
when the system software is executing, the RW data always needs to be stored in the nonvolatile memory
108, so it can be loaded into random access volatile read-write memory 114 each time the wireless device
is reset. This includes the first time RW data is loaded into random access volatile read-write memory.
As explained in more detail below, the RW data is typically arranged with a patch manager code section.

The system 100 includes the concept of virtual tables. Using such tables, symbol libraries in one
code section can be patched (replaced), without breaking (replacing) other parts of the system software
(other code sections). Virtual tables execute from random access volatile read-write memofy 114 for
efficiency purposes. A code section address table and symbol offset address table are virtual tables.

The updated code sections are received by the wireless device 104 and stored in the FSS 110. A
wireless device user interface (UI) will typically notify the user that new software is available. In
response to Ul prompts the user acknowledges the notification and signals the patching or updating

operation. Alternately, the updating operation is performed automatically. The wireless device may be

4

WO 03/012639 PCT/IB02/02889

unable to perform standard communication tasks as the updating process is performed. The patch
manager code section includes a non-volatile read-write driver symbol library that is also loaded into
random access volatile read-write memory 114. The non-volatile read-write driver symbol library causes
code sections to be overwritten with updated code sections. The patch manager code section includes the
read-write data, code section address table, and symbol offset address table, as well a symbol accessor
code and the symbol accessor code address (discussed below). Portions of this data are invalid when
updated code sections are introduced, and an updated patch manager code sections includes read-write
data, a code lsection address table, and a symbol offset address table valid for the updated code sections.
Once the updated code sections are loaded into the code storage section 112, the wireless device is reset.
Following the reset operation, the wireless device can execute the updated system software. It should also
be understood that the patch manager code section may include other symbol libraries that have not been
discussed above. These other symbol libraries need not be loaded into read-write volatile memory 114.
Fig. 2 is a schematic block diagram of the software maintenance system 100, highlighting the
installation of instruction sets via the airlink interface. In addition to updating system software code
sections, the maintenance system 100 can download and install instructions sets, programs, or patch
manager instruction sets (PMIS), referred to herein as patch manager run time instructions (PMRTI). The
PMRTI code section 200 is transported to the wireless device 104 in the same manner as the above-
described system software code sections. PMRTI code sections are initially stored ip the FSS 110. A
PMRTI code section is typically a binary file that may be visualized as compiled instructions to the
handset. A PMRTI code section is comprehensive enough to provide for the performance of basic
mathematical operations and the performance of conditionally executed operations. For example, an RF
calibration PMRTI could perform the following operations:
IF RF CAL ITEM IS LESS THAN X
EXECUTE INSTRUCTION
ELSE
EXECUTE INSTRUCTION
A PMRTI can support basic mathematical operations, such as: addition, subtraction, multiplication, and
division. As with the system software code sections, the PMRTI code section may be loaded in response
to UI prompts, and the wireless device must be reset after the PMRTTI is loaded into code storage section
112, Then the PMRTI section can be executed. If the PMRTI code section is associated with any virtual
tables or read-write data, an updated patch manager code section will be transported with the PMRTI for
installation in the code storage section 112. Alternately, the PMRTI can be kept and processed from the
FSS 110. After the handset 104 has executed all the instructions in the PMRTI section, the PMRTI
section can be deleted from the FSS 110. '

WO 03/012639 PCT/1B02/02889

PMRTTI is a very powerful runtime instruction engine. The handset can execute any instruction delivered
to it through the PMRTI environment. This mechanism may be used to support RF calibrations and PRI
updates. More generally, PMRTI can be used to remote debug wireless device software when software
problems are recognized by the manufacturer or service provider, typically as the result of user
complaints. PMRTI can also record data needed to diagnose software problems. PMRTI can launch
newly downloaded system applications for data analysis, debugging, and fixes. PMRTI can provide RW
data based updates for analysis and possible short term fix to a problem in lieu of an updated system
software code section. PMRTI can provide memory compaction algorithms for use by the wireless
device.

In some aspects of the invention, the organization of the system software into symbol libraries
may impact the size of the volatile memory 114 and nonvolatile memory 108 required for execution. This
is due to the fact that the code sections are typically larger than the symbol libraries arranged in the code
sections. These larger code sections exist to accommodate updated code sections. Organizing the system
software as a collection of libraries impacts the nonvolatile memory size requirement. For the same code
size, the amount of nonvolatile memory used will be higher due to the fact that code sections can be sized
to be larger than the symbol libraries arranged within.

Once software updates have been delivered to the wireless device, the software maintenance
system 100 supports memory compaction. Memory compaction is similar to disk d;-ﬁagmentation
applications in desktop computers. The compaction mechanism ensures that memory is optimally used
and is well balanced for future code section updates, where the size of the updated code sections are
unpredictable. The system 100 analyzes the code storage section as it is being patched (updated). The
system 100 attempts to fit updated code sections into the memory space occupied by the code section
being replaced. If the updated code section is larger than the code section being replaced, the system 100
compacts the code sections in memory 112. Alternately, the compaction can be calculated by the
manufacturer or service provider, and compaction instructions can be transported to the wireless device
104, |

Compaction can be a time consuming process owing to the complexity of the algorithm and also
the vast volume of data movement. The compaction algorithm predicts feasibility before it begins any
processing. Ul prompts can be used to apply for permission from the user before the compaction is
attempted.

In some aspects of the invention, all the system software code sections can be updated
simultaneously. A complete system software upgrade, however, would require a larger FSS 110.

Fig. 3 is a schematic block diagram illustrating the present invention system for reorganizing software
instructions in a wireless communications device. The system 300 comprises a code storage section 112

in memory 108 including executable wireless device system software differentiated into a plurality of

6

WO 03/012639 PCT/1B02/02889

current code sections. Code section one (302), code section two (304), code section n (306), and a patch
manager code section 308 are shown. However, the invention is not limited to any particular number of
code sections. Further, the system 300 further comprises a first plurality of symbcr)l libraries arranged into
the second plurality of code sections. Shown are symbol library one (310) arranged in code section one
(302), symbol libraries two (312) and three (314) arranged in code section two (304), and symbol library
m (316) arranged in code section n (306). Each library comprises symbols having related functionality.
For example, symbol library one (310) may be involved in the operation of the wireless device liquid
crystal display (LCD). Then, the symbols would be associated with display functions. As explained in
detail below, additional symbol libraries are arranged in the patch manger code section 308.

Fig. 4 is a schematic block diagram of the wireless device memory. As shown, the memory is the
code storage section 112 of Fig. 1. The memory is a writeable, nonvolatile memory, such as Flash
memory. It should be understood that the code sections need not necessarily be stored in the same
memory as the FSS 110. It should also be understood that the present invention system software structure
could be enabled with code sections stored in a plurality of cooperating memories. The code storage
section 112 includes a second plurality of contiguously addressed memory blocks, where each memory
block stores a corresponding code section from the second plurality of code sections. Thus, code section
one (302) is stored in a first memory block 400, code section two (304) in the second memory block 402,
code section n (306) in the nth memory block 404, and the patch manager code sectjon (308) in the pth
memory block 406.

Contrasting Figs. 3 and 4, the start of each code section is stored at corresponding start addresses
in memory, and symbol libraries are arranged to start at the start of code sections. That is, each symbol
library begins at a first address and runs through a range of addresses in sequence from the first address.
For example, code section one (302) starts at the first start address 408 (marked with “S™) in code storage
section memory 112. In Fig. 3, symbol library one (310) starts at the start 318 of the first code section.
Likewise code section two (304) starts at a second start address 410 (Fig. 4), and symbol library two starts
at the start 320 of code section two (Fig. 3). Code section n (306) starts at a third start address 412 in
code storage section memory 112 (Fig. 4), and symbol library m (316) starts at the start of code sectionn
322 (Fig. 3). The patch manager code section starts at pth start address 414 in code storage section
memory 112, and the first symbol library in the patch manager code section 308 starts at the start 324 of
the patch manager code section. Thus, symbol library one (310) is ultimately stored in the first memory
block 400. If a code section includes a plurality of symbol libraries, such as code section two (304), the
plurality of symbol libraries are stored in the corresponding memory block, in this case the second
memory block 402.

