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(57) ABSTRACT

(71) Applicant: Intel Corporation, Santa Clara, CA A processor includes cores to execute iqstructions, and
(US) circuitry to detect a system management interrupt (SMI)
event on the processor, direct an indication of the SMI event
. to an arbiter on a controller hub, and receive an interrupt
(72)  Inventor: ?Sg;‘thy Jayakumar, Portland, OR signal from the arbiter. The processor also includes an SMI
handler to take action in response to the interrupt, and
circuitry to communicate the interrupt signal to the cores.
(21) Appl. No.: 15/085,734 The cores include circuitry to pause while the SMI handler
responds to the interrupt. The interrupt handler includes
- circuitry to determine that a second SMI event detected on
(22) Filed: Mar. 30, 2016 the processor or controller hub is pending, and to take action
in response. The interrupt handler includes circuitry to set an
Publication Classification end-of-SMI bit to indicate that the interrupt handler has
completed its actions. The controller includes circuitry to
(51) Int. CL prevent the arbiter from issuing another interrupt to the
GO6F 13/24 (2006.01) processor while this bit is false.
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ARBITER BASED SERIALIZATION OF
PROCESSOR SYSTEM MANAGEMENT
INTERRUPT EVENTS

FIELD OF THE INVENTION

[0001] The present disclosure pertains to the field of
processing logic, microprocessors, and associated instruc-
tion set architecture that, when executed by the processor or
other processing logic, perform logical, mathematical, or
other functional operations.

DESCRIPTION OF RELATED ART

[0002] Multiprocessor systems are becoming more and
more common. Applications of multiprocessor systems
include dynamic domain partitioning all the way down to
desktop computing. In order to take advantage of multipro-
cessor systems, code to be executed may be separated into
multiple threads for execution by various processing enti-
ties. Bach thread may be executed in parallel with one
another. Pipelining of applications may be implemented in
systems in order to more efficiently execute applications.
System management interrupts and corresponding handlers
may be used to manage the system in response to certain
types of system errors and system events. Processors may be
implemented in a system on chip.

DESCRIPTION OF THE FIGURES

[0003] Embodiments are illustrated by way of example
and not limitation in the Figures of the accompanying
drawings:

[0004] FIG. 1A is a block diagram of an exemplary
computer system formed with a processor that may include
execution units to execute an instruction, in accordance with
embodiments of the present disclosure;

[0005] FIG. 1B illustrates a data processing system, in
accordance with embodiments of the present disclosure;
[0006] FIG. 1C illustrates other embodiments of a data
processing system for performing text string comparison
operations;

[0007] FIG. 2 is a block diagram of the micro-architecture
for a processor that may include logic circuits to perform
instructions, in accordance with embodiments of the present
disclosure;

[0008] FIG. 3A illustrates various packed data type rep-
resentations in multimedia registers, in accordance with
embodiments of the present disclosure;

[0009] FIG. 3B illustrates possible in-register data storage
formats, in accordance with embodiments of the present
disclosure;

[0010] FIG. 3C illustrates various signed and unsigned
packed data type representations in multimedia registers, in
accordance with embodiments of the present disclosure;

[0011] FIG. 3D illustrates an embodiment of an operation
encoding format;

[0012] FIG. 3E illustrates another possible operation
encoding format having forty or more bits, in accordance
with embodiments of the present disclosure;

[0013] FIG. 3F illustrates yet another possible operation
encoding format, in accordance with embodiments of the
present disclosure;

Oct. 5,2017

[0014] FIG. 4Ais a block diagram illustrating an in-order
pipeline and a register renaming stage, out-of-order issue/
execution pipeline, in accordance with embodiments of the
present disclosure;

[0015] FIG. 4B is a block diagram illustrating an in-order
architecture core and a register renaming logic, out-of-order
issue/execution logic to be included in a processor, in
accordance with embodiments of the present disclosure;
[0016] FIG. 5A is a block diagram of a processor, in
accordance with embodiments of the present disclosure;
[0017] FIG. 5B is a block diagram of an example imple-
mentation of a core, in accordance with embodiments of the
present disclosure;

[0018] FIG. 6 is a block diagram of a system, in accor-
dance with embodiments of the present disclosure;

[0019] FIG. 7 is a block diagram of a second system, in
accordance with embodiments of the present disclosure;
[0020] FIG. 8 is a block diagram of a third system in
accordance with embodiments of the present disclosure;
[0021] FIG. 9 is a block diagram of a system-on-a-chip, in
accordance with embodiments of the present disclosure;
[0022] FIG. 10 illustrates a processor containing a central
processing unit and a graphics processing unit which may
perform at least one instruction, in accordance with embodi-
ments of the present disclosure;

[0023] FIG. 11 is a block diagram illustrating the devel-
opment of IP cores, in accordance with embodiments of the
present disclosure;

[0024] FIG. 12 illustrates how an instruction of a first type
may be emulated by a processor of a different type, in
accordance with embodiments of the present disclosure;
[0025] FIG. 13 illustrates a block diagram contrasting the
use of a software instruction converter to convert binary
instructions in a source instruction set to binary instructions
in a target instruction set, in accordance with embodiments
of the present disclosure;

[0026] FIG. 14 is a block diagram of an instruction set
architecture of a processor, in accordance with embodiments
of the present disclosure;

[0027] FIG. 15 is a more detailed block diagram of an
instruction set architecture of a processor, in accordance
with embodiments of the present disclosure;

[0028] FIG. 16 is a block diagram of an execution pipeline
for an instruction set architecture of a processor, in accor-
dance with embodiments of the present disclosure;

[0029] FIG. 17 is a block diagram of an electronic device
for utilizing a processor, in accordance with embodiments of
the present disclosure;

[0030] FIG. 18 is an illustration of an example system for
arbitration based serialization of processor system manage-
ment interrupt (SMI) events, according to embodiments of
the present disclosure;

[0031] FIG. 19 is an illustration of a portion of a platform
controller hub (PCH) that includes SMI serialization logic,
according to embodiments of the present disclosure;
[0032] FIG. 20 is an illustration of a method for generating
and responding to processor system management interrupt
events, according to embodiments of the present disclosure;
[0033] FIG. 21 is an illustration of a method for serial-
ization of system management interrupt events by an arbiter,
according to embodiments of the present disclosure; and
[0034] FIG. 22 is an illustration of a method for handling
serialized system management interrupt events, according to
embodiments of the present disclosure.
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DETAILED DESCRIPTION

[0035] The following description describes a processing
apparatus and processing logic for arbitration based serial-
ization of processor system management interrupt (SMI)
events. Such a processing apparatus may include an out-of-
order processor. In the following description, numerous
specific details such as processing logic, processor types,
micro-architectural conditions, events, enablement mecha-
nisms, and the like are set forth in order to provide a more
thorough understanding of embodiments of the present
disclosure. It will be appreciated, however, by one skilled in
the art that the embodiments may be practiced without such
specific details. Additionally, some well-known structures,
circuits, and the like have not been shown in detail to avoid
unnecessarily obscuring embodiments of the present disclo-
sure.

[0036] Although the following embodiments are described
with reference to a processor, other embodiments are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present disclosure may be applied to other types of circuits
or semiconductor devices that may benefit from higher
pipeline throughput and improved performance. The teach-
ings of embodiments of the present disclosure are applicable
to any processor or machine that performs data manipula-
tions. However, the embodiments are not limited to proces-
sors or machines that perform 512-bit, 256-bit, 128-bit,
64-bit, 32-bit, or 16-bit data operations and may be applied
to any processor and machine in which manipulation or
management of data may be performed. In addition, the
following description provides examples, and the accompa-
nying drawings show various examples for the purposes of
illustration. However, these examples should not be con-
strued in a limiting sense as they are merely intended to
provide examples of embodiments of the present disclosure
rather than to provide an exhaustive list of all possible
implementations of embodiments of the present disclosure.
[0037] Although the below examples describe instruction
handling and distribution in the context of execution units
and logic circuits, other embodiments of the present disclo-
sure may be accomplished by way of a data or instructions
stored on a machine-readable, tangible medium, which when
performed by a machine cause the machine to perform
functions consistent with at least one embodiment of the
disclosure. In one embodiment, functions associated with
embodiments of the present disclosure are embodied in
machine-executable instructions. The instructions may be
used to cause a general-purpose or special-purpose proces-
sor that may be programmed with the instructions to perform
the steps of the present disclosure. Embodiments of the
present disclosure may be provided as a computer program
product or software which may include a machine or com-
puter-readable medium having stored thereon instructions
which may be used to program a computer (or other elec-
tronic devices) to perform one or more operations according
to embodiments of the present disclosure. Furthermore,
steps of embodiments of the present disclosure might be
performed by specific hardware components that contain
fixed-function logic for performing the steps, or by any
combination of programmed computer components and
fixed-function hardware components.

[0038] Instructions used to program logic to perform
embodiments of the present disclosure may be stored within
a memory in the system, such as DRAM, cache, flash
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memory, or other storage. Furthermore, the instructions may
be distributed via a network or by way of other computer-
readable media. Thus a machine-readable medium may
include any mechanism for storing or transmitting informa-
tion in a form readable by a machine (e.g., a computer), but
is not limited to, floppy diskettes, optical disks, Compact
Disc, Read-Only Memory (CD-ROMs), and magneto-opti-
cal disks, Read-Only Memory (ROMs), Random Access
Memory (RAM), Frasable Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), magnetic or optical cards,
flash memory, or a tangible, machine-readable storage used
in the transmission of information over the Internet via
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.). Accordingly, the computer-readable medium may
include any type of tangible machine-readable medium
suitable for storing or transmitting electronic instructions or
information in a form readable by a machine (e.g., a com-
puter).

[0039] A design may go through various stages, from
creation to simulation to fabrication. Data representing a
design may represent the design in a number of manners.
First, as may be useful in simulations, the hardware may be
represented using a hardware description language or
another functional description language. Additionally, a cir-
cuit level model with logic and/or transistor gates may be
produced at some stages of the design process. Furthermore,
designs, at some stage, may reach a level of data represent-
ing the physical placement of various devices in the hard-
ware model. In cases wherein some semiconductor fabrica-
tion techniques are used, the data representing the hardware
model may be the data specifying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored in any form of a machine-
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine-readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design is transmitted, to the extent that
copying, buffering, or retransmission of the electrical signal
is performed, a new copy may be made. Thus, a communi-
cation provider or a network provider may store on a
tangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present dis-
closure.

[0040] In modern processors, a number of different execu-
tion units may be used to process and execute a variety of
code and instructions. Some instructions may be quicker to
complete while others may take a number of clock cycles to
complete. The faster the throughput of instructions, the
better the overall performance of the processor. Thus it
would be advantageous to have as many instructions execute
as fast as possible. However, there may be certain instruc-
tions that have greater complexity and require more in terms
of execution time and processor resources, such as floating
point instructions, load/store operations, data moves, etc.

[0041] As more computer systems are used in internet,
text, and multimedia applications, additional processor sup-
port has been introduced over time. In one embodiment, an
instruction set may be associated with one or more computer
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architectures, including data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
T/0).

[0042] In one embodiment, the instruction set architecture
(ISA) may be implemented by one or more micro-architec-
tures, which may include processor logic and circuits used
to implement one or more instruction sets. Accordingly,
processors with different micro-architectures may share at
least a portion of a common instruction set. For example,
Intel® Pentium 4 processors, Intel® Core™ processors, and
processors from Advanced Micro Devices, Inc. of Sunny-
vale Calif. implement nearly identical versions of the x86
instruction set (with some extensions that have been added
with newer versions), but have different internal designs.
Similarly, processors designed by other processor develop-
ment companies, such as ARM Holdings, Ltd., MIPS, or
their licensees or adopters, may share at least a portion of a
common instruction set, but may include different processor
designs. For example, the same register architecture of the
ISA may be implemented in different ways in different
micro-architectures using new or well-known techniques,
including dedicated physical registers, one or more dynami-
cally allocated physical registers using a register renaming
mechanism (e.g., the use of a Register Alias Table (RAT), a
Reorder Buffer (ROB) and a retirement register file. In one
embodiment, registers may include one or more registers,
register architectures, register files, or other register sets that
may or may not be addressable by a software programmer.

[0043] An instruction may include one or more instruction
formats. In one embodiment, an instruction format may
indicate various fields (number of bits, location of bits, etc.)
to specify, among other things, the operation to be performed
and the operands on which that operation will be performed.
In a further embodiment, some instruction formats may be
further defined by instruction templates (or sub-formats).
For example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields and/or defined to have a given
field interpreted differently. In one embodiment, an instruc-
tion may be expressed using an instruction format (and, if
defined, in a given one of the instruction templates of that
instruction format) and specifies or indicates the operation
and the operands upon which the operation will operate.

[0044] Scientific, financial, auto-vectorized general pur-
pose, RMS (recognition, mining, and synthesis), and visual
and multimedia applications (e.g., 2D/3D graphics, image
processing, video compression/decompression, voice recog-
nition algorithms and audio manipulation) may require the
same operation to be performed on a large number of data
items. In one embodiment, Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used in processors that may logically
divide the bits in a register into a number of fixed-sized or
variable-sized data elements, each of which represents a
separate value. For example, in one embodiment, the bits in
a 64-bit register may be organized as a source operand
containing four separate 16-bit data elements, each of which
represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and
operands of this data type may be referred to as packed data
operands or vector operands. In one embodiment, a packed
data item or vector may be a sequence of packed data
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elements stored within a single register, and a packed data
operand or a vector operand may a source or destination
operand of a SIMD instruction (or ‘packed data instruction’
or a ‘vector instruction’). In one embodiment, a SIMD
instruction specifies a single vector operation to be per-
formed on two source vector operands to generate a desti-
nation vector operand (also referred to as a result vector
operand) of the same or different size, with the same or
different number of data elements, and in the same or
different data element order.

[0045] SIMD technology, such as that employed by the
Intel® Core™ processors having an instruction set including
x86, MMX™_ Streaming SIMD Extensions (SSE), SSE2,
SSE3, SSE4.1, and SSE4.2 instructions, ARM processors,
such as the ARM Cortex® family of processors having an
instruction set including the Vector Floating Point (VFP)
and/or NEON instructions, and MIPS processors, such as the
Loongson family of processors developed by the Institute of
Computing Technology (ICT) of the Chinese Academy of
Sciences, has enabled a significant improvement in appli-
cation performance (Core™ and MMX™ are registered
trademarks or trademarks of Intel Corporation of Santa
Clara, Calif.).

[0046] In one embodiment, destination and source regis-
ters/data may be generic terms to represent the source and
destination of the corresponding data or operation. In some
embodiments, they may be implemented by registers,
memory, or other storage areas having other names or
functions than those depicted. For example, in one embodi-
ment, “DEST1” may be a temporary storage register or other
storage area, whereas “SRC1” and “SRC2” may be a first
and second source storage register or other storage area, and
so forth. In other embodiments, two or more of the SRC and
DEST storage areas may correspond to different data storage
elements within the same storage area (e.g., a SIMD regis-
ter). In one embodiment, one of the source registers may also
act as a destination register by, for example, writing back the
result of an operation performed on the first and second
source data to one of the two source registers serving as a
destination registers.

[0047] FIG. 1A is a block diagram of an exemplary
computer system formed with a processor that may include
execution units to execute an instruction, in accordance with
embodiments of the present disclosure. System 100 may
include a component, such as a processor 102 to employ
execution units including logic to perform algorithms for
process data, in accordance with the present disclosure, such
as in the embodiment described herein. System 100 may be
representative of processing systems based on the PEN-
TIUM® I1I, PENTIUM® 4, Xeon™, Itanium®, XScale™
and/or StrongARM™ microprocessors available from Intel
Corporation of Santa Clara, Calif., although other systems
(including PCs having other microprocessors, engineering
workstations, set-top boxes and the like) may also be used.
In one embodiment, sample system 100 may execute a
version of the WINDOWS?’ operating system available from
Microsoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux for example), embed-
ded software, and/or graphical user interfaces, may also be
used. Thus, embodiments of the present disclosure are not
limited to any specific combination of hardware circuitry
and software.

[0048] Embodiments are not limited to computer systems.
Embodiments of the present disclosure may be used in other
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devices such as handheld devices and embedded applica-
tions. Some examples of handheld devices include cellular
phones, Internet Protocol devices, digital cameras, personal
digital assistants (PDAs), and handheld PCs. Embedded
applications may include a micro controller, a digital signal
processor (DSP), system on a chip, network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or any other system that may perform one
or more instructions in accordance with at least one embodi-
ment.

[0049] Computer system 100 may include a processor 102
that may include one or more execution units 108 to perform
an algorithm to perform at least one instruction in accor-
dance with one embodiment of the present disclosure. One
embodiment may be described in the context of a single
processor desktop or server system, but other embodiments
may be included in a multiprocessor system. System 100
may be an example of a ‘hub’ system architecture. System
100 may include a processor 102 for processing data signals.
Processor 102 may include a complex instruction set com-
puter (CISC) microprocessor, a reduced instruction set com-
puting (RISC) microprocessor, a very long instruction word
(VLIW) microprocessor, a processor implementing a com-
bination of instruction sets, or any other processor device,
such as a digital signal processor, for example. In one
embodiment, processor 102 may be coupled to a processor
bus 110 that may transmit data signals between processor
102 and other components in system 100. The elements of
system 100 may perform conventional functions that are
well known to those familiar with the art.

