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AUTOMATED PROCESSING OF MULTIPLE PREDICTION
GENERATION INCLUDING MODEL TUNING

BACKGROUND OF THE INVENTION

[0001] A system for big data processing comprises a system for deployments of
applications, configurations, one or more datasets, and model(s) used in connection with analyzing
the data. Models are generally deployed in services and applications, such as web-based services,
in connection with providing estimated outcomes, etc. A model is generated or trained based on
relationships among different input data. At scale, numerous models are used to provide predictions
with different aspects of a same dataset, and each model uses numerous relationships among data,
and the development of such relationships is very resource intensive. This creates a problem for
training the numerous models corresponding to a dataset in an efficient manner and tuning the

models to ensure that the models continue to provide effective predictions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Various embodiments of the invention are disclosed in the following detailed

description and the accompanying drawings.

[0003] Figure 1 is a block diagram of a system for building and tuning a model according to

various embodiments of the present application.

[0004] Figure 2 is a block diagram of a model management service for building and

deploying a model according to various embodiments of the present application.

[0005] Figure 3 is a block diagram of a model management service for building and

deploying a model according to various embodiments of the present application.

[0006] Figure 4 is a block diagram of a model management service for tuning a deployed

model according to various embodiments of the present application.

[0007] Figure 5A is a diagram of a dataset used in connection with deploying a model

according to various embodiments of the present application.

[0008] Figure 5B is a diagram of a dataset used in connection with a model according to

various embodiments of the present application.
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[0009] Figure 5C is a diagram of using a dataset in connection with generating one or more

models according to various embodiments of the present application.

[0010] Figure 5D is a diagram of using a dataset in connection with generating one or more

models according to various embodiments of the present application.

[0011] Figure 6A is a diagram of a dataset used in connection with a model according to

various embodiments of the present application.

[0012] Figure 6B is a diagram of one or more characteristics associated with a set of models

according to various embodiments of the present application.

[0013] Figure 7 is a flow diagram of a method for providing a set of interfaces in
connection with deployment of a model according to various embodiments of the present

application.

[0014] Figure 8 is a flow diagram of a method for building a model using a receive dataset

according to various embodiments of the present application.

[0015] Figure 9 is a flow diagram of a method for automatically tuning a set of models

according to various embodiments of the present application.

[0016] Figure 10 is a flow diagram of a method for automatically tuning a set of models

according to various embodiments of the present application.
DETAILED DESCRIPTION

[0017] The invention can be implemented in numerous ways, including as a process; an
apparatus; a system; a composition of matter; a computer program product embodied on a computer
readable storage medium; and/or a processor, such as a processor configured to execute instructions
stored on and/or provided by a memory coupled to the processor. In this specification, these
implementations, or any other form that the invention may take, may be referred to as techniques.
In general, the order of the steps of disclosed processes may be altered within the scope of the
invention. Unless stated otherwise, a component such as a processor or a memory described as
being configured to perform a task may be implemented as a general component that is temporarily
configured to perform the task at a given time or a specific component that is manufactured to
perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits,

and/or processing cores configured to process data, such as computer program instructions.
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[0018] A detailed description of one or more embodiments of the invention is provided
below along with accompanying figures that illustrate the principles of the invention. The
invention is described in connection with such embodiments, but the invention is not limited to any
embodiment. The scope of the invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and equivalents. Numerous specific details are
set forth in the following description in order to provide a thorough understanding of the invention.
These details are provided for the purpose of example and the invention may be practiced
according to the claims without some or all of these specific details. For the purpose of clarity,
technical material that is known in the technical fields related to the invention has not been

described in detail so that the invention is not unnecessarily obscured.

[0019] As used herein, a model means a machine learning model. Examples of machine
learning processes that can be implemented in connection with training the model include random
forest, linear regression, support vector machine, naive Bayes, logistic regression, K-nearest
neighbors, decision trees, gradient boosted decision trees, K-means clustering, hierarchical
clustering, density-based spatial clustering of applications with noise (DBSCAN) clustering,

principal component analysis, etc.

[0020] According to various embodiments, a system, method, and/or device for managing a
dataset used in connection with one or more models. The system comprises one or more processors
and a memory. The one or more processors are configured to (1) provide an input interface via
which a first entity inputs a dataset, (ii) receive the dataset, and (iii) provide a selection interface
that exposes to a second entity the plurality of models determined for the dataset and/or the
plurality of results corresponding to the plurality of models using index entries. The dataset may
comprise a plurality of keys and a plurality of key-value relationships. The dataset may be
formatted according to a predefined format and include index entries that are generated for a

plurality of models and a plurality of results corresponding to the plurality of models.

[0021] According to various embodiments, a system, method, and/or device for generating
one or more models. The system comprises one or more processors and a memory. The one or
more processors are configured to (i) receive a dataset, the dataset comprising a plurality of keys
and a plurality of key-value relationships, (i) determine a plurality of models to build based at least
in part on the dataset, (iii) build the plurality of models, and (iv) optimize at least one of the
plurality of models. The determining the plurality of models to build may comprise using the

dataset format information to identify the plurality of models.



WO 2023/146549 PCT/US2022/014580

[0022] According to various embodiments, a system, method, and/or device for
automatically tuning one or more models. The system comprises one or more processors and a
memory. The one or more processors are configured to (1) determine a set of one or more models
to optimize, (ii) determine a plurality of optimizer modules with which to optimize the set of one or
more models, (ii1) cause the plurality of optimizer modules to respectively perform a respective
optimizing process with respect to at least one model of the set of one or more models, and (iv)
deploy an optimized model obtained based at least in part on optimizing metrics of the set of the
one or more models. For example, the optimized model is selected by training models using various
parameter sets and determining a metric for the fitting of the output of the model to a desired
output, and the goodness of the fitting is used to select the parameter set that creates the optimized

model.

[0023] In some embodiments, the system provides an interface via which a dataset is
provided to the system in connection with the system building and/or maintaining a set of models
(e.g., one or more models) with respect to the dataset (e.g., a model that provides a prediction with
respect to at least one dimension of the dataset). The system may determine the set of models to
build based at least in part on a format or syntax of the dataset. For example, the dataset comprises
a plurality of keys and corresponding values. The plurality of keys may correspond to a plurality of
columns of the dataset (e.g., a user indicated selected set of columns). In some embodiments, a
particular key corresponds to a grouping of columns of the dataset. In some embodiments, in
response to receiving the dataset, the system analyzes the dataset and extracts at least a subset of
the plurality of keys. In response to determining the plurality of keys, the system determines the set
of models to be built with respect to the dataset. For example, the plurality of keys are indicative of
the set of models to be built with respect to the dataset. Accordingly, as an example, a user may
instruct the system of the desired set of models to be built (or the predictions which the system is to
generate with respect to the dataset). The user may upload the dataset via the interface, and in

response to receiving the dataset, the system may automatically build (e.g., train) the set of models.

[0024] According to various embodiments, the dataset is uploaded as a single data entity.
The dataset comprises a multi-keyed, key-value relationship. For example, the dataset comprises a
plurality of columns, and at least a subset of the columns corresponds to a key, and values
comprised in such a column comprise a key-value corresponding to the column key. As an
example, if the dataset represents sales for a chain of stores, the dataset may comprise fields (e.g.,
columns) corresponding to one or more of country, state, region, item, price, date-time information,

etc. The dataset may include various other fields. Each field (or a subset of fields) may correspond
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to keys for the dataset. According to various embodiments, the dataset is formatted based at least
in part on a set of models that are to be determined (e.g., built) for the dataset. For example, a user
(e.g., a user for a customer organization) may determine the models to be built (or predictions that
the user desires to obtain using the dataset) and formats the dataset accordingly before uploading to
the system. In some embodiments, the format of the dataset defines a granularity of models to be

built using the dataset.

[0025] According to various embodiments, the system receives the dataset from the user
(e.g., the customer) via an interface. In response to receiving the dataset, the system analyzes the
dataset and uses the analysis to determine a set of one or more models to build based at least in part
on the dataset (e.g., a set of models necessary to make predictions with respect to information
pertaining to the dataset such as values for a particular key). In response to determining the set of
one or more models to build, the system builds the models, optimizes the models, and provides (or
exposes) the set of one or more models via an interface. For example, the set of one or more
models may be exposed to a user via an application programming interface (API) and/or a web
interface, etc. As another example, the set of one or more models may be comprised in (or
referenced/subject to a pointer by) a composite model. The system may receive a query (e.g., from
a user or another system such as a user system, etc.) with respect to set of one or more models,
invoke a particular model(s) in connection with the one or more models, and provide a response to

the query.

[0026] In some embodiments, a format of the dataset defines an atomic unit or dimension of
the dataset. As an example, an atomic unit may correspond to a key of the dataset, a column of the
dataset, etc. In some embodiments, a particular key corresponds to a grouping of columns of the
dataset. The atomic unit or dimension of the dataset may be defined as being based at least in part
on the desired model(s) to be built using the dataset. The system analyzes the dataset and
correspondingly determines the format of the dataset and the keys for the dataset. In some
embodiments, the analyzing the dataset includes extracting the keys associated with a dataset. As
an example, the system uses the keys in connection with determining the set of one or more models
to be built for the dataset. In some embodiments, the system determines a set of combinations or
permutations of keys for the dataset and determines the set of one or more models to build based at
least in part on the set of combinations or permutations of keys for the dataset. For example, the
system determines a set of all unique combination of keys for the dataset and determines the set of
one or more models based at least in part on the set of all unique combination of keys for the

dataset (e.g., a model is built for each unique combination comprised in the set of all unique



WO 2023/146549 PCT/US2022/014580

combination of keys, etc.). Each unique combination of keys for a dataset may correspond to a
unique dimension along which the dataset is analyzed and for which a model is built. In the case of
a dataset corresponding to sales for a chain of stores, examples of a unit of data (or dimension)
along or for which a model is determined to be built includes a model for store-by-store sales, a
model for item-by-item sales for a particular store, a model for sales for a department (or
department-by-department) sales for a particular store, a model for sales of a type of item for a
particular store, a model for sales of a type of item across all stores, etc. Related art systems first
instantiate a model, and then provide the model data to train the model. For a related art system, a
massive dataset is received, and then a user for the related art system is required to figure out
atomic units that define the dataset (e.g., the datasets according to the related art are not keyed for
atomic units that may form a basis for determining the set of models to build, etc.). Thereafter, the
related art systems train the model and obtain the results. In various embodiments, a dataset is
received, and a set of models is determined to build based at least in part on the dataset, thus the

system enables asynchronous processing to build the models.

[0027] According to various embodiments, in response to determining the set of one or
more models to build based at least in part on the dataset (e.g., in response to determining
dimensions of the dataset along which models are to be built), the system builds the one or more
models. In some embodiments, the system builds the one or more models based on a batch process.
For example, at least a subset of the one or more models may be determined in parallel with each
other. The system may determine a set of compute resources (e.g., threads, compute nodes,
processor cores, etc.) to allocate to the building of the one or more models (or subsets thereof). A
compute resource may also be referred to herein as an optimizer or optimizer module. As an
example, the system determines a set of compute resources available for building models. In
response to determining the set of compute resources available for building models, the system uses
at least a subset of compute resources available to build the set of one or more models. As an
example, the system allocates as many resources as possible from among the set of compute
resources available to build subsets of the one or more models in parallel with each other. The set
of compute resources available for building models may be defined by one or more boundary
conditions, including any one or more of a predetermined number of compute resources for
building models, a predetermined percentage of system compute resources, a remaining set of
compute resources after taking into account allocations of resources for other system processes, etc.
Related art systems that build models with respect to a dataset generally train the various models
serially. Such serialization of model building is generally time intensive, particularly as the size of

the dataset scales. In contrast, the parallelization of the building the set of one or more models
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speeds up the time used to build the models. As an example, if a single virtual machine with four
cores is deployed to train the models, the system is able to train the set of models in a time that is
faster than the serialized process of the related art. As another examples, if Apache Spark™ is used
to deploy clusters of virtual machines to train the set of one or more models (e.g., if clusters of
virtual machines are spun up specifically to train the set of one or more models), the system is able
to train the set of models in a time that is significantly faster than the serialized process of the
related art. In some embodiments, the dataset and/or the model being trained is cached during the
training of the set of one or more models. Such caching of the dataset contributes to significant
gains in efficiency — related art systems generally have to loop over datasets that are acquired while

the dataset is stored in a data store (e.g., a back-end storage).

[0028] In some embodiments, the system allocates additional resources to the
training/tuning of a set of models for a dataset in response to a determination to improve the quality
of service associated with training/tuning the set of models. As an example, the system may
determine that the quality of service is to be improved in response to a determination that a length
of time to train/tune a model exceeds a predetermined threshold period of time. As another
example, the system may determine that the quality of service is to be improved in response to a
request received from a user (e.g., via a user interface, etc.) to speed up the process of

training/tuning the set of models.

[0029] The system assigns a respective one of the models to be built by each compute
resource (e.g., the compute resources selected to build, train, or fit the models), and the compute
resources build the models. In some embodiments, the compute resources working in parallel
respectively build different models at a particular time. As an example, the different models across
the set of compute resources working in parallel have no dependence because the models and
corresponding datasets are isolated. The building of a model by compute resources includes
caching the corresponding dataset for which a model is to be built, obtaining a set of starting
parameters, and training the model based at least in part on information comprised in the dataset
(e.g., information pertaining to the dimension along which the model is being built) and/or the set
of starting parameters. The caching of the corresponding dataset and the set of starting parameters
comprises obtaining information from fields (e.g., rows) of the dataset, storing the information in a
table, and storing parameters for tuning or parameterizing the meta-grouped models (e.g., the set of
one or more models to be built for a dataset). The compute resource caches the model and
optimizes the model based at least in part on running an iteration over various sets of parameters

and selecting a best version of the set of model versions obtained by the corresponding iterations.
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For example, optimization of the model includes running the respective optimizing process, which
includes performing at least a number of iterations of training the particular model of the plurality
of respective models to be optimized. In some embodiments, a compute resource building a
particular model iterates over a set of combinations or permutations of parameters. The compute
resource may implement a threshold maximum number of parameters and iterate over a set of
combinations or permutations of different parameters constrained by threshold maximum number
of parameters. For example, the system may use a maximum of 15 parameters for building a
model. Constraining the training/building the model based at least in part on threshold maximum
number of parameters speeds up an optimization or deployment of models and/or predictions. In
some embodiments, the best version of the model is selected based at least in part on one or more
predetermined criteria (e.g., best value for optimization metric(s) determined during the
optimization process — for example, metric(s) measuring the difference between model produced
predictions/forecasts and training model data for a given set of parameters). Examples of the one
or more predetermined criteria include: a most accurate prediction, a best fit, an accuracy of a
prediction that exceeds a predefined accuracy threshold in conjunction with a variability of an
inaccuracy being below a predefined variability threshold, a speed by which a model provides a
prediction (e.g., a prediction that satisfies a minimum threshold of accuracy), etc. In some
embodiments, optimization ends after a maximum number of iterations permitted for tuning the
model. In some embodiments, optimization ends after minimizing over iteratively tuning the model
(e.g., iterating until an error is below a threshold, an error is reducing less than a percentage, etc.).
Various other criteria may be implemented. In some embodiments, a compute resource iterates over

the set of parameters until a model converges on a solution (e.g., an optimal or best model).