In Fig, 3, the system software structure 300 further comprises a code section address table 326 as a

type of symbol included in a symbol library arranged in the patch manager code section 308. The code

7

M

WO 03/012639 PCT/1B02/02889

section address table cross-references code section identifiers with corresponding code section start
addresses in memory.

Fig. 5 is a table representing the code section address table 326 of Fig. 3. The code section
address table 326 is consulted to find the code section start address for a symbol library. For example, the
system 300 seeks code section one when a symbol in symbol library one is required for execution. To
find the start address of code section one, and therefore locate the symbol in symbol library one, the code
section address table 326 is consulted. The arrangement of symbol libraries in code sections, and the
tracking of code sections'with a table permits the code sections to be moved or expanded. The expansion
or movement operations may be needed to install upgraded code sections (with upgraded symbol
libraries).

Returning to Fig. 3, it should be noted that not every symbol library necessarily starts at the start
of a code section. As shown, symbol library three (314) is arranged in code section two (304), but does
not start of the code section start address 320. Thus, if a symbol in symbol library three (314) is required
for execution, the system 300 consults the code section address table 326 for the start address of code
section two (304). As explained below, a symbol offset address table permits the symbols in symbol
library three (314) to be located. It does not matter that the symbols are spread across multiple libraries,
as long as they are retained with the same code section.

As noted above, each symbol library includes functionally related symbols. A symbol is a
programmer-defined name for locating and using a routine body, variable, or data s'tructure. Thus, a
symbol can be an address or a value. Symbols can be internal or external. Internal symbols are not visible
beyond the scope of the current code section. More specifically, they are not sought by other symbol
libraries, in other code sections. External symbols are used and invoked across code sections and are
sought by libraries in different code sections. The symbol offset address table typically includes a list of
all external symbols.

For example, symbol library one (310) may generate characters on a wireless device display.
Symbols in this library would, in turn, generate telephone numbers, names, the time, or other display
features. Each feature is generated with routines, referred to herein as a symbol. For example, one
symbol in symbol library one (310) generates telephone numbers on the display. This symbol is
represented by an “X”, and is external. When the wireless device receives a phone call and the caller ID
service is activated, the system must execute the “X” symbol to generate the number on the display.”
Therefore, the system must locate the “X” symbol. ,

Fig. 6 is a detailed depiction of symbol library one (310) of Fig. 3, with symbols. Symbols are
arranged to be offset from respective code section start addresses. In many circumstances, the start of the
symbol library is the start of a code section, but this is not true if a code section includes more than one

symbol library. Symbol library one (310) starts at the start of code section one (see Fig. 3). As shown in

8

WO 03/012639 PCT/IB02/02889

Fig. 6, the “X” symbol is located at an offset of (03) from the start of the symbol library and the “Y”
symbol is located at an offset of (15). The symbol offset addresses are stored in a symbol offset address
table 328 in the patch manager code section (see Fig. 3).

Fig. 7 is a table representing the symbol offset address table 328 of Fig. 3. The symbol offset
address table 328 cross-references symbol identifiers with corresponding offset addresses, and with
corresponding code section identifiers in memory. Thus, when the system seeks to execute the “X”
symbol in symbol library one, the symbol offset address table 328 is consulted to located the exact address
of the symbol, with respect to the code section in which it is arranged.

Returning to Fig. 3, the first plurality of symbol libraries typically all include read-write data that
must be consulted or set in the execution of these symbol libraries. For example, a symbol library may
include an operation dependent upon a conditional statement. The read-write data section is consulted to
determine the status required to complete the conditional statement. The present invention groups the
r;aad-write data from all the symbol libraries into a shared read-write section. In some aspects of the
invention, the read-write data 330 is arranged in the patch manager code section 308. Alternately (not
shown), the read-write data can be arranged in a different code section, code section n (306), for example.

The first plurality of symbol libraries also includes symbol accessor code arranged in a code
section to calculate the address of a sought symbol. The symbol accessor code can be arranged and stored
at an address in a separate code section, code section two (3 04), for example. How;ver, as shown, the
symbol accessor code 332 is arranged and stored at an address in the patch manager code section 308.
The system software structure 300 further comprises a first location for storage of the symbol accessor
code address. The first location can be a code section in the code storage section 112, or in a separate
memory section of the wireless device (not shown). The first location can also be arranged in the same
code section as the read-write data. As shown, the first location 334 is stored in the patch manager code
section 308 with the read-write data 330, the symbol offset address table 328, the code section address
table 326, and the symbol accessor code 332, and the patch library (patch symbol library) 336.

The symbol accessor code accesses the code section address table and symbol offset address
tables to calculate, or find the address of a sought symbol in memory. That is, the symbol accessor code
calculates the address of the sought symbol using a corresponding symbol identifier and a corresponding
code section identifier. For example, if the “X” symbol in symbol library one is sought, the symbol
accessor is invoked to seek the symbol identifier (symbol ID) X_1, corresponding to the “X” symbol (see
Fig. 7). The symbol accessor code consults the symbol offset address table to determing that the X_1
symbol identifier has an offset of (03) from the start of code section one (see Fig. 6). The symbol accessor
code is invoked to seek the code section identifier CS_l, corresponding to code section one. The symbol

accessor code consults the code section address table to determine the start address associated with code

WO 03/012639 PCT/1B02/02889

section identifier (code section ID) CS_1. In this manner, the symbol accessor code determines that the
symbol identifier X_1 is offset (03) from the address of (00100), or is located at address (00103).

The symbol “X” is a reserved name since it is a part of the actual code. In other words, it has an
absolute data associated with it. The data may be an address or a value. The symbol identifier is an alias
created to track the symbol. The symbol offset address table and the code section address table both work
with identifiers to avoid confusion with reserved symbol and code section names. It is also possible that
the same symbol name is used across many symbol libraries. The use of identifiers prevents confusion
between these symbols.

Returning to Fig. 1, .the system software structure 300 further comprises a read-write volatile
memory 114, typically random access memory (RAM). The read-write data 330, code section address
table 326, the symbol offset address table 328, the symbol accessor code 332, and the symbol accessor
code address 334 are loaded into the read-write volatile memory 114 from the patch manager code section
f;)r access during execution of the system software. As is well known, the access times for code stored in
RAM is significantly less than the access to a nonvolatile memory such as Flash.

Returning to Fig. 3, it can be noted that the symbol libraries need not necessarily fill the code
sections into which they are arranged, although the memory blocks are sized to exactly accommodate the
corresponding code sections stgred within. Alternately stated, each of the second plurality of code
sections has a size in bytes that accommodates the arranged symbol libraries, and each of the contiguously
addressed memory blocks have a size in bytes that accommodates corresponding co‘de sections. For
example, code section one (302) may be a 100 byte section to accommodate a symbol library having a
length of 100 bytes. The first memory block would be 100 bytes to match the byte size of code section
one. Ho.wever, the symbol library loaded into code section 1 may be smaller than 100 bytes. As shown in
Fig. 3, code section one (302) has an unused section 340, as symbol library one (310) is less than 100
bytes. Thus, each of the second plurality of code sections may have a size larger than the size needed to
accommodate the arranged symbol libraries. By “oversizing” the code sections, larger updated symbol
libraries can be accommodated.

Contiguously addressed memory blocks refers to partitioning the physical memory space into
logical blocks of variable size. Code sections and memory blocks are terms that are essentially
interchangeable when the code section is stored in memory. The concept of a code section is used to
identify a section of code that is perhaps larger than the symbol library, or the collection of symbol
libraries in the code section as it is moved and manipulated. ,

As seen in Fig. 3, the system 300 includes a patch symbol library, which will be referred to herein
as patch library 336, to arrange new code sections in the code storage section with the current code

sections. The arrangement of new code sections with current code sections in the code storage section

10

WO 03/012639 PCT/1B02/02889

forms updated executable system software. The patch manager 336 not only arranges new code sections
in with the current code sections, it also replaces code sections with updated code sections.