[0050] In one embodiment, processor 102 may include a
Level 1 (L1) internal cache memory 104. Depending on the
architecture, the processor 102 may have a single internal
cache or multiple levels of internal cache. In another
embodiment, the cache memory may reside external to
processor 102. Other embodiments may also include a
combination of both internal and external caches depending
on the particular implementation and needs. Register file
106 may store different types of data in various registers
including integer registers, floating point registers, status
registers, and instruction pointer register.

[0051] Execution unit 108, including logic to perform
integer and floating point operations, also resides in proces-
sor 102. Processor 102 may also include a microcode
(ucode) ROM that stores microcode for certain macroin-
structions. In one embodiment, execution unit 108 may
include logic to handle a packed instruction set 109. By
including the packed instruction set 109 in the instruction set
of a general-purpose processor 102, along with associated
circuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data in a general-purpose processor 102. Thus, many
multimedia applications may be accelerated and executed
more efficiently by using the full width of a processor’s data
bus for performing operations on packed data. This may
eliminate the need to transfer smaller units of data across the
processor’s data bus to perform one or more operations one
data element at a time.

[0052] Embodiments of an execution unit 108 may also be
used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 100
may include a memory 120. Memory 120 may be imple-
mented as a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device,
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flash memory device, or other memory device. Memory 120
may store instructions 119 and/or data 121 represented by
data signals that may be executed by processor 102.
[0053] A system logic chip 116 may be coupled to pro-
cessor bus 110 and memory 120. System logic chip 116 may
include a memory controller hub (MCH). Processor 102
may communicate with MCH 116 via a processor bus 110.
MCH 116 may provide a high bandwidth memory path 118
to memory 120 for storage of instructions 119 and data 121
and for storage of graphics commands, data and textures.
MCH 116 may direct data signals between processor 102,
memory 120, and other components in system 100 and to
bridge the data signals between processor bus 110, memory
120, and system 1/O 122. In some embodiments, the system
logic chip 116 may provide a graphics port for coupling to
a graphics controller 112. MCH 116 may be coupled to
memory 120 through a memory interface 118. Graphics card
112 may be coupled to MCH 116 through an Accelerated
Graphics Port (AGP) interconnect 114.

[0054] System 100 may use a proprietary hub interface
bus 122 to couple MCH 116 to I/O controller hub (ICH) 130.
In one embodiment, ICH 130 may provide direct connec-
tions to some 1/O devices via a local I/O bus. The local 1/O
bus may include a high-speed I/O bus for connecting periph-
erals to memory 120, chipset, and processor 102. Examples
may include the audio controller 129, firmware hub (flash
BIOS) 128, wireless transceiver 126, data storage 124,
legacy 1/O controller 123 containing user input interface 125
(which may include a keyboard interface), a serial expansion
port 127 such as Universal Serial Bus (USB), and a network
controller 134. Data storage device 124 may comprise a hard
disk drive, a floppy disk drive, a CD-ROM device, a flash
memory device, or other mass storage device.

[0055] For another embodiment of a system, an instruction
in accordance with one embodiment may be used with a
system on a chip. One embodiment of a system on a chip
comprises of a processor and a memory. The memory for
one such system may include a flash memory. The flash
memory may be located on the same die as the processor and
other system components. Additionally, other logic blocks
such as a memory controller or graphics controller may also
be located on a system on a chip.

[0056] FIG. 1B illustrates a data processing system 140
which implements the principles of embodiments of the
present disclosure. It will be readily appreciated by one of
skill in the art that the embodiments described herein may
operate with alternative processing systems without depar-
ture from the scope of embodiments of the disclosure.
[0057] Computer system 140 comprises a processing core
159 for performing at least one instruction in accordance
with one embodiment. In one embodiment, processing core
159 represents a processing unit of any type of architecture,
including but not limited to a CISC, a RISC or a VLIW type
architecture. Processing core 159 may also be suitable for
manufacture in one or more process technologies and by
being represented on a machine-readable media in sufficient
detail, may be suitable to facilitate said manufacture.
[0058] Processing core 159 comprises an execution unit
142, a set of register files 145, and a decoder 144. Processing
core 159 may also include additional circuitry (not shown)
which may be unnecessary to the understanding of embodi-
ments of the present disclosure. Execution unit 142 may
execute instructions received by processing core 159. In
addition to performing typical processor instructions, execu-
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tion unit 142 may perform instructions in packed instruction
set 143 for performing operations on packed data formats.
Packed instruction set 143 may include instructions for
performing embodiments of the disclosure and other packed
instructions. Execution unit 142 may be coupled to register
file 145 by an internal bus. Register file 145 may represent
a storage area on processing core 159 for storing informa-
tion, including data. As previously mentioned, it is under-
stood that the storage area may store the packed data might
not be critical. Execution unit 142 may be coupled to
decoder 144. Decoder 144 may decode instructions received
by processing core 159 into control signals and/or micro-
code entry points. In response to these control signals and/or
microcode entry points, execution unit 142 performs the
appropriate operations. In one embodiment, the decoder may
interpret the opcode of the instruction, which will indicate
what operation should be performed on the corresponding
data indicated within the instruction.

[0059] Processing core 159 may be coupled with bus 141
for communicating with various other system devices,
which may include but are not limited to, for example,
synchronous dynamic random access memory (SDRAM)
control 146, static random access memory (SRAM) control
147, burst flash memory interface 148, personal computer
memory card international association (PCMCIA)/compact
flash (CF) card control 149, liquid crystal display (LCD)
control 150, direct memory access (DMA) controller 151,
and alternative bus master interface 152. In one embodi-
ment, data processing system 140 may also comprise an I/O
bridge 154 for communicating with various I/O devices via
an I/O bus 153. Such I/O devices may include but are not
limited to, for example, universal asynchronous receiver/
transmitter (UART) 155, universal serial bus (USB) 156,
Bluetooth wireless UART 157 and I/O expansion interface
158.

[0060] One embodiment of data processing system 140
provides for mobile, network and/or wireless communica-
tions and a processing core 159 that may perform SIMD
operations including a text string comparison operation.
Processing core 159 may be programmed with various
audio, video, imaging and communications algorithms
including discrete transformations such as a Walsh-Had-
amard transform, a fast Fourier transform (FFT), a discrete
cosine transform (DCT), and their respective inverse trans-
forms; compression/decompression techniques such as color
space transformation, video encode motion estimation or
video decode motion compensation; and modulation/de-
modulation (MODEM) functions such as pulse coded modu-
lation (PCM).

[0061] FIG. 1C illustrates other embodiments of a data
processing system that performs SIMD text string compari-
son operations. In one embodiment, data processing system
160 may include a main processor 166, a SIMD coprocessor
161, a cache memory 167, and an input/output system 168.
Input/output system 168 may optionally be coupled to a
wireless interface 169. SIMD coprocessor 161 may perform
operations including instructions in accordance with one
embodiment. In one embodiment, processing core 170 may
be suitable for manufacture in one or more process tech-
nologies and by being represented on a machine-readable
media in sufficient detail, may be suitable to facilitate the
manufacture of all or part of data processing system 160
including processing core 170.
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[0062] In one embodiment, SIMD coprocessor 161 com-
prises an execution unit 162 and a set of register files 164.
One embodiment of main processor 166 comprises a
decoder 165 to recognize instructions of instruction set 163
including instructions in accordance with one embodiment
for execution by execution unit 162. In other embodiments,
SIMD coprocessor 161 also comprises at least part of
decoder 165 (shown as 165B) to decode instructions of
instruction set 163. Processing core 170 may also include
additional circuitry (not shown) which may be unnecessary
to the understanding of embodiments of the present disclo-
sure.

[0063] Inoperation, main processor 166 executes a stream
of data processing instructions that control data processing
operations of a general type including interactions with
cache memory 167, and input/output system 168. Embedded
within the stream of data processing instructions may be
SIMD coprocessor instructions. Decoder 165 of main pro-
cessor 166 recognizes these SIMD coprocessor instructions
as being of a type that should be executed by an attached
SIMD coprocessor 161. Accordingly, main processor 166
issues these SIMD coprocessor instructions (or control sig-
nals representing SIMD coprocessor instructions) on the
coprocessor bus 166. From coprocessor bus 171, these
instructions may be received by any attached SIMD copro-
cessors. In this case, SIMD coprocessor 161 may accept and
execute any received SIMD coprocessor instructions
intended for it.

[0064] Data may be received via wireless interface 169 for
processing by the SIMD coprocessor instructions. For one
example, voice communication may be received in the form
of a digital signal, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples
representative of the voice communications. For another
example, compressed audio and/or video may be received in
the form of a digital bit stream, which may be processed by
the SIMD coprocessor instructions to regenerate digital
audio samples and/or motion video frames. In one embodi-
ment of processing core 170, main processor 166, and a
SIMD coprocessor 161 may be integrated into a single
processing core 170 comprising an execution unit 162, a set
of register files 164, and a decoder 165 to recognize instruc-
tions of instruction set 163 including instructions in accor-
dance with one embodiment.

[0065] FIG. 2 is a block diagram of the micro-architecture
for a processor 200 that may include logic circuits to
perform instructions, in accordance with embodiments of
the present disclosure. In some embodiments, an instruction
in accordance with one embodiment may be implemented to
operate on data elements having sizes of byte, word, double-
word, quadword, etc., as well as datatypes, such as single
and double precision integer and floating point datatypes. In
one embodiment, in-order front end 201 may implement a
part of processor 200 that may fetch instructions to be
executed and prepares the instructions to be used later in the
processor pipeline. Front end 201 may include several units.
In one embodiment, instruction prefetcher 226 fetches
instructions from memory and feeds the instructions to an
instruction decoder 228 which in turn decodes or interprets
the instructions. For example, in one embodiment, the
decoder decodes a received instruction into one or more
operations called “micro-instructions” or “micro-opera-
tions” (also called micro op or uops) that the machine may
execute. In other embodiments, the decoder parses the
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instruction into an opcode and corresponding data and
control fields that may be used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, trace cache 230 may assemble decoded
uops into program ordered sequences or traces in uop queue
234 for execution. When trace cache 230 encounters a
complex instruction, microcode ROM 232 provides the uops
needed to complete the operation.

[0066] Some instructions may be converted into a single
micro-op, whereas others need several micro-ops to com-
plete the full operation. In one embodiment, if more than
four micro-ops are needed to complete an instruction,
decoder 228 may access microcode ROM 232 to perform the
instruction. In one embodiment, an instruction may be
decoded into a small number of micro ops for processing at
instruction decoder 228. In another embodiment, an instruc-
tion may be stored within microcode ROM 232 should a
number of micro-ops be needed to accomplish the operation.
Trace cache 230 refers to an entry point programmable logic
array (PLA) to determine a correct micro-instruction pointer
for reading the micro-code sequences to complete one or
more instructions in accordance with one embodiment from
micro-code ROM 232. After microcode ROM 232 finishes
sequencing micro-ops for an instruction, front end 201 of the
machine may resume fetching micro-ops from trace cache
230.

[0067] Out-of-order execution engine 203 may prepare
instructions for execution. The out-of-order execution logic
has a number of buffers to smooth out and re-order the flow
of instructions to optimize performance as they go down the
pipeline and get scheduled for execution. The allocator logic
in allocator/register renamer 215 allocates the machine
buffers and resources that each uop needs in order to
execute. The register renaming logic in allocator/register
renamer 215 renames logic registers onto entries in a register
file. The allocator 215 also allocates an entry for each uop in
one of the two uop queues, one for memory operations
(memory uop queue 207) and one for non-memory opera-
tions (integer/floating point uop queue 205), in front of the
instruction schedulers: memory scheduler 209, fast sched-
uler 202, slow/general floating point scheduler 204, and
simple floating point scheduler 206. Uop schedulers 202,
204, 206, determine when a uop is ready to execute based on
the readiness of their dependent input register operand
sources and the availability of the execution resources the
uops need to complete their operation. Fast scheduler 202 of
one embodiment may schedule on each half of the main
clock cycle while the other schedulers may only schedule
once per main processor clock cycle. The schedulers arbi-
trate for the dispatch ports to schedule uops for execution.

[0068] Register files 208, 210 may be arranged between
schedulers 202, 204, 206, and execution units 212, 214, 216,
218, 220, 222, 224 in execution block 211. Each of register
files 208, 210 perform integer and floating point operations,
respectively. Each register file 208, 210, may include a
bypass network that may bypass or forward just completed
results that have not yet been written into the register file to
new dependent uops. Integer register file 208 and floating
point register file 210 may communicate data with the other.
In one embodiment, integer register file 208 may be split
into two separate register files, one register file for low-order
thirty-two bits of data and a second register file for high
order thirty-two bits of data. Floating point register file 210
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may include 128-bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

[0069] Execution block 211 may contain execution units
212, 214, 216, 218, 220, 222, 224. Execution units 212, 214,
216, 218, 220, 222, 224 may execute the instructions.
Execution block 211 may include register files 208, 210 that
store the integer and floating point data operand values that
the micro-instructions need to execute. In one embodiment,
processor 200 may comprise a number of execution units:
address generation unit (AGU) 212, AGU 214, fast ALU
216, fast ALU 218, slow ALU 220, floating point ALU 222,
floating point move unit 224. In another embodiment, float-
ing point execution blocks 222, 224, may execute floating
point, MMX, SIMD, and SSE, or other operations. In yet
another embodiment, floating point AL U 222 may include a
64-bit by 64-bit floating point divider to execute divide,
square root, and remainder micro-ops. In various embodi-
ments, instructions involving a floating point value may be
handled with the floating point hardware. In one embodi-
ment, ALU operations may be passed to high-speed ALU
execution units 216, 218. High-speed ALUs 216, 218 may
execute fast operations with an effective latency of half a
clock cycle. In one embodiment, most complex integer
operations go to slow ALU 220 as slow ALU 220 may
include integer execution hardware for long-latency type of
operations, such as a multiplier, shifts, flag logic, and branch
processing. Memory load/store operations may be executed
by AGUs 212, 214. In one embodiment, integer ALUs 216,
218, 220 may perform integer operations on 64-bit data
operands. In other embodiments, AL Us 216, 218, 220 may
be implemented to support a variety of data bit sizes
including sixteen, thirty-two, 128, 256, etc. Similarly, float-
ing point units 222, 224 may be implemented to support a
range of operands having bits of various widths. In one
embodiment, floating point units 222, 224, may operate on
128-bit wide packed data operands in conjunction with
SIMD and multimedia instructions.

[0070] Inone embodiment, uops schedulers 202, 204, 206,
dispatch dependent operations before the parent load has
finished executing. As uops may be speculatively scheduled
and executed in processor 200, processor 200 may also
include logic to handle memory misses. If a data load misses
in the data cache, there may be dependent operations in
flight in the pipeline that have left the scheduler with
temporarily incorrect data. A replay mechanism tracks and
re-executes instructions that use incorrect data. Only the
dependent operations might need to be replayed and the
independent ones may be allowed to complete. The sched-
ulers and replay mechanism of one embodiment of a pro-
cessor may also be designed to catch instruction sequences
for text string comparison operations.

[0071] The term “registers” may refer to the on-board
processor storage locations that may be used as part of
instructions to identify operands. In other words, registers
may be those that may be usable from the outside of the
processor (from a programmer’s perspective). However, in
some embodiments registers might not be limited to a
particular type of circuit. Rather, a register may store data,
provide data, and perform the functions described herein.
The registers described herein may be implemented by
circuitry within a processor using any number of different
techniques, such as dedicated physical registers, dynami-
cally allocated physical registers using register renaming,
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combinations of dedicated and dynamically allocated physi-
cal registers, etc. In one embodiment, integer registers store
32-bit integer data. A register file of one embodiment also
contains eight multimedia SIMD registers for packed data.
For the discussions below, the registers may be understood
to be data registers designed to hold packed data, such as
64-bit wide MMX' registers (also referred to as ‘mm’
registers in some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, may operate with packed data elements
that accompany SIMD and SSE instructions. Similarly,
128-bit wide XMM registers relating to SSE2, SSE3, SSE4,
or beyond (referred to generically as “SSEx”) technology
may hold such packed data operands. In one embodiment, in
storing packed data and integer data, the registers do not
need to differentiate between the two data types. In one
embodiment, integer and floating point data may be con-
tained in the same register file or different register files.
Furthermore, in one embodiment, floating point and integer
data may be stored in different registers or the same regis-
ters.