[0030] According to various embodiments, the system intelligently selects a set of
parameters with which to build a model (e.g., train, fit, optimize, tune, etc.). The system may use a
search space, such as a Bayesian space, in connection with determining the set of parameters to use.
In some embodiments, the system stores historical information pertaining to models, such as
information pertaining to building models. The system may store historical information pertaining
to models for a particular dataset, and/or historical information pertaining to models across various,
etc. According to various embodiments, the system uses the historical information in connection
with selecting parameters for building other models (e.g., other models for the same dataset, other
models for other datasets such as models providing a same type of prediction, etc.). In some
embodiments, the system uses the historical information pertaining to models to select a set of
parameters with which to build (e.g., create or update a model). For example, in connection with

building a particular model, the system uses the historical information pertaining to the building of
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the particular model such as an optimal set of parameters, or a set of parameters over which to
iterate, etc. In some embodiments, the system determines a histogram of parameters used for
optimal models. In some embodiments, one or more performance characteristics are used to
generate a parameter space or a histogram of parameters, and the parameter space or histogram of
parameters 1s used to select optimal parameters with which to optimize the at least one model of the
plurality of models. In some embodiments, the parameter space comprises a histogram of
parameters. In some embodiments, an initial set of optimized models and parameters associated
with the optimized models are used to determine or preselect parameters a model. In some
embodiments, an n-dimensional vector of parameters is reduced to determine the set of parameters
for a model. In connection with a subsequent building of the model, the system queries the
dataspace of historical parameters, searches for parameters that are used for models (or versions of
a model) that exceed a predetermined performance threshold, and iterates building of the model
using the parameters. The predetermined performance threshold may be configurable such as by an
administrator (e.g., a system administrator, a user administrator, etc.). For example, the
predetermined performance threshold is set according to a desired quality of service such as a time

to update a model.

[0031] In some embodiments, a set of historical information pertaining to a model is
configurable by a user. As an example, the system may be configured to store the dataset used to
build (or update) the model. As another example, the system may be configured to store a
threshold amount of historical information pertaining to the model or a historical information

corresponding to one or more types of information.

[0032] In some embodiments, a set of different compute resources used to build models is
assigned to a same model, and each set of different compute resources iterates over different sets of
parameters. The best version is selected from among the model versions obtained from the set of
different compute resources. Although the set of different compute resources can optimize the
model in parallel, a greater number of total iterations (e.g., an aggregate of iterations across the set
of different compute resources) is required before the model converges on an optimal (or best)

model.

[0033] According to various embodiments, the system iterates over the set of dimensions
corresponding to a dataset (e.g., the set of models to be built for a dataset). For example, all or a
subset of the models are built in parallel (e.g., by different compute resources). In the case that the
system builds a subset of the models in parallel, for each of the subset of models being built in

parallel, the system iterates over the various parameters to optimize the corresponding model (e.g.,
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for a particular dimension of the dataset), and in response to a compute resource determining the
optimal model, the system iterates over the remaining models that are to be built for a dataset. For
example, in response to determining an optimal model (e.g., the optimized model), the system then
selects a remaining model for the dataset (e.g., among the set of models for a dataset) and builds the

selected model.

[0034] Over time the predictions a model is able to provide may become less and less
accurate. The change in the accuracy of the model may be attributed to temporal drift of the data
for which the model is making predictions. As an example, in the case of a model for a grocery
chain, a model may correspond to a prediction of sales for a typical item. Over time user
preferences or purchasing trends may change. As the difference between the current data and the
data used to build a model increases, the accuracy of a prediction for the corresponding model may
decrease. Accordingly, maintaining (e.g., building/rebuilding a model) over time ensures that the

model continues to provide accurate predictions.

[0035] According to various embodiments, the system automatically builds (e.g., updates) a
set of models (e.g., a set of models corresponding to a particular dataset). As an example, the
system may automatically build the set of models according to a predetermined schedule or
according to a predetermined interval. Examples of the predetermined interval include daily,
weekly, monthly, etc. In some embodiments, the rebuilding of a set of models is similar to the
building of the set of models. Building the set of models comprises determining a set of compute
resources to train the set of models, allocate a model (e.g., selected from the set of models) to each
compute resource within the set of compute resources, and build the model using current data (e.g.,
a most recent dataset corresponding to the model), and iterate over the set of models for the dataset

(e.g., the remaining set of models to be built).

[0036] In some embodiments, building a particular model comprises caching the
corresponding dataset for which a model is to be built (e.g., a current dataset), obtaining a set of
starting parameters, and updating the model based at least in part on information comprised in the
dataset (e.g., information pertaining to the dimension along which the model is being built) and/or
the set of starting parameters. The caching of the corresponding dataset and the set of starting
parameters comprises obtaining information from fields (e.g., rows) of the dataset, storing the
information in a table, and storing parameters for building or parameterizing the meta-grouped
models (e.g., the set of one or more models to be built for a dataset). The compute resource caches
the model and optimizes the model based at least in part on running an iteration over various sets of

parameters and selecting a best version of the set of model versions obtained by the corresponding

10
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iterations. In some embodiments, a compute resource building a particular model iterates over a set
of combinations or permutations of parameters. The compute resource may implement a threshold
maximum number of parameters and iterate over a set of combinations or permutations of different
parameters constrained by a threshold maximum number of parameters. In some embodiments, the
set of parameters with which to build a model is selected is based at least in part on a set of
parameters previously used to build the model (e.g., using the initial dataset or in connection with a
previous tuning of the model) and/or a set of parameters used to build a different model (e.g., a
similar model such as a model used to provide a same type of prediction, a model used for a similar
organization such as models across two organizations in a same industry, etc.). In some
embodiments, building a model comprises tuning a model, wherein tuning comprises the selection
of optimal training parameters to utilize during optimization. In some embodiments, building a
model comprises training a model, wherein training comprises the act of optimizing to a set of data
a model that has been configured with tunable parameters. In some embodiments, a much smaller
space of tuning parameters is estimated for forecasting groups of models that share seasonality /
general trend attributes (e.g., by top-down, bottom-up, or hierarchical clustering of the discrete

series based on a relationship amongst aggregations).

[0037] In some embodiments, the system provides an interface via which the set of models
is exposed to a user or another system (e.g., a customer system). In some embodiments, the set of
models associated with the dataset is exposed as a single or as a composite model. As an example,
the composite model is exposed via an application programming interface (API). A user (or
another system) may submit a query with respect to the set of models in connection with obtaining
a prediction for an attribute using a model generated (e.g., built, trained, etc.) based at least in part
on the dataset. In some embodiments, the query is submitted via the interface exposing the
composite model. In response to receiving the query, the system determines the applicable model
(e.g., a model selected from among the set of models comprised in the composite model) to invoke
(e.g., use) to provide the prediction, and invokes the applicable model to obtain the prediction. The
system may determine the applicable model based at least in part on one or more parameters of the
received query, such as boundary conditions of the prediction, an attribute for which a predicted
value is being requested, etc. Related art systems require a user to manually navigate (e.g., scroll
through) all available models and to manually select a particular model to use in connection with
obtaining a prediction or programmatically maintain a state of training parameters for each discrete
series within a metadata store, fetching these parameters for each subsequent prediction based on
configurations that have been written. However, at scale, a single database may have thousands of

associated models. Accordingly, manually finding a particular model, selecting the model, and
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querying the model is burdensome and inconvenient for a user. Various embodiments improve
deficiencies of related art systems based at least in part on generating a composite model that
comprises the set of models associated with a particular dataset and determining a particular subset

of the models associated with a particular dataset to invoke in order to provide a prediction.

[0038] According to various embodiments, the composite model comprises a serialization
of information pertaining to the set of one or more models associated with the dataset. For example,
the composite model for a dataset comprises one or more of a serialization of a model artifact
corresponding to a respective model of the one or more models, an indication of parameters tested
in building the respective model, an indication of metrics evaluated by the respective model, etc.
Various other information pertaining to the set of one or more models may be stored in the
composite model. In some embodiments, the system uses the information pertaining to the set of
one or more models associated with the dataset to determine a particular model to invoke in

connection with providing a response to a query received with respect to the composite model.

[0039] In some embodiments, one or more of the set of models comprised in the composite
model is wrapped in an API (e.g., anAPI for one or more models within the composite model) that
corresponds to the methods or functionality of the particular one or more models (e.g., a fitting
process, a predicting process, a forecasting process, etc.). In some embodiments, the API wraps
underlying different types of libraries that are capable of producing their own types of models that
are grouped together, wherein the libraries have their own nuances and have entry points that are
customized to each of them. In some embodiments, a unified API is provided by 1) selecting a
forecasting library (i.e., Prophet); 2) manipulating the data to support training a bunch of models
associated with the library (e.g., Prophet models) in parallel, one model per each configured group
of data; 3) giving a unified API to interface with each of the distinct but homogenous models (e.g.,
Prophet models instead of, for example, pmdrima or statsmodels). Examples of functions or
features provided by (e.g., accessible via) the API include a fitting function, a prediction function, a
cross validation function, a performance metric calculation function, a cross validation and scoring
function (e.g., a running of a back-testing cross validation scoring for each time series specified
within the model after a fitting has been performed), an extraction function for extracting model
parameters for the model, a forecasting function, a saving function for saving a model, a loading
function for loading a model, etc. The system may receive, via an interface (e.g., a user interface),
a query with respect to the composite model, the system may determine the particular model to

invoke in connection with providing a response to the query, and in response to determining the
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particular model, the system configures the query based at least in part on the particular model

(e.g., using an API) and provides the query to the particular model (e.g., via the API).

[0040] Figure 1 is a block diagram of a system for building and tuning a model according to

various embodiments of the present application.

[0041] In the example illustrated in Figure 1, system 100 includes model management
service 110, data store 120, administrator system 130, and/or client system 140. In some
embodiments, model management service 110 and data store 120 are integrated (e.g., combined
into a layer or a single set of server(s)). In some embodiments, model management service 110
comprises data layer 112, model control layer 114, and/or business application layer 116. System
100 further includes one or more networks such as network 150 over which administrator system
130 and/or client system 140 communicates with model management service 110 and/or data store
120. In various embodiments, network 150 includes one or more of a wired network, and/or a
wireless network such as a cellular network, a wireless local area network (WLAN), or any other
appropriate network. In some embodiments, data layer 112, model control layer 114, and/or
business application layer 116 are respectively implemented by one or more servers. System 100

may include various other systems or terminals.

[0042] According to various embodiments, model management service 110 comprises data
layer 112, model control layer 114, and/or business application layer 116. Model management
service 110 uses data layer 112 to store one or more datasets, one or more models, and/or
information pertaining to the datasets or models (e.g., historical information pertaining to a model
such as an indication of a set of parameters used to train a model, etc.) on data store 120. Model
management service 110 also uses data layer 112 to obtain datasets used in connection with
building or tuning models (e.g., to retrieve the datasets from data store 120, and/or store the
datasets in cache during the building/turning of the models, etc.), to train a set of one or more
models for a dataset, to obtain a prediction or other result from a dataset or a model associated with
the dataset (e.g., in response to model management service 110 receiving a query from a user such
as via client system 140), to receive updated datasets (or information to be stored/updated in the
currently stored datasets), etc.. Data layer 112 services queries received in connection with a user
analyzing, or requesting, a prediction determined by invoking a model stored in data store 120
and/or information comprised in a log of transactions with respect to files in the dataset. Model
management service 110 uses model control layer 114 as a control plane for building sets of models
corresponding to a set of datasets and updating the respective sets of models (e.g., in response to

drift in the information comprised in the corresponding dataset, etc.). Model management service
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110 uses model control layer 114 as a control plane for determining a composite model for a
particular dataset based on the set of one or more models built/updated for a particular dataset.
Model management service 110 further uses model control layer 114 to analyze queries (e.g., a
query received from a user such as via client system 140) to determine a corresponding dataset, and
at least one model (e.g., of the set of one or more models built for the dataset) to be used in
connection with providing a response to the query. As an example, the at least one model may be
determined based at least in part on one or more query parameters comprised in the query such as a
type of prediction (e.g., forecasted sales, etc.), a scope of the prediction (e.g., a geographic location,
a particular store, a particular item or type of item, a particular department, a particular brand, etc.),
a temporal bounding condition (e.g., a future date-time, or range thereof such as a particular
number of days, weeks, months, or years from the present day). In some embodiments, the at least
one model 1s comprised in (or pointed to or invoked by) the composite model for the dataset. In
some embodiments, in response to determining the at least one model, model control layer 114
causes data layer 112 to service the query using the at least one model and the corresponding

dataset.

[0043] According to various embodiments, model management service 110 provides an
input interface via which a first entity inputs a dataset, receives the dataset, and provides a selection
interface that exposes to a second entity the plurality of models determined for the dataset and/or
the plurality of results corresponding to the plurality of models using the index entries. In various
embodiments, the first entity and the second entity respectively correspond to: a first user and a
second user, a user and an application, an application and a user, or a first application and a second
application. In some embodiments, the dataset comprises a plurality of keys and a plurality of key-
value relationships. In some embodiments, the dataset is formatted according to a predefined
format and includes index entries that are generated for a plurality of models and a plurality of

results corresponding to the plurality of models.