Returning to Fig. 4, the file system section 110 of memory 108 receives new code sections, such
as new code section 450 and updated patch manager code section 452. The file system section also
receives a first patch manager run time instruction (PMRTTI) 454 including instructions for arranging the
new code sections with the current code sections. As seen in Fig. 1, an airlink interface 150 receives new,
or updated code sections, as well as the first PMRTI. Although thel airlink interface 150 is being
represented by an antenna, it should be understood that the airlink interface would also include an RF
transceiver, baseband circuitry, and demodulation circuitry (not shown). The file system section 110
stores the new code sections received via the airlink interface 150. The patch library 336, executing from
read-write volatile memory 114, replaces a first code séction in the code storage section, code section n
(306) for example, with the new, or updated code section 450, in response to the first PMRTI 454,
Typically, the patch manager code section 308 is replaced with the updated patch manager code section
452. When code sections are being replaced, the patch library 336 over-writes the first code section, code
section n (306) for example, in the code storage section 112 with the updated code sections, code section
450 for example, in the file system section 110. In the extreme case, all the code sections in code storage
section 112 are replaced with updated code sections. That is, the FSS 110 receivés a second plurality of
updated code sections (not shown), and the patch library 336 replaces the second plurality of code sections
in the code storage section 112 with the second plurality of updated code sections. ‘Of course, the FSS 110
must be large enough to accommodate the second plurality of updated code sections received via the
airlink interface.

As noted above, the updated code sections being received may include read-write data code
sections, code section address table code sections, symbol libraries, symbol offset address table code
sections, symbol accessor code sections, or a code section with a new patch library. All these code
sections, with their associated symbol libraries and symbols, may be stored as distinct and independent
code sections. Then each of these code sections would be replaced with a unique updated code section.
That is, an updated read-write code section would be received and would replace the read-write code
section in the code storage section. An updated code section address table code section would be peceived
and would replace the code section address table code section in the code storage section. An updated
symbol offset address table code section would be received and would replace the symbol offset address
table code section in the code storage section. An updated symbol accessor code section would be
received and would replace the symbol accessor code section in the code storage section. Likewise, an
updated patch manager code section (with a patch library) would be received and would replace the patch

manager code section in the code storage section.

11

WO 03/012639 PCT/IB02/02889

However, the above-mentioned code sections are typically bundled together in the patch manager
code section. Thus, the read-write code section in the code storage section is replaced with the updated
read-write code section from the file system section 110 when the patch manager code section 308 is
replaced with the updated patch ménger code section 450. Likewise, the code section address table, the
symbol offset address table, the symbol accessor code sections, as well as the patch library are replaced
when the updated patch manager code section 450 is installed. The arrangement of the new read-write
data, the new code section address table, the new symbol offset address table, the new symbol accessor
code, and the new patch library as the updated patch manager code section 450, together with the current
code sections in the code storage section, forms updated executable system software.

When the file system section 110 receives an updated symbol accessor code address, the patch
manager replaces the symbol accessor code address in the first location in memory with updated symbol
accessor code address. As noted above, the first location in memory 334 is typically in the patch manager
code section (see Fig. 3).

As seen in Fig. 3, the patch library 308 is also includes a compactor, or a compactor symbol
library 342. The compactor 342 can also be enabled as a distinct and independent code section, however
as noted above, it is useful and efficient to bundle the funcfions associated with system software upgrades
into a single patch manager code section. Generally, the compactor 342 can be said to resize code
sections, so that new sections can be arranged with current code sections in the codt? storage section 112.

Contrasting Figs. 3 and 4, the file system section 110 receives a compaction instruction set with
instructions for identifying a current code section for updating via the airlink interface 150 (see Fig. 1).
For example, the compaction instruction set can be the first PMRTI 454, although the instructions for
compaction need not necessarily be bundled with the other updating instructions. The compactor 342
replaces the identified current code section in the code storage section with the new code section. It
should be understood that the compactor 342 works in cooperation with the patch library 336 explained
above. Alternately stated, the compactor 342 is called upon to assist the patch library 336 in
circumstances where code section resizing is required in the process of updating the system software.

The compactor resizes the memory blocks (Fig. 4) in which corresponding resized code sections
are stored in the code storage section. For example, the file system section 110 receives a new code
section 450 having a first size. At the same time, or in other messages, the wireless device receives a
compaction instruction set, say first PMRTI 454, and an updated patch manager code section 452. The
compaction instruction set 454 identifies a current code section having a second size, say code section 2
(304), less than the first size. Since the updated code section 450 is larger in size that the code section
being replaced, a compaction operation must be performed. The compactor 342 increases the size of the

second memory block 402 associated with the identified current code section 304 to at least the first size.

12

WO 03/012639 PCT/1B02/02889

The compactor (in cooperation with the patch library 336) replaces the identified current code section 304,
stored in the corresponding memory block 402, with the new code section 450.

As noted above, it is common for the code sections to be oversized with respect to the symbol
library, or symbol libraries arranged within. The compactor 342 determines the size of symbol libraries
arranged within the corresponding code sections, and resizes code sections to more closely match the

- symbol library sizes arranged within. Typically, the compactor 342 optimally resizes code sections to
further subsequent code section resizing and updating operations.

Continuing the example begun above, the compactor 342 might optimally resize code sections by
taking unused areas from the code sections adjacent the second memory block 402. As shown, code
section one (302), and a code section three (344) have unused areas 340 and 346, respectively. The
compactor may choose to resize the first memory block 302 and a third memory block 460, taking from
both unused areas 340 and 346 to make the second memory block 402 large enough for the new code
sectlon 450.

Fig. 8 is a schematic block diagram illustrating the results of exemplary compacting operation.
Code section 2 has been replaced with the larger new (updated) code section 450. The unused section 340
of code section one (302) has been reduced, as has the unused area 360 of code section three (344).
Leaving some unused areas in each code section makes for efficient future expansion and compaction
operations. For example, if all the unused area 360 were used up to accommodate the updated code
section 450 in the current update operation, any future expansion of code section three (344) would
necessarlly require compaction operations in adjacent code sections. It should also be understood that
although the example only shows two adjacent memory blocks being resized, some compaction operations
may require that some, or even all of the code sections be resized to accommodate new (larger) code
section updates.

The compactor 342 accesses start addresses from code section address table, to measure the code
sections sizes, and symbol offset addresses from the symbol offset address table, to measure the size of the
symbol libraries arranged within corresponding code sections. Again, it should be understood that in
some aspects of the invention that the compactor relies upon, and cooperates with other symbol libraries,
that need not necessarily reside in the patch manager code section 308, to accomplish tasks. Preferably,
however, the compactor works with the symbol accessor code described above to access the code section
address table and symbol offset address table.

Since the code section address table includes the start address of each code sectjon, a simple
arithmetic operation using the start addresses of adjacent code sections can determine the size of the code
section. Likewise, the address of the last symbol in a symbol library can be used, with the code section
start addresses, to determine the approximate size of the symbol libraries arranged within corresponding

code sections and, therefore, the amount of unused area. For example, if the start address of code section

13

WO 03/012639 PCT/IB02/02889

one (302) is (0100), the start address of code section two (304) is (0200), and the address of the last
symbol of symbol library one (310) is (0170), the size of unused area 340 is approximately (0200 - 0170).

However, many symbols are distributed over several contiguous addresses, and the offset address
of the last symbol is not necessarily the same as the address where the symbol library ends. Continuing
the above example, if the last symbol begins at address (0170) and ends at (0173), the size of the unused
space 340 is actually (0200 - 0173). In some aspects of the invention, the code storage section 112
includes symbol libraries with end symbols to signify the end of symbol libraries. For example, returning
momentarily to Fig. 6, symbol “Z” is a one-byte end symbol. That is, the address of symbol “Z” signifies
the end of symbol library one. The compactor 342 uses the end symbol offset addresses, through the
operation of the symbol accessor code to measure the size of symbol libraries arranged .within
corresponding code sections.