[0072] In the examples of the following figures, a number
of data operands may be described. FIG. 3A illustrates
various packed data type representations in multimedia
registers, in accordance with embodiments of the present
disclosure. FIG. 3A illustrates data types for a packed byte
310, a packed word 320, and a packed doubleword (dword)
330 for 128-bit wide operands. Packed byte format 310 of
this example may be 128 bits long and contains sixteen
packed byte data elements. A byte may be defined, for
example, as eight bits of data. Information for each byte data
element may be stored in bit 7 through bit 0 for byte 0, bit
15 through bit 8 for byte 1, bit 23 through bit 16 for byte 2,
and finally bit 120 through bit 127 for byte 15. Thus, all
available bits may be used in the register. This storage
arrangement increases the storage efficiency of the proces-
sor. As well, with sixteen data elements accessed, one
operation may now be performed on sixteen data elements
in parallel.

[0073] Generally, a data element may include an indi-
vidual piece of data that is stored in a single register or
memory location with other data elements of the same
length. In packed data sequences relating to SSEx technol-
ogy, the number of data elements stored in a XMM register
may be 128 bits divided by the length in bits of an individual
data element. Similarly, in packed data sequences relating to
MMX and SSE technology, the number of data elements
stored in an MMX register may be 64 bits divided by the
length in bits of an individual data element. Although the
data types illustrated in FIG. 3A may be 128 bits long,
embodiments of the present disclosure may also operate
with 64-bit wide or other sized operands. Packed word
format 320 of this example may be 128 bits long and
contains eight packed word data elements. Each packed
word contains sixteen bits of information. Packed double-
word format 330 of FIG. 3A may be 128 bits long and
contains four packed doubleword data elements. Each
packed doubleword data element contains thirty-two bits of
information. A packed quadword may be 128 bits long and
contain two packed quad-word data elements.

[0074] FIG. 3B illustrates possible in-register data storage
formats, in accordance with embodiments of the present
disclosure. Each packed data may include more than one
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independent data element. Three packed data formats are
illustrated; packed half 341, packed single 342, and packed
double 343. One embodiment of packed half 341, packed
single 342, and packed double 343 contain fixed-point data
elements. For another embodiment one or more of packed
half 341, packed single 342, and packed double 343 may
contain floating-point data elements. One embodiment of
packed half 341 may be 128 bits long containing eight 16-bit
data elements. One embodiment of packed single 342 may
be 128 bits long and contains four 32-bit data elements. One
embodiment of packed double 343 may be 128 bits long and
contains two 64-bit data elements. It will be appreciated that
such packed data formats may be further extended to other
register lengths, for example, to 96-bits, 160-bits, 192-bits,
224-bits, 256-bits or more.

[0075] FIG. 3C illustrates various signed and unsigned
packed data type representations in multimedia registers, in
accordance with embodiments of the present disclosure.
Unsigned packed byte representation 344 illustrates the
storage of an unsigned packed byte in a SIMD register.
Information for each byte data element may be stored in bit
7 through bit 0 for byte 0, bit 15 through bit 8 for byte 1, bit
23 through bit 16 for byte 2, and finally bit 120 through bit
127 for byte 15. Thus, all available bits may be used in the
register. This storage arrangement may increase the storage
efficiency of the processor. As well, with sixteen data
elements accessed, one operation may now be performed on
sixteen data elements in a parallel fashion. Signed packed
byte representation 345 illustrates the storage of a signed
packed byte. Note that the eighth bit of every byte data
element may be the sign indicator. Unsigned packed word
representation 346 illustrates how word seven through word
zero may be stored in a SIMD register. Signed packed word
representation 347 may be similar to the unsigned packed
word in-register representation 346. Note that the sixteenth
bit of each word data element may be the sign indicator.
Unsigned packed doubleword representation 348 shows
how doubleword data elements are stored. Signed packed
doubleword representation 349 may be similar to unsigned
packed doubleword in-register representation 348. Note that
the necessary sign bit may be the thirty-second bit of each
doubleword data element.

[0076] FIG. 3D illustrates an embodiment of an operation
encoding (opcode). Furthermore, format 360 may include
register/memory operand addressing modes corresponding
with a type of opcode format described in the “TA-32 Intel
Architecture Software Developer’s Manual Volume 2:
Instruction Set Reference,” which is available from Intel
Corporation, Santa Clara, Calif. on the world-wide-web
(www) at intel.com/design/litcentr. In one embodiment, an
instruction may be encoded by one or more of fields 361 and
362. Up to two operand locations per instruction may be
identified, including up to two source operand identifiers
364 and 365. In one embodiment, destination operand
identifier 366 may be the same as source operand identifier
364, whereas in other embodiments they may be different. In
another embodiment, destination operand identifier 366 may
be the same as source operand identifier 365, whereas in
other embodiments they may be different. In one embodi-
ment, one of the source operands identified by source
operand identifiers 364 and 365 may be overwritten by the
results of the text string comparison operations, whereas in
other embodiments identifier 364 corresponds to a source
register element and identifier 365 corresponds to a desti-
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nation register element. In one embodiment, operand iden-
tifiers 364 and 365 may identify 32-bit or 64-bit source and
destination operands.

[0077] FIG. 3E illustrates another possible operation
encoding (opcode) format 370, having forty or more bits, in
accordance with embodiments of the present disclosure.
Opcode format 370 corresponds with opcode format 360 and
comprises an optional prefix byte 378. An instruction
according to one embodiment may be encoded by one or
more of fields 378, 371, and 372. Up to two operand
locations per instruction may be identified by source oper-
and identifiers 374 and 375 and by prefix byte 378. In one
embodiment, prefix byte 378 may be used to identify 32-bit
or 64-bit source and destination operands. In one embodi-
ment, destination operand identifier 376 may be the same as
source operand identifier 374, whereas in other embodi-
ments they may be different. For another embodiment,
destination operand identifier 376 may be the same as source
operand identifier 375, whereas in other embodiments they
may be different. In one embodiment, an instruction operates
on one or more of the operands identified by operand
identifiers 374 and 375 and one or more operands identified
by operand identifiers 374 and 375 may be overwritten by
the results of the instruction, whereas in other embodiments,
operands identified by identifiers 374 and 375 may be
written to another data element in another register. Opcode
formats 360 and 370 allow register to register, memory to
register, register by memory, register by register, register by
immediate, register to memory addressing specified in part
by MOD fields 363 and 373 and by optional scale-index-
base and displacement bytes.

[0078] FIG. 3F illustrates yet another possible operation
encoding (opcode) format, in accordance with embodiments
of the present disclosure. 64-bit single instruction multiple
data (SIMD) arithmetic operations may be performed
through a coprocessor data processing (CDP) instruction.
Operation encoding (opcode) format 380 depicts one such
CDP instruction having CDP opcode fields 382 and 389. The
type of CDP instruction, for another embodiment, operations
may be encoded by one or more of fields 383, 384, 387, and
388. Up to three operand locations per instruction may be
identified, including up to two source operand identifiers
385 and 390 and one destination operand identifier 386. One
embodiment of the coprocessor may operate on eight, six-
teen, thirty-two, and 64-bit values. In one embodiment, an
instruction may be performed on integer data elements. In
some embodiments, an instruction may be executed condi-
tionally, using condition field 381. For some embodiments,
source data sizes may be encoded by field 383. In some
embodiments, Zero (Z), negative (N), carry (C), and over-
flow (V) detection may be done on SIMD fields. For some
instructions, the type of saturation may be encoded by field
384.

[0079] FIG. 4Ais a block diagram illustrating an in-order
pipeline and a register renaming stage, out-of-order issue/
execution pipeline, in accordance with embodiments of the
present disclosure. FIG. 4B is a block diagram illustrating an
in-order architecture core and a register renaming logic,
out-of-order issue/execution logic to be included in a pro-
cessor, in accordance with embodiments of the present
disclosure. The solid lined boxes in FIG. 4A illustrate the
in-order pipeline, while the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline.
Similarly, the solid lined boxes in FIG. 4B illustrate the
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in-order architecture logic, while the dashed lined boxes
illustrates the register renaming logic and out-of-order issue/
execution logic.

[0080] In FIG. 4A, a processor pipeline 400 may include
a fetch stage 402, a length decode stage 404, a decode stage
406, an allocation stage 408, a renaming stage 410, a
scheduling (also known as a dispatch or issue) stage 412, a
register read/memory read stage 414, an execute stage 416,
a write-back/memory-write stage 418, an exception han-
dling stage 422, and a commit stage 424.

[0081] InFIG. 4B, arrows denote a coupling between two
or more units and the direction of the arrow indicates a
direction of data flow between those units. FIG. 4B shows
processor core 490 including a front end unit 430 coupled to
an execution engine unit 450, and both may be coupled to a
memory unit 470.

[0082] Core 490 may be a reduced instruction set com-
puting (RISC) core, a complex instruction set computing
(CISC) core, a very long instruction word (VLIW) core, or
a hybrid or alternative core type. In one embodiment, core
490 may be a special-purpose core, such as, for example, a
network or communication core, compression engine,
graphics core, or the like.

[0083] Front end unit 430 may include a branch prediction
unit 432 coupled to an instruction cache unit 434. Instruction
cache unit 434 may be coupled to an instruction translation
lookaside buffer (TLB) 436. TL.B 436 may be coupled to an
instruction fetch unit 438, which is coupled to a decode unit
440. Decode unit 440 may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which may be decoded from, or which otherwise
reflect, or may be derived from, the original instructions.
The decoder may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read-
only memories (ROMs), etc. In one embodiment, instruction
cache unit 434 may be further coupled to a level 2 (I.2) cache
unit 476 in memory unit 470. Decode unit 440 may be
coupled to a rename/allocator unit 452 in execution engine
unit 450.

[0084] Execution engine unit 450 may include rename/
allocator unit 452 coupled to a retirement unit 454 and a set
of one or more scheduler units 456. Scheduler units 456
represent any number of different schedulers, including
reservations stations, central instruction window, etc. Sched-
uler units 456 may be coupled to physical register file units
458. Each of physical register file units 458 represents one
or more physical register files, different ones of which store
one or more different data types, such as scalar integer,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point, etc., status (e.g., an
instruction pointer that is the address of the next instruction
to be executed), etc. Physical register file units 458 may be
overlapped by retirement unit 454 to illustrate various ways
in which register renaming and out-of-order execution may
be implemented (e.g., using one or more reorder buffers and
one or more retirement register files, using one or more
future files, one or more history buffers, and one or more
retirement register files; using register maps and a pool of
registers; etc.). Generally, the architectural registers may be
visible from the outside of the processor or from a program-
mer’s perspective. The registers might not be limited to any
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known particular type of circuit. Various different types of
registers may be suitable as long as they store and provide
data as described herein. Examples of suitable registers
include, but might not be limited to, dedicated physical
registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. Retirement unit 454
and physical register file units 458 may be coupled to
execution clusters 460. Execution clusters 460 may include
a set of one or more execution units 462 and a set of one or
more memory access units 464. Execution units 462 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. Scheduler units 456,
physical register file units 458, and execution clusters 460
are shown as being possibly plural because certain embodi-
ments create separate pipelines for certain types of data/
operations (e.g., a scalar integer pipeline, a scalar floating
point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access
pipeline that each have their own scheduler unit, physical
register file unit, and/or execution cluster—and in the case
of a separate memory access pipeline, certain embodiments
may be implemented in which only the execution cluster of
this pipeline has memory access units 464). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

[0085] The set of memory access units 464 may be
coupled to memory unit 470, which may include a data TL.B
unit 472 coupled to a data cache unit 474 coupled to a level
2 (L2) cache unit 476. In one exemplary embodiment,
memory access units 464 may include a load unit, a store
address unit, and a store data unit, each of which may be
coupled to data TLB unit 472 in memory unit 470. .2 cache
unit 476 may be coupled to one or more other levels of cache
and eventually to a main memory.

[0086] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement pipeline 400 as follows: 1) instruction fetch 438
may perform fetch and length decoding stages 402 and 404;
2) decode unit 440 may perform decode stage 406; 3)
rename/allocator unit 452 may perform allocation stage 408
and renaming stage 410; 4) scheduler units 456 may perform
schedule stage 412; 5) physical register file units 458 and
memory unit 470 may perform register read/memory read
stage 414; execution cluster 460 may perform execute stage
416; 6) memory unit 470 and physical register file units 458
may perform write-back/memory-write stage 418; 7) vari-
ous units may be involved in the performance of exception
handling stage 422; and 8) retirement unit 454 and physical
register file units 458 may perform commit stage 424.

[0087] Core 490 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

Oct. 5,2017

[0088] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads) in a variety of manners. Multithread-
ing support may be performed by, for example, including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof. Such a combination
may include, for example, time sliced fetching and decoding
and simultaneous multithreading thereafter such as in the
Intel® Hyperthreading technology.

[0089] While register renaming may be described in the
context of out-of-order execution, it should be understood
that register renaming may be used in an in-order architec-
ture. While the illustrated embodiment of the processor may
also include a separate instruction and data cache units
434/474 and a shared L2 cache unit 476, other embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that may be external to the core and/or the
processor. In other embodiments, all of the caches may be
external to the core and/or the processor.

[0090] FIG. 5A is a block diagram of a processor 500, in
accordance with embodiments of the present disclosure. In
one embodiment, processor 500 may include a multicore
processor. Processor 500 may include a system agent 510
communicatively coupled to one or more cores 502. Fur-
thermore, cores 502 and system agent 510 may be commu-
nicatively coupled to one or more caches 506. Cores 502,
system agent 510, and caches 506 may be communicatively
coupled via one or more memory control units 552. Fur-
thermore, cores 502, system agent 510, and caches 506 may
be communicatively coupled to a graphics module 560 via
memory control units 552.

[0091] Processor 500 may include any suitable mecha-
nism for interconnecting cores 502, system agent 510, and
caches 506, and graphics module 560. In one embodiment,
processor 500 may include a ring-based interconnect unit
508 to interconnect cores 502, system agent 510, and caches
506, and graphics module 560. In other embodiments,
processor 500 may include any number of well-known
techniques for interconnecting such units. Ring-based inter-
connect unit 508 may utilize memory control units 552 to
facilitate interconnections.

[0092] Processor 500 may include a memory hierarchy
comprising one or more levels of caches within the cores,
one or more shared cache units such as caches 506, or
external memory (not shown) coupled to the set of inte-
grated memory controller units 552. Caches 506 may
include any suitable cache. In one embodiment, caches 506
may include one or more mid-level caches, such as level 2
(L2),1evel 3 (L3), level 4 (1.4), or other levels of cache, a last
level cache (LLL.C), and/or combinations thereof.

[0093] In various embodiments, one or more of cores 502
may perform multi-threading. System agent 510 may
include components for coordinating and operating cores
502. System agent unit 510 may include for example a
power control unit (PCU). The PCU may be or include logic
and components needed for regulating the power state of
cores 502. System agent 510 may include a display engine
512 for driving one or more externally connected displays or
graphics module 560. System agent 510 may include an
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interface 514 for communications busses for graphics. In
one embodiment, interface 514 may be implemented by PCI
Express (PCle). In a further embodiment, interface 514 may
be implemented by PCI Express Graphics (PEG). System
agent 510 may include a direct media interface (DMI) 516.
DMI 516 may provide links between different bridges on a
motherboard or other portion of a computer system. System
agent 510 may include a PCle bridge 518 for providing PCle
links to other elements of a computing system. PCle bridge
518 may be implemented using a memory controller 520 and
coherence logic 522.

[0094] Cores 502 may be implemented in any suitable
manner. Cores 502 may be homogenous or heterogeneous in
terms of architecture and/or instruction set. In one embodi-
ment, some of cores 502 may be in-order while others may
be out-of-order. In another embodiment, two or more of
cores 502 may execute the same instruction set, while others
may execute only a subset of that instruction set or a
different instruction set.

[0095] Processor 500 may include a general-purpose pro-
cessor, such as a Core™ i3, 15, 17, 2 Duo and Quad, Xeon™,
Ttanium™, XScale™ or StrongARM™ processor, which
may be available from Intel Corporation, of Santa Clara,
Calif. Processor 500 may be provided from another com-
pany, such as ARM Holdings, Ltd, MIPS, etc. Processor 500
may be a special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, co-processor, embedded processor, or
the like. Processor 500 may be implemented on one or more
chips. Processor 500 may be a part of and/or may be
implemented on one or more substrates using any of a
number of process technologies, such as, for example,
BiCMOS, CMOS, or NMOS.

[0096] Inone embodiment, a given one of caches 506 may
be shared by multiple ones of cores 502. In another embodi-
ment, a given one of caches 506 may be dedicated to one of
cores 502. The assignment of caches 506 to cores 502 may
be handled by a cache controller or other suitable mecha-
nism. A given one of caches 506 may be shared by two or
more cores 502 by implementing time-slices of a given
cache 506.

[0097] Graphics module 560 may implement an integrated
graphics processing subsystem. In one embodiment, graph-
ics module 560 may include a graphics processor. Further-
more, graphics module 560 may include a media engine 565.
Media engine 565 may provide media encoding and video
decoding.

[0098] FIG. 5B is a block diagram of an example imple-
mentation of a core 502, in accordance with embodiments of
the present disclosure. Core 502 may include a front end 570
communicatively coupled to an out-of-order engine 580.
Core 502 may be communicatively coupled to other portions
of processor 500 through cache hierarchy 503.