[0044] According to various embodiments, model management service 110 receives a
dataset (e.g., the dataset comprising a plurality of keys and a plurality of key-value relationships),
determines a plurality of models to build based at least in part on the dataset, builds the plurality of
models, and optimizes at least one of the plurality of models. In some embodiments, determining
the plurality of models to build comprises using the dataset format information to identify the

plurality of models.

[0045] According to various embodiments, model management service 110 determines a set

of one or more models to optimize, determines a plurality of optimizer modules with which to
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optimize the set of one or more models, causes the plurality of optimizer modules to respectively
perform a respective optimizing process with respect to at least one model of the set of one or more

models, and deploys an optimized model obtained based at least in part on optimizing metrics.

[0046] Model control layer 114 receives an indication that model management service 110
receives a dataset. As an example, the dataset is received in connection with a request for model
management service 110 to determine and/or build a set of models with respect to the dataset. In
response to receiving the dataset, model control layer 114 determines the set of models to build
with respect to the dataset. As an example, model control layer 114 determines the set of models to
build based at least in part on a format or syntax of the dataset. For example, the dataset comprises
a plurality of keys and corresponding values. In some embodiments, the plurality of keys
correspond to a plurality of columns of the dataset. In some embodiments, a particular key
corresponds to a grouping of columns of the dataset. According to various embodiments, in
response to receiving the dataset, model control layer 114 analyzes the dataset and extracts at least
a subset of the plurality of keys. In response to determining at least a subset of the plurality of keys,
model control layer 114 determines the set of models to be built with respect to the dataset. For
example, the plurality of keys are indicative of the set of models to be built with respect to the
dataset. A user may use client system 140 to instruct model management service 110 of the desired
set of models to be built (or the predictions for which the system is to generate with respect to the
dataset). For example, the user uses client system 140 to upload the dataset via the interface, and in
response to receiving the dataset, the model management service 110 builds (e.g., trains) the set of
models. As a further example, model management service 110 automatically builds the set of
models in response to receiving the dataset (e.g., the set of models are trained contemporaneous
with the dataset being uploaded, the set of models are queued in a batch model training process,

etc.).

[0047] Model control layer 114 exposes to a user or to other systems a set of models for a
dataset. According to various embodiments, in response to determining the set of one or more
models to build, model control layer 114 causes data layer 112 to build the models and optimize the
models and provides (or exposes) the set of one or more models via an interface such as via
business application layer 116. As an example, the set of one or more models is exposed to a user
via an application programming interface (API) and/or a web interface, etc. In some embodiments,
model control layer 114 exposes the set of one or more models in (or referenced/subject to a pointer
by) a composite model. For example, model control layer 114 determines a composite model that

comprises (or references) the set of one or more models for the dataset. According to various
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embodiments, the composite model exposes the set of one or more models in a unified model that is
configured to service queries to any one of the set of one or more models for the dataset. Model
management service 110 (e.g., model control layer 114) uses composite model to determine the
applicable model(s) to invoke with respect to a query, obtains the corresponding results from the
applicable model(s), and provides the result to the query. In some embodiments, the composite
model aggregates results from a plurality of models to obtain a result to the query received with
respect to the composite model (e.g., a query to receive total expected sales of a particular store

may include aggregating predictions of sales for each item sold at the store, etc.).

[0048] In response to determining the set of one or more models to build based at least in
part on the dataset (e.g., in response to determining dimensions of the dataset along which models
are to be built), model management service 110 (e.g., model control layer 114) causes data layer
112 to build the one or more models. In some embodiments, data layer 112 builds the one or more
models based on a batch process. Data layer 112 builds at least a subset of the one or more models
in parallel with each other. In response to determining to build the set of one or more models,
model management service 110 (e.g., data layer 112, etc.) determines a set of compute resources
(e.g., threads, compute nodes, processor cores, etc.) to allocate to the building of the one or more
models (or subsets thereof). As an example, model management service 110 determines a set of
compute resources available for building models. In response to determining the set of compute
resources available for building models, model management service 110 uses at least a subset of
compute resources available to build the set of one or more models. As an example, model
management service 110 allocates as many resources as possible from among the set of compute
resources available to build subsets of the one or more models in parallel with each other. In some
embodiments, model management service 110 determines the set of compute resources available
for building models based at least in part on one or more boundary conditions. Examples of the
one or more boundary conditions include any one or more of a predetermined number of compute
resources for building models, a predetermined percentage of system compute resources, a
remaining set of compute resources after taking into account allocations of resources for other
system processes, etc. Various other boundary conditions are possible. In some embodiments,
model management service 110 (e.g., data layer 112) invokes Apache Spark™ to deploy clusters of
virtual machines to train the set of one or more models. For example, model management service
110 causes cluster(s) of virtual machines to be spun up specifically to train the set of one or more
models. In some embodiments, a number of compute resources is configurable such as based at
least in part on a quality of service to provide with respect to a dataset (e.g., a quality of service

committed to a user, etc.). If model management service 110 determines to increase a speed by

16



WO 2023/146549 PCT/US2022/014580

which the set of one or more models is trained with respect to a dataset, model management service
110 allocates additional compute resources to the training of the set of one or more models (e.g., a
greater number of such models may be trained in parallel). For example, model management
service 110 causes additional virtual machines or clusters to be spun up in connection with training
the set of one or more models. In some embodiments, model management service 110 determines
to increase a speed by which to train the set of one or more models in response to receiving a
request from a user such as via client system 140, or in response to determining that a time incurred
to train the set of one or more models is greater than an expected training time or that, based on an
update of the training, the expected training time exceeds a deadline by which the set of models are
to be made available (e.g., exposed to a user, customer ,etc.) such as a date/time initially indicated

or promised to a user or other system.

[0049] Model management service 110 assigns a respective one of the models to be built to
each compute resource (e.g., each of the compute resources selected to build the models), and
model management service 110 causes (e.g., invokes) the compute resources to build the models.
In some embodiments, the compute resources working in parallel respectively build different
models at a particular time. As an example, data layer 112 respectively caches the dataset/models
for the compute resources for the different models being built across the set of compute resources
working in parallel. Accordingly, the models being trained in parallel have no dependence on one

another (e.g., the models and corresponding datasets are isolated from each other).

[0050] Model management service 110 uses a compute resource to build a model based at
least in part on caching the corresponding dataset for which a model is to be built, obtaining a set of
starting parameters, and training the model based at least in part on information comprised in the
dataset (e.g., information pertaining to the dimension along which the model is being built) and/or
the set of starting parameters. The caching of the corresponding dataset and the set of starting
parameters comprises obtaining information from fields (e.g., rows) of the dataset, storing the
information in a table, and storing parameters for tuning or parameterizing the meta-grouped
models (e.g., the set of one or more models to be built for a dataset). The compute resource caches
the model and optimizes the model based at least in part on running an iteration over various sets of
parameters and selecting a best version of the set of model versions obtained by the corresponding
iterations. In some embodiments, model management service 110 (e.g., model control layer 114 or
data layer 112) selects a best model (also referred to herein as an optimized model) among the set
of versions of a model that are built by a corresponding compute resource (e.g., a set of versions of

a model trained along a dimension corresponding to the dataset). In some embodiments, a compute
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resource building a particular model iterates over a set of combinations or permutations of
parameters. In some embodiments, model management service 110 (e.g., data layer 112)
implements a threshold maximum number of parameters that are to be used by compute resources
to iterate over a set of combinations or permutations of different parameters constrained by
threshold maximum number of parameters. For example, model management service 110
implements a maximum of 15 parameters for building a model. As another example, model
management service 110 implements a maximum of 10 parameters for building a model. As
another example, model management service 110 implements a maximum of 20 parameters for
building a model. Various other values may be implemented as the threshold maximum number of
parameters. In some embodiments, model management service 110 selects the best version of the
model based at least in part on one or more predetermined criteria. Examples of the one or more
predetermined criteria include: a most accurate prediction, a best fit, an accuracy of a prediction
that exceeds a predefined accuracy threshold in conjunction with a variability of an inaccuracy
being below a predefined variability threshold, a speed by which a model provides a prediction
(e.g., a prediction that satisfies a minimum threshold of accuracy), etc. In some embodiments,
optimizers retain state history of the iterative process and can either: a) stop when maximum
allowable iterations are reached; or b) stop when 1) there is no improvement over N iterations, 2)
there is improvement, but it is too little to justify continuing (e.g., the error improvement falls
below a threshold), or 3) the error gets worse. Various other criteria may be implemented. In some
embodiments, model management service 110 causes a compute resource to iterate over the set of

parameters until a model converges on a solution (e.g., an optimal or best model).

[0051] In some embodiments, model management service 110 intelligently selects a set of
parameters with which to train a model (e.g., build, optimize, tune, etc.). In some embodiments,
model management service 110 (e.g., model control layer 114 or data layer 112) stores historical
information pertaining to models, such as information pertaining to the training models. For
example, model management service 110 stores historical information pertaining to models for a
particular dataset, and/or historical information pertaining to models across various, etc. Model
management service 110 (e.g., model control layer 114 and/or data layer 112) uses the historical
information in connection with selecting parameters for training other models (e.g., other models
for the same dataset, other models for other datasets such as models providing a same type of
prediction, etc.). In some embodiments, model management service 110 uses the historical
information pertaining to models to select a set of parameters with which to tune (e.g., update a

model). For example, in connection with tuning a particular model, model management service
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110 uses the historical information pertaining to the training of the particular model such as an

optimal set of parameters, or a set of parameters over which to iterate, etc.

[0052] In some embodiments, model management service 110 determines a histogram of
parameters used for optimal models. In connection with a subsequent tuning the model, model
management service 110 queries the dataspace of historical parameters, searches for parameters
that are used for models (or versions of a model) that exceed a predetermined performance
threshold, and iterates a tuning of model using the parameters. The predetermined performance
threshold may be configurable such as by an administrator (e.g., a system administrator, a user
administrator, etc.). For example, the predetermined performance threshold is set according to a

desired quality of service such as a time to update a model.

[0053] Model management service 110 uses data layer 112 to store the set of historical
information pertaining to a model, such as to store such information at data store 120. The set of
historical information pertaining to a model to be stored by management model service 110 is
configurable by a user. As an example, the system may be configured to store the dataset used to
train (or update) the model. As another example, the system may be configured to store a threshold
amount of historical information pertaining to the model or a historical information corresponding

to one or more types of information.

[0054] According to various embodiments, data layer 112 iterates over the set of
dimensions corresponding to a dataset (e.g., the set of models to be trained for a dataset). For
example, data layer 112 deploys compute resources to train all or a subset of the models in parallel
(e.g., by different compute resources). In the case that data layer 112 trains/tunes a subset of the
models in parallel, for each of the subset of models being trained/tuned in parallel, data layer 112
iterates over the various parameters to optimize the corresponding model (e.g., to determine the
corresponding optimized model), and in response to determining the optimal model, data layer 112
iterates over the remaining models that are to be trained for a dataset. For example, in response to
determining an optimal model (e.g., the optimized model), data layer 112 then selects a remaining
model for the dataset (e.g., among the set of models for a dataset) and trains/tunes the selected

model.

[0055] According to various embodiments, model management service 110 automatically
tunes (e.g., updates) a set of models (e.g., a set of models corresponding to a particulate dataset).
As an example, model management service 110 automatically tunes the set of models according to

a predetermined schedule or according to a predetermined interval. Examples of the predetermined
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interval include once a day, every two days, every three days, once a week, every two weeks, every
three weeks, once a month, every two months, every three months, every year, etc. As another
example, model management service 110 automatically tunes the set of models according to a
predetermined triggering condition such as detection of a minimum drift threshold between the
dataset used to train the set of models and a current dataset. In some embodiments, the tuning of a
set of models is similar to the building of the set of models. Management model service 110
determines a set of compute resources to train the set of models, allocates a model (e.g., selected
from the set of models) to each compute resource within the set of compute resources, and tunes the
model using current data (e.g., a most recent dataset corresponding to the model), and iterates such

process over the set of models for the dataset (e.g., the remaining set of models to be tuned).

[0056] In some embodiments, tuning a particular model comprises caching the
corresponding dataset for which a model is to be tuned (e.g., a current dataset), obtaining a set of
starting parameters, and updating the model based at least in part on information comprised in the
dataset (e.g., information pertaining to the dimension along which the model is being built) and/or
the set of starting parameters. The caching the corresponding dataset and the set of starting
parameters comprises obtaining information from fields (e.g., rows) of the dataset, storing the
information in a table, and storing parameters for tuning or parameterizing the meta-grouped
models (e.g., the set of one or more models to be built for a dataset). The applicable compute
resource (or data layer on behalf of the compute resource) caches the model and optimizes the
model based at least in part on running an iteration over a various sets of parameters and selecting a
best version of the set of model versions obtained by the corresponding iterations. In some
embodiments, a compute resource building a particular model iterates over a set of combinations or
permutations of parameters. For example, data layer 112 implements a threshold maximum number
of parameters for which the corresponding compute resource is to iterate, and the compute resource
iterates over a set of combinations or permutations of different parameters constrained by a
threshold maximum number of parameters. In some embodiments, the set of parameters with
which to tune a model is selected based at least in part on a set of parameters previously used to
train/tune the model (e.g., using the initial dataset or in connection with a previous tuning of the
model) and/or a set of parameters used to train/tune a different model (e.g., a similar model such as
a model used to provide a same type of prediction, a model used for a similar organization such as

models across two organizations in a same industry, etc.).

[0057] In some embodiments, model management service 110 (e.g., model control layer

114) provides an interface via which the set of models is exposed to a user or another system (e.g.,
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a customer system). In some embodiments, model control layer 114 exposes the set of models
associated as a single or composite model. As an example, the composite model is exposed via an
application programming interface (API) via which business application layer 116 accesses (e.g.,
queries) the composite model such as in connection with a task or request of an application running
on a business application layer. As another example, the composite model is exposed via an
interface such as a web interface provided to other systems such as client system 140. A user (or
another system) can submit a query with respect to the set of models in connection with obtaining a
prediction for an attribute using a model generated (e.g., built, trained, etc.) based at least in part on
the dataset. In some embodiments, the user submits the query to the interface exposing the
composite model (e.g., the interface is exposed to client system 140). In response to receiving the
query, model management service 110 determines the applicable model (e.g., a model selected
from among the set of models comprised in the composite model) to invoke (e.g., use) to provide
the prediction, and invokes the applicable model to obtain the prediction. In some embodiments,
model management service 110 determines the applicable model based at least in part on one or
more parameters of the received query, such as boundary conditions of the prediction, an attribute

for which a predicted value is being requested, etc.