Alternately, the code storage section 112 includes symbol libraries with size symbols to signify
tﬁe size of symbol libraries. For example, symbol “Y” (Fig. 6) can be a number (0073) that signifies the
size of symbol library one. The compactor 342 accesses the size symbols to measure the size of symbol
libraries arranged within corresponding code sections. In other aspects of the invention, the size symbols
for all the symbol libraries are stored in a table in a distinct code section (not shown) of the patch manager
code section.

The compactor 342 measures the size of the new code section 450 in the file system section 110
and first determines if the new code section can be arranged with the current code séctions in the code
storage section 112. The compactor 342 makes this determination in response to measuring the size of
symbol libraries arranged within corresponding code sections, and measuring the size of the new code
sectioﬁ. If compaction will not successfully permit the new code section to be installed, the compactor
342 automatically aborts the operation. Alternately, the compactor calculates a probability of success,
displays the probability to the wireless device user, and permits the user to determine if the compaction
operation should continue. Regardless of the probability of success, the wireless telephone gives the user
the option of starting the compaction process, as the compactor 342 must suspend the execution of the
system software during the compaction and updating process.

To determine the size of the updated code section, the compactor 342 generally relies upon
compaction instruction set data. The file system section 110 receives a compaction instruction set 454 that
includes the size of the new code section 450. The compactor 342 accesses the compaction instruction set
454 to determine the size of the new code section 450 in the file system section 110 and determines if the
new code section can be arranged with the current code sections in the code storage section 112, in
response to measuring the size of symbol libraries arranged within corresponding code sections and

determining the size of the new code section.

14

WO 03/012639 PCT/1B02/02889

The compaction operation can be avoided if the code storage section includes large unused
memory block sections. The compactor 342 determines the size of unused memory blocks in the code
storage section and stores the new code section in the unused memory block, if the size of the unused
memory block is greater than, or equal to the new code section size.

Once the code sections have been resized, and the identified code sections replaced with updated code
sections, the compactor 342 changes the start addresses of code sections stored in the code storage section.
Continuing the above example, if the resizing operation is accomplished by starting the new code section
450 (now code section two) at the start address of (0 1"75), instead of (0200), the code section address table
must be changed to reflect the new start address.

Figs. 9a through 9e illustrate the operation of an exemplary compaction schedule. After the
compactor 342, operating from volatile memory 114, calculates the probability of successful compaction,
and calculates the code section sizes, the compactor 342 generates a compaction schedule. The
c(-)mpaction schedule includes the order in which code sections are moved, and their temporary placement
in the FSS 110. The file system section 110 temporarily stores code sections from the code storage
section 112, and the compactor 342 stores the code sections from the file system section 110 into the code
storage section 112 memory blocks to maintain contiguous addressing, in response to the compaction
schedule.

Continuing the example begun above, in Fig. 9a the compactor 342 consults the compaction
instruction set (first PMRTI) 454 to determine the code section to be updated and thé size of the new code
section 450. In Fig. 9b, the compactor 342, after calculating the probability of success and size of the
code sections, begins the process by moving code section three (344) to FSS 110 from the third memory
block 460.

In Fig. 9¢, the new code section 450 is moved from FSS 110 to the second memory block 402. If
code section one (302) has been resized, the compactor 342 causes the start address of the new code
section to begin in the unused area 340 (see Fig. 3). As mentioned above, the start of the second memory
block changes from (0200) to (0175). That is, code section one (302) has been compacted.

In Fig. 9d, code section three (344) is moved back from FSS 110 to the third memory block 460. The
move is made to start code section three (344) at a new start address. Starting the code section at a new
start address may involve compacting the code section. That is, some of the unused area 346 may be used.

In Fig. 9e, the patch manager (PM) code section 308 is replaced with the new (updafed) PM code
section 452. Typically, the patch manager includes the code section address table code symbol library
(see Fig. 3). However, the updated code section address table is not necessarily correct, as the results of
compaction are not necessarily known beforehand. Then, the compactor 342 generates an updated code
section address table, in response to changing the start addresses of code sections stored within the

memory blocks. The compactor 342 overwrites the updated code section address table stored in the code

15

WO 03/012639 PCT/IB02/02889

storage section 112 with the updated code section address table that it has generated. Then, the updated
system software accesses the updated code section address table after the new code section is arranged
with the current code sections.

However, the symbol offset address table is handled differently, since the symbol offset addresses
for updated and current code sections can be calculated beforehand. The file system section 110 receives
anew code section, typically the PM code section 452, with an updated symbol offset address table, and
the updated system software accesses the updated symbol offset address table after the new code section
452 is arranged with the current code sections.

Much of the above description of the invention has been devoted to the operation of the compactor
in calculating code section sizes and a compaction schedule. However, in some aspects of the invention
the compactor 342 is relieved of the responsibility of these calculations. In this aspect of the invention,
the file system section 110 receives a cbmpaction instruction 454 set including code section resizing
instructions and a compaction schedule. Then, the compactor 342 resizes code sections in response to the
code section resizing instructions. As before, the file system section 110 temporarily stores code sections
from the code storage section 112, and the compactor 342 stores the code sections from the file system
section 110 into the code storage section 112 memory blocks to maintain contiguous addressing, in
response to the compaction schedule.

The file éystem section 110 also receives a new code section, for example the updated PM code
section 452, with an updated code section address table and an updated symbol offset address table. Since
the code section resizing and compaction schedule were calculated beforehand (not by the wireless
device), these updated tables accurately reflect the new code section start addresses. The updated system
software accesses the updated symbol offset address table and updated code section address table after the
new code section is arranged with the current code sections.

As best illustrated in Fig. 1, the volatile memory 114 includes the first and second table code
sections (the code section address table and symbol offset address table) loaded from the code storage
section 112 for executing the system software. Other critical libraries from the patch manager code
section 308 are also loaded into volatile memory 114. The new code sections are arranged with the
current code sections in the code storage section 112 to form updated system software, following a reset of
the wireless communications device 104. When reset, the updated code section address table and updated
symbol offset address table are loaded into the volatile'memory 114, and the system softwafe can then be
executed with the updated tables.

Figs. 10a through 10b are a flowchart iilustratiﬁg the present invention method for reorganizing
software instructions stored in a wireless communications device memory. Although depicted as a
sequence of numbered steps for clarity, no order should be inferred from the numbering unless explicitly

stated. The method begins at Step 1000. Step 1001a forms the system software into a first plurality of

16

WO 03/012639 PCT/IB02/02889

symbol libraries, each symbol library comprising at least one symbol. Step 1001b arranges the first
plurality of symbol libraries into a second plurality of code sections. Step 1002 stores wireless device
system software in a plurality of current code sections. Step 1004 receives a new code section. Receiving
a new code section in Step 1004 includes receiving the new code section via a wireless communications
device air interface.

Step 1006 resizes current code sections. Typically, resizing current code sections includes
suspending the operation of the system software. Step 1008 arranges the new code section with the
current code sections to form updated system software for the wireless device. Step 1010 executes the
updated system software. Typically, Step 1005a identifies a current code section for updating, and
arranging thé new code section with the current code sections to form updated system software in Step
1008 includes replacing the identified current code section with the new code section.

Arranging the first plurality of symbol libraries into a second plurality of code sections in Step
1-001b includes starting symbol libraries at the start of code sections. Storing wireless device system
software in a plurality of current code sections in Step 1002 includes storing the start of code sections at
corresponding start addresses. Then, the method comprises a further step. Step 1003a maintains a code
section address table cross-referencing code section identifiers with corresponding start addresses.
Arranging the first plurality of symbol libraries into a second plurality of code sections in Step 1001b
includes arranging symbols to be offset from their respective code section start addresses. Then, Step
1003b maintains a symbol offset address table cross-referencing symbol identiﬁers‘with corresponding
offset addresses, and corresponding code section identifiers.