[0099] Front end 570 may be implemented in any suitable
manner, such as fully or in part by front end 201 as described
above. In one embodiment, front end 570 may communicate
with other portions of processor 500 through cache hierar-
chy 503. In a further embodiment, front end 570 may fetch
instructions from portions of processor 500 and prepare the
instructions to be used later in the processor pipeline as they
are passed to out-of-order execution engine 580.

[0100] Out-of-order execution engine 580 may be imple-
mented in any suitable manner, such as fully or in part by
out-of-order execution engine 203 as described above. Out-
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of-order execution engine 580 may prepare instructions
received from front end 570 for execution. Out-of-order
execution engine 580 may include an allocate module 582.
In one embodiment, allocate module 582 may allocate
resources of processor 500 or other resources, such as
registers or buffers, to execute a given instruction. Allocate
module 582 may make allocations in schedulers, such as a
memory scheduler, fast scheduler, or floating point sched-
uler. Such schedulers may be represented in FIG. 5B by
resource schedulers 584. Allocate module 582 may be
implemented fully or in part by the allocation logic
described in conjunction with FIG. 2. Resource schedulers
584 may determine when an instruction is ready to execute
based on the readiness of a given resource’s sources and the
availability of execution resources needed to execute an
instruction. Resource schedulers 584 may be implemented
by, for example, schedulers 202, 204, 206 as discussed
above. Resource schedulers 584 may schedule the execution
of instructions upon one or more resources. In one embodi-
ment, such resources may be internal to core 502, and may
be illustrated, for example, as resources 586. In another
embodiment, such resources may be external to core 502 and
may be accessible by, for example, cache hierarchy 503.
Resources may include, for example, memory, caches, reg-
ister files, or registers. Resources internal to core 502 may be
represented by resources 586 in FIG. 5B. As necessary,
values written to or read from resources 586 may be coor-
dinated with other portions of processor 500 through, for
example, cache hierarchy 503. As instructions are assigned
resources, they may be placed into a reorder buffer 588.
Reorder buffer 588 may track instructions as they are
executed and may selectively reorder their execution based
upon any suitable criteria of processor 500. In one embodi-
ment, reorder buffer 588 may identify instructions or a series
of instructions that may be executed independently. Such
instructions or a series of instructions may be executed in
parallel from other such instructions. Parallel execution in
core 502 may be performed by any suitable number of
separate execution blocks or virtual processors. In one
embodiment, shared resources—such as memory, registers,
and caches—may be accessible to multiple virtual proces-
sors within a given core 502. In other embodiments, shared
resources may be accessible to multiple processing entities
within processor 500.

[0101] Cache hierarchy 503 may be implemented in any
suitable manner. For example, cache hierarchy 503 may
include one or more lower or mid-level caches, such as
caches 572, 574. In one embodiment, cache hierarchy 503
may include an LLC 595 communicatively coupled to
caches 572, 574. In another embodiment, LL.C 595 may be
implemented in a module 590 accessible to all processing
entities of processor 500. In a further embodiment, module
590 may be implemented in an uncore module of processors
from Intel, Inc. Module 590 may include portions or sub-
systems of processor 500 necessary for the execution of core
502 but might not be implemented within core 502. Besides
LLC 595, Module 590 may include, for example, hardware
interfaces, memory coherency coordinators, interprocessor
interconnects, instruction pipelines, or memory controllers.
Access to RAM 599 available to processor 500 may be made
through module 590 and, more specifically, LLC 595. Fur-
thermore, other instances of core 502 may similarly access
module 590. Coordination of the instances of core 502 may
be facilitated in part through module 590.
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[0102] FIGS. 6-8 may illustrate exemplary systems suit-
able for including processor 500, while FIG. 9 may illustrate
an exemplary system on a chip (SoC) that may include one
or more of cores 502. Other system designs and implemen-
tations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, may also be suitable. In
general, a huge variety of systems or electronic devices that
incorporate a processor and/or other execution logic as
disclosed herein may be generally suitable.

[0103] FIG. 6 illustrates a block diagram of a system 600,
in accordance with embodiments of the present disclosure.
System 600 may include one or more processors 610, 615,
which may be coupled to graphics memory controller hub
(GMCH) 620. The optional nature of additional processors
615 is denoted in FIG. 6 with broken lines.

[0104] Each processor 610,615 may be some version of
processor 500. However, it should be noted that integrated
graphics logic and integrated memory control units might
not exist in processors 610,615. FIG. 6 illustrates that
GMCH 620 may be coupled to a memory 640 that may be,
for example, a dynamic random access memory (DRAM).
The DRAM may, for at least one embodiment, be associated
with a non-volatile cache.

[0105] GMCH 620 may be a chipset, or a portion of a
chipset. GMCH 620 may communicate with processors 610,
615 and control interaction between processors 610, 615 and
memory 640. GMCH 620 may also act as an accelerated bus
interface between the processors 610, 615 and other ele-
ments of system 600. In one embodiment, GMCH 620
communicates with processors 610, 615 via a multi-drop
bus, such as a frontside bus (FSB) 695.

[0106] Furthermore, GMCH 620 may be coupled to a
display 645 (such as a flat panel display). In one embodi-
ment, GMCH 620 may include an integrated graphics accel-
erator. GMCH 620 may be further coupled to an input/output
(I/O) controller hub (ICH) 650, which may be used to couple
various peripheral devices to system 600. External graphics
device 660 may include a discrete graphics device coupled
to ICH 650 along with another peripheral device 670.
[0107] In other embodiments, additional or different pro-
cessors may also be present in system 600. For example,
additional processors 610, 615 may include additional pro-
cessors that may be the same as processor 610, additional
processors that may be heterogeneous or asymmetric to
processor 610, accelerators (such as, e.g., graphics accel-
erators or digital signal processing (DSP) units), field pro-
grammable gate arrays, or any other processor. There may be
a variety of differences between the physical resources 610,
615 in terms of a spectrum of metrics of merit including
architectural, micro-architectural, thermal, power consump-
tion characteristics, and the like. These differences may
effectively manifest themselves as asymmetry and hetero-
geneity amongst processors 610, 615. For at least one
embodiment, various processors 610, 615 may reside in the
same die package.

[0108] FIG. 7 illustrates a block diagram of a second
system 700, in accordance with embodiments of the present
disclosure. As shown in FIG. 7, multiprocessor system 700
may include a point-to-point interconnect system, and may
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include a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of processor
500 as one or more of processors 610,615.

[0109] While FIG. 7 may illustrate two processors 770,
780, it is to be understood that the scope of the present
disclosure is not so limited. In other embodiments, one or
more additional processors may be present in a given
processor.

[0110] Processors 770 and 780 are shown including inte-
grated memory controller units 772 and 782, respectively.
Processor 770 may also include as part of its bus controller
units point-to-point (P-P) interfaces 776 and 778; similarly,
second processor 780 may include P-P interfaces 786 and
788. Processors 770, 780 may exchange information via a
point-to-point (P-P) interface 750 using P-P interface cir-
cuits 778, 788. As shown in FIG. 7, IMCs 772 and 782 may
couple the processors to respective memories, namely a
memory 732 and a memory 734, which in one embodiment
may be portions of main memory locally attached to the
respective processors.

[0111] Processors 770, 780 may each exchange informa-
tion with a chipset 790 via individual P-P interfaces 752, 754
using point to point interface circuits 776, 794, 786, 798. In
one embodiment, chipset 790 may also exchange informa-
tion with a high-performance graphics circuit 738 via a
high-performance graphics interface 739.

[0112] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0113] Chipset 790 may be coupled to a first bus 716 via
an interface 796. In one embodiment, first bus 716 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present disclo-
sure is not so limited.

[0114] As shown in FIG. 7, various /O devices 714 may
be coupled to first bus 716, along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment, second bus 720 may be a low pin count (LPC)
bus. Various devices may be coupled to second bus 720
including, for example, a keyboard and/or mouse 722,
communication devices 727 and a storage unit 728 such as
a disk drive or other mass storage device which may include
instructions/code and data 730, in one embodiment. Further,
an audio I/O 724 may be coupled to second bus 720. Note
that other architectures may be possible. For example,
instead of the point-to-point architecture of FIG. 7, a system
may implement a multi-drop bus or other such architecture.
[0115] FIG. 8 illustrates a block diagram of a third system
800 in accordance with embodiments of the present disclo-
sure. Like elements in FIGS. 7 and 8 bear like reference
numerals, and certain aspects of FIG. 7 have been omitted
from FIG. 8 in order to avoid obscuring other aspects of FIG.
8.

[0116] FIG. 8 illustrates that processors 770, 780 may
include integrated memory and I/O control logic (“CL”) 872
and 882, respectively. For at least one embodiment, CL 872,
882 may include integrated memory controller units such as
that described above in connection with FIGS. 5 and 7. In
addition. CL. 872, 882 may also include I/O control logic.
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FIG. 8 illustrates that not only memories 732, 734 may be
coupled to CL 872, 882, but also that I/O devices 814 may
also be coupled to control logic 872, 882. Legacy 1/O
devices 815 may be coupled to chipset 790.

[0117] FIG. 9 illustrates a block diagram of a SoC 900, in
accordance with embodiments of the present disclosure.
Similar elements in FIG. 5 bear like reference numerals.
Also, dashed lined boxes may represent optional features on
more advanced SoCs. An interconnect units 902 may be
coupled to: an application processor 910 which may include
a set of one or more cores 502A-N and shared cache units
506; a system agent unit 510; a bus controller units 916; an
integrated memory controller units 914; a set of one or more
media processors 920 which may include integrated graph-
ics logic 908, an image processor 924 for providing still
and/or video camera functionality, an audio processor 926
for providing hardware audio acceleration, and a video
processor 928 for providing video encode/decode accelera-
tion; an static random access memory (SRAM) unit 930; a
direct memory access (DMA) unit 932; and a display unit
940 for coupling to one or more external displays.

[0118] FIG. 10 illustrates a processor containing a central
processing unit (CPU) and a graphics processing unit
(GPU), which may perform at least one instruction, in
accordance with embodiments of the present disclosure. In
one embodiment, an instruction to perform operations
according to at least one embodiment could be performed by
the CPU. In another embodiment, the instruction could be
performed by the GPU. In still another embodiment, the
instruction may be performed through a combination of
operations performed by the GPU and the CPU. For
example, in one embodiment, an instruction in accordance
with one embodiment may be received and decoded for
execution on the GPU. However, one or more operations
within the decoded instruction may be performed by a CPU
and the result returned to the GPU for final retirement of the
instruction. Conversely, in some embodiments, the CPU
may act as the primary processor and the GPU as the
CO-Processor.

[0119] In some embodiments, instructions that benefit
from highly parallel, throughput processors may be per-
formed by the GPU, while instructions that benefit from the
performance of processors that benefit from deeply pipe-
lined architectures may be performed by the CPU. For
example, graphics, scientific applications, financial applica-
tions and other parallel workloads may benefit from the
performance of the GPU and be executed accordingly,
whereas more sequential applications, such as operating
system kernel or application code may be better suited for
the CPU.

[0120] In FIG. 10, processor 1000 includes a CPU 1005,
GPU 1010, image processor 1015, video processor 1020,
USB controller 1025, UART controller 1030, SPI/SDIO
controller 1035, display device 1040, memory interface
controller 1045, MIPI controller 1050, flash memory con-
troller 1055, dual data rate (DDR) controller 1060, security
engine 1065, and I°S/I°C controller 1070. Other logic and
circuits may be included in the processor of FIG. 10,
including more CPUs or GPUs and other peripheral inter-
face controllers.

[0121] One or more aspects of at least one embodiment
may be implemented by representative data stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
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the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine-readable medium
(“tape”) and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor. For example, IP cores, such as
the Cortex™ {family of processors developed by ARM
Holdings, Ltd. and Loongson IP cores developed the Insti-
tute of Computing Technology (ICT) of the Chinese Acad-
emy of Sciences may be licensed or sold to various custom-
ers or licensees, such as Texas Instruments, Qualcomm,
Apple, or Samsung and implemented in processors produced
by these customers or licensees.

[0122] FIG. 11 illustrates a block diagram illustrating the
development of IP cores, in accordance with embodiments
of the present disclosure. Storage 1100 may include simu-
lation software 1120 and/or hardware or software model
1110. In one embodiment, the data representing the IP core
design may be provided to storage 1100 via memory 1140
(e.g., hard disk), wired connection (e.g., internet) 1150 or
wireless connection 1160. The IP core information generated
by the simulation tool and model may then be transmitted to
a fabrication facility 1165 where it may be fabricated by a
3¢ party to perform at least one instruction in accordance
with at least one embodiment.

[0123] In some embodiments, one or more instructions
may correspond to a first type or architecture (e.g., x86) and
be translated or emulated on a processor of a different type
or architecture (e.g., ARM). An instruction, according to one
embodiment, may therefore be performed on any processor
or processor type, including ARM, x86, MIPS, a GPU, or
other processor type or architecture.

[0124] FIG. 12 illustrates how an instruction of a first type
may be emulated by a processor of a different type, in
accordance with embodiments of the present disclosure. In
FIG. 12, program 1205 contains some instructions that may
perform the same or substantially the same function as an
instruction according to one embodiment. However the
instructions of program 1205 may be of a type and/or format
that is different from or incompatible with processor 1215,
meaning the instructions of the type in program 1205 may
not be able to execute natively by the processor 1215.
However, with the help of emulation logic, 1210, the instruc-
tions of program 1205 may be translated into instructions
that may be natively be executed by the processor 1215. In
one embodiment, the emulation logic may be embodied in
hardware. In another embodiment, the emulation logic may
be embodied in a tangible, machine-readable medium con-
taining software to translate instructions of the type in
program 1205 into the type natively executable by processor
1215. In other embodiments, emulation logic may be a
combination of fixed-function or programmable hardware
and a program stored on a tangible, machine-readable
medium. In one embodiment, the processor contains the
emulation logic, whereas in other embodiments, the emula-
tion logic exists outside of the processor and may be
provided by a third party. In one embodiment, the processor
may load the emulation logic embodied in a tangible,
machine-readable medium containing software by executing
microcode or firmware contained in or associated with the
processor.

[0125] FIG. 13 illustrates a block diagram contrasting the
use of a software instruction converter to convert binary
instructions in a source instruction set to binary instructions
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in a target instruction set, in accordance with embodiments
of the present disclosure. In the illustrated embodiment, the
instruction converter may be a software instruction con-
verter, although the instruction converter may be imple-
mented in software, firmware, hardware, or various combi-
nations thereof. FIG. 13 shows a program in a high level
language 1302 may be compiled using an x86 compiler 1304
to generate x86 binary code 1306 that may be natively
executed by a processor with at least one x86 instruction set
core 1316. The processor with at least one x86 instruction set
core 1316 represents any processor that may perform sub-
stantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core,
in order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. x86
compiler 1304 represents a compiler that may be operable to
generate x86 binary code 1306 (e.g., object code) that may,
with or without additional linkage processing, be executed
on the processor with at least one x86 instruction set core
1316. Similarly, FIG. 13 shows the program in high level
language 1302 may be compiled using an alternative instruc-
tion set compiler 1308 to generate alternative instruction set
binary code 1310 that may be natively executed by a
processor without at least one x86 instruction set core 1314
(e.g., a processor with cores that execute the MIPS instruc-
tion set of MIPS Technologies of Sunnyvale, Calif. and/or
that execute the ARM instruction set of ARM Holdings of
Sunnyvale, Calif.). Instruction converter 1312 may be used
to convert x86 binary code 1306 into code that may be
natively executed by the processor without an x86 instruc-
tion set core 1314. This converted code might not be the
same as alternative instruction set binary code 1310; how-
ever, the converted code will accomplish the general opera-
tion and be made up of instructions from the alternative
instruction set. Thus, instruction converter 1312 represents
software, firmware, hardware, or a combination thereof that,
through emulation, simulation or any other process, allows
a processor or other electronic device that does not have an
x86 instruction set processor or core to execute x86 binary
code 1306.

[0126] FIG. 14 is a block diagram of an instruction set
architecture 1400 of a processor, in accordance with
embodiments of the present disclosure. Instruction set archi-
tecture 1400 may include any suitable number or kind of
components.