[0058] In some embodiments, model management service 110 wraps the one or more of the
set of models comprised in the composite model in an API (e.g., a slightly different API relative to
other models within the composite model) that corresponds to the methods or functionality of the
particular one or more models (e.g., a fitting process, a predicting process, a forecasting process,
etc.). Examples of methods or functions or features provided by (e.g., accessible via) the API
include a fitting function, a prediction function, a cross validation function, a performance metric
calculation method or function, a cross validation and scoring method or function (e.g., a running
of a back-testing cross validation scoring for each time series specified within the model after a
fitting has been performed), an extraction method or function for extracting model parameters for
the model, a forecasting method or function, a saving method or function for saving a model, a
loading method or function for loading a model, etc. Model management service 110 receives, via
an interface (e.g., a user interface), a query with respect to the composite model, determines the
particular model to invoke in connection with providing a response to the query, and, in response to
determining the particular model, configures the query based at least in part on the particular model
(e.g., the API for the model) and provides the query to the particular model (e.g., via the API).

[0059] According to various embodiments, model control layer 114 receives an indication

that an application invoked via business application layer 116 1s attempting to query a dataset or the
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set of one or more models (e.g., the corresponding composite model, etc.) for a dataset, such as a
dataset or model stored on data store 120. Model control layer 114 determines at least one model
associated with the dataset to be used in providing a response to the query, and causes (e.g.,
instructs, requests, etc.) data layer 112 to perform the query such as by invoking the model to

obtain a requested prediction, etc.

[0060] According to various embodiments, business application layer 116 provides an
interface via which a user (e.g., using client system 140) may interact with various applications
such as a development application for developing a feature or model for analyzing the data stored
in data store 120 (e.g., with respect to a dataset), an application to access files stored in a dataset
(e.g., a dataset stored in data store 120), an application to query a model, an application to obtain a
prediction, an application to tune or update a model, an etc. Various other applications can be
provided by business application layer 116. For example, a user queries data layer 112 by sending
a query/request to business application layer 116, which interfaces with data layer 112 to obtain
information responsive to the query (e.g., business application layer 116 formats the query
according to the applicable syntax and sends the formatted query to data layer 112). As another
example, an administrator uses an interface provided/configured by business application layer 116
to configure (e.g., define) one or more security policies including access permissions to files and/or

one or more policies pertaining to querying models.

[0061] According to various embodiments, data store 120 stores raw data such as source
data that is used to determine a feature, to train a model (e.g., a dataset), to apply a model, to
determine a set of starting parameters (e.g., a set of parameters to initially use to train a model), etc.
Data store 120 stores historical information pertaining to models such as information pertaining to a
dataset used to train a model, a set of parameters used to train a model, a set of parameters used to
train various versions of a model along a particular dimension of a dataset, a mapping of
parameters to models, a mapping of parameters to types of models, etc. Data store 120 stores one

or more files pertaining to a dataset.

[0062] According to various embodiments, system 100 comprises an administrator system
130 for use by an administrator such as an administrator of model management service 110. For
example, administrator system 130 comprises a system for communication, data access,
computation, etc. An administrator uses administrator system 130 to maintain data store 120 (e.g.
maintain raw data or files comprised in data store 120) and/or one or more policies or thresholds
(e.g., a threshold maximum number of parameters, threshold periods of time, thresholds pertaining

to a minimum accuracy for an optimized model, a performance threshold such as pertaining to a
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performance of a model, etc.). Administrator system 130 communicates with model management
service 110 via a web-interface. For example, administrator system 130 communicates with model
management service 110 via a web-browser installed on administrator system 130. As an example,
administrator system 130 communicates with model management service 110 via an application

running on administrator system 130.

[0063] According to various embodiments, system 100 comprises client system 140. Client
system 140 is used by a user (e.g., a developer such as a developer of a feature, a developer of a
model, etc.) to communicate with model management service 110 and/or data store 120. As an
example, client system 140 communicates with model management service 110 via a web-
interface. In some embodiments, a user uses client system 140 to modify a file at data store 120, to

update one or more policies stored at model management service 110, to query data layer 112, etc.

[0064] In some embodiments, data layer 112, model control layer 114, and/or business
application layer 116 are implemented on a single server or a plurality of servers. For example,
model control layer 114 and data layer 112 are different modules running on a same server or set of
servers. In some embodiments, model management service 110, and/or data store 120 are

implemented on a single server or a plurality of servers.

[0065] Figure 2 is a block diagram of a model management service for building and
deploying a model according to various embodiments of the present application. According to
various embodiments, system 200 of Figure 2, system 300 of Figure 3, system 400 of Figure 4, or

any combination thereof are integrated into a single server or a set of servers.

[0066] According to various embodiments, system 200 implements at least part of system
100 of Figure 1. In some embodiments, system 200 is implemented in connection with system 300
of Figure 3 and/or system 400 of Figure 4. In some embodiments, system 200 is implemented in
connection with process 700 of Figure 7, process 800 of Figure 8, process 900 of Figure 9, and/or
process 1000 of Figure 10.

[0067] In the example shown, system 200 implements one or more modules in connection
with determining to build a set of one or more models with respect to a dataset, building the set of
one or more models, and/or exposing the set of one or more models (e.g., to a user or other system).
In some embodiments, system 200 is implemented in connection with receiving a dataset such as a
dataset provided (e.g., uploaded) by a user, other system, etc. System 200 comprises

communication interface 205, one or more processors 210, storage 215, and/or memory 220. One
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or more processors 210 comprises one or more of communication module 225, dataset storing
module 230, model generation module 235, model optimization module 240, model prediction

module 245, and/or user interface module 250.

[0068] In some embodiments, system 200 comprises communication module 225. System
200 uses communication module 225 to communicate with various other systems such as an
application server, a data store, and/or client terminals or user systems such as a client system or an
administrator system. For example, communication module 225 provides to communication
interface 205 information that is to be communicated. As another example, communication
interface 205 provides to communication module 225 information received by system 200.
Communication module 225 is configured to receive one or more queries or requests to execute
tasks (e.g., provide predictions from a model such as a composite model) such as from various
client terminals or user systems, a file to store in a data store, an update to (or instruction to update)
a model, a request to perform an operation (e.g., an operation that invokes a business transaction,
etc.), a request to set one or more policies, etc. Communication module 225 is configured to
provide to various client terminals or user systems information such as information that is
responsive to one or more queries or tasks requested to be executed. In some embodiments,
communication module 225 provides the information to the various client terminals or user systems
information in the form of one or more reports (e.g., according to a predefined format or to a
requested format), and/or via one or more user interfaces (e.g., an interface that client system 140 is
caused to display). In some embodiments, communication module 225 is configured to receive
information and/or an instruction pertaining to whether to build a model or to update a model, etc.
In some embodiments, communication module 225 is configured to receive an updated dataset

(e.g., for which an updated set of models is built/trained/tuned, etc.).

[0069] In some embodiments, system 200 comprises dataset storing module 230. System
200 uses dataset storing module 230 to obtain a dataset. In some embodiments, dataset storing
module 230 provides an interface via which a dataset is provided to system 200 in connection with
system 200 building and/or maintaining a set of models (e.g., one or more models) with respect to
the dataset (e.g., a model that provides a prediction with respect to at least one dimension of the
dataset). Dataset storing module 230 obtains a dataset that is received by system 200 via
communication module 225. In response to receiving the dataset, dataset storing module 230 stores
the dataset in a storage such as storage 215 or data store such as data store 120 of system 100 of
Figure 1. In some embodiments, dataset storing module 230 receives an updated dataset, or

information with which system 200 is to update the dataset corresponding to a particular set of
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models. In response to receiving an updated dataset (or such other information), dataset storing
module 230 updates the stored dataset (e.g., modifies, replaces, etc.). In addition, in some
embodiments, dataset storing module 230 invokes a determination of whether a set of models for a
dataset are to be tuned such as based on receiving the updated dataset, determining that information
comprised in the dataset corresponding to a set of models has drifted (e.g., drifted beyond a
predetermined drift threshold).

[0070] In some embodiments, system 200 comprises model generation module 235.
System 200 uses model generation module 235 to analyze a dataset and uses the analysis to
determine a set of one or more models to build based at least in part on the dataset (e.g., a set of
models necessary to make predictions with respect to information pertaining to the dataset such as
values for a particular key). In response to determining the set of one or more models to build,

model generation module 235 builds (e.g., trains) the corresponding models.

[0071] In some embodiments, model generation module 235 analyzes the dataset and
correspondingly determines the format of the dataset and the keys for the dataset. As an example,
model generation module 235 extracts from the dataset the associated keys. Model generation
module 235 determines the set of one or more models to build for a dataset based at least in part on
the keys for the dataset. For example, the keys correspond to dimensions of the dataset along

which models are to be built.

[0072] Model generation module 235 uses a machine learning process to train the set of
models for the dataset. In connection with implementing the machine learning process, model
generation module 235 determines a set of starting parameters with which to begin the training
process. Inresponse to determining the set of starting parameters, model generation module 235

trains the models based at least in part on the set of starting parameters and the dataset.

[0073] Model generation module 235 allocates compute resources for training the set of one
or more models for the dataset. For example, in response to determining to build the set of one or
more models, model generation module 235 determines a set of compute resources (e.g., threads,
compute nodes, processor cores, etc.) to allocate to the building of the one or more models (or
subsets thereof). In response to determining the set of compute resources available for building
models, model generation module 235 uses at least a subset of compute resources available to build
the set of one or more models. As an example, model generation module 235 allocates as many
resources as possible from among the set of compute resources available to build subsets of the

models in parallel with each other. In some embodiments, model generation module 235
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determines the set of compute resources available for building models based at least in part on one
or more boundary conditions. Examples of the one or more boundary conditions include any one
or more of a predetermined number of compute resources for building models, a predetermined
percentage of system compute resources, a remaining set of compute resources after taking into
account allocations of resources for other system processes, etc. Various other boundary conditions
may be implemented. In some embodiments, model generation module 235 invokes Apache
Spark™ to deploy clusters of virtual machines to train the set of one or more models. For example,
model generation module 235 causes cluster(s) of virtual machines to be spun up specifically to
train the set of one or more models. In some embodiments, a number of compute resources is
configurable such as based at least in part on a quality of service to provide with respect to a dataset
(e.g., a quality of service committed to a user, etc.). If model generation module 235 determines to
increase a speed by which the set of one or more models is trained with respect to a dataset, model
generation module 235 allocates additional compute resources to the training of the set of one or
more models (e.g., a greater number of such models may be trained in parallel). For example,
model generation module 235 causes additional virtual machines or clusters to be spun up in
connection with training the set of one or more models. In some embodiments, model generation
module 235 determines to increase a speed by which to train the set of one or more models in
response to receiving a request from a user such as via client system 140 of system 100 of Figure 1,
or in response to determining that a time incurred to train the set of one or more models is greater
than an expected training time or that, based on an update of the training, the expected training time
exceeds a deadline by which the set of models are to be made available (e.g., exposed to a user,

customer, etc.) such as a date/time initially indicated or promised to a user or other system.

[0074] Model generation module 235 assigns a respective one of the models to be built by
each compute resource (e.g., the compute resources selected to build the models), and model
generation module 235 causes (e.g., invokes) the compute resources to build the models. In some
embodiments, the compute resources working in parallel respectively build different models at a
particular time. As an example, model generation module 235 respectively caches the
dataset/models for the compute resources for the different models being built across the set of
compute resources working in parallel. Accordingly, the models being trained in parallel have no
dependence on one another (e.g., the models and corresponding datasets are isolated from each

other).

[0075] Model generation module 235 uses a compute resource to build a model based at

least in part on caching the corresponding dataset for which a model is to be built, obtaining a set of
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starting parameters, and training the model based at least in part on information comprised in the
dataset (e.g., information pertaining to the dimension along which the model is being built) and/or
the set of starting parameters. The caching of the corresponding dataset and the set of starting
parameters comprises obtaining information from fields (e.g., rows) of the dataset, storing the
information in a table, and storing parameters for tuning or parameterizing the meta-grouped
models (e.g., the set of one or more models to be built for a dataset). The compute resource caches
the model and runs an iteration over various sets of parameters. In response to iterating over the
various parameters, model generation module 235 stores the various corresponding versions of the
model (e.g., the versions of the model corresponding to the dimension along which the model is

being optimized).

[0076] In some embodiments, system 200 comprises model optimization module 240.
System 200 uses model optimization module 240 to select a best version (e.g., the optimized
model) of the set of model versions obtained by the corresponding iterations. In some
embodiments, model optimization module 240 selects a best model (also referred to herein as an
optimized model) among the set of versions of a model that are built by a corresponding compute
resource (e.g., a set of versions of a model trained along a dimension corresponding to the dataset).
In some embodiments, a compute resource building a particular model iterates over a set of
combinations or permutations of parameters. In some embodiments, model optimization module
240 implements a threshold maximum number of parameters that are to be used by compute
resources to iterate over a set of combinations or permutations of different parameters constrained
by threshold maximum number of parameters. Various values may be implemented as the
threshold maximum number of parameters. In some embodiments, model optimization module 240
selects the best version of the model based at least in part on one or more predetermined criteria.
Examples of the one or more predetermined criteria include: a most accurate prediction, a best fit,
an accuracy of a prediction that exceeds a predefined accuracy threshold in conjunction with a
variability of an inaccuracy being below a predefined variability threshold, a speed by which a
model provides a prediction (e.g., a prediction that satisfies a minimum threshold of accuracy), etc.
In some embodiments, optimizers retain state history of the iterative process and can either: a) stop
when maximum allowable iterations are reached; or b) stop when 1) there is no improvement over
N iterations, 2) there is improvement, but it is too little to justify continuing (e.g., the error
improvement falls below a threshold), or 3) the error gets worse. . Various other criteria may be

implemented.
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[0077] In response to determining the optimized model, model optimization module 240
stores the optimized model in association with the dataset. For example, system 200 stores a
mapping of optimized models to dimensions of particular datasets. In some embodiments, model
optimization module generates the composite model that comprises (or references or points to) the

optimized models for each of the set of one or more models for a dataset.