Storing the start of code sections at corresponding start addresses includes substeps. Step 1002a
creates a second plurality of contiguously addressed memory blocks. Step 1002b identifies each memory
block with a corresponding code section. Step 1002¢ stores code sections in the identified memory
blocks.

Arranging the first plurality of symbol‘libraries into a second plurality of code sections in Step
1002 includes sizing the code sections to accommodate arranged symbol libraries. Creating a second
plurality of contiguously addressed memory blocks in Step 1002a includes sizing memory blocks to
accommodate corresponding code sections. Typically, sizing memory blocks to accommodate
corresponding code sections includes sizing the code sections to accommodate sizes larger than the
arranged symbol libraries. Resizing current code sections in Step 1006 includes resizing thé memory
blocks in which corresponding resized code sections are stored. ‘

For example, receiving a new code section in Step 1004 includes receiving a new code section
having a first size. Identifying a current code section for updating in Step 1005a includes identifying a
current code section having a second size, less than the first size. Then, resizing the memory blocks in

which corresponding resized code sections are stored in Step 1006 includes substeps. Step 1006a (not

17

WO 03/012639 PCT/IB02/02889

shown) increases the size of a memory block associated with the identified current code section to at least
the first size, and Step 1006b (not shown) replaces the identified current code section, stored in the
corresponding memory block, with the new code section.

Resizing the memory blocks in which corresponding resized code sections are stored in Step 1006
includes, in response to measuring the size of the symbol libraries arranged within corresponding code
sections (see Step 1005¢, below), resizing code sections to more closely match the symbol library sizes
arranged within. Resizing code sections to more closely match the symbol library sizes arranged within in
Step 1006 includes optimally resizing code sections to further subsequent code section resizing and
updating operations.

Step 1005b, using the start addresses from code section address table, measures the current code
sections sizes. Step 1005c, using the symbol offset addresses from the symbol offset address table,
measures the size of the symbol libraries arranged within corresponding code sections. That is, the code
séction sizes and sizes of the symbol libraries are measured. This information permits the amount of
unused area in each code section to be calculated.

In some aspects, forming the system software into a first plurality of symbol libraries in Step
1001a includes forming end symbols to signify the end of symbol libraries. Then, measuring the size of
the symbol libraries arranged within corresponding code sections in Step 1005¢ includes using the offset
addresses of the end symbols to measure the size of symbol libraries. Alternately, forming the system
software into a first plurality of symbol libraries in Step 10012 includes forming sizé symbols to signify
the size of symbol libraries. Then, measuring the size of the symbol libraries arranged within
corresponding code sections in Step 1005¢ includes accessing the size symbols to measure the size of
symbol libraries.

Step 1005d measures the size of the new code section. Step 1005e, in response to measuring the
size of symbol libraries arranged within corresponding code sections in Step 1005c, and measuring the
size of the new code section in Step 1005d, determines if the new code section can be arranged with the
current code sections.

In some aspects, determining if the new code section can be arranged with the current code section
in Step 1005e includes determining the size of unused memory blocks. Then, arranging the new code
section with the current code sections to form updated system software for the wireless device in Step
1008 includes storing the new code section in the unused memory block, if the size of the uﬁused memory
block is greater than, or equal to the new code section size.

Step 10051 calculates the code section sizes. That is, a determination is made of new code
sections sizes that will permit the new code section to be arranged with the current code sections. Step
1007a, in response to calculating the code section sizes, generates a compaction schedule. Step 1007b

temporarily moves code sections into a file system section. Then, arranging the new code section with the

18

WO 03/012639 PCT/IB02/02889

current code sections to form updated system software for the wireless device in Step 1008 includes
storing the code sections from the file system section into the memory blocks to maintain contiguous
addressing, in response to the compaction schedule.

Following the resizing of the code sections in Step 1006, Step 1009a changes the code section
start addresses. Step 1009b, in response to changing the start addresses of code sections stored within the
memory blocks, generates an updated code section address table. Then, executing the updated system
software in Step 1010 includes using the updated code section address table after arranging the new code
section with the current code sections.

In some aspects of the invention receiving a new code section in Step 1004 includes receiving a
new code section with an updated symbol offset address table. Then, executing the updated system
software in Step 1010 includes using the updated symbol offset address table after arranging the new code
section with the current code sections.

. Step 1003c loads the code section address table and symbol offset address table into a volatile
memory. Step 1003d (not shown), in response to loading the code section address table and symbol offset
address table into the volatile memory, executes system software. Step 1009c resets the wireless
communications device. Step 1009d, in response to resetting, loads the updated code section address table
and the updated symbol offset address table into volatile memory. Step 1010, in response to loading the
updated code section address table and updated symbol offset address table into memory, executes the
updated system software. '

Fig. 11 is a flowchart illustrating an alternate aspect of the method of Figs. 10a through 10b. Fig.
11 shares several steps in common with Figs. 10a and 10b, which for the sake of brevity are repeated here.
Receiving a new code section in Step 1104 includes receiving a compaction instruction set including code
section resizing instructions and a compaction schedule. Resizing current code sections in Step 1106
includes resizing in response to the code section resizing instructions.

Step 1107 temporarily moves code sections into a file system section. Then, arranging the new
code section with the current code sections to form updated system software for the wireless device in
Step 1008 includes storing the code sections from the file system section into memory blocks to maintain
contiguous addressing, in response to the compaction schedule.

Receiving a new code section in Step 1104 includes receiving a new code section with an updated
code section address table and an updated symbol offset address table. Then, executing the updated"
system software in Step 1110 includes using the updated code section address table and updated symbol
offset address table after arranging the new code section with the current code sections. A system and
method have been provided for reorganizing system software structure in a wireless communications
device so aid in the process of updating the software. The system is easily updateable because of the

arrangement of symbol libraries in code sections, with tables to access the start addresses of the code

19

WO 03/012639 PCT/1B02/02889

sections in memory and the offset addresses of symbols in the symbol libraries. Although a few examples
of these library arrangements and cross-referencing tables have been given for a display function, the
present invention is not limited to just these examples. Other variations and embodiments of the invention

will occur to those skilled in the art.

20

WO 03/012639 PCT/IB02/02889

CLAIMS
WHAT IS CLAIMED 1S:
1. In a wireless communications device, a method for reorganizing software instructions stored in a

memory, the method comprising:

storing wireless device system software in a plurality of current code sections;

receiving a new code section;

resizing current code sections;

arranging the new code section with the current code sections to form updated system software for the
wireless device; and,

executing the updated system software.

2. The method of claim 1 further comprising:
i&entifying a current code section for updating; and,
wherein arranging the new code section with the current code sections to form updated system software

includes replacing the identified current code section with the new code section.

3. The method of claim 2 further comprising:
forming the system software into a first plurality of symbol libraries, each symbol library comprising at
least one symbol; and, '

arranging the first plurality of symbol libraries into a second plurality of code sections.

4. The method of claim 3 wherein receiving a new code section includes receiving the new code

section via a wireless communications device air interface.

5. The method of claim 4 wherein arranging the first plurality of symbol libraries into a second
plurality of code sections includes starting éymbol libraries at the start of code sections;

wherein storing wireless device system software in a plurality of current code sections includes storing the
start of code sections at corresponding start addresses; and,

the method further comprising:

maintaining a code section address table cross-referencing code section identifiers with corrésponding

start addresses.

6. The method of claim 5 wherein arranging the first plurality of symbol libraries into a second
plurality of code sections includes arranging symbols to be offset from their respective code section start

addresses; and

21

WO 03/012639 PCT/IB02/02889

the method further comprising:
maintaining a symbol offset address table cross-referencing symbol identifiers with corresponding offset

addresses, and corresponding code section identifiers.

7. The method of claim 6 wherein storing the start of code sections at corresponding start addresses
includes:

| creating a second plurality of contiguously addressed memory blocks;

identifying each memory block with a corresponding code section; and,

storing code sections in the identified memory blocks.

8. The method of claim 7 wherein arranging the first plurality of symbol libraries into a second
plurality of code sections includes sizing the code sections to accommodate arranged symbol libraries;
ahd,

wherein creating a second plurality of contiguously addressed memory blocks includes sizing memory

blocks to accommodate corresponding code sections.