[0127] For example, instruction set architecture 1400 may
include processing entities such as one or more cores 1406,
1407 and a graphics processing unit 1415. Cores 1406, 1407
may be communicatively coupled to the rest of instruction
set architecture 1400 through any suitable mechanism, such
as through a bus or cache. In one embodiment, cores 1406,
1407 may be communicatively coupled through an [.2 cache
control 1408, which may include a bus interface unit 1409
and an L2 cache 1411. Cores 1406, 1407 and graphics
processing unit 1415 may be communicatively coupled to
each other and to the remainder of instruction set architec-
ture 1400 through interconnect 1410. In one embodiment,
graphics processing unit 1415 may use a video code 1420
defining the manner in which particular video signals will be
encoded and decoded for output.
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[0128] Instruction set architecture 1400 may also include
any number or kind of interfaces, controllers, or other
mechanisms for interfacing or communicating with other
portions of an electronic device or system. Such mecha-
nisms may facilitate interaction with, for example, periph-
erals, communications devices, other processors, or
memory. In the example of FIG. 14, instruction set archi-
tecture 1400 may include a liquid crystal display (LCD)
video interface 1425, a subscriber interface module (SIM)
interface 1430, a boot ROM interface 1435, a synchronous
dynamic random access memory (SDRAM) controller 1440,
a flash controller 1445, and a serial peripheral interface (SPI)
master unit 1450. LCD video interface 1425 may provide
output of video signals from, for example, GPU 1415 and
through, for example, a mobile industry processor interface
(MIPI) 1490 or a high-definition multimedia interface
(HDMI) 1495 to a display. Such a display may include, for
example, an LCD. SIM interface 1430 may provide access
to or from a SIM card or device. SDRAM controller 1440
may provide access to or from memory such as an SDRAM
chip or module 1460. Flash controller 1445 may provide
access to or from memory such as flash memory 1465 or
other instances of RAM. SPI master unit 1450 may provide
access to or from communications modules, such as a
Bluetooth module 1470, high-speed 3G modem 1475, global
positioning system module 1480, or wireless module 1485
implementing a communications standard such as 802.11.

[0129] FIG. 15 is a more detailed block diagram of an
instruction set architecture 1500 of a processor, in accor-
dance with embodiments of the present disclosure. Instruc-
tion architecture 1500 may implement one or more aspects
of instruction set architecture 1400. Furthermore, instruction
set architecture 1500 may illustrate modules and mecha-
nisms for the execution of instructions within a processor.

[0130] Instruction architecture 1500 may include a
memory system 1540 communicatively coupled to one or
more execution entities 1565. Furthermore, instruction
architecture 1500 may include a caching and bus interface
unit such as unit 1510 communicatively coupled to execu-
tion entities 1565 and memory system 1540. In one embodi-
ment, loading of instructions into execution entities 1565
may be performed by one or more stages of execution. Such
stages may include, for example, instruction prefetch stage
1530, dual instruction decode stage 1550, register rename
stage 1555, issue stage 1560, and writeback stage 1570.

[0131] In one embodiment, memory system 1540 may
include an executed instruction pointer 1580. Executed
instruction pointer 1580 may store a value identifying the
oldest, undispatched instruction within a batch of instruc-
tions. The oldest instruction may correspond to the lowest
Program Order (PO) value. A PO may include a unique
number of an instruction. Such an instruction may be a
single instruction within a thread represented by multiple
strands. A PO may be used in ordering instructions to ensure
correct execution semantics of code. A PO may be recon-
structed by mechanisms such as evaluating increments to PO
encoded in the instruction rather than an absolute value.
Such a reconstructed PO may be known as an “RPO.”
Although a PO may be referenced herein, such a PO may be
used interchangeably with an RPO. A strand may include a
sequence of instructions that are data dependent upon each
other. The strand may be arranged by a binary translator at
compilation time. Hardware executing a strand may execute
the instructions of a given strand in order according to the
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PO of the various instructions. A thread may include mul-
tiple strands such that instructions of different strands may
depend upon each other. A PO of a given strand may be the
PO of the oldest instruction in the strand which has not yet
been dispatched to execution from an issue stage. Accord-
ingly, given a thread of multiple strands, each strand includ-
ing instructions ordered by PO, executed instruction pointer
1580 may store the oldest—illustrated by the lowest num-
ber—PO in the thread.

[0132] Inanother embodiment, memory system 1540 may
include a retirement pointer 1582. Retirement pointer 1582
may store a value identifying the PO of the last retired
instruction. Retirement pointer 1582 may be set by, for
example, retirement unit 454. If no instructions have yet
been retired, retirement pointer 1582 may include a null
value.

[0133] Execution entities 1565 may include any suitable
number and kind of mechanisms by which a processor may
execute instructions. In the example of FIG. 15, execution
entities 1565 may include AL U/multiplication units (MUL)
1566, ALUs 1567, and floating point units (FPU) 1568. In
one embodiment, such entities may make use of information
contained within a given address 1569. Execution entities
1565 in combination with stages 1530, 1550, 1555, 1560,
1570 may collectively form an execution unit.

[0134] Unit 1510 may be implemented in any suitable
manner. In one embodiment, unit 1510 may perform cache
control. In such an embodiment, unit 1510 may thus include
a cache 1525. Cache 1525 may be implemented, in a further
embodiment, as an [.2 unified cache with any suitable size,
such as zero, 128k, 256k, 512k, 1M, or 2M bytes of memory.
In another, further embodiment, cache 1525 may be imple-
mented in error-correcting code memory. In another embodi-
ment, unit 1510 may perform bus interfacing to other
portions of a processor or electronic device. In such an
embodiment, unit 1510 may thus include a bus interface unit
1520 for communicating over an interconnect, intraproces-
sor bus, interprocessor bus, or other communication bus,
port, or line. Bus interface unit 1520 may provide interfacing
in order to perform, for example, generation of the memory
and input/output addresses for the transfer of data between
execution entities 1565 and the portions of a system external
to instruction architecture 1500.

[0135] To further facilitate its functions, bus interface unit
1520 may include an interrupt control and distribution unit
1511 for generating interrupts and other communications to
other portions of a processor or electronic device. In one
embodiment, bus interface unit 1520 may include a snoop
control unit 1512 that handles cache access and coherency
for multiple processing cores. In a further embodiment, to
provide such functionality, snoop control unit 1512 may
include a cache-to-cache transfer unit that handles informa-
tion exchanges between different caches. In another, further
embodiment, snoop control unit 1512 may include one or
more snoop filters 1514 that monitors the coherency of other
caches (not shown) so that a cache controller, such as unit
1510, does not have to perform such monitoring directly.
Unit 1510 may include any suitable number of timers 1515
for synchronizing the actions of instruction architecture
1500. Also, unit 1510 may include an AC port 1516.
[0136] Memory system 1540 may include any suitable
number and kind of mechanisms for storing information for
the processing needs of instruction architecture 1500. In one
embodiment, memory system 1540 may include a load store
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unit 1546 for storing information such as buffers written to
or read back from memory or registers. In another embodi-
ment, memory system 1540 may include a translation looka-
side buffer (TLB) 1545 that provides look-up of address
values between physical and virtual addresses. In yet
another embodiment, memory system 1540 may include a
memory management unit (MMU) 1544 for facilitating
access to virtual memory. In still yet another embodiment,
memory system 1540 may include a prefetcher 1543 for
requesting instructions from memory before such instruc-
tions are actually needed to be executed, in order to reduce
latency.

[0137] The operation of instruction architecture 1500 to
execute an instruction may be performed through different
stages. For example, using unit 1510 instruction prefetch
stage 1530 may access an instruction through prefetcher
1543. Instructions retrieved may be stored in instruction
cache 1532. Prefetch stage 1530 may enable an option 1531
for fast-loop mode, wherein a series of instructions forming
a loop that is small enough to fit within a given cache are
executed. In one embodiment, such an execution may be
performed without needing to access additional instructions
from, for example, instruction cache 1532. Determination of
what instructions to prefetch may be made by, for example,
branch prediction unit 1535, which may access indications
of execution in global history 1536, indications of target
addresses 1537, or contents of a return stack 1538 to
determine which of branches 1557 of code will be executed
next. Such branches may be possibly prefetched as a result.
Branches 1557 may be produced through other stages of
operation as described below. Instruction prefetch stage
1530 may provide instructions as well as any predictions
about future instructions to dual instruction decode stage
1550.

[0138] Dual instruction decode stage 1550 may translate a
received instruction into microcode-based instructions that
may be executed. Dual instruction decode stage 1550 may
simultaneously decode two instructions per clock cycle.
Furthermore, dual instruction decode stage 1550 may pass
its results to register rename stage 1555. In addition, dual
instruction decode stage 1550 may determine any resulting
branches from its decoding and eventual execution of the
microcode. Such results may be input into branches 1557.

[0139] Register rename stage 1555 may translate refer-
ences to virtual registers or other resources into references to
physical registers or resources. Register rename stage 1555
may include indications of such mapping in a register pool
1556. Register rename stage 1555 may alter the instructions
as received and send the result to issue stage 1560.

[0140] Issue stage 1560 may issue or dispatch commands
to execution entities 1565. Such issuance may be performed
in an out-of-order fashion. In one embodiment, multiple
instructions may be held at issue stage 1560 before being
executed. Issue stage 1560 may include an instruction queue
1561 for holding such multiple commands. Instructions may
be issued by issue stage 1560 to a particular processing
entity 1565 based upon any acceptable criteria, such as
availability or suitability of resources for execution of a
given instruction. In one embodiment, issue stage 1560 may
reorder the instructions within instruction queue 1561 such
that the first instructions received might not be the first
instructions executed. Based upon the ordering of instruc-
tion queue 1561, additional branching information may be
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provided to branches 1557. Issue stage 1560 may pass
instructions to executing entities 1565 for execution.
[0141] Upon execution, writeback stage 1570 may write
data into registers, queues, or other structures of instruction
set architecture 1500 to communicate the completion of a
given command. Depending upon the order of instructions
arranged in issue stage 1560, the operation of writeback
stage 1570 may enable additional instructions to be
executed. Performance of instruction set architecture 1500
may be monitored or debugged by trace unit 1575.

[0142] FIG. 16 is a block diagram of an execution pipeline
1600 for an instruction set architecture of a processor, in
accordance with embodiments of the present disclosure.
Execution pipeline 1600 may illustrate operation of, for
example, instruction architecture 1500 of FIG. 15.

[0143] Execution pipeline 1600 may include any suitable
combination of steps or operations. In 1605, predictions of
the branch that is to be executed next may be made. In one
embodiment, such predictions may be based upon previous
executions of instructions and the results thereof. In 1610,
instructions corresponding to the predicted branch of execu-
tion may be loaded into an instruction cache. In 1615, one
or more such instructions in the instruction cache may be
fetched for execution. In 1620, the instructions that have
been fetched may be decoded into microcode or more
specific machine language. In one embodiment, multiple
instructions may be simultaneously decoded. In 1625, ref-
erences to registers or other resources within the decoded
instructions may be reassigned. For example, references to
virtual registers may be replaced with references to corre-
sponding physical registers. In 1630, the instructions may be
dispatched to queues for execution. In 1640, the instructions
may be executed. Such execution may be performed in any
suitable manner. In 1650, the instructions may be issued to
a suitable execution entity. The manner in which the instruc-
tion is executed may depend upon the specific entity execut-
ing the instruction. For example, at 1655, an ALU may
perform arithmetic functions. The ALU may utilize a single
clock cycle for its operation, as well as two shifters. In one
embodiment, two ALUs may be employed, and thus two
instructions may be executed at 1655. At 1660, a determi-
nation of a resulting branch may be made. A program
counter may be used to designate the destination to which
the branch will be made. 1660 may be executed within a
single clock cycle. At 1665, floating point arithmetic may be
performed by one or more FPUs. The floating point opera-
tion may require multiple clock cycles to execute, such as
two to ten cycles. At 1670, multiplication and division
operations may be performed. Such operations may be
performed in four clock cycles. At 1675, loading and storing
operations to registers or other portions of pipeline 1600
may be performed. The operations may include loading and
storing addresses. Such operations may be performed in four
clock cycles. At 1680, write-back operations may be per-
formed as required by the resulting operations of 1655-1675.
[0144] FIG. 17 is a block diagram of an electronic device
1700 for utilizing a processor 1710, in accordance with
embodiments of the present disclosure. Electronic device
1700 may include, for example, a notebook, an ultrabook, a
computer, a tower server, a rack server, a blade server, a
laptop, a desktop, a tablet, a mobile device, a phone, an
embedded computer, or any other suitable electronic device.
[0145] Electronic device 1700 may include processor
1710 communicatively coupled to any suitable number or
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kind of components, peripherals, modules, or devices. Such
coupling may be accomplished by any suitable kind of bus
or interface, such as I°C bus, system management bus
(SMBus), low pin count (LPC) bus, SPI, high definition
audio (HDA) bus, Serial Advance Technology Attachment
(SATA) bus, USB bus (versions 1, 2, 3), or Universal
Asynchronous Receiver/Transmitter (UART) bus.

[0146] Such components may include, for example, a
display 1724, a touch screen 1725, a touch pad 1730, a near
field communications (NFC) unit 1745, a sensor hub 1740,
a thermal sensor 1746, an express chipset (EC) 1735, a
trusted platform module (TPM) 1738, BIOS/firmware/tlash
memory 1722, a digital signal processor 1760, a drive 1720
such as a solid state disk (SSD) or a hard disk drive (HDD),
a wireless local area network (WLAN) unit 1750, a Blu-
etooth unit 1752, a wireless wide area network (WWAN)
unit 1756, a global positioning system (GPS) 1775, a camera
1754 such as a USB 3.0 camera, or a low power double data
rate (LPDDR) memory unit 1715 implemented in, for
example, the LPDDR3 standard. These components may
each be implemented in any suitable manner.

[0147] Furthermore, in various embodiments other com-
ponents may be communicatively coupled to processor 1710
through the components discussed above. For example, an
accelerometer 1741, ambient light sensor (ALS) 1742, com-
pass 1743, and gyroscope 1744 may be communicatively
coupled to sensor hub 1740. A thermal sensor 1739, fan
1737, keyboard 1736, and touch pad 1730 may be commu-
nicatively coupled to EC 1735. Speakers 1763, headphones
1764, and a microphone 1765 may be communicatively
coupled to an audio unit 1762, which may in turn be
communicatively coupled to DSP 1760. Audio unit 1762
may include, for example, an audio codec and a class D
amplifier. A SIM card 1757 may be communicatively
coupled to WWAN unit 1756. Components such as WLAN
unit 1750 and Bluetooth unit 1752, as well as WWAN unit
1756 may be implemented in a next generation form factor
(NGFF).

[0148] Embodiments of the present disclosure involve
processing logic or circuitry for serializing system manage-
ment interrupt (SMI) events, including serializing SMIs that
originate in a processor. FIG. 18 is an illustration of an
example system 1800 for arbitration based serialization of
processor system management interrupt events, according to
embodiments of the present disclosure. In general, a system
management interrupt may be an unmaskable interrupt to all
of the processors or cores in a given system. Following the
issuance of an SMI, all of the processors or cores in the
system may stop what they are doing and enter a system
management mode. While in this mode, an SMI handler may
be invoked to handle the interrupt, after which the proces-
sors or cores will resume operation at the point at which they
were interrupted.

[0149] System 1800 may include a processor, SoC, inte-
grated circuit, or other mechanism. For example, system
1800 may include processor 1810. Although processor 1810
is shown and described as an example in FIG. 18, any
suitable mechanism may be used. For example, some or all
of the functionality of processor 1804 described herein may
be implemented by circuitry, instructions for reconfiguring
circuitry, a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor having more, fewer, or different elements than
those illustrated in FIG. 18. Processor 1810 may include any
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suitable mechanisms for serializing system management
interrupt (SMI) events, including serializing SMIs that origi-
nate in a processor. In at least some embodiments, such
mechanisms may be implemented in hardware. For example,
in some embodiments, some or all of the elements of
processor 1804 illustrated in FIG. 18 and/or described herein
may be implemented fully or in part using hardware cir-
cuitry. In some embodiments, this circuitry may include
static (fixed-function) logic devices that collectively imple-
ment some or all of the functionality of processor 1804. In
other embodiments, this circuitry may include program-
mable logic devices, such as field programmable logic gates
or arrays thereof, that collectively implement some or all of
the functionality of processor 1804. In still other embodi-
ments, this circuitry may include static, dynamic, and/or
programmable memory devices that, when operating in
conjunction with other hardware elements, implement some
or all of the functionality of processor 1804. For example,
processor 1804 may include a hardware memory having
stored therein instructions which may be used to program
system 1800 to perform one or more operations according to
embodiments of the present disclosure. Embodiments of
system 1800 and processor 1804 are not limited to any
specific combination of hardware circuitry and software.
Processor 1810 may be implemented fully or in part by the
elements described in FIGS. 1-17. Processor 1810 may
include one or more cores 1815. Processor 1810 may also
include circuitry or logic to implement the functionality of
interrupt routing logic 1840, as described herein.

[0150] System 1800 may include a platform controller hub
(PCH) 1850, which may be used to couple various devices
and components of system 1800 to processor 1810. In one
embodiment, PCH 1850 may include an input/output (/O)
controller hub (ICH), which may be used to couple various
peripheral devices to one or more processors 1810 in system
1800. For example, PCH 1850 may include circuitry or logic
to implement the functionality of ICH 130 shown in FIG. 1A
or ICH 650 shown in FIG. 6. In another embodiment, PCH
1850 may include a memory controller hub (MCH), which
may provide a high bandwidth path to memory within
system 1800. For example, PCH 1850 may include circuitry
or logic to implement the functionality of MCH 116 shown
in FIG. 1A or GMCH 620 shown in FIG. 6. In yet another
embodiment, PCH 1850 may include circuitry or logic to
implement functionality other than that provided by an I/O
controller hub or memory controller hub within system
1800.