[0078] In some embodiments, system 200 comprises model prediction module 245. System
200 uses model prediction module 245 to receive a query with respect to the dataset, such as a
request for a prediction of a particular value. The query indicates one or more parameters for the
requested prediction. Model prediction module 245 determines at least one model to invoke in
connection with obtaining a response to the query. As an example, model prediction module 245
determines the at least one model based at least in part on one or more query parameters in the
query such as a type of prediction (e.g., forecasted sales, etc.), a scope of the prediction (e.g., a
geographic location, a particular store, a particular item or type of item, a particular department, a
particular brand, etc.), a temporal bounding condition (e.g., a future date-time, or range thereof
such as a particular number of days, weeks, months, or years from the present day), etc. In some
embodiments, the at least one model is comprised in (or pointed to or invoked by) the composite
model for the dataset. In some embodiments, in response to determining the at least one model,
model prediction module 245 invokes the at least one model to obtain a prediction that is
responsive to the query. In response to obtaining the prediction, model prediction module 245
provides the prediction to a user or other system for which the result is to be returned. For example,
model prediction module 245 provides the prediction to user interface module 250 for display to

the user.

[0079] In some embodiments, system 200 comprises user interface module 250. System
200 uses user interface module 250 to provide a user interface via which a user discovers and/or
accesses one or more files stored in a dataset, to set one or more policies or thresholds with respect
to training models, allocating resources for building models, etc. As an example, the user interface

is a web interface that is provided as a web service such as on a page accessed by a user.

[0080] According to various embodiments, storage 215 comprises one or more of
filesystem data 260, dataset data 265, and/or model data 270. Storage 215 comprises a shared
storage (e.g., a network storage system) and/or database data, and/or user activity data. Filesystem
data 260 comprises data such as a data generated in connection with analyzing datasets (e.g., for the
associated keys or dimensions along which models are to be trained), data generated in connection

with building models, historical information pertaining to models or datasets, one or more policies
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or thresholds, etc. In some embodiments, dataset data 265 comprises information pertaining to
locations of datasets stored in a data store, or information pertaining to models mapped to a dataset
(e.g., an indication of models trained for a dataset) and/or metadata pertaining to the dataset. In
some embodiments, model data 270 comprises information pertaining to one or more models, a
mapping of models trained for a dataset to a composite model (or to a dataset), metadata associated
with the models, parameters used in connection with training the particular models (e.g., the

parameters for the optimized models), etc.

[0081] According to various embodiments, memory 220 comprises executing application
data 275. Executing application data 275 comprises data obtained or used in connection with
executing an application such as an application executing in connection with managing files stored
on a dataset, managing datasets, managing models built for a dataset, managing updating models
based on new/current data, etc. In some embodiments, the application comprises one or more
applications that perform one or more of: receiving and/or executing a query or task, generating a
report and/or configure information that is responsive to an executed query or task, and/or
providing to a user, information that is responsive to a query or task. Other applications comprise
any other appropriate applications (e.g., an index maintenance application, a communications
application, a chat application, a web browser application, a document preparation application, a
report preparation application, a user interface application, a data analysis application, an anomaly
detection application, a user authentication application, a security policy enforcement application, a

feature rating application, a feature analysis application, a feature development application, etc.).

[0082] Figure 3 is a block diagram of a model management service for building and

deploying a model according to various embodiments of the present application.

[0083] According to various embodiments, system 300 implements at least part of system
100 of Figure 1. In some embodiments, system 300 is implemented in connection with system 200
of Figure 2 and/or system 400 of Figure 4. In some embodiments, system 300 is implemented in
connection with process 700 of Figure 7, process 800 of Figure 8, process 900 of Figure 9, and/or
process 1000 of Figure 10.

[0084] In the example shown, system 300 implements one or more modules in connection
with determining to build a set of one or more models with respect to a dataset, building the set of
one or more models, and/or exposing the set of one or more models (e.g., to a user or other system).
In some embodiments, system 300 is implemented in connection with receiving a dataset such as a

dataset provided (e.g., uploaded) by a user, other system, etc. System 300 comprises
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communication interface 305, one or more processors 310, storage 315, and/or memory 320. One
or more processors 310 comprises one or more of communication module 325, model selection
module 330, model generation module 335, composite model generator module 340, model

exposing module 345, and/or user interface module 350.

[0085] In some embodiments, system 300 comprises communication module 325. System
300 uses communication module 325 to communicate with various other systems such as an
application server, a data store, and/or client terminals or user systems such as a client system or an
administrator system. According to various embodiments, communication module 325 corresponds

to, or is similar to, communication module 225 of system 200 of Figure 2.

[0086] In some embodiments, system 300 comprises model selection module 330. System
300 uses model selection module 330 to determine a set of models that are to be built for a dataset.
In some embodiments, model selection module 330 determines the dimensions of the dataset along
which models are to be generated. The dimensions may correspond to predictions for which

models are to be built to service queries with respect to the dataset.

[0087] Model selection module 330 may determine the set of models to build based at least
in part on a format or syntax of the dataset. For example, the dataset comprises a plurality of keys
and corresponding values. In some embodiments, a particular key corresponds to a grouping of
columns of the dataset. Model selection module 330 analyzes the dataset and extracts at least a
subset of the plurality of keys. In response to determining the at least a subset of the plurality of
keys, the system determines the set of models to be built with respect to the dataset. For example,
the plurality of keys are indicative of the set of models to be built with respect to the dataset.
Accordingly, as an example, a user uses a formatting of the database to instruct system 300 of the
desired set of models to be built (or the predictions for which the system is to generate with respect

to the dataset).

[0088] In some embodiments, system 300 comprises model generation module 335.
System 300 uses model generation module 335 to build the set of models for a dataset. Model
generation module 335 obtains a set of starting parameters, caches the corresponding dataset and
the set of starting parameters, and uses the cached dataset and corresponding set of starting
parameters to build the set of models for the dataset. In some embodiments, model generation
module obtains information from fields (e.g., rows) of the dataset, stores the information in a table,
and stores parameters for tuning or parameterizing the meta-grouped models (e.g., the set of one or

more models to be built for a dataset). In connection with building the set of models for a dataset,
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model generation module 335 determines compute resources to deploy for training the models and
allocates the compute resources to train the set of models in parallel. For example, each compute
resource (e.g., each virtual machine, each thread, etc.) trains/optimizes a model for a particular
dimension along the dataset, and the compute resources iterate in parallel to build the
corresponding models for a dataset in parallel. In response to a compute resource iterating over
parameters to determine a set of different versions of a model along a particular dimension of the
dataset, model generation module 335 determines an optimized model from among the set of
different versions of the model. In some embodiments, model generation module 335 selects the
best version of the model based at least in part on one or more predetermined criteria. Examples of
the one or more predetermined criteria include: a most accurate prediction, a best fit, an accuracy of
a prediction that exceeds a predefined accuracy threshold in conjunction with a variability of an
inaccuracy being below a predefined variability threshold, a speed by which a model provides a
prediction (e.g., a prediction that satisfies a minimum threshold of accuracy), etc. Various other
criteria may be implemented. In some embodiments, optimizers retain state history of the iterative
process and can either: a) stop when maximum allowable iterations are reached; or b) stop when 1)
there is no improvement over N iterations, 2) there is improvement, but it is too little to justify

continuing (e.g., the error improvement falls below a threshold), or 3) the error gets worse. .

[0089] In some embodiments, system 300 comprises composite model generator module
340. System 200 uses composite model generator module 340 to generate a composite model
corresponding to a dataset. In response to determining the set of one or more models for a database
(e.g., a set of optimized models), composite model generator module 340 generates a composite
model for the dataset. According to various embodiments, the composite model exposes the set of
one or more models in a unified model that is configured to service queries to any one of the set of

one or more models for the dataset.

[0090] In some embodiments, composite model generator module 340 configures the
composite model with an application programming interface (API). For examples, system 300
configures the composite model to enable a user (or another system) to submit a query with respect
to the set of models in connection with obtaining a prediction for an attribute using a model
generated (e.g., built, trained, etc.) based at least in part on the dataset. In some embodiments, a
query is submitted via the interface exposing the composite model, and in response to such query,
system 300 (e.g., a predictor module such as model prediction module 245 of system model, etc.)

determines the applicable model (e.g., a model selected from among the set of models comprised in
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the composite model) to invoke (e.g., use) to provide the prediction, and invokes the applicable

model to obtain the prediction.

[0091] In some embodiments, system 300 comprises model exposing module 345. System
300 uses model exposing module 345 to expose a model (e.g., the composite module) to a user or
other system. As an example, model exposing module 345 configures an interface with which
queries are submitted to a model. For example, the model exposing module 345 receives a query
such as a request for a prediction with respect to a value for the dataset, parses the query, and

invokes the applicable model to obtain a prediction.

[0092] In some embodiments, system 300 comprises user interface module 350. System
300 uses user interface module 350 to provide a user interface via which a user discovers and/or
accesses one or more files stored in a dataset, to set one or more policies or thresholds with respect
to training models, allocating resources for building models, etc. As an example, the user interface

is a web interface that is provided as a web service such as on a page accessed by a user.

[0093] According to various embodiments, storage 315 comprises one or more of
filesystem data 360, model data 365, and/or prediction data 370. Storage 315 comprises a shared
storage (e.g., a network storage system) and/or database data, and/or user activity data. Filesystem
data 360 comprises data such as datasets, data generated in connection with analyzing datasets
(e.g., for the associated keys or dimensions along which models are to be trained), data generated in
connection with building models, historical information pertaining to models or datasets, one or
more policies or thresholds, etc. In some embodiments, model data 365 comprises information
pertaining to one or more models, a mapping of models trained for a dataset to a composite model
(or to a dataset), metadata associated with the models, parameters used in connection with training
the particular models (e.g., the parameters for the optimized models), etc. In some embodiments,
prediction data 370 comprises information pertaining to predictions obtained by invoking a model,
such as in response to a query from a user or other system. Prediction data 370 comprises attributes
or other metadata pertaining to predictions such as an accuracy, type of prediction, date/time on

which the prediction is computed, etc.

[0094] According to various embodiments, memory 320 comprises executing application
data 375. Executing application data 375 comprises data obtained or used in connection with
executing an application such as an application executing in connection with managing files stored
on a dataset, managing datasets, managing models built for a dataset, managing updating models

based on new/current data, etc. In embodiments, the application comprises one or more

32



WO 2023/146549 PCT/US2022/014580

applications that perform one or more of: receiving and/or executing a query or task, generating a
report and/or configuring information that is responsive to an executed query or task, and/or
providing to a user, information that is responsive to a query or task. Other applications comprise
any other appropriate applications (e.g., an index maintenance application, a communications
application, a chat application, a web browser application, a document preparation application, a
report preparation application, a user interface application, a data analysis application, an anomaly
detection application, a user authentication application, a security policy enforcement application, a

feature rating application, a feature analysis application, a feature development application, etc.).

[0095] Figure 4 is a block diagram of a model management service for tuning a deployed

model according to various embodiments of the present application.

[0096] According to various embodiments, system 400 implements at least part of system
100 of Figure 1. In some embodiments, system 400 is implemented in connection with system 200
of Figure 2 and/or system 300 of Figure 3. In some embodiments, system 400 is implemented in
connection with process 700 of Figure 7, process 800 of Figure 8, process 900 of Figure 9, and/or
process 1000 of Figure 10.

[0097] In the example shown, system 400 implements one or more modules in connection
with updating a set of models for a dataset, and/or exposing the updated models (e.g., to a user or
other system). In some embodiments, system 400 is implemented in connection with receiving a
dataset such as a dataset provided (e.g., uploaded) by a user, other system, etc. System 400
comprises communication interface 405, one or more processors 410, storage 415, and/or memory
420. One or more processors 410 comprises one or more of communication module 425, tuning
scheduler module 430, optimizer selection module 435, set of optimizers 440, model prediction

module 445, and/or user interface module 450.

[0098] In some embodiments, system 400 comprises communication module 425. System
400 uses communication module 425 to communicate with various other systems such as an
application server, a data store, and/or client terminals or user systems such as a client system or an
administrator system. According to various embodiments, communication module 425 corresponds
to, or is similar to, communication module 225 of system 200 of Figure 2. In some embodiments,
communication module 425 receives updated data corresponding to a dataset (e.g., a dataset that is
used to train models). The updated data may correspond to an entire new dataset, or the system

may receive new data periodically (e.g., contemporaneous with the new data being generated at the
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source such as a user’s e-commerce system) and system 300 modifies the dataset to include the new

data.

[0099] In some embodiments, system 400 comprises tuning scheduler module 430. System
400 uses tuning scheduler module 430 to determine when a set of models associated with a dataset
is to be updated and/or to schedule the updating of the set of models. In some embodiments, tuning
scheduler module 430 determines to update a set of models in response to determining that a drift
has occurred with respect to the dataset used to train the set of models. As an example, tuning
scheduler module 430 determines that drift has occurred if a difference between the dataset used to
train a particular set of models and current data (e.g., a new/updated dataset) satisfies a threshold
criteria (e.g., equals or exceeds a predetermined or preset drift threshold). As another example,
tuning scheduler module 430 determines that drift has occurred if a change in accuracy of the set of
models (e.g., an accuracy of the model with respect to the dataset used to train the model versus an
accuracy of the model with respect to current data) satisfies a threshold criteria (e.g., equals or
exceeds a predetermined or preset drift threshold). In some embodiments, tuning scheduler module
430 assesses the performance of the set of models and/or a change in the dataset according to a
predetermined schedule and/or in response to receiving the updated/new data. In some
embodiments, tuning scheduler module 430 determines to automatically update the set of models

for a dataset according to a predetermined schedule.

[0100] In some embodiments, system 400 comprises optimizer selection module 435.
System 400 uses optimizer selection module 435 to determine a set of optimizers (e.g., compute
resources) to deploy in connection with updating a particular set of models. Optimizer selection
module 435 manages allocation of the set of optimizers during the updating of the set of models.
For example, optimizer selection module 435 allocates additional optimizers in connection with
improving the speed by which the set of models is trained (e.g., in response to receiving a request

from a user or other system to speed up the updating of the set of models).