9. The method of claim 8 wherein sizing memory blocks to accommodate corresponding code

sections includes sizing the code sections to accommodate sizes larger than the arranged symbol libraries.

10. The method of claim 9 wherein resizing current code sections includes resizing the memory

blocks in which corresponding resized code sections are stored.

11. The method of claim 10 wherein receiving a new code section includes receiving a new code
section having a first size;

wherein identifying a current code section for updating includes identifying a current code section having
a second si‘z'e,‘ less than the first size; and,

wherein resizing the memory blocks in which corresponding resized code sections are stored includes:
increasing the size of a memory block associated with the identified current code section to at least the
first size; and,

replacing the identified current code section, stored in the corresponding memory block, witﬁ the new

code section.

12. The method of claim 11 wherein resizing the memory blocks in which corresponding resized code

sections are stored includes, in response to measuring the size of symbol libraries arranged within the

22

WO 03/012639 PCT/IB02/02889

corresponding code sections, resizing code sections to more closely match the symbol library sizes

arranged within.

13. The method of claim 12 wherein resizing code sections to more closely match the symbol library
sizes arranged within includes optimally resizing code sections to further subsequent code section resizing

and updating operations.

14, The method of claim 12 further comprising:
using the start addresses from code section address table, measuring the current code sections sizes;
using the symbol offset addresses from the symbol offset address table, measuring the size of the symbol

libraries arranged within corresponding code sections.

15. The method of claim 14 wherein forming the system software into a first plurality of symbol
libraries includes forming end symbols to signify the end of symbol libraries; and,
wherein measuring the size of the symbol libraries arranged within corresponding code sections includes

using the offset addresses of the end symbols to measure the size of symbol libraries.

16. The method of claim 14 wherein forming the systerh software into a first plurality of symbol
libraries includes forming size symbols to signify the size of symbol libraries; and,
wherein measuring the size of the symbol libraries arranged within corresponding code sections includes

accessing the size symbols to measure the size of symbol libraries.

17. The method of claim 15 further comprising:

following the resizing of the code sections, changing the code section start addresses.

18. The method of claim 16 further comprising: -

measuring the size of the new code section; and,

in response to measuring the size of symbol‘h'braries arranged within corresponding code sections, and
measuring the size of the new code section, determining if the new code section can be arranged with the

current code sections.

19. The method of claim 18 wherein determining if the new code section can be arranged with the

current code section includes determining the size of unused memory blocks; and,

23

WO 03/012639 PCT/IB02/02889

wherein arranging the new code section with the current code sections to form updated system software
for the wireless device includes storing the new code section in the unused memory block; if the size of

the unused memory block is greater than, or equal to the new code section size.

20. The method of claim 18 further comprising:

calculating the code section sizes; '

in response to calculating the code section sizes, generating a compaction schedule;

temporarily moving code sections into a file system section; and,

wherein arranging the new code section with the current code sections to form updated system software
for the wireless device includes storing the code sections from the file system section into the memory

blocks to maintain contiguous addressing, in response to the compaction schedule.

21. The method of claim 20 further comprising:

in response to changing the start addresses of code sections stored within the memory blocks, generating
an updated code section address table; and, ‘

wherein executing the updated system software includes using the updated code section address table after

arranging the new code section with the current code sections.

22. The method of claim 21 wherein receiving a new code section includes receiving a new code
section with an updated symbol offset address table; and,
wherein executing the updated system software includes using the updated symbol offset address table

after arranging the new code section with the current code sections.

23, The method of claim 11 wherein receiving a new code section includes receiving a compaction
instruction set including code section resizing instructions and a compaction schedule; and,
wherein resizing current code sections includes resizing code sections in response to the code section

resizing instructions.

24, The method of claim 23 further comprising:

temporarily moving code sections into a file system section; and,

wherein arranging the new code section with the current code sections to form updated system software
for the wireless device includes storing the code sections from the file system section into memory blocks

to maintain contiguous addressing, in response to the compaction schedule.

24

WO 03/012639 PCT/IB02/02889

25. The method of claim 24 wherein receiving a new code section includes receiving a new code
section with an updated code section address table and an updated symbol offset address table; and,
wherein executing the updated system software includes using the updated code section address table and

updated symbol offset address table after arranging the new code section with the current code sections.

26. The method of claim 6 further comprising:

loading the code section address table and symbol offset address table into a volatile memory;

in response to loading the code section address table and symbol offset address table into the volatile
memory, executing system software;

resetting the wireless communications device;

in response to resetting, loading the updated code section address table and the updated symbol offset
address table into volatile memory; and,

wherein executing the updated system software includes executing the updated system software in
response to loading the updated code section address table and updated symbol offset address table into

memory.

27. The system of claim 26 wherein resizing current code sections includes suspending the operation

of the system software.

28. In a wireless communications device, a method for reorganizing software instructions stored in a
memory, the method cdmprising:

storing wireless device system software in a plurality of current code sections with the start of code
sections at corresponding start addresses by creating a second plurality of contiguously addressed memory
blocks, identifying each memory block with a corresponding code section, and storing code sections in
identified memory blocks;

receiving a new code section via a wireless communications device air interface;

identifying a current code section for updating;

calculating the code section sizes;

in response to calculating the code section sizes, generating a compaction schedule;

resizing current code sections;

following the resizing of the current code sections, changing the code section start addresses;
temporarily moving code sections into a file system section;

replacing the identified current code section with the new code section by storing the code sections from
the file system section into memory blocks to maintain contiguous addressing, in response to the

compaction schedule; and,

25

WO 03/012639 PCT/IB02/02889

executing the updated system software.

29. In a wireless communications device, a system for reorganizing software instructions stored in a
memory, the system comprising:

a code storage section memory including executable wireless device system software differentiated into a
plurality of current code sections;

a file system section memory for receiving new code sections;

a compactor to resize current code sections; and

wherein the arrangement of new code sections with the current code sections in the code storage section

forms updated system software.

30. The system of claim 29 wherein the file system section receives a compaction instruction set with
instructions for identifying a current code section for updating; and,
wherein the compactor replaces the identified current code section in the code storage section with the

new code section.

31 The system of claim 30 wherein the code storage section comprises a first plurality of symbol
libraries, each symbol library comprising at least one symbol, with the first plurality of symbol libraries

being arranged into a second plurality of code sections.

32. The system of claim 31 further comprising:
an airlink interface to receive new code sections; and,
wherein the file system section receives the new code section via a wireless communications device

airlink interface.

33. The system of claim 32 wherein the code storage section symbol libraries start at the start of code
sections; and,
wherein the code storage section includes a first table code section with a code section address table for

cross-referencing code section identifiers with corresponding start addresses.

34, The system of claim 33 wherein the code storage section includes symbols arrapged to be offset
from their respective code section start addresses; and,

wherein the code storage section includes a second table code section with a symbol offset address table
for cross-referencing symbol identifiers with corresponding offset addresses, and corresponding code

section identifiers.

26

WO 03/012639 PCT/IB02/02889

35. The system of claim 34 wherein the code storage section includes a second plurality of
contiguously addressed memory blocks identified with the corresponding second plurality of code

sections.

36. The system of claim 35 wherein the code storage section includes code sections sized to
accommodate the symbol libraries arranged within, and memory blocks sized to accommodate the

corresponding code sections.

37. The system of claim 36 wherein the code storage section includes code sections sized to

accommodate sizes larger than the symbol libraries arranged within.

38. The system of claim 37 wherein the compactor resizes the memory blocks in which corresponding

resized code sections are stored in the code storage section.

39, The system of claim 38 wherein the file system section receives a new code section having a first
size;

wherein compaction instruction set identifies a current code section having a second size, less than the
first size; and,

wherein the compactor increases the size of a memory block associated with the identified current code
section to at least the first size, and replaces the identified current code section, stored in the

corresponding memory block, with the new code section.