[0151] In some embodiments, there may be multiple
sources for SMI events that originate on a processor 1810,
each of which may be implemented by circuitry or logic. For
example, in one embodiment, the SMI event sources on the
processor may include core error logic 1812. In one embodi-
ment, the SMI event sources on the processor may include
memory controller error logic 1814. In one embodiment, the
SMI event sources on the processor may include intercon-
nect error logic 1816. In one embodiment, the SMI event
sources on the processor may include uncore error logic
1818. In one embodiment, the SMI event sources on the
processor may include input/output (I/0) error logic 1820.
[0152] Inembodiments of the present disclosure, a respec-
tive indication of each SMI event that originates on proces-
sor 1810 (shown as indication 1845 in FIG. 18) may be
directed to SMI processing circuitry or logic on PCH 1850
for arbitration and serialization. In one embodiment, pro-
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cessor 1810 may communicate with PCH 1850 over a direct
media interface (DMI) 1830. For example, indications
(1845) of SMI events that originate on processor 1810 may
be communicated to PCH 1850 over DMI link 1830. In one
embodiment, DMI link 1830 may be implemented within a
system agent on processor 1810 (not shown). For example,
DMI link 1830 may include circuitry or logic to implement
the functionality of DMI 516 shown in FIG. 5A within a
system agent 510 on processor 1810.

[0153] In one embodiment, the SMI processing logic on
PCH 1850 may include circuitry or logic to arbitrate
between any pending SMIs that originate on processor
and/or that originate from SMI event sources on PCH 1850
and to serialize SMI signals communicated to processor
1810. In one embodiment, only one system management
interrupt signal 1855 may be sent to the cores 1815 of
processor 1810 at a time. For example, PCH 1850 may
include an arbiter 1870 to serialize the communication of
SMI signals to the cores 1815 of processor 1810 for han-
dling. Each SMI issued to processor 1810 may trigger the
handling of one pending SMI event or multiple pending SMI
events on processor 1810. For example, in one embodiment,
once arbiter 1870 on PCH 1850 asserts an SMI signal 1855,
no other SMIs will be issued to processor 1810 until all of
the pending SMI events have been handled by processor
1810.

[0154] In some embodiments, when an SMI event that
originates from an SMI event source on processor 1810 is
detected, rather than routing an indication of the SMI event
directly to interrupt routing logic 1840 on processor 1810 for
dissemination to cores 1815, an indication of the SMI event
(shown as 1845) may be sent to PCH 1850 over DMI 1830.
Processor 1810 may be one of multiple processors in system
1800 that are communicatively coupled to PCH 1850. In one
embodiment, these processors may all be similar to proces-
sor 1810. In another embodiment, at least two of the
processors may be different from each other. In some
embodiments, each of multiple processors within system
1800 (including processor 1810) may communicate with
PCH 1850 through a respective direct media interface (DMI)
link 1830. In embodiments in which system 1800 includes
multiple processors, the indication of the SMI event 1845
that is directed to PCH 1850 in response to detecting an SMI
event on the processor may include an identifier of the
processor on which the SMI event originated. In another
embodiment, the indication of the SMI event 1845 that is
directed to PCH 1850 in response to detecting an SMI event
on the processor may include an identifier of a core or thread
that is associated with, or affected by, the detected SMI
event. In yet another embodiment, the indication of the SMI
event 1845 that is directed to PCH 1850 in response to
detecting an SMI event on the processor may include an
identifier of a socket in which the processor resides.

[0155] As noted above, PCH 1850 may include an arbiter
1870 to arbitrate and serialize SMIs to be handled by
processor 1810, as described in detail herein. In one embodi-
ment, PCH 1850 may include an SMI status register that
includes a respective field for each of multiple possible SMI
event sources. The value of each status register field may
include whether or not an SMI event originating from a
particular SMI event source is pending. In another embodi-
ment, PCH 1850 may include circuitry or logic representing
multiple SMI status indicators that are individually acces-
sible by other elements of PCH 1850 rather than being fields



US 2017/0286333 Al

of a single SMI status register. In one embodiment, the SMI
status bits or indicators may be addressable by a software
programmer. In other embodiments, the SMI status bits or
indicators may not be addressable by a software program-
mer.

[0156] In embodiments of the present disclosure, one or
more SMI event sources may reside on processor 1810. For
example, an SMI status bit 1852 in the SMI status register
may indicate whether or not an SMI event that originated on
a particular processor or processor core (shown as CPUO) is
pending. In this example, SM1 status bit 1852 may be set by
SMI processing circuitry or logic within PCH 1850 in
response to the receipt of an indication of an SMI event 1845
that originated on the particular processor or processor core
associated with SMI status bit 1852, regardless of the
specific source of the SMI event on the processor or pro-
cessor core. In some embodiments, if an SMI event is
detected in or by core error logic 1812, memory controller
error logic 1814, interconnect error logic 1816, or I/O error
logic 1820 on processor 1810, an indication 1845 that an
SMI event has originated on processor 1810 may be sent to
PCH 1850. In one embodiment, the indication of the SMI
event 1845 may include an identifier of processor 1810, but
may not include an identifier of the specific source of the
SMI event. This may allow the SMI processing circuitry or
logic within PCH 1850 to identify the particular SMI status
bit or indicator that is to be set in response to the SMI event.
In another embodiment, the indication of the SMI event
1845 may include an identifier of a particular socket, core or
thread that is associated with, or affected by, the SMI event.
In yet another embodiment, the indication of the SMI event
1845 may include an identifier of the specific SMI event
source on the processor or the type of the SMI event.
[0157] In the example embodiment illustrated in FIG. 18,
one or more other SMI status bits 1854 in the SMI status
register may indicate whether or not an SMI event that
originated on a respective different processor or processor
core (shown as CPUx) is pending. While the example
embodiment illustrated in FIG. 18 includes one SMI status
bit or indicator for all SMI events that originate on a given
processor, regardless of their source within the processor, in
other embodiments, PCH 1850 may include a respective
SMI status bit or indicator for each SMI event source on the
processor.

[0158] In some embodiments, one or more SMI event
sources may reside outside of processor 1810 within system
1800. The value of a respective SMI status bit on PCH 1850
may indicate whether or not there is a pending SMI event
associated with each such SMI event source. For example,
in one embodiment, a bit 1856 in the SMI status register may
indicate whether or not an SMI event that was triggered by
software is pending. In one embodiment, a bit 1858 in the
SMI status register may indicate whether or not an SMI
event that was triggered on or by a timer is pending. In one
embodiment, a bit 1860 in the SMI status register may
indicate whether or not an SMI event that was triggered by
general purpose input/output circuitry or logic on PCH 1850
is pending. In other embodiments, system 1800 may include
more, fewer or different SMI event sources and PCH 1850
may include more, fewer or different SMI status bits corre-
sponding to those SMI event sources.

[0159] In some embodiments, arbiter 1870 on PCH 1850
may arbitrate and serialize any and all pending SMI events
for handling by processor 1810, regardless of their sources.
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For example, arbiter 1870 arbitrate between any pending
SMIs that originate on processor and/or on PCH 1850 and
may issue a single interrupt signal to the processor at a time,
regardless of the number of SMI events that are pending. In
one embodiment, an SMI handler on the processor may then
handle all of the pending SMI events before effecting an
indication that the SMI handler has completed its actions in
response to the interrupt signal. For example, an End-of-
SMI (EOS) status bit or indicator on PCH 1850 may be
cleared by the SMI processing circuitry or logic on PCH
1850 when it issues an interrupt to the processor. The SMI
handler may then set the EOS status bit or indicator on PCH
1850 once it has finished handling all pending SMI events.
In this way, the communication of SMI signals to the cores
1815 of processor 1810 may be serialized. In one embodi-
ment, if there is at least one SMI event pending and the EOS
status bit or indicator on PCH 1850 is set (true), PCH 1850
may issue a system management interrupt (SMI) signal 1855
to processor 1810 over DMI 1830. However, if the EOS
status bit or indicator on PCH 1850 is clear (false), no
interrupt signal will be issued to the processor 1810 even if
one or more SMI events are pending. Upon its receipt by
processor 1810, system management interrupt signal 1845
may be directed to interrupt routing logic 1840. Interrupt
routing logic 1840 may then disseminate the interrupt signal
to all of the cores 1815 of processor 1810.

[0160] In one embodiment, PCH 1850 may include SMI
processing logic to serialize SMIs. This serialization logic
may reside in whole or in part within arbiter 1870, in
different embodiments. FIG. 19 is an illustration of a portion
of a platform controller hub (PCH) 1850 that includes SMI
serialization logic 1900, according to embodiments of the
present disclosure. In one embodiment, SMI serialization
logic 1900 may include circuitry or logic 1910 to perform an
OR function whose inputs include all of the fields of an SMI
status register. For example, any or all of the SMI status
register fields illustrated in FIG. 18 as SMI status bits 1852,
1854, 1856, 1858 or 1860 may be inputs to 1910. In other
embodiments, system 1800 may include more, fewer or
different SMI event sources and corresponding SMI status
bits or indicators. In the example embodiment illustrated in
FIG. 19, if any one or more of the inputs to logic 1910 are
true, the output of 1910 will be true. For example, if any of
SMI status bits 1852, 1854, 1856, 1858 or 1860 has a value
ot “17, the output of 1910 will also be “1”. This may indicate
that at least one SMI event is pending.

[0161] In some embodiments, SMI serialization logic
1900 may include circuitry or logic 1920 to perform an AND
function. The inputs to the AND function may include the
output of 1910 and an input representing the value of an
End-of-SMI (EOS) bit 1930. In one embodiment, EOS bit
1930 may be set (e.g., it may have a value of 1, or true) by
default. The EOS bit 1930 may remain set until and unless
something occurs to clear it. In one embodiment, EOS bit
1930 may be cleared (e.g., to a value of 0, or false) by
hardware when an SMI is issued to processor 1810, which
may prevent any other interrupts being issued to the pro-
cessor based on SMI events. In one embodiment, the output
ot 1920 may be SMI signal 1855. In one embodiment, SMI
signal 1855, which is also shown in FIG. 18, may be
communicated to processor 1810 over DMI 1830. In the
example embodiment illustrated in FIG. 19, if both the
output of 1910 and the value of EOS bit 1930 are true, the
output of 1920 (SMI signal 1855) will be true. In this case,
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the SMI signal 1855 will be issued to processor 1810
through DMI 1830, triggering an interrupt on processor
1810. However, if the value of EOS bit 1930 is not true, the
output of 1920 (shown as SMI signal 1855) will be false. In
this case, the SMI signal 1855 will not be asserted. There-
fore, no interrupt will be issued to processor 1810, regard-
less of whether any SMI events are pending (as indicated by
the output of 1910).

[0162] In one embodiment, circuitry/logic 1910, circuitry/
logic 1920, and EOS bit 1930 may be implemented within
arbiter 1870 shown in FIG. 18. In other embodiments, at
least a portion of circuitry/logic 1910, circuitry/logic 1920,
and/or EOS bit 1930 may be implemented outside of arbiter
1870 on PCH 1850. In embodiments in which the output of
circuitry/logic 1920 is generated outside of arbiter 1870, this
output may be provided to arbiter 1870, triggering the
assertion of SMI signal 1855 by arbiter 1870.

[0163] In some embodiments, PCH 1850 may include
circuitry or logic to control the value of EOS bit 1930 (not
shown). PCH 1850 may also include circuitry or logic to set
and/or clear the respective SMI status bits for each of the
SMI event sources (not shown). In some embodiments, by
controlling these inputs to SMI serialization logic 1900,
PCH 1850 may serialize the system management interrupts
that are communicated to interrupt routing logic 1840 and,
in turn, to the cores 1815 of processor 1810.

[0164] In embodiments of the present disclosure, the
mechanisms utilized in serializing processor SMI events
may be described as follows:

[0165] 1. The SMI arbiter in the PCH may include
circuitry or logic to comprehend processor-generated
SMIs in its arbitration along with PCH-generated
SMIs.

[0166] 2. The processor uncore may include circuitry or
logic to send an SMI indication for a processor-gener-
ated SMI to the PCH. This indication may include the
processor 1D.

[0167] 3. The PCH may include circuitry or logic to set
the status bit in the SMI status register that corresponds
to the processor ID.

[0168] 4. The PCH may include circuitry or logic to
clear the EOS bit and assert the SMI signal.

[0169] 5. The processor may include circuitry or logic
to deliver the SMI to all of the cores on all of the
processors in the system.

[0170] 6. The SMI handler may include circuitry or
logic to set the EOS bit once the SMI event has been
handled and the corresponding status bits have been
cleared. This may indicate to the PCH that it can release
further SMIs. For example, this may allow the SMI
arbiter to reassert the SMI signal upon detection of
another SMI event.

[0171] FIG. 20 is an illustration of a method 2000 for
generating and responding to system management interrupt
events that originate on a processor, according to embodi-
ments of the present disclosure. Method 2000 may be
implemented by any of the elements shown in FIGS. 1-19.
Method 2000 may be initiated by any suitable criteria and
may initiate operation at any suitable point. In one embodi-
ment, method 2000 may initiate operation at 2005. Method
2000 may include greater or fewer steps than those illus-
trated. Moreover, method 2000 may execute its steps in an
order different than those illustrated below. Method 2000
may terminate at any suitable step. Moreover, method 2000
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may repeat operation at any suitable step. Method 2000 may
perform any of its steps in parallel with other steps of
method 2000, or in parallel with steps of other methods.
[0172] At 2005, in one embodiment, a System Manage-
ment Interrupt (SMI) event may be detected on a processor.
At 2010, an indication of the SMI event may be directed to
a Platform Controller Hub (PCH) for arbitration and serial-
ization. The indication of the SMI event may include an
identifier of the affected CPU. In one example, the indication
of the SMI event may include an identifier of the processor
on which the SMI event was detected. In another example,
the indication of the SMI event may include an identifier of
a particular core on the processor that is associated with the
SMI event. In another example, the indication of the SMI
event may include an identifier of particular thread of
execution that is associated with the SMI event. In yet
another example, the indication of the SMI event may
include an identifier of the socket in which the processor on
which the SMI event was detected resides.

[0173] In one embodiment, while no interrupt signal is
received from the PCH (at 2015) and while no additional
SMI events are detected (at 2020), the operation of the
processor may continue without taking any action in
response to the detected SMI event. In one embodiment, if,
prior to an interrupt signal being received (at 2015), one or
more other SMI events is detected (at 2020), an indication
of each of the additional SMI events may be directed to a
Platform Controller Hub (PCH) for arbitration and serial-
ization. The indication of each additional SMI event may
include an identifier of the CPU associated with the addi-
tional SMI event.

[0174] In one embodiment, if (at 2015) an interrupt signal
is received from the PCH, then at 2025, the interrupt may be
taken. In one embodiment, taking the interrupt may include
delivering an SMI interrupt signal to all of the cores of the
processor. Taking the interrupt may also include each of the
cores entering System Management Mode (SMM) after
completing a currently executing instruction (if execution of
an instruction is in progress when the interrupt signal is
received). Subsequently, at 2030, an SMI handler may deal
with all currently pending SMI events including any that
were detected since the interrupt signal was issued. For
example, in one embodiment, when entering the SMM, each
thread may go into the SMI handler and perform a rendez-
vous procedure, meaning that it waits for all other threads to
come into the SMI handler. Once all of the threads have
checked into the SMI handler, one of them may handle the
SMI events. Once the SMI handler has dealt with all
currently pending SMI events, it may then set an End-of-
SMI (EOS) bit in the PCH to indicate that it has finished
taking its actions in response to the interrupt signal, after
which the SMI handler may exit. At 2035, the cores may
resume normal operation from the point at which they were
interrupted. As illustrated in FIG. 20, any or all of steps
2010-2035 of method 2000 may be repeated, as appropriate,
if and when any additional SMI events are detected or any
additional interrupt signals are received from the PCH.
[0175] In the example embodiment illustrated in FIG. 20,
the processor detected an SMI event that originated on the
processor prior to receiving an SMI interrupt signal from the
PCH. In other embodiments, the processor may receive an
SMI interrupt signal (e.g., one that is triggered based on the
detection of an SMI event originating on the PCH) prior to
detecting an SMI event that originated on the processor.
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[0176] In embodiments of the present disclosure, the
handshaking protocol between the arbiter and each of the
SMIs may be described as follows:
[0177] 1. The source of the SMI (e.g., a timer, USB
interface, general-purpose /O component, processor,
etc.) is logged in the SMI status register as a bit map.

[0178] 2. SMI events are delivered to the arbiter on the
PCH.

[0179] 3. The arbiter checks the state of the EOS bit.

[0180] 4. If the EOS bit is clear (a value of 0, or false),

this blocks the delivery of the SMI, since it indicates
that the handling of a previous SMI is in progress.

[0181] 5. Ifthe EOS bit is set (a value of 1, or true), this
allows the PCH to deliver an SMI if there are any status
bits set in the SMI status register, at which point the
PCH clears the EOS bit.