[0101] In some embodiments, system 400 comprises set of optimizers 440. System 400
uses set of optimizers 440 to train the set of models for a dataset. In some embodiments, each of
the optimizers trains/updates a model in isolation to another optimizer. Set of optimizers 440
respectively caches the dataset (e.g., the data to be used to update the particular model) and set of
starting parameters, and set of optimizers 440 respectively trains/updates a particular model from

the set of models for a dataset.
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[0102] In some embodiments, tuning (e.g., updating) a particular model comprises caching
the corresponding dataset for which a model 1s to be tuned (e.g., a current dataset), obtaining a set
of starting parameters, and updating the model based at least in part on information comprised in
the dataset (e.g., information pertaining to the dimension along which the model is being built)
and/or the set of starting parameters. The caching of the corresponding dataset and the set of
starting parameters comprises obtaining information from fields (e.g., rows) of the dataset, storing
the information in a table, and storing parameters for tuning or parameterizing the meta-grouped
models (e.g., the set of one or more models to be built for a dataset). An optimizer from set of
optimizers 440 caches the model and optimizes the model based at least in part on running an
iteration over various sets of parameters and selecting a best version of the set of model versions
obtained by the corresponding iterations. In some embodiments, an optimizer building a particular
model (e.g., determining an updated model) iterates over a set of combinations or permutations of
parameters. The optimizer resource may implement a threshold maximum number of parameters
and iterate over a set of combinations or permutations of different parameters constrained by
threshold maximum number of parameters. In some embodiments, the set of parameters with
which to tune a model is selected based at least in part on a set of parameters previously used to
train/tune the model (e.g., using the initial dataset or in connection with a previous tuning of the
model) and/or a set of parameters used to train/tune a different model (e.g., a similar model such as
a model used to provide a same type of prediction, a model used for a similar organization such as

models across two organizations in a same industry, etc.).

[0103] In some embodiments, system 400 comprises model prediction module 445. System
400 uses model prediction module 445 to receive a query with respect to the dataset, such as a
request for a prediction of a particular value. According to various embodiments, model prediction
module 445 corresponds to, or is similar to, model prediction module 245 of system 200 of Figure

2.

[0104] In some embodiments, system 400 comprises user interface module 450. System
400 uses user interface module 450 to provide a user interface via which a user discovers and/or
accesses one or more files stored in a dataset, to set one or more policies or thresholds with respect
to training models, allocating resources for building models, etc. As an example, the user interface
is a web interface that is provided as a web service such as on a page accessed by a user. According
to various embodiments, user interface module 450 corresponds to, or is similar to, user interface

module 250 of system 200 of Figure 2.
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[0105] According to various embodiments, storage 415 comprises one or more of
filesystem data 460, model data 465, and/or prediction data 470. Storage 415 comprises a shared
storage (e.g., a network storage system) and/or database data, and/or user activity data. Filesystem
data 460 comprises data such as datasets, data generated in connection with analyzing datasets
(e.g., for the associated keys or dimensions along which models are to be trained), data generated in
connection with building models, historical information pertaining to models or datasets, one or
more policies or thresholds, etc. In some embodiments, model data 465 comprises information
pertaining to one or more models, a mapping of models trained for a dataset to a composite model
(or to a dataset), metadata associated with the models, parameters used in connection with training
the particular models (e.g., the parameters for the optimized models), etc. In some embodiments,
prediction data 470 comprises information pertaining to predictions obtained by invoking a model,
such as in response to a query from a user or other system. Prediction data 470 comprises attributes
or other metadata pertaining to predictions such as an accuracy, type of prediction, date/time on

which the prediction is computed, etc.

[0106] According to various embodiments, memory 420 comprises executing application
data 475. Executing application data 475 comprises data obtained or used in connection with
executing an application such as an application executing in connection with managing files stored
on a dataset, managing datasets, managing models built for a dataset, managing updating models
based on new/current data, etc. In embodiments, the application comprises one or more
applications that perform one or more of receive and/or execute a query or task, generate a report
and/or configure information that is responsive to an executed query or task, and/or to provide to a
user information that is responsive to a query or task. Other applications comprise any other
appropriate applications (e.g., an index maintenance application, a communications application, a
chat application, a web browser application, a document preparation application, a report
preparation application, a user interface application, a data analysis application, an anomaly
detection application, a user authentication application, a security policy enforcement application, a

feature rating application, a feature analysis application, a feature development application, etc.).

[0107] Figure 5A is a diagram of a dataset used in connection with deploying a model

according to various embodiments of the present application.

[0108] According to various embodiments, the system receives a dataset comprising one or
many groupings of keys. The keys may serve to define the grouped structure of the dataset. In the
example illustrated, dataset 500 is configured to include data pertaining to airline passengers at

different airports.
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[0109] As illustrated in Figure 5A, dataset 500 comprises two distinct time series groups:
JFK airport and LaGuardia airport. In order to isolate these time series elements so that the time
series can be modeled independently of one another, the system applies transformation logic that
constructs isolable data structures that can be submitted through a queued processing system (either

shared memory or isolated memory).

[0110] Figure 5B is a diagram of a dataset used in connection with a model according to

various embodiments of the present application.

[0111] As illustrated in Figure 5B, process 525 transforms dataset 500 in connection with
determining dimensions of the dataset such as a set of dimensions along which models are to be
built for dataset 500. According to various embodiments, in response to receiving dataset 500, the
system analyzes dataset 500 and obtains the set of dimensions along which models are to be built.
For example, the system applies transformation logic. As illustrated in process 525, the system
determines that dataset 500 comprises keyl and key2, and the system determines groupings of key-
values (e.g., the combinations/permutations of the various values across keyl and key2. For
example, the system determines that the groupings (e.g. the set of dimensions) 1s (key1, key2) =
(US, CA); (keyl, key2) = (US, WA); (keyl, key2) = (CA, ON). In some embodiments, key2 is not
indicated as an important key and then the data is automatically summed to collapse key2 leaving
US and CA data either fully collapsed (e.g., US and CA) or partially collapsed (e.g., US, CA
collapsed, US, WA collapsed, CA, ON collapsed).

[0112] Figure 5C is a diagram of using a dataset in connection with generating one or more

models according to various embodiments of the present application.

[0113] As illustrated in Figure 5C, process 550 receives raw data and determines a set of

models based at least in part on extracting keys from the raw data, and the values for different key

groupings.

[0114] At 552, raw data comprising key column(s), a date/time column, and a value column
is received. For example, the system receives dataset 500 comprising the columns for country,
airport, date, and passengers, and the country and airport columns may respectively correspond to
keys for the dataset. In response to receiving the dataset, at 552, the system analyzes the dataset
and builds group collections of data. For example, the system applies transformational logic to
determine a set of dimensions of the dataset along which models are to be built. In response to

obtaining the grouping of data, at 556, the system determines a set of keys for the dataset based at
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least in part on the group collections data. At 558, in response to obtaining the keys for the dataset,
the system processes the dataset such as to serialize the data structure based at least in part on the

keys.

[0115] As illustrated in Figure 5C, the groupings (e.g., the groupings of keys, the
dimensions of datasets) are allocated to different compute resources. For example, groups A to G
are allocated/assigned to first worker node (e.g., worker 1) of a cluster; groups H to N are
allocated/assigned to second worker node (e.g., worker 2) of a cluster; groups O to U are
allocated/assigned to third worker node (e.g., worker 3) of a cluster; and groups V to Z are
allocated/assigned to fourth worker node (e.g., worker 4) of a cluster. In some embodiments, the
first worker node, second worker node, third worker node, and fourth worker node operate in

parallel to train (e.g., build) models for the corresponding groups allocated thereto.

[0116] For example, the fourth worker node 560 (e.g., worker 4) comprises four cores (e.g.,
core 1, core 2, core 3, and core 4) that are respectively assigned a different grouping (e.g., a
different dimension of the dataset, key-value groupings, etc.). The training process implemented
by the cores (e.g., core 1) is illustrated at 570 to 574. At 580, the core (e.g., a compute resource)
trains a set of versions for the model for providing predictions with respect to the corresponding
dimension. As an example, the core obtains a set of starting parameters, and iterates through
parameters to obtain respective versions of the model. As another example, the core performs a
Bayesian optimized parameter selection based on a prior result from training the model in
connection with determining parameters to be used for training the different versions of the model.
At 572, a best model (e.g., the optimized model) is selected from among the set of versions of a
model for a particular dimension. At 574, the system (e.g., the core) stores a tuning history and a
set of parameters used for the best model, metrics pertaining to the model, and a model object
instance. The system may store various other metadata associated with the model or other versions

of the model along the particular dimension.

[0117] Figure 5D is a diagram of using a dataset in connection with generating one or more
models according to various embodiments of the present application. As illustrated in Figure 5D,
process 575 receives a dataset, analyzes the dataset, and generates a set of models corresponding to

dimensions of the dataset.

[0118] At 580, a dataset is received. In some embodiments, the dataset is received via an
interface exposed to a user or other system. As illustrated in Figure 5D, the dataset comprises

columns corresponding to country, state/province, date/time, and values. The column for country
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corresponds to a first key (e.g., key1), and the column for state/province corresponds to a second

key (e.g., key2).

[0119] At 581, the set of models to build for the dataset is determined. In some
embodiments, the system analyzes/processes the dataset and determines a set of dimensions
corresponding to the dataset. In response to determining the set of dimensions corresponding to a
dataset, the system determines to build models corresponding to each of the set of dimensions. For
example, the set of dimensions corresponds to a grouping of key-values. Using the received
dataset, the system determines the groupings to be (key1, key2) = (US, CA); (keyl, key2) = (US,
WA); and (key1, key2) = (CA, ON).

[0120] At 582, a plan for building the set of models for a dataset is determined. For
example, the set of models are planned to be built by processing using threadpool training
execution with chosen forecasting backend. In some embodiments, the system determines a set of
compute resources (e.g., optimizers) used to build the set of models for a dataset and allocates the

training of the set of models to the set of compute resources.

[0121] At 583, a machine learning process is instructed to build the set of models. In some
embodiments, the set of compute resources iterates over the set of models to train the set of models
for the dataset. The set of compute resources work in parallel with one another to iterate over the
respective model(s) assigned to the various compute resources. According to various embodiments,
within the iteration over the set of models, for each model being trained the corresponding compute
resource iterates over a set of parameters to obtain a set of versions of the particular model. In
response to determining the set of versions of the particular model, the system assesses the set of
versions of the particular model and selects a best version of the model (e.g., the optimized model).
The system stores information pertaining to at least the optimized model, such as the model as an
object, performance metrics/characteristics associated with the model (e.g., an accuracy of a
prediction obtained from the model), a set of parameters associated with training the optimized
model, etc. In some embodiments, the system stores the dataset used in connection with training
the optimized model (e.g., the dataset may be used to detect drift with respect to current data). In
some embodiments, a model registry logs a best performing model from current iteration per group
as a candidate for production prediction and a tracking server logs the training runs with all

iterations of hyperparameters testing in a file (e.g., as keyed by series of grouping keys).

[0122] In some embodiments, the system stores information pertaining to one or more other

versions of a model for a particular dimension of the model. For example, the system stores

39



WO 2023/146549 PCT/US2022/014580

information pertaining to versions of the model that are not selected as the optimized model.
Examples of the information pertaining to the versions of the model include the model as an object,
performance metrics/characteristics associated with the model (e.g., an accuracy of a prediction

obtained from the model), a set of parameters associated with training the optimized model, etc.

[0123] In response to a determination that a model for a dataset is to be updated, process
575 proceeds to 584. As an example, the system determines to update a model in response to a
detection of drift of the underlying dataset from which the model was last trained. As another
example, the system determines to update the model in response to a determination that a

predetermined time period has lapsed since the model was last trained.

[0124] At 584, historical information pertaining to the training of model(s) is obtained. For
example, the system obtains the information stored with respect to the set of versions of the model
that was stored in connection with the training of the versions of the model (e.g., the parameters
used to train the respective versions, the performance characteristics, etc.). As another example,

the system obtains information stored with respect to models for a different dataset but that are used
to train the same type of model (e.g., a model that provides the same type of prediction, a model
that is trained using a similar dataset such as a dataset having keys or type of information that

satisfies a predefined similarity threshold, etc.).

[0125] At 585, the system determines whether the historical information comprises
information pertaining to the training of model(s) (or versions thereof) along the same dimension of
the model being updated. For example, the system determines whether the historical information
comprises a grouping of keys that matches the corresponding grouping of keys for the model being
updated.

[0126] In response to determining that the historical information comprises information
pertaining to the training of model(s) (or versions thereof) along the same dimension of the model
being updated at 585, process 575 proceeds to 586 at which a search for the set of parameters (e.g.,
to be used in connection with training the model) is restricted based at least in part on a set of
parameters previously used in training the model (or other versions of the model, etc.). For
example, the system defines a search space to perform a search for parameters to use in training
(e.g., updating) the model. In some embodiments, the definition of the search space of possible
parameters comprises restricting the search space based at least in part on the set of parameters
previously used to train the optimized model. In some embodiments, the system determines a set of

boundaries for the search space based at least in part on the set of parameters used to previously
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train the optimized model and one or more statistical thresholds. For example, the system
determines to restrict a set of possible parameters to those parameters within a predetermined

statistical threshold of the set of parameters used to previously train the optimized model.

[0127] At 587, the system updates (e.g., trains) the model based at least in part on the
search space. In some embodiments, the system iterates over possible sets of parameters within the
search space to obtain a set of versions of an updated model. In connection with training a model
(e.g., training an updated model for a particular dimension), the system reduces a number of
iterations based on reducing the number of possible sets of parameters with which the model is to
be trained. For example, the system constrains the set of parameters used for training the model to
the restricted set of possible parameters (e.g., those parameters within a predetermined statistical
threshold of the set of parameters used to previously train the optimized model, as determined at

586).

[0128] At 588, an optimized model is selected. In some embodiments, the system selects
the optimized model (e.g., a best updated model) from among the versions of the updated model
corresponding to a particular dimension of the dataset. In some embodiments, the best version of
the model is selected based at least in part on one or more predetermined criteria. Examples of the
one or more predetermined criteria include: a most accurate prediction, a best fit, an accuracy of a
prediction that exceeds a predefined accuracy threshold in conjunction with a variability of an
inaccuracy being below a predefined variability threshold, a speed by which a model provides a
prediction (e.g., a prediction that satisfies a minimum threshold of accuracy), etc. In some
embodiments, optimizers retain state history of the iterative process and can either: a) stop when
maximum allowable iterations are reached; or b) stop when 1) there is no improvement over N
iterations, 2) there is improvement, but it is too little to justify continuing (e.g., the error
improvement falls below a threshold), or 3) the error gets worse. . Various other criteria may be

implemented.