40. The system of claim 39 wherein the compactor determines the size of symbol libraries arranged
within the corresponding code sections, and resizes code sections to more closely match the symbol

library sizes arranged within.

41. The system of claim 40 wherein the compactor optimally resizes code sections to further

subsequent code section resizing and updating operations.

42. The system of claim 40 wherein the compactor accesses start addresses from code section address
table, to measure the code sections sizes; and,
wherein the compactor accesses symbol offset addresses from the symbol offset address table, to measure

the size of the symbol libraries arranged within corresponding code sections.

27

WO 03/012639 PCT/IB02/02889

43. The system of claim 42 wherein the code storage section includes symbol libraries with end
symbols to signify the end of symbol libraries; and,
~ wherein the compactor uses the end symbol offset addresses to measure the size of symbol libraries

arranged within corresponding code sections.

44, The system of claim 42 wherein the code storage section includes symbol libraries with size
symbols to signify the size of symbol libraries; and,
wherein the compactor accesses the size symbols to measure the size of symbol libraries arranged within

corresponding code sections.

45, The system of claim 43 wherein the compactor changes the start addresses of code sections stored

in the code storage section, after resizing the code sections.

46. The system of claim 45 wherein the compactor measures the size of the new code section in the
file system section and determines if the new code section can be arranged with the current code sections
in the code storage section, in response to measuring the size of symbol libraries arranged within

corresponding code sections and measuring the size of the new code section.

47. The system of claim 45 wherein the file system section receives an compaction instruction set
including the size of the new code section; and,

wherein the compactor accesses the compaction instruction set to determine the size of the new code
section in the file system section and determines if the new code section can be arrangéd with the current
code sections in the code storage section, in response to measuring the size of symbol libraries arranged

within corresponding code sections and determining the size of the new code section.

48. The system of claim 45 wherein the compactor determines the size of unused memory blocks in
the code storage section and stores the new code section in the unused memory block, if the size of the

unused memory block is greater than, or equal to the new code section size.

49. The system of claim 45 wherein the compactor calculates the code section sizes and, in response
to calculating the code section sizes, generates a compaction schedule;

wherein the file system section temporarily stores code sections from the code storage section; and,
wherein the compactor stores the code sections from the file system section into the code storage section

memory blocks to maintain contiguous addressing, in response to the compaction schedule.

28

WO 03/012639 PCT/1B02/02889

50. The system of claim 49 wherein the compactor generates an updated code section address table, in
response to changing the start addresses of code sections stored within the memory blocks, and,
wherein the updated system software accesses the updated code section address table after the new code

section is arranged with the current code sections.

51. The system of claim 50 wherein the file system section receives a new code section with an
updated symbol offset address table; and,
wherein the updated system software accesses the updated symbol offset address table after the new code

section is arranged with the current code sections.

52. The system of claim 39 wherein the file system section receives a compaction instruction set
including code section resizing instructions and a compaction schedule; and,

wherein the compactor resizes code sections in response to the code section resizing instructions.

53. The system of claim 52 wherein the file system section temporarily stores code sections from the
code storage section; and,
wherein the compactor stores the code sections from the file system section into the code storage section

memory blocks to maintain contiguous addressing, in response to the compaction schedule.

54. The system of claim 53 wherein the file system section receives a new code section with an
updated code section address table and an updated symbol offset address table; and,
wherein the updated system software accesses the updated symbol offset address table and updated code

section address table after the new code section is arranged with the current code sections.

55. The system of claim 29 wherein the code storage section and file system section memories are

nonvolatile memories.

56. The system of claim 34 further comprising:

a volatile memory including the first and second table code sections loaded from the code storage section
for executing the system software; and, ‘

wherein the arrangement of new code sections with the current code sections in the code storage section
forms updated system software, following a reset of the wireless communications device to load the

updated code section address table and updated symbol offset address table in the volatile memory.

57. The system of claim 56 wherein the gompactor suspends the execution of the system software.

29

WO 03/012639 PCT/1B02/02889

58. In a wireless communications device, a system for reorganizing software instructions stored in a
memory, the system comprising:

a code storage section memory including executable wireless device system software differentiated into a
plurality of current code sections with the start addresses identified with a plurality of contiguously
addressed memory blocks;

a file system section for receiving new code sections, via an airlink interface, including a compaction
instruction set identifying the current code section for updating;

a compactor to calculate the code section sizes, generate a compaction schedule, resize current code
sections, temporarily move code sections into a file system section and replace the identified current code
section with the new code section by storing the code sections into memory blocks to maintain contiguous
addressing; and,

wherein the arrangement of new code sections with the current code sections in the code storage section

forms updated system software.

30

PCT/1B02/02889

WO 03/012639

Af6

e
M %i?&wﬂﬂw&z ey
W EXRNACIPA | o i .
N.“ DA . Fes) \Yng_g 2} Y jonuoy M M WW
T o —
.w — T
] Zhe - M 23 Sovowy waDd {
! m A egred oo ; T {
ottt ey s TR H .
N ~TiE ssvapyYv | ‘“M,mw. B Q172 %\\ W
\M .w{ﬁo.u 2055 2ITY wlnt\.«\.\.l\k -,
Z j IVWAS . mml
£ i H n] H
B Vs Lfos3 eI o vaijees 2797 k\z w
m } o9 WA w .M..xizxk.\i..\l‘l‘lsas!..\.mia A
S e ; - w223 2F. 4 3 /]
3%t w o u |
| karag) Yyeeed oy weryva 2F | w - w
| _\|||.\\0|.\|\||.||||\|\|\|\Il Ay S
AR [) ’ sy TE e "
2192 554 ppp w5 DVays 27 LN M TH,%\

crmervener]

%

m

{

m

!

m S INLE J@GuIAS
m

i

i

H

LW&&(& el) Y00
U Nouga P07 @P,w}umb

jor
> HPE7 aSh
, XS R
| \ e d ,.M«.WS\ M&M& f
j \xmmm.wxbﬂiiﬁ
{ OV
| o7
\\\Uu;ww SF2AY

ool =7

PCT/1B02/02889

WO 03/012639

&6

LIS
ettt s v,

e N
T (o S

o

>NF

r“‘“-—m.

e,
e e e

\ALSEN,E 2pyiyen uow

mz%..\’!llf}t{?k»axi‘sg.ﬁ&.i..ﬂ

w UOLETRS e pod
—— | ATV R
[=

]
.ﬂ
“

s S
aasir

———

4 ol

ecwrene’

e el
RS TR
BNy

ZTT voumag
roeys wPe?

—>l 08T [LYluy, &1

5
o

i

———
g
—
o et
‘_n..ng.-t/"

/
SsaaiiM \
L

ell)

PCT/1B02/02889

WO 03/012639
3146
i~ -~ - i ’ﬁ Lﬂ
: 08 —
{
% \
\
SE? ' c:acle (
| . A
- Sybs b LBy l e :ha
%0-'3"} 310
s eose
= SN b \ SQ; 00
. 2.
3041 L‘h"“”y}
T
Lec.TitON
Lode s | |
' i
[
P k fude
e .§¥m§>c)(g_%~l\hr"a,r’y peRy !; ~
iEl | syminl] veed— | Symblombel | "
Cj i{‘u‘}h 3’%&* wirde Cj Cear kecodn’ W@h ﬁ)&ﬁ‘; ms@/
° £ 2. e- , ' i]
087] bt iﬁxgﬁg) ;;,-, f;jr‘eg hb«"‘”f codL
I*t@“if— /“32& = - 324 Cectiony
2 &7 229 227 B
| et AT e
COMPaACTON € Yera s —il
349 l‘l bf‘/ar/\f R