[0182] 6. The SMI handler queries the SMI status
register to determine the SMI event source(s). If the
SMI event source is a processor, the SMI handler may
query the processor to determine the specific SMI event
source on that processor. For example, the source of the
SMI event may be the core error logic, memory con-
troller error logic, interconnect error logic, uncore error
logic, 1/O error logic, or another component of the
processor, in different embodiments.

[0183] 7. The SMI handler handles the SMI events
corresponding to bits that are set in the SMI status
register. Once handling is complete for an SMI event,
the SMI handler clears the corresponding bit in the SMI
status register.

[0184] 8. Once all of the SMI events have been handled,
the processor sets the EOS bit on the PCH. For
example, the SMI handler may write a value of 1 to the
EOS bit. In another example, the BIOS may write a
value of 1 to the EOS bit.

[0185] 9. Once the EOS is set, this indicates to the
arbiter that the previous SMIs have been handled. This
will then unblock SMI delivery such that, if there are
any set bits in the SMI status register, another SMI will
be delivered. This mechanism may ensure that any new
SMI event that occurs between steps 7 and 8 will not be
lost.

[0186] In some embodiments, the SMI handler, when
invoked, may handle all of the SMI events that were pending
at the time the SMI was issued and any additional SMI
events that are detected while the SMI handler is operating
to handle the earlier SMI events, regardless of their sources.
The SMI events may be handled in any order, in different
embodiments. In some embodiments, multiple SMI events
may be handled at the same time (e.g., substantially in
parallel) by different circuitry or logic within one or more
processors or cores. Once the SMI handler determines that
all of the pending SMI events from all SMI sources have
been handled, it may set the EOS bit and then exit the SMI
handler. In some embodiments, if an SMI event was gener-
ated on a processor in a system that includes multiple
processor sockets, an identifier of the socket or processor
may be provided to the PCH. In some embodiments, the
PCH may provide per-socket or per-processor SMI status
bits and may use the identifier to populate the corresponding
bit. This may ensure faster handling of the processor SMI
events, in some embodiments. For example, instead of
querying all of the processors to determine the specific
source of an SMI event when a processor-generated SMI
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event is detected, the SMI handler may query only the
identified processor to determine the specific SMI source.
[0187] FIG. 21 is an illustration of a method 2100 for
serialization of system management interrupt events by an
arbiter, according to embodiments of the present disclosure.
Method 2100 may be implemented by any of the elements
shown in FIGS. 1-19. Method 2100 may be initiated by any
suitable criteria and may initiate operation at any suitable
point. In one embodiment, method 2100 may initiate opera-
tion at 2105. Method 2100 may include greater or fewer
steps than those illustrated. Moreover, method 2100 may
execute its steps in an order different than those illustrated
below. Method 2100 may terminate at any suitable step.
Moreover, method 2100 may repeat operation at any suitable
step. Method 2100 may perform any of its steps in parallel
with other steps of method 2100, or in parallel with steps of
other methods. In one embodiment, method 2100 may be
invoked on a PCH 1850 in response to receipt, from a
processor 1810, of an indication of a processor SMI event
1845 by PCH 1850.

[0188] At 2105, in one embodiment, an End-of-SMI
(EOS) bit in a PCH may be initialized to a value of 1 (true).
This may indicate that no SMI event is currently being
handled by an interrupt handler (more specifically, an SMI
handler) on a processor in the same system. If (at 2010) an
SMI event indication is received from the processor, then at
2115, an SMI status bit in the PCH may be set. The SMI
event indication may include an identifier of a CPU on
which the SMI event was detected, and the SMI status bit
that is set may be is associated with the identified CPU.
Similarly, if (at 2120) an SMI event is detected on the PCH,
then at 2125, a different SMI status bit in the PCH may be
set. This SMI status bit may be associated with the source of
the SMI event on the PCH. As illustrated in FIG. 20, until
and unless logic on the processor or on the PCH detects an
SMI event, operation may continue without asserting an
SMI signal to interrupt the processor.

[0189] If (at 2110) an SMI event indication is received
from the processor or if (at 2120) an SMI event is detected
on the PCH, and if (at 2130), it is determined that the EOS
bit is set, an SMI interrupt may be issued to the processor.
Issuing the interrupt may include asserting an interrupt
signal and clearing the EOS bit to indicate that the handling
of the interrupt is in progress. On the other hand, if (at 2110)
an SMI event indication is received from the processor or if
(at 2120) an SMI event is detected on the PCH, but if (at
2130), it is determined that the EOS bit is not set, operation
may continue without issuing an interrupt to the processor.
As illustrated in FIG. 21, any or all of steps 2110-2135 of
method 2100 may be repeated, as appropriate, if and when
any additional SMI events are detected on the processor or
on the PCH.

[0190] In embodiments of the present disclosure, the
detection of SMI events on the processor and/or on the PCH
may occur in any order. However, no interrupt will be issued
to the processor for a pending SMI event that originated on
the processor or on the PCH until and unless the value of the
EOS bit is 1 (true).

[0191] FIG. 22 is an illustration of a method 2200 for
handling serialized system management interrupt events,
according to embodiments of the present disclosure. Method
2200 may be implemented by any of the elements shown in
FIGS. 1-19. Method 2200 may be initiated by any suitable
criteria and may initiate operation at any suitable point. In
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one embodiment, method 2200 may initiate operation at
2205. Method 2200 may include greater or fewer steps than
those illustrated. Moreover, method 2200 may execute its
steps in an order different than those illustrated below.
Method 2200 may terminate at any suitable step. Moreover,
method 2200 may repeat operation at any suitable step.
Method 2200 may perform any of its steps in parallel with
other steps of method 2200, or in parallel with steps of other
methods. In one embodiment, method 2200 may be invoked
on a processor 1810 in response to receipt, from a PCH
1850, of an SMI signal 1855 by processor 1810.

[0192] At 2205, in one embodiment, all cores of a pro-
cessor may enter System Management Mode (SMM), and an
SMI handler may begin execution. In one embodiment, the
cores may pause or halt normal operation while in the SMM.
For example, they may refrain from the execution of any
instructions in the instruction stream while in the SMM. In
one embodiment, the SMI handler may be implemented by
circuitry or logic in one of the cores of the processor while
all of the cores are in the SMM. In another example, the SMI
handler may be implemented by circuitry or logic outside of
the cores while the cores are in the SMM. At 2210, the SMI
handler may access a status register on the PCH to determine
what SMI events are pending.

[0193] At 2215, in one embodiment, it may be determined
whether or not there is a pending processor SMI event. If
there is at least one pending SMI event that originated on the
processor, as indicated by the value of an SMI status bit for
the processor, then at 2220, the processor whose status bit is
set may be polled for pending SMI events. Action may be
taken by an SMI handler to deal with each pending SMI
event that originated on the processor. For example, the
processor may include multiple SMI event sources, each of
which detects an SMI event of a different type. In one
embodiment, the actions taken by the SMI handler to deal
with each of the pending SMI events that originated on the
processor may be dependent on the source of the SMI event
on the processor. In another embodiment, the actions taken
by the SMI handler to deal with each of the pending SMI
events that originated on the processor may be dependent on
the type of the SMI event. Once all of the pending SMI
events that originated on the processor have been dealt with,
the SMI handler may clear the SMI status bit for the
processor (on the PCH).

[0194] At 2225, in one embodiment, it may be determined
whether or not there is a pending SMI event from an SMI
event source on the PCH. If there is at least one pending SMI
event that originated on the PCH, as indicated by a true value
of one or more SMI status bits associated with SMI event
sources on the PCH, then at 2230, the SMI handler may
handle each SMI event from a PCH source whose SMI status
bit is set. For example, the SMI handler may, for each
pending SMI event, take one or more actions that are
dependent on the source of the SMI event. Once all pending
SMI events from a particular SMI event source on the PCH
have been dealt with, the SMI handler may clear the SMI
status bit associated with that SMI event source.

[0195] While (at 2235) there are more additional pending
SMI events to handle, some or all of steps 2215-2230 may
be repeated, as appropriate, to discover and handle each
additional pending SMI event. If, or once (at 2235), there are
no additional pending SMI events to handle, then at 2240,
the SMI handler may set the EOS bit in PCH, after which the
SMI handler may exit.
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[0196] In some embodiments, methods 2100 and/or 2200
may be invoked based on events that occur and/or actions
that are taken during execution of method 2000. For
example, methods 2100 and/or 2200 may be invoked to
arbitrate, serialize, and handle one or more SMI events,
including SMI events that originate on the processor.
[0197] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may reduce or eliminate complications that occur in
some existing systems due to SMIs. For example, in some
existing server systems, SMIs are used extensively for
firmware-based error handling and for handling various
reliability, availability, and serializability events. In today’s
high core count server systems, such firmware-first error
handling and reliance on SMIs may lead to complex corner
cases and race conditions that require convoluted work-
arounds. In some existing systems, these complex corner
cases and race conditions are caused by the fact that the
processor-generated SMIs are not serialized.

[0198] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may reduce or eliminate the SMI storms that occur in
some existing systems. For example, in some existing sys-
tems, all processor-generated SMI events are delivered to
the cores even if the core is already processing a previous
SMI. Since there is no arbiter for these SMI events, multiple
back-to-back SMIs can be delivered to the processor, caus-
ing an SMI storm with which the SMI handler cannot keep
up. The systems described herein may serialize the SMI
delivery, which may reduce or eliminate such SMI storms by
allowing only a single SMI signal to be issued at a time, the
handling of which may include handling multiple pending
SMI events.

[0199] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may reduce or eliminate the types of complications
that can be introduced by the merging of SMIs that is
performed in some existing systems. For example, in some
existing systems, there are situations in which there can be
multiple back-to-back SMI events happening in rapid suc-
cession, and those events can get lost due to a mechanism
called SMM merge. In these systems, each thread has one
SMI pending bit. If more than one SMI is detected within an
instruction boundary, the SMIs are merged into one SMI. In
such systems, when two back-to-back SMIs occur within an
instruction boundary in one thread, the two SMIs are
merged, whereas if these same two SMI events happened to
hit the thread across an instruction boundary, the thread will
observe two separate SMI events. This situation can throw
the SMI processing out of sync, leading to various corner
cases. The systems described herein may serialize the SMI
delivery, which may reduce or eliminate these types of SMM
merging issues.

[0200] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may reduce the amount of time that the cores of the
processor spend in system management mode in response to
SMI events. For example, interrupting the processor fewer
times and allowing the SMI handler to handle all currently
pending SMIs each time all the cores are stopped in response
to an interrupt, rather than repeatedly interrupting the pro-
cessor and waiting for the cores to rendezvous in the SMI
handler in order to handle individual SMIs, may allow the
processor to spend less time in the SMM and more time
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performing operating system and application workloads.
This may reduce the number of “time-outs” observed by
operating system processes and/or applications while the
cores handle SMIs. In another example, by limiting the
number of processors that are queried by the SMI handler to
those that actually generated an SMI event (as indicated by
corresponding SMI status bits on the PCH), the time spent
by the SMI handler to identify the sources of all currently
pending SMI events may be reduced.

[0201] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may provide consistent semantics for all of the SMI
events in the system, regardless of their sources. The arbiter
on the PCH may then be used to serialize processor-
generated SMIs along with PCH-generated SMIs, such that
an SMI is issued to the processor, and sent to its cores, only
after the handling of any SMI currently being handled is
complete. In some embodiments, these mechanisms may
provide a cleaner solution for handling multiple SMI events
than in existing systems, may prevent the storms, time-outs,
and SMM merge issues than can occur in some existing
system, and may avoid complex debug scenarios due to
spurious SMI issues.

[0202] In some embodiments, the mechanisms described
herein for serializing SMIs, including processor-generated
SMIs, may handle multi-processor scenarios seamlessly by
utilizing the arbiter in the PCH, which is a common resource
shared by all the processor sockets in the system. In some
embodiments, the PCH may reside on the same integrated
circuit die as one or more processors in the system. In other
embodiments, the PCH may reside in the same socket or
package as one or more processors in the system. In still
other embodiments, the PCH may reside in the same chipset
as one or more processors in the system

[0203] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the disclosure may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0204] Program code may be applied to input instructions
to perform the functions described herein and generate
output information. The output information may be applied
to one or more output devices, in known fashion. For
purposes of this application, a processing system may
include any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

[0205] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0206] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
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the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine-readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0207] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), magnetic
or optical cards, or any other type of media suitable for
storing electronic instructions.

[0208] Accordingly, embodiments of the disclosure may
also include non-transitory, tangible machine-readable
media containing instructions or containing design data,
such as Hardware Description Language (HDL), which
defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may
also be referred to as program products.

[0209] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part-on and
part-off processor.

[0210] Thus, techniques for performing one or more
instructions according to at least one embodiment are dis-
closed. While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive on other embodiments, and that such
embodiments not be limited to the specific constructions and
arrangements shown and described, since various other
modifications may occur to those ordinarily skilled in the art
upon studying this disclosure. In an area of technology such
as this, where growth is fast and further advancements are
not easily foreseen, the disclosed embodiments may be
readily modifiable in arrangement and detail as facilitated by
enabling technological advancements without departing
from the principles of the present disclosure or the scope of
the accompanying claims.

[0211] Some embodiments of the present disclosure
include a processor. In at least some of these embodiments,
the processor may include a core to execute instructions,
logic or circuitry to detect, on the processor, a first system
management interrupt (SMI) event of a first SMI event type,
logic or circuitry to direct an indication of the first SMI event
to an arbiter, logic or circuitry to receive an interrupt signal
from the arbiter, an interrupt handler to respond to the
interrupt signal, including logic or circuitry to take action in
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response to detection of the first SMI event, the action to be
dependent on the first SMI event type, and logic or circuitry
to effect an indication that the interrupt handler has com-
pleted its actions in response to the interrupt signal. In
combination with any of the above embodiments, the pro-
cessor may include logic or circuitry to communicate the
interrupt signal to the core, and the core may include logic
or circuitry to pause execution of instructions while the
interrupt handler responds to the interrupt signal. In com-
bination with any of the above embodiments, the processor
may further include logic or circuitry to detect, on the
processor and prior to receipt of the interrupt signal, a
second SMI event of a second SMI event type different from
the first SMI event type, and logic or circuitry to direct an
indication of the second SMI event to the arbiter, and the
interrupt handler may further include logic or circuitry to
take action in response to detection of the second SMI event,
the action to be dependent on the second SMI event type. In
combination with any of the above embodiments, the inter-
rupt handler may further include logic or circuitry to deter-
mine the first SMI event type. In combination with any of the
above embodiments, the interrupt handler may further
include logic or circuitry to determine that a second SMI
event is pending, and logic or circuitry to take action in
response to the second SMI event. In combination with any
of the above embodiments, the arbiter may be a component
of a controller hub, and the interrupt handler may further
include logic or circuitry to determine that a second SMI
event was detected on the controller hub, and logic or
circuitry to take action in response to the second SMI event.
In combination with any of the above embodiments, the
arbiter may be a component of a controller hub, and the
processor and the controller hub may reside in a single
integrated circuit package. In combination with any of the
above embodiments, the arbiter may be a component of a
controller hub, and the logic or circuitry may set an end-of-
SMI indicator on the controller hub. In combination with
any of the above embodiments, the processor may be one of
a plurality of processors communicatively coupled to the
arbiter, and the indication of the first SMI event may include
an identifier of the processor. In combination with any of the
above embodiments, the processor may include a plurality
of SMI event sources, and the interrupt handler may further
include logic or circuitry to determine the source of the first
SMI event on the processor. In combination with any of the
above embodiments, the arbiter may be a component of a
controller hub, the controller hub may include at least one
SMI event source, and the interrupt handler may further
include logic or circuitry to determine that a second SMI
event was detected on the controller hub, and logic or
circuitry to determine the source of the second SMI event on
the controller hub. In combination with any of the above
embodiments, processor may further include one or more
SMI event sources, including core error logic or circuitry,
memory controller error logic or circuitry, interconnect error
logic or circuitry, uncore error logic or circuitry, or input/
output error logic or circuitry. In combination with any of
the above embodiments, the processor may be a first one of
a plurality of processors communicatively coupled to the
arbiter, and the interrupt handler may further include logic or
circuitry to determine that a second SMI event was detected
on a second one of the plurality of processors, and logic or
circuitry to determine the source of the second SMI event on
the second processor.
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[0212] Some embodiments of the present disclosure
include a method. The method may include detecting, on a
processor, a first system management interrupt (SMI) event
of a first SMI event type, directing an indication of the first
SMI event to a controller hub, receiving an interrupt signal
from the controller hub, executing, in response to receiving
the interrupt signal, an interrupt handler, including taking
action in response to detecting the first SMI event, the action
being dependent on the first SMI event type, and setting an
indicator on the controller hub to indicate that the interrupt
handler has completed its actions in response to the interrupt
signal. In combination with any of the above embodiments,
the processor may include a core for executing instructions,
and the method may further include communicating the
interrupt signal to the core, and pausing, by the core,
execution of instructions while the interrupt handler
responds to the interrupt signal. In combination with any of
the above embodiments, the method may further include
detecting, on the processor prior to receiving the interrupt
signal, a second SMI event of a second SMI event type
different from the first SMI event type, and directing an
indication of the second SMI event to the controller hub, and
executing the interrupt handler may further include taking
action in response to detecting the second SMI event, the
action being dependent on the second SMI event type. In
combination with any of the above embodiments, executing
the interrupt handler may further include determining the
first SMI event type. In combination with any of the above
embodiments, executing the interrupt handler may further
include determining that a second SMI event is pending, and
taking action in response to the second SMI event. In
combination with any of the above embodiments, executing
the interrupt handler may further include determining that a
second SMI event was detected on the controller hub, and
taking action in response to the second SMI event. In
combination with any of the above embodiments, the pro-
cessor may be one of a plurality of processors communica-
tively coupled to the controller hub, and the indication of the
first SMI event may include an identifier of the processor. In
combination with any of the above embodiments, the pro-
cessor may include a plurality of SMI event sources, and
executing the interrupt handler may further include deter-
mining the source of the first SMI event on the processor. In
combination with any of the above embodiments, the con-
troller hub may include at least one SMI event source, and
executing the interrupt handler may further include deter-
mining that a second SMI event was detected on the con-
troller hub, and determining the source of the second SMI
event on the controller hub. In combination with any of the
above embodiments, the controller hub may include a
respective source for each of one or more SMI event types,
including a software SMI event type, a timer SMI event
type, or an input/output SMI event type. In combination with
any of the above embodiments, the processor may include
one or more SMI event sources, including core error logic or
circuitry, memory controller error logic or circuitry, inter-
connect error logic or circuitry, uncore error logic or cir-
cuitry, or input/output error logic or circuitry. In combina-
tion with any of the above embodiments, the processor may
be a first one of a plurality of processors communicatively
coupled to the controller hub, and executing the interrupt
handler may further include determining that a second SMI
event was detected on a second one of the plurality of
processors, and determining the source of the second SMI
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event on the second processor. In combination with any of
the above embodiments, executing the interrupt handler may
further include taking, prior to setting the indicator on the
controller hub, a respective action in response to at least one
additional pending SMI event, the action being dependent
on the type of the additional pending SMI event, and
receiving, from the controller hub subsequent to setting the
indicator on the controller hub, a second interrupt signal.