[0129] In response to determining that the historical information does not comprise
information pertaining to the training of model(s) (or versions thereof) along the same dimension of
the model being updated at 585, process 575 proceeds to 589 at which the system iterates the
training of the model (e.g., versions of the updated model) using a set of parameters selected in
accordance with a default parameter criterion. In some embodiments, for libraries that have self-
contained autonomous tuning, default ranges for search space exploration are provided (and are
able to be overridden through the system). In some embodiments, the optimizer selects values

between these minimum and maximum ranges (for numeric values) or randomly select categorical
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values from finite lists of available values. In some embodiments, these default search ranges can
also be overridden by a user (or, in the case of passive retraining, these search range values are
automatically retrieved from past optimization runs to set a reasonable range in which to search in

subsequent automated optimization training runs).

[0130] At 590, the system obtains information pertaining to the optimized model.
Examples of information stored with respect to the optimized model includes performance
metrics/characteristics associated with the model (e.g., an accuracy of a prediction obtained from
the model), a set of parameters associated with training the optimized model, etc. In some
embodiments, the system stores the dataset used in connection with training the optimized model
(e.g., the dataset may be used to detect drift with respect to current data). In some embodiments,

historical hyperparameter tuning history data set is assembled for the current run.

[0131] In some embodiments, the system stores information pertaining to one or more other
versions of a model for a particular dimension of the model. For example, the system stores
information pertaining to versions of the model that are not selected as the optimized model.
Examples of the information pertaining to the versions of the model include model as an object,
performance metrics/characteristics associated with the model (e.g., an accuracy of a prediction

obtained from the model), a set of parameters associated with training the optimized model, etc.

[0132] At 591, the system stores the information pertaining to the optimized model along a
particular dimension and/or other versions of the model along the particular dimension. In some
embodiments, the system stores the information pertaining to the optimized model along each of
the different dimensions of the dataset for which models are trained. As an example, the
information pertaining to the optimized model along a particular dimension and/or other versions of
such a model may be used as historical information for training future updates to the model or with
similar models for other datasets (e.g., models that are for providing the same or similar type of
predictions), etc. In some embodiments, a best performing model is determined per group and a
final current best state model is assembled for use. In some embodiments, the best state models are

logged and registered in a model register and tracking server.

[0133] At 592, a prediction is provided using a corresponding optimized model. In response
to the system receiving a query, the system uses the query to determine one or more particular
models (e.g., particular optimized model) to be used (e.g., invoked) in connection with providing a

response to the query. For example, the system determines an optimized model corresponding to a
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prediction requested via the query and the system invokes the optimized model to obtain the

prediction.

[0134] Figure 6A is a diagram of a dataset used in connection with a model according to

various embodiments of the present application.

[0135] According to various embodiments, the system receives a dataset comprising one or
many groupings of keys. The keys may serve to define the grouped structure of the dataset. In the
example illustrated, dataset 600 is configured to include data pertaining to airline passengers at

different airports.

[0136] As illustrated in Figure 6A, dataset 600 comprises two distinct time series groups: a
group corresponding to key a0, and a group corresponding to key v3. Each of the time series groups
also have a corresponding value (e.g., as illustrated in the column labeled ‘y’). In order to isolate
these time series elements so that the time series can be modeled independently of one another, the
system applies transformation logic that constructs isolable data structures that can be submitted

through a queued processing system (either shared memory or isolated memory).

[0137] Figure 6B is a diagram of one or more characteristics associated with a set of models

according to various embodiments of the present application.

[0138] In response to determining optimized models along the dimensions of the dataset,
the system stores information pertaining to the optimized models. For example, as illustrated in
Figure 6B, information pertaining to the performance of the various optimized models (e.g., models
respectively corresponding to keys/dimensions a0, al, a2, a3, b0 ... yl, y2, z0, z1, and z2) is stored.
Examples of information pertaining to the performance of the various optimized models include
performance metrics/characteristics such as mean squared error, root mean square error, mean
absolute error, mean absolute percentage error, median absolute percentage error, symmetric mean

absolute percentage error, coverage probability, etc.

[0139] Figure 7 is a flow diagram of a method for providing a set of interfaces in
connection with deployment of a model according to various embodiments of the present
application. In some embodiments, process 700 is implemented at least in part by system 100 of
Figure 1 (e.g., model management service 110), and/or system 200 of Figure 2. In some
embodiments, process 700 is implemented in connection with process 800 of Figure 8, process 900

of Figure 9, and/or process 1000 of Figure 10.
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[0140] At 710, an input interface is provided to obtain a dataset. In some embodiments, the
system configures and provides a user interface via which a user uploads datasets or interfaces with
datasets or models stored at the system. As an example, the user interface is provided in an
application running on a client system. As another example, the user interface is provided in a web
interface via which a user interfaces using a web browser running on the client system. In some
embodiments, the system provides an API via which another system can upload datasets or
otherwise interface with datasets or models stored at the system (e.g., the other system can use the
API to request/run queries with respect to the datasets or models stored at the model management

system).

[0141] At 720, the dataset is received. In some embodiments, the system receives the
dataset via the input interface. For example, a user uploads the dataset in connection with a request

for the system to build and/or manage models associated with the dataset.

[0142] At 730, model(s) is/are built. In some embodiments, in response to receiving the
dataset the system automatically determines to build the model(s) with respect to the dataset. For
example, the system determines the set of one or more models to build based at least in part on the
dataset, such as a format of the dataset. According to various embodiments, building the model

corresponds to invoking process 550 of Figure 5C and/or process 800 of Figure 8.

[0143] At 740, a selection interface is provided to expose the models(s). In some
embodiments, the system provides an interface via which the set of models is exposed to a user or
another system (e.g., a customer system). In some embodiments, the set of models associated with
the dataset is exposed as a single or composite model. As an example, the composite model is
exposed via an application programming interface (API). As another example, the composite
model is exposed via a web interface. In some implementations, the composite model is wrapped

in an API and the API is exposed to a model that configures the web interface.

[0144] According to various embodiments, in connection with exposing the selection
interface, a user (or another system) can input (e.g., to the selection interface) a selection for a set
of models and/or submit a query with respect to the set of models in connection with obtaining a
prediction for an attribute using a model generated (e.g., built, trained, etc.) based at least in part on
the dataset. In response to receiving the query, the system determines the applicable model (e.g., a
model selected from among the set of models comprised in the composite model) to invoke (e.g.,
use) in order to provide the prediction and invokes the applicable model to obtain the prediction.

The system determines the applicable model based at least in part on one or more parameters of the
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received query, such as boundary conditions of the prediction, an attribute for which a predicted

value is being requested, etc.

[0145] At 750, a determination is made as to whether process 700 is complete. In some
embodiments, process 700 is determined to be complete in response to a determination that no
further datasets are uploaded, a query received with respect to a model is serviced, a user has exited
the system, an administrator indicates that process 700 is to be paused or stopped, etc. In response
to a determination that process 700 is complete, process 700 ends. In response to a determination

that process 700 is not complete, process 700 returns to 710.

[0146] Figure 8 is a flow diagram of a method for building a model using a received dataset
according to various embodiments of the present application. In some embodiments, process 800 is
implemented at least in part by system 100 of Figure 1 (e.g., model management service 110),
and/or system 200 of Figure 2. In some embodiments, process 800 is implemented in connection

with process 700 of Figure 7, process 900 of Figure 9, and/or process 1000 of Figure 10.

[0147] At 810, a dataset is received. According to various embodiments, the receiving the
dataset corresponds to, or is similar to 720 of process 700 of Figure 7. For example, the system

receives the dataset from a user or other system via an input interface.

[0148] At 820, a plurality of models to build are determined. In some embodiments, in
response to receiving the dataset, the system determines a plurality of models to build with respect
to the dataset. According to various embodiments, the system determines the set of models to build
based at least in part on a format or syntax of the dataset. For example, the dataset comprises a
plurality of keys and corresponding values. The plurality of keys may correspond to a plurality of
columns of the dataset. In some embodiments, a particular key corresponds to a grouping of
columns of the dataset. In some embodiments, in response to receiving the dataset, the system
analyzes the dataset and extracts at least a subset of the plurality of keys. In response to
determining the plurality of keys, the system determines the set of models to be built with respect to
the dataset. For example, the plurality of keys are indicative of the set of models to be built with
respect to the dataset. Accordingly, as an example, a user may instruct the system of the desired set
of models to be built (or the predictions for which the system is to generate with respect to the
dataset). The user may upload the dataset via the interface, and in response to receiving the dataset,

the system may automatically build (e.g., train) the set of models.
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[0149] In some embodiments, a control paradigm is defined that utilizes the format of a
dataset and the components of its columns to determine, define, and generate discrete user-
controlled distinct temporal series. This structure (e.g., with narrow and long normalized data)
permits the system to efficiently group the data comprising a particular user-defined series
aggregation set in a distributed system, minimizing the volume of data shuffle transfer from one
machine to another since the boundary condition for partitioned files can be 'cut' at boundaries
that do not have data replication amongst multiple unrelated series. This also permits a user to
define varying levels of aggregation without having to transform (e.g., to aggregate, to
manipulate, etc.) the data prior to sending it to an API. The user can define the columns in the
data set to be utilized for setting a hierarchical association by the inclusion or exclusion of
columns that define uniqueness; the system processing will automatically group to the
configured level and perform the appropriate data aggregation to render forecast modeling

possible.

[0150] According to various embodiments, the dataset is uploaded as a single data entity.
The dataset comprises a multi-keyed, key-value relationship. For example, the dataset comprises a
plurality of columns, and at least a subset of the columns correspond to a key, and values
comprised in a column including a key-value corresponding to the column key. Each field (or a
subset of fields) may correspond to keys for the dataset. As an example, each key-value
relationship may correspond to a different dimension of the dataset along which a model is to be
built. For example, if a dataset corresponds to sales of different items, and a field of the dataset is a
city filed, and the dataset comprises values of New York, Chicago, Los Angeles as values for the
city field, a key for the dataset is the city and the key-value relationships (or pairs) are city = New
York, city = Chicago, and city = Los Angeles. The system can then determine to build a set of
models that correspondingly predict sales in New York, Chicago, or Los Angeles. According to
various embodiments, the dataset is formatted based at least in part on a set of models that are to be
determined (e.g., built) for the dataset. For example, a user (e.g., a user for a customer
organization) may determine the models to be built (or predictions that the user desires to obtain
using the dataset), and formats the dataset accordingly before uploading to the system. In some

embodiments, the format of the dataset defines a granularity of models to be built using the dataset.

[0151] At 830, the model(s) is/are built. According to various embodiments, in response to
determining the plurality of models to build based at least in part on the dataset (e.g., in response to
determining dimensions of the dataset along which models are to be built), the system builds the

plurality of models. In some embodiments, the system builds the plurality of models based on a
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batch process. For example, at least a subset of the plurality of models may be determined in

parallel with each other.

[0152] In some embodiments, the system determines a set of compute resources (e.g.,
threads, compute nodes, processor cores, etc.) to allocate to the building of the plurality of models
(or subsets thereof). As an example, the system determines a set of compute resources available for
building models. In response to determining the set of compute resources available for building
models, the system uses at least a subset of compute resources available to build the set of one or
more models. As an example, the system allocates as many resources as possible from among the
set of compute resources available to build subsets of the plurality of models in parallel with each
other. The set of compute resources available for building models may be defined by one or more
boundary conditions, including any one or more of a predetermined number of compute resources
for building models, a predetermined percentage of system compute resources, a remaining set of

compute resources after taking into account allocations of resources for other system processes, etc.

[0153] In response to determining the compute resources to allocate in order to build the
plurality of models, the system assigns a respective one of the plurality of models to each compute
resources (e.g., the compute resources selected to build the models), and the compute resources
build the models. In some embodiments, the compute resources working in parallel respectively
build different models at a particular time. As an example, the different models across the set of
compute resources working in parallel have no dependence because the models and corresponding

datasets are isolated.

[0154] In some embodiments, the building of a model by compute resources includes
caching the corresponding dataset for which a model is to be built, obtaining a set of starting
parameters, and training the model based at least in part on information comprised in the dataset
(e.g., information pertaining to the dimension along which the model is being built) and/or the set
of starting parameters. In some embodiments, the caching of the corresponding dataset and the set
of starting parameters comprises obtaining information from fields (e.g., rows) of the dataset,
storing the information in a table, and storing parameters for tuning or parameterizing the meta-
grouped models (e.g., the set of one or more models to be built for a dataset). The compute
resource caches the model and optimizes the model based at least in part on running an iteration
over various sets of parameters and selecting a best version of the set of model versions obtained by
the corresponding iterations. In some embodiments, a compute resource building a particular model
iterates over a set of combinations or permutations of parameters. The compute resource may

implement a threshold maximum number of parameters and iterate over a set of combinations or
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permutations of different parameters constrained by threshold maximum number of parameters.
For example, the system may use a maximum of 15 parameters for building a model. Constraining
the training/building the model based at least in part on threshold maximum number of parameters

speeds up an optimization or deployment of models and/or predictions.

[0155] At 840, optimized model(s) are determined. In response embodiments, in response
to the system iterating over combinations/permutations of parameters to determine a set of versions
of a model for each of the plurality of models (e.g., for each dimension of the dataset for which a
model is to be determined), the system selects a set of optimized models. According to various
embodiments, the set of optimized models comprises a model for each dimension of the dataset for

which a model is to be determined (e.g., for each grouping of key-values).

[0156] In some embodiments, the best version of the model (e.g., the optimized model) is
selected based at least in part on one or more predetermined criteria (e.g., a best value of an
optimization metric for each model of the plurality of models being determined and selecting, for
example, for a best set of parameters for a given model). Examples of the one or more
predetermined criteria include: a most accurate prediction, a best fit (e.g., as measured using an
optimization metric), an accuracy of a prediction that exceeds a predefined accuracy threshold in
conjunction with a variability of an inaccuracy being below a predefined variability threshold, a
speed by which a model provides a prediction (e.g., a prediction that satisfies a minimum threshold

of accuracy), etc. Various other criteria may be implemented.