F;S. (S

WO 03/012639

PCT/1B02/02889

A6

' 110
HE"f Fiosr PN\RTI : J — -
2 !
[ys2 1 pd akr-d Dot proanates C.o SecXlon
=
450 Mew code Setien
et ‘173 hstto & 02
‘mqm. 60 0({, Le e.'f(o n (L e
block |
tm/zg’_’”/’/\
200 [F He code SLacton 2 2oy
o) < 2
ot —
sdyil, Lode Seken 7 Cha
blob’{“ e
L0
J0g”
i B ge Secten n 206
emol’
[ocle L7 B
2‘04/ < Fran
P4 Padt‘o{l‘ {0 f‘\aﬂzr Ciocf-e.
I'“MT (ection 20
b\bbi‘f?,,.w~
ytb

o 4

WO 03/012639 PCT/1B02/02889

Y20

y

* R
3-2@’\._5 Co J,Q_ L C:..'{“Lﬂ AN OLa((:/{*‘ Yee s r—f‘a b { Q. ;‘

T Ibenhfiers ADDvescet 7

f

{

‘f <'§_ { Stap+ g.\[,%{rfesg ;'
! (oolae)

- “‘“ / Ctart adfvece
g — ’)\ 2 (:(?‘9;100')

P ._...[... -
S e -
T TN P TN 1 kb e 4 AT e T

i

R T S

X % %

ctart adlesq |

——— "

- : tort addreee !
P m) S

Fig. 5

His o S U

§

WO 03/012639

PCT/1B02/02889

-
e
. o
i

Ve i‘m&y(\

\\ &JH&("P\’ [

Fiq. 6

WO 03/012639 PCT/1B02/02889

HAC

Skt | a2l \
SYimboo (rﬁﬁw ldiess tlle

Symtnl 10 |aode Sechon (2 off et |

©3

*

WO 03/012639 PCT/1B02/02889

8/46
//;Z
_!,
!tﬁdb Jo Sectoen | 290
Ly Lode e -
—/'/7 Z&L ‘l
%{;’gﬂf*”ﬁ new(vedated) “"(g
ik D Section Sd
e -
,,%E%Y}L ode se c;; L):"\ E 34b
o] = i

PCT/1B02/02889

346

WO 03/012639

~

‘-w—

4

M 1
T wayras oper W

|7 e w1
L |

w ._
e
L) Y0123 > §a &i— 2N

.

(hog)z May>ss 2po2 p.w...ms.«
. -
AN Qw\v‘ y ooy dge a T\QQN

-

payTsy dpev oo %
I .&ma@; m.ww\w
.w.m Tigwgy +31 hsh

L 101

PCT/1B02/02889

WO 03/012639

/16

k.

(o 7]

| 32 v 7 W
| w W
W

, 1
(g € VOLpos T &0t

s Do

A@er) T voyRrs 28 Mﬂgr

e

wawIss PP oM 3%

“ﬁaﬁmm poP wid MmN mcmM.*H.
\ Tdwg . ¥ hSh

\ .
= Lo

PCT/IB02/02889

WO 03/012639

(46

~ 4

onr
ff.!‘.....ll..ll'....\lll‘..\ci

Lttt e 02

_ 0%k

hiv (rog) T Uoymas 2P - Tafy

[»mncwv\ vaey 3P°7 -

co._+dum..d%o.v ™ML Qqu

[voumg »po» WM 73k
Tidwg _+5%1__ hsh

mt,rw) = Vewrs pa2
L— Lol

PCT/1B02/02889

WO 03/012639

S

F il

e,
e,

ﬂﬁ#ﬁ@% Q%ov .C.._&

&0y

ash

{ woiPpes s ("W “- Tk
, Amoww wouey PPV -

» wauess peo oo G8 |

T i A wd MW zZh
W! ywg ¥ hsh

L_{(pwe) s vayss ¢

ol

PCT/1B02/02889

WO 03/012639

A3[E

U& _m,ﬂﬁ

,
|

\
A

—

M) . |
!
|

(e oo 19

e it

W QuTDy .,w%eu oM Gy

— w.o!,wwm 3 Por g W mw.@i

adwWa A5 hSh

r”l

e —1 gl
~ gm. WGBS TPy) M\,\

|

09k

R R .
»\.MNQAWVN voudey BP9V -

ol

WO 03/012639 PCT/1B02/02889

A4/46
F&% (s (ﬁ ot [000

/

- (oo \a,
)’/QO‘}MMC‘\ 3‘(!‘“&,%5 { W ‘bo’at’\@ Lf loolh

5&*’“&&6\ e, Svreabat L rares © code Sections |
S \::‘: T !

. | s {oo 2
“S—:rovwm‘ 5y to oo JM {O%)ZQ

E"J eok lf.é\.}’ <o v\')ﬂ% Ve Ug {\’r add Vel le 6{7 A2y ‘/ i)(ﬂf%/
' /

Ic{g,g\"n{:wn}___’gmow gn[c) les wifh_ede Sechwns

00 2
F@ oy Code Sectians 1n \\r:ﬁamol"\/ U.a:,@_cw ¢

< 100%q
| ton addvese tuale
mtn+a;mlh tode Sec -+
100 Xb

Z:&m'(‘mm(g mebo et oddvese "f‘ax‘cs(«e,

T /UO.ZC
-
E@wmthwwhmﬂif
% mew) code SE‘,&H&“ 7/0&5&.

EZU\“(&\(U\C‘ code Seckon Lo u()i\f’fg\%_&

N
-~
jw:;a\sw’.m(code Seckon su’t‘tsjfla‘gsb
N/ ’5{005(.

éﬁ"V'WA.*Tf‘I{SI%ES |

“o F;%, (0 b

WO 03/012639 PCT/1B02/02889

ASIAG

\L'@t‘am Fig . a

{Mot’u\f\ S(:')e o€ mew cgle Secfr[@mff/005a(
[U B 1005¢

K‘Z\V"’thﬂg e hewd code Sechion un be
Py

YVQ%QQ wWith cuvlent code Sectione
_ v

E;J.Lw &&—%\ l\f\ (ane— geo+'{oﬂ Y (2@00 54—
- T
o,

erﬂ.i"d"{.’mc\ <o an@&c‘u&a Sc{"‘a Jole ﬁ (0075

?’tﬂbﬂ\@a r’w"t(‘/m\omﬂ«\ code Sé’c‘f"@ns +o F<s
A 1098

r’p/cu!\yu‘\fx mew <ole Cackone with Cu &"t’%\'ﬁj
CO&Q (ed’ﬂﬁ ﬂ.&

Ta
[M e fode 5&,;/{70« staot &ﬂﬂ/esse‘?_/
W

/a'og!g
fﬁgmgh&‘aﬁ\ updatedl Cz}ge Section afddwecs —f@ﬂ
[Etetiog wieless dedice [« 1009

{00 %d
b&&ms UP&Q;{‘L& ";JA(QS U\{"D \w(&{‘({ J

e ey

(0o

| 5

[Z;.e"w_u'hn\ pdated Systzm o4 m}(\ |
FIOA. (00

WO 03/012639 PCT/1B02/02889

‘o U
110 la

Efm‘\mﬁ S}’{w\h&!\ [%‘()chﬁ"l#&jj //ﬁ;ﬁ
Wﬁ “‘“f’“’m 0 faJe ctions

< '("’chuﬂa. 51192
Z_S'l'“’mk 5‘/5'6‘““‘“* 2 //ogq

N
w\) oul (‘/ aldve Qsecg MemaM
11624

(&av\—\- ‘HH\«‘LMQN«@V\/ bodcs wity_aode gec,{wn; I3

g S
[Stoving_code Seckions wn awemory blocke Lio
3

Naz
[n/mm-&mmnc\ Codle Secton aﬁ&ww =

SN U 1o 3b
Wf\'mmm3 Sypmbo (a‘@é.&‘e‘:{' addvecg *M,(?f
' ‘""' W

. X ‘ 1 (1O
F; (2N NeW) code SQCHO-’\ /705{

Eﬂat\‘h‘g\{mi code Cecton-tor UPJ@C('MC\j

?J&S(%mo‘\ code Qazc;‘rwm_g /-([1107

“O;*&m@og/&r’#m'v“,\,\\I/rnrla (‘(’(‘{‘mn("JO #’55:}

Qv VRN {08 mew csde S'ec,‘{‘(dq_g with corrent (.o&q.)
Sec;hor\s

R

I 1/ (o

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