[0213] Some embodiments of the present disclosure
include a system. In at least some of these embodiments, the
system may include a controller hub, and a first processor.
The first processor may include a core to execute instruc-
tions, logic or circuitry to detect a first system management
interrupt (SMI) event from a first SMI event source on the
first processor, logic or circuitry to direct an indication of the
first SMI event to the controller hub, logic or circuitry to
receive an interrupt signal from the controller hub, an
interrupt handler to respond to the interrupt signal, including
logic or circuitry to take action in response to detection of
the first SMI event, the action to be dependent on the source
of the first SMI event, and logic or circuitry to set an
indicator on the controller hub to indicate that the interrupt
handler has completed its actions in response to the interrupt
signal. In combination with any of the above embodiments,
the first processor may further include logic or circuitry to
communicate the interrupt signal to the core, the core to
include logic or circuitry to pause execution of instructions
while the interrupt handler responds to the interrupt signal.
In combination with any of the above embodiments, the first
processor may further include logic or circuitry to detect,
prior to receipt of the interrupt signal, a second SMI event
from a second SMI event source on the first processor
different from the first SMI event source, and logic or
circuitry to direct an indication of the second SMI event to
the controller hub, and the interrupt handler may further
include logic or circuitry to take action in response to
detection of the second SMI event, the action to be depen-
dent on the source of the second SMI event. In combination
with any of the above embodiments, the interrupt handler
may further include logic or circuitry to determine that a
second SMI event is pending, and logic or circuitry to take
action in response to the second SMI event. In combination
with any of the above embodiments, the controller hub may
include a first SMI status bit whose value indicates whether
or not an SMI event has been detected for an SMI event
source on the first processor, a second SMI status bit whose
value indicates whether or not an SMI event has been
detected for an SMI event source on the controller hub, and
the interrupt handler may further include logic or circuitry to
determine, dependent on the second SMI status bit, that a
second SMI event was detected on the controller hub, and
logic or circuitry to take action in response to the second
SMI event. In combination with any of the above embodi-
ments, the controller hub may include an end-of-SMI indi-
cator whose value indicates whether or not the interrupt
handler has completed its actions in response to an interrupt
issued to the first processor by the controller hub, logic or
circuitry to prevent the controller hub from issuing an
interrupt to the first processor while the end-of-SMI indica-
tor is false, logic or circuitry to determine that at least one
SMI event is pending, logic or circuitry to issue an interrupt
to the first processor in response to determining that at least
one SMI event is pending and that the end-of-SMI indicator
is true, including logic or circuitry to clear the end-of-SMI
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indicator, and logic or circuitry to assert the interrupt signal.
In combination with any of the above embodiments, the
system further may include a second processor, the indica-
tion of the first SMI event may include an identifier of the
first processor, the controller hub may include a first SMI
status bit whose value indicates whether or not an SMI event
has been detected for an SMI event source on the first
processor, and logic or circuitry to determine, dependent on
receipt of the indication of the first SMI event and the
identifier of the first processor, that the first SMI status bit is
to be set. In combination with any of the above embodi-
ments, the controller hub may include a first SMI status bit
whose value indicates whether or not an SMI event has been
detected for an SMI event source on the first processor, the
interrupt handler may further include logic or circuitry to
determine the source of the first SMI event on the first
processor. In combination with any of the above embodi-
ments, the controller hub may include a first SMI status bit
whose value indicates whether or not an SMI event has been
detected for an SMI event source on the first processor, a
second SMI status bit whose value indicates whether or not
an SMI event has been detected for an SMI event source on
the controller hub, logic or circuitry to determine that a
second SMI event was detected on the controller hub, and
logic or circuitry to set the second SMI status bit. In
combination with any of the above embodiments, the system
further may include a second processor, the controller hub
may include a first SMI status bit whose value indicates
whether or not an SMI event has been detected for an SMI
event source on the first processor, a second SMI status bit
whose value indicates whether or not an SMI event has been
detected for an SMI event source on the second processor,
and logic or circuitry to determine, dependent on receipt of
an indication of a second SMI event including an identifier
of the second processor, that the second SMI status bit is to
be set. In combination with any of the above embodiments,
the interrupt handler may further include logic or circuitry to
determine the first SMI event type. In combination with any
of the above embodiments, the logic or circuitry may set an
end-of-SMI indicator on the controller hub. In combination
with any of the above embodiments, the first processor may
be one of a plurality of processors in the system, and the
indication of the first SMI event may include an identifier of
the first processor. In combination with any of the above
embodiments, the first processor may include a plurality of
SMI event sources, and the interrupt handler may further
include logic or circuitry to determine the source of the first
SMI event on the first processor. In combination with any of
the above embodiments, the interrupt handler may further
include logic or circuitry to determine that a second SMI
event was detected on the controller hub, and logic or
circuitry to determine the source of the second SMI event on
the controller hub. In combination with any of the above
embodiments, the controller hub may include a respective
source for each of one or more SMI event types, including
a software SMI event type, a timer SMI event type, or an
input/output SMI event type. In combination with any of the
above embodiments, the processor further may include one
or more SMI event sources, including core error logic or
circuitry, memory controller error logic or circuitry, inter-
connect error logic or circuitry, uncore error logic or cir-
cuitry, or input/output error logic or circuitry. In combina-
tion with any of the above embodiments, the controller hub
may include an arbiter to assert the interrupt signal. In
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combination with any of the above embodiments, the first
processor and the controller hub may reside in a single
integrated circuit package. In combination with any of the
above embodiments, the first processor and the controller
hub may reside on a single integrated circuit die.

[0214] Some embodiments of the present disclosure
include a system for executing instructions. In at least some
of these embodiments, the system may include means for
detecting, on a processor, a first system management inter-
rupt (SMI) event of a first SMI event type, means for
directing an indication of the first SMI event to controller
hub, means for receiving an interrupt signal from the con-
troller hub, means for executing, in response to receiving the
interrupt signal, an interrupt handler, including means for
taking action in response to detecting the first SM1 event, the
action being dependent on the first SMI event type, and
means for setting an indicator on the controller hub to
indicate that the interrupt handler has completed its actions
in response to the interrupt signal. In combination with any
of the above embodiments, the processor may include a core
for executing instructions, and the apparatus may further
include means for communicating the interrupt signal to the
core, and means for pausing, by the core, execution of
instructions while the interrupt handler responds to the
interrupt signal. In combination with any of the above
embodiments, the apparatus may further include means for
detecting, on the processor prior to receiving the interrupt
signal, a second SMI event of a second SMI event type
different from the first SMI event type, and means for
directing an indication of the second SMI event to the
controller hub, the means for executing the interrupt handler
may further include means for taking action in response to
detecting the second SMI event, the action being dependent
on the second SMI event type. In combination with any of
the above embodiments, the means for executing the inter-
rupt handler may further include means for determining the
first SMI event type. In combination with any of the above
embodiments, the means for executing the interrupt handler
may further include means for determining that a second
SMI event is pending, and means for taking action in
response to the second SMI event. In combination with any
of the above embodiments, the means for executing the
interrupt handler may further include means for determining
that a second SMI event was detected on the controller hub,
and means for taking action in response to the second SMI
event. In combination with any of the above embodiments,
the processor may be one of a plurality of processors
communicatively coupled to the controller hub, and the
indication of the first SMI event may include an identifier of
the processor. In combination with any of the above embodi-
ments, the processor may include a plurality of SMI event
sources, and the means for executing the interrupt handler
may further include means for determining the source of the
first SMI event on the processor. In combination with any of
the above embodiments, the controller hub may include at
least one SMI event source, and the means for executing the
interrupt handler may further include means for determining
that a second SMI event was detected on the controller hub,
and means for determining the source of the second SMI
event on the controller hub. In combination with any of the
above embodiments, the controller hub may include a
respective source for each of one or more SMI event types,
including a software SMI event type, a timer SMI event
type, or an input/output SMI event type. In combination with
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any of the above embodiments, the processor may include
one or more SMI event sources, including core error logic or
circuitry, memory controller error logic or circuitry, inter-
connect error logic or circuitry, uncore error logic or cir-
cuitry, or input/output error logic or circuitry. In combina-
tion with any of the above embodiments, the processor may
be a first one of a plurality of processors communicatively
coupled to the controller hub, and the means for executing
the interrupt handler may further include means for deter-
mining that a second SMI event was detected on a second
one of the plurality of processors, and means for determining
the source of the second SMI event on the second processor.
In combination with any of the above embodiments, the
means for executing the interrupt handler may further
include means for taking, prior to setting the indicator on the
controller hub, a respective action in response to at least one
additional pending SMI event, the action being dependent
on the type of the additional pending SMI event, and means
for receiving, from the controller hub subsequent to setting
the indicator on the controller hub, a second interrupt signal.
What is claimed is:
1. A processor, comprising:
a core including circuitry to execute instructions; and
circuitry to:
detect, on the processor, a first system management
interrupt (SMI) event of a first SMI event type;
direct an indication of the first SMI event to an arbiter
that is outside the processor;
receive an interrupt signal from the arbiter;
an interrupt handler to respond to the interrupt signal,
including circuitry to:
take action in response to detection of the first SMI
event, the action to be dependent on the first SMI
event type; and
effect an indication that the interrupt handler has com-
pleted its actions in response to the interrupt signal.
2. The processor of claim 1, wherein:
the processor further comprises circuitry to:
communicate the interrupt signal to the core; and
the core includes circuitry to:
pause execution of instructions while the interrupt
handler responds to the interrupt signal.
3. The processor of claim 1, wherein:
the processor further comprises circuitry to:
detect, on the processor and prior to receipt of the
interrupt signal, a second SMI event of a second SMI
event type different from the first SMI event type;
and
direct an indication of the second SMI event to the
arbiter;
the interrupt handler further includes circuitry to:
take action in response to detection of the second SMI
event, the action to be dependent on the second SMI
event type.
4. The processor of claim 1, wherein:
the interrupt handler further comprises circuitry to:
determine the first SMI event type.
5. The processor of claim 1, wherein:
the interrupt handler further comprises circuitry to:
determine that a second SMI event is pending; and
take action in response to the second SMI event.
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6. The processor of claim 1, wherein:
the arbiter is a component of a controller hub that arbi-
trates between SMI events that originate on both the
processor and on the controller hub; and
the interrupt handler further comprises circuitry to:
determine that a second SMI event was detected on the
controller hub; and
take action in response to the second SMI event.
7. The processor of claim 1, wherein:
the arbiter is a component of a controller hub; and
the processor and the controller hub reside in a single
integrated circuit package.
8. A method, comprising, in a processor:
detecting, on the processor, a first system management
interrupt (SMI) event of a first SMI event type;
directing an indication of the first SMI event to a con-
troller hub that is outside the processor;
receiving an interrupt signal from the controller hub;
executing, in response to receiving the interrupt signal, an
interrupt handler, including:
taking action in response to detecting the first SMI
event, the action being dependent on the first SMI
event type; and
setting an indicator on the controller hub to indicate
that the interrupt handler has completed its actions in
response to the interrupt signal.
9. The method of claim 8, wherein:
the processor includes a core for executing instructions;
and
the method further comprises:
communicating the interrupt signal to the core; and
pausing, by the core, execution of instructions while the
interrupt handler responds to the interrupt signal.
10. The method of claim 8, wherein:
the method further comprises:
detecting, on the processor prior to receiving the inter-
rupt signal, a second SMI event of a second SMI
event type different from the first SMI event type;
and
directing an indication of the second SMI event to the
controller hub;
executing the interrupt handler further includes:
taking action in response to detecting the second SMI
event, the action being dependent on the second SMI
event type.
11. The method of claim 8, wherein:
executing the interrupt handler further comprises:
determining the first SMI event type.
12. The method of claim 8, wherein:
executing the interrupt handler further comprises:
determining that a second SMI event is pending; and
taking action in response to the second SMI event.
13. The method of claim 8, wherein:
the controller hub arbitrates between SMI events that
originate on both the processor and on the controller
hub; and
executing the interrupt handler further comprises:
determining that a second SMI event was detected on
the controller hub; and
taking action in response to the second SMI event.
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14. A system, comprising:
a controller hub; and
a first processor, comprising:

a core including circuitry to execute instructions; and

circuitry to:
detect a first system management interrupt (SMI)

event from a first SMI event source on the first
processor;
direct an indication of the first SMI event to the
controller hub;
receive an interrupt signal from the controller hub;
an interrupt handler to respond to the interrupt signal,
including circuitry to:
take action in response to detection of the first SMI
event, the action to be dependent on the source of
the first SMI event; and
set an indicator on the controller hub to indicate that
the interrupt handler has completed its actions in
response to the interrupt signal.
15. The system of claim 14, wherein:
the first processor further comprises circuitry to:
communicate the interrupt signal to the core;
the core includes circuitry to:

pause execution of instructions while the interrupt

handler responds to the interrupt signal.
16. The system of claim 14, wherein:
the first processor further comprises circuitry to:

detect, prior to receipt of the interrupt signal, a second
SMI event from a second SMI event source on the
first processor different from the first SMI event
source; and

direct an indication of the second SMI event to the
controller hub;

the interrupt handler further includes circuitry to:

take action in response to detection of the second SMI
event, the action to be dependent on the source of the
second SMI event.

17. The system of claim 14, wherein:

the interrupt handler further comprises circuitry to:
determine that a second SMI event is pending; and
take action in response to the second SMI event.

18. The system of claim 14, wherein:

the controller hub comprises:

a first SMI status bit whose value indicates whether or
not an SMI event has been detected for an SMI event
source on the first processor;

a second SMI status bit whose value indicates whether
or not an SMI event has been detected for an SMI
event source on the controller hub;

the interrupt handler further comprises circuitry to:
determine, dependent on the second SMI status bit, that
a second SMI event was detected on the controller
hub; and

take action in response to the second SMI event.

19. The system of claim 14, wherein:
the controller hub comprises:

an end-of-SMI indicator whose value indicates whether
or not the interrupt handler has completed its actions
in response to an interrupt issued to the first proces-
sor by the controller hub; and

circuitry to:
prevent the controller hub from issuing an interrupt

to the first processor while the end-of-SMI indi-
cator is false;
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determine that at least one SMI event is pending; and
issue an interrupt to the first processor in response to
determining that at least one SMI event is pending
and that the end-of-SMI indicator is true, includ-
ing circuitry to:
clear the end-of-SMI indicator; and
assert the interrupt signal.
20. The system of claim 14, wherein:
the system further comprises a second processor;
the indication of the first SMI event includes an identifier
of the first processor;
the controller hub comprises:

a first SMI status bit whose value indicates whether or
not an SMI event has been detected for an SMI event
source on the first processor; and

circuitry to determine, dependent on receipt of the
indication of the first SMI event and the identifier of
the first processor, that the first SMI status bit is to be
set.