[0157] At 850, a determination is made as to whether process 800 is complete. In some
embodiments, process 800 is determined to be complete in response to a determination that no
further datasets are uploaded, no further datasets for which models to be built exist, an
administrator indicates that process 800 is to be paused or stopped, etc. In response to a
determination that process 800 is complete, process 800 ends. In response to a determination that

process 800 is not complete, process 800 returns to 810.

[0158] Figure 9 is a flow diagram of a method for automatically tuning a set of models
according to various embodiments of the present application. In some embodiments, process 900 is
implemented at least in part by system 100 of Figure 1 (e.g., model management service 110),
and/or system 200 of Figure 2. In some embodiments, process 900 is implemented in connection

with process 700 of Figure 7, process 800 of Figure 8, and/or process 1000 of Figure 10.
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[0159] At 910, model(s) to update is/are determined. In some embodiments, the system
determines to update a set of one or more models based at least in part on an updated dataset or

updated information for the dataset.

[0160] According to various embodiments, the system determines to update the set of one
or more models in response to receiving the updated dataset (or updated information for the
dataset). For example, in response to receiving the updated dataset, the system determines whether
the current data (e.g., the updated data and/or the updated information for the dataset) has drifted in
relation to the dataset used to train (or last used to update) the plurality of models associated with
the dataset. The system can determine that the current data has drifted in relation to the dataset
used to train (or last used to update) the plurality of models associated with the dataset based at
least in part on an extent of a difference between the current data and the dataset used to train the
plurality of models. For example, if an extent of a difference between the current data and the

dataset used to train the plurality of models is equal to, or exceeds, a predetermined minimum drift

threshold.

[0161] According to various embodiments, the system determines to update the set of one
or more models in response to receiving the updated dataset (or updated information for the
dataset). For example, in response to receiving the updated dataset, the system determines an
accuracy of one or more models (e.g., a prediction accuracy) corresponding to the dataset has
changed when such one or more models are invoked with respect to the current data (e.g., the
updated data and/or the updated information for the dataset). The system can determine that the
accuracy of a model has changed based at least in part on an extent of a difference between the
accuracy of the model with respect to the current data and the accuracy of the model with respect to
the dataset used to train the plurality of models. For example, if an extent of a difference is equal
to, or exceeds, a predetermined accuracy change threshold, the system deems the accuracy of the
model to have changed (e.g., if the accuracy of the model using the current data is worse than the
accuracy of the model using the dataset by at least a threshold amount). In some embodiments, the
system determines that a model is to be updated in response to determining that the accuracy of the
model using the current data is less than a predetermined minimum accuracy threshold (e.g., a
model having an accuracy below some predetermined minimum accuracy threshold is deemed to be

stale and to be updated).

[0162] According to various embodiments, the system automatically tunes (e.g., updates) a
set of models (e.g., a set of models corresponding to a particulate dataset). As an example, the

system may automatically tune the set of models according to a predetermined schedule or
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according to a predetermined interval. Examples of the predetermined interval include daily,
weekly, monthly, etc. In some embodiments, the tuning of a set of models is similar to the building

of the set of models.

[0163] At 920, a plurality of optimizer modules to optimize the model(s) is determined. In
response to determining that one or more models are to be updated, the system determines a
plurality of optimizer modules (or simply optimizers) to be allocated to the updating of the
model(s).

[0164] In some embodiments, the system determines a set of optimizers (e.g., threads,
compute nodes, processor cores, etc.) to allocate to the updating (e.g., training) of the model(s). As
an example, the system determines a set of optimizers available for building models. In response to
determining the set of optimizers available for building models, the system uses at least a subset of
optimizers available to build the model(s). As an example, the system allocates as many resources
as possible or as needed from among the set of optimizers available to build subsets of the model(s)
in parallel with each other. The set of optimizers available for building models may be defined by
one or more boundary conditions, including any one or more of a predetermined number of
compute resources for building models, a predetermined percentage of system compute resources, a
remaining set of compute resources after taking into account allocations of resources for other

system processes, etc.

[0165] At 930, the plurality of optimizer modules are caused to update model(s). According
to various embodiments, in response to determining the optimizers to allocate to update the
plurality of models, the system assigns a respective one of the plurality of models to each
optimizer, and the optimizers correspondingly update (e.g., trains) the respective models. In some
embodiments, the optimizers working in parallel respectively update different models at a
particular time. As an example, the different models across the set of optimizers working in

parallel have no dependence because the models and corresponding datasets are isolated.

[0166] The updating of a model by an optimizer includes caching the corresponding dataset
for which a model is to be built, obtaining a set of starting parameters, and training the model based
at least in part on information comprised in the dataset (e.g., information pertaining to the
dimension along which the model is being built) and/or the set of starting parameters. In some
embodiments, the caching of the corresponding dataset and the set of starting parameters comprises
obtaining information from fields (e.g., rows) of the dataset, storing the information in a table, and

storing parameters for tuning or parameterizing the meta-grouped models (e.g., the set of one or
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more models to be built for a dataset). The optimizer caches the model and optimizes the model
based at least in part on running an iteration over various sets of parameters and selecting a best
version of the set of model versions obtained by the corresponding iterations. In some
embodiments, an optimizer training a particular model iterates over a set of combinations or
permutations of parameters. The optimizer may implement a threshold maximum number of
parameters and iterate over a set of combinations or permutations of different parameters

constrained by threshold maximum number of parameters.

[0167] At 940, the model(s) is/are deployed. In some embodiments, in response to updating
the model(s), the system exposes the models to a selection interface. As an example, if only a
subset of the models for a dataset are updated, then the system updates the models exposed to
include the updated models (e.g., to replace the models for which updated models were trained). In
some embodiments, in response to updating the model(s), the system updates the composite model
corresponding to the dataset (e.g., a new composite model is created or the existing composite
model is updated to include, or point to, the updated model(s)), etc.). In some embodiments,

deploying the models includes invoking 740 of process 700 of Figure 7.

[0168] At 950, a determination is made as to whether process 900 is complete. In some
embodiments, process 900 is determined to be complete in response to a determination that no
further models are to be optimized, a user has indicated that no further models are to be optimized,
an administrator indicates that process 900 is to be paused or stopped, etc. In response to a
determination that process 900 is complete, process 900 ends. In response to a determination that

process 900 is not complete, process 900 returns to 910.

[0169] Figure 10 is a flow diagram of a method for automatically tuning a set of models
according to various embodiments of the present application. In some embodiments, process 1000
is implemented at least in part by system 100 of Figure 1 (e.g., model management service 110),
and/or system 200 of Figure 2. In some embodiments, process 1000 is implemented in connection

with process 700 of Figure 7, process 800 of Figure 8, and/or process 900 of Figure 9.

[0170] At 1005 an updated dataset is obtained. In some embodiments, the system receives
an updated dataset via the input interface such as in a manner similar to obtaining the dataset at 710
or 720 of process 700 of Figure 7. In some embodiments, the system receives periodic or
continuous updated data for the dataset, such as from another system (e.g., a user system), and the

system updates the dataset in storage (or creates an updated dataset).
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[0171] At 1010, a dataset used to train a set of associated models is obtained. In some
embodiments, the system determines the dataset used to train the associated models (e.g., the

models that are currently deployed).

[0172] At 1015, a determination is performed as to whether a drift has occurred with
respect to the dataset associated with the models. In some embodiments, the system determines that
the current data has drifted in relation to the dataset used to train (or last used to update) the
plurality of models associated with the dataset based at least in part on an extent of a difference
between the current data and the dataset used to train the plurality of models. For example, if an
extent of a difference between the current data and the dataset used to train the plurality of models

is equal to, or exceeds, a predetermined minimum drift threshold.

[0173] In response to determining that drift has occurred with respect to the dataset at 1015,
process 1000 proceeds to 1020 at which a determination is made to update the models (e.g., all the

models) associated with the dataset.

[0174] In response to determining that drift has not occurred with respect to the dataset at
1015, process 1000 proceeds to 1025 at which a model is selected from among the models

associated with the dataset.

[0175] At 1030, a determination is made as to whether the accuracy of the selected model is
less than an accuracy threshold. In some embodiments, the system determines that a model is to be
updated in response to determining that the accuracy of the model using the current data is less than
a predetermined minimum accuracy threshold (e.g., a model having an accuracy below some

predetermined minimum accuracy threshold is deemed to be stale and to be updated).

[0176] In response to a determination that the accuracy of the selected model is less than
the accuracy threshold at 1030, process 1000 proceeds to 1035 at which the selected model is
determined to be updated. Thereafter, process 1000 proceeds to 1040.

[0177] In response to a determination that the accuracy of the selected model is not less
than the accuracy threshold at 1030, process 1000 proceeds to 1040 at which a determination is
made as to whether additional models exist for which a determination at 1030 is to be performed.
In some embodiments, process 1000 iterates through 1025 to 1040 until the accuracy for all models

associated with the dataset have been assessed.
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[0178] At 1045, the models indicated to be updated are updated. For example, the system
updates those models for which process 1000 stores an indication that such models are to be
updated at 1020 or 1045. In some embodiments, the updating the models corresponds to, or is
similar to, process 900 of Figure 9.

[0179] At 1050, a determination is made as to whether process 1000 is complete. In some
embodiments, process 1000 is determined to be complete in response to a determination that no
further datasets are updated, an administrator indicates that process 1000 is to be paused or stopped,
etc. In response to a determination that process 1000 is complete, process 1000 ends. In response

to a determination that process 1000 is not complete, process 1000 returns to 1005.

[0180] In addition, various embodiments disclosed herein further relate to computer storage
products with a computer readable medium that includes program code for performing various
computer-implemented operations. The computer-readable medium is any data storage device that
can store data which can thereafter be read by a computer system. Examples of computer-readable
media include, but are not limited to, all the media mentioned above: magnetic media such as hard
disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical
media such as optical disks; and specially configured hardware devices such as application-specific
integrated circuits, programmable logic devices, and ROM and RAM devices. Examples of
program code include both machine code, as produced, for example, by a compiler, or files

containing higher level code, for example, a script that can be executed using an interpreter.

[0181] Various examples of embodiments described herein are described in connection with
flow diagrams. Although the examples may include certain steps performed in a particular order,
according to various embodiments, various steps may be performed in various orders and/or

various steps may be combined into a single step or in parallel.

[0182] Although the foregoing embodiments have been described in some detail for
purposes of clarity of understanding, the invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The disclosed embodiments are illustrative

and not restrictive.
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CLAIMS

1. A system, comprising:

one or more processors configured to:

receive a dataset, the dataset comprising a plurality of keys and a plurality of key-
value relationships;

determine a plurality of models to build based at least in part on the dataset, wherein
determining the plurality of models to build comprises using a dataset format information to
identify the plurality of models;

build the plurality of models; and

optimize at least one of the plurality of models; and
a memory coupled to the one or more processors and configured to provide the one or more

processors with instructions.

2. The system of claim 1, wherein the dataset format information is indicative of one or more

atomic units that define the dataset.

3. The system of claim 2, wherein the one or more atomic units that define the dataset are used

in connection with identifying the plurality of models to build.

4. The system of claim 1, wherein one or more training characteristics associated with training

of the plurality of models are stored in connection with a building of the plurality of models.

5. The system of claim 4, wherein at least a subset of the one or more training characteristics

are used in connection with optimizing at least one of the plurality of models.

6. The system of claim 4, wherein the one or more processors are further configured to store

one or more performance characteristics associated with the plurality of models.

7. The system of claim 6, wherein at least a subset of the one or more training characteristics
and a subset of the one or more performance characteristics are used in connection with optimizing

the at least one of the plurality of models.

8. The system of claim 6, wherein the one or more performance characteristics are used to
generate a parameter space, and the parameter space is used to select optimal parameters with

which to optimize the at least one model of the plurality of models.

9. The system of claim 1, wherein optimizing the at least one of the plurality of models

comprises:
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providing a plurality of optimizer modules with an indication of a plurality of respective
models to be optimized, wherein the plurality of respective models to be optimized is selected from
among the at least one of the plurality of models; and

running, by each of the plurality of optimizer modules, respective optimization processes in

connection with optimizing the plurality of respective models to be optimized.

10.  The system of claim 9, wherein the respective optimization processes are run in parallel.
11.  The system of claim 1, wherein the dataset is stored in cache while the plurality of models
are built.

12.  The system of claim 1, wherein the plurality of models is identified based at least in part on
a set of predictions for which the dataset is to be used, and the set of predictions is determined

based at least in part on the dataset format information.

13.  The system of claim 1, wherein building the plurality of models includes saving the
plurality of models, a set of optimized parameters corresponding to the plurality of models, and the

dataset used to train the plurality of models.

14.  The system of claim 1, wherein the one or more processors are further configured to:
expose, via an application programing interface, a model to a user, the model being exposed

in a unified format.

15.  The system of claim 14, wherein exposing the model to the user includes providing the

model to the user for export.

16.  The system of claim 1, wherein the at least one of the plurality of models is stored in cache

during optimization of the at least one of the plurality of models.

17.  The system of claim 1, wherein the at least one of the plurality of models are optimized

automatically in response to the plurality of models being built.

18.  The system of claim 1, wherein the one or more processors are further configured to:

receive, from a user, a request for a prediction, the request for the prediction comprising one
or more prediction parameters;

determine a prediction model based at least in part on the one or more prediction
parameters, the prediction model being selected from among the plurality of models;

use the prediction model to generate the prediction; and

provide the prediction to the user.

19. A method, comprising:
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receiving, by one or more processors, a data set, the dataset comprising a plurality of keys
and a plurality of key-value relationships;

determining a plurality of models to build based at least in part on the dataset, wherein
determining the plurality of models to build comprises using a dataset format information to
identify the plurality of models;

building the plurality of models; and

optimizing at least one of the plurality of models.

20. A computer program product embodied in a non-transitory computer readable medium and
comprising computer instructions for:

receiving, by one or more processors, a data set, the dataset comprising a plurality of keys
and a plurality of key-value relationships;

determining a plurality of models to build based at least in part on the dataset, wherein
determining the plurality of models to build comprises using a dataset format information to
identify the plurality of models;

building the plurality of models; and

optimizing at least one of the plurality of models.
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