Office de la Proprieté Canadian CA 2414438 C 2005/06/07
Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 41 4 438
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(51) Cl.Int.”/Int.CI." GO6F 13/00

(72) Inventeur/Inventor:
PARKS, DAVID, US

(73) Proprietaire/Owner:
SRC COMPUTERS, INC., US

(74) Agent: GOWLING LAFLEUR HEND

(86) Date de déepot PCT/PCT Filing Date: 2001/03/16

(87) Date publication PCT/PCT Publication Date: 2002/02/21
(45) Date de délivrance/lssue Date: 2005/06/07

(85) Entree phase nationale/National Entry: 2003/01/09

(86) N° demande PCT/PCT Application No.: US 2001/008597
(87) N° publication PCT/PCT Publication No.: 2002/015021
(30) Priorité/Priority: 2000/08/15 (09/638,365) US

—RSON LL

54) Titre : SYSTEME ET PROCEDE DE GESTION DE SEMAPHORES ET D'OPERATIONS ATOMIQUES DANS UN

MULTIPROCESSEUR
54) Title: SYSTEM AND METHOD FOR SEMAPHORE AND ATOMIC OPERATION MANAGEMENT IN A

MULTIPROCESSOR

105

4 100
7 '/
MEMORY MEMORY MEMORY .o MEMORY
BANK 1 BANK 2 BANK 3 BANK_M
i
SHARED MEMORY _
103
102 —, " T [N
(::- INTERCONNECT :)
\ o /
! 108 —7 [
107
/.1~ BRIDGE 108 —| DRAM 107 — | BRIDGE DRAM
106 ‘ 106 -
i i Tl FsB
INTERFACE INTERFACE
é |
110 I
104 | 104 | é“o
P1 P2 P1 P2
PCI BRIDGE PCI BRIDGE
101 112 B \ 1 é
- 101
(57) Abréegée/Abstract:

A method and apparatus including a plurality of data processing units. A plurality of memory banks having a shared address space
are coupled to the processors by a crossbar coupling to enable reading and writing data between the processors to enable cache
coherency messages to be transmitted from the memory to the processors. A plurality of semaphore registers are implemented
with the shared address space of the memory banks wherein the semaphore registers are accessible by the processors throught
eh crossbar coupling.

SRR VNEEEN
R 5. sas ALy
O
A

OPIC

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

CA 02414438 2003-01-09

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
21 February 2002 (21.02.2002)

GO6F 13/00

(51) International Patent Classification”:

(21) International Application Number: PCT/US01/08597

(22) International Filing Date: 16 March 2001 (16.03.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/638,365 15 August 2000 (15.08.2000) US

(71) Applicant: SRC COMPUTERS, INC. [US/US]; 4240 N.
Nevada Avenue, Colorado Springs, CO 80907 (US).

(72) Imventor: PARKS, David; 20 Mahogany Lane, Colorado
Springs, CO 80906-7901 (US).

(74) Agents: BURTON, Carol, W. et al.; Holland & Hartson
LLP, 1200 17th Street, Suite 1500, Denver, CO 80202 (US).

PCT

(10) International Publication Number

WO 02/15021 Al

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CFL,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR SEMAPHORE AND ATOMIC OPERATION MANAGEMENT IN A MULTIPRO-
CESSOR

2/15021 Al

(57) Abstract: A method and apparatus including a plurality of data processing units. A plurality of memory banks having a shared
address space are coupled to the processors by a crossbar coupling to enable reading and writing data between the processors to enable
cache coherency messages to be transmitted from the memory to the processors. A plurality of semaphore registers are implemented
with the shared address space of the memory banks wherein the semaphore registers are accessible by the processors throught eh
crossbar coupling.

~

WO

10

15

20

25

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

SYSTEM AND METHOD FOR SEMAPHORE AND ATOMIC OPERATION
MANAGEMENT IN A MULTIPROCESSOR

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates, in general, to microprocessor systems,
and, more particularly, to software, systems and methods for implementing

atomic operations in a multiprocessor computer system.

Relevant Background

Microprocessors manipulate data according to instructions specified by
a computer program. The instructions and data in a conventional system are
stored in memory which is coupled to the processor by a memory bus.
Computer programs are increasingly compiled to take advantage of
parallelism. Parallelism enables a complex program fo be executed as a
plurality of similar or disjoint tasks that are concurrently executed to improve

performance.

Traditionally, microprocessors were designed to handle a single stream
of instructions in an environment where the microprocessor had full control
over the memory address space. Multiprocessor computer systems were
developed to improve program execution by providing a plurality of data
processors operating in parallel. Early multiprocessor systems used special-
purpose processors that included features specifically designed to coordinate
the activities of the plurality of processors. Moreover, software was often
specifically compiled to a particular multiprocessor platform. These factors

made multiprocessing expensive to obtain and maintain.

The increasing availability of low-cost high performance
microprocessors makes general purpose multiprocessing computers feasible.
As used herein the terms "microprocessor” and "processor” include complex
instruction set computers (CISC), reduced instruction set computers (RISC)

and hybrids. However, general purpose microprocessors are not typically

10

15

20

25

30

CA 02414438 2003-01-09
WO 02/15021 PCT/US01/08597

designed specifically for large scale multiprocessing. Some mICroprocessors
support configurations of up to four processors in a system on a shared bus.
To go beyond these limits, special purpose hardware, firmware, and software

must be employed to coordinate the activities of the various microprocessors

In a system.

Inter process communication and synchronization are two of the more
difficult coordination problems faced by multiprocessor system designers.
Essentially, the problems surround coordinating the activities of each
processor by exchanging state information between related processes
running on different, and quite often autonomous, processors. [nability to
coordinate processor activities is a primary limitation in the scaleability of
multiprocessor designs. Solutions to this problem becomes quite complex as

the number of processors increases.

State information is often embodied in a data structure called a
"semaphore" and can be stored in a shared memory resource or semaphore
register. A semaphore is essentially a flag or set of flags comprising values
that indicate the status of a common (i.e., shared) resource. For example, a
set of semaphores may be used to assert a lock over a particular shared
resource. It is desirable to‘ make semaphores available to all processors in a

multiprocessor system.

Semaphores are accessed by, modified by, and communicated with
various processes on an ongoing basis. Semaphore manipulation typically
involves a small set of relatively simple operations such as test, set, test and
set, write, clear, and fetch. These operations are sometimes performed in
combination with some primary mathematical or logical operation (e.g.,
increment, decrement, AND, OR). When semaphores are memory resident,
access to the semaphores is accomplished in a manner akin to memory
operations (e.g., read/write or load/store operations) in that the semaphore
data is read, updated, and written back to the semaphore register structure.

This process is often referred to as a "read-modify-write" cycle.

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

These semaphore management operations typically involve
transferring the semaphore to a processor's cache/internal register, updating
the semaphore value, and transferring the updated semaphore back to the
semaphore register structure. The semaphore manipulations must be atomic
operations in that no processor can be allowed to manipulate (i.e., change)
the semaphore value while a semaphore management operation is pending
or in flight (e.g., when the semaphore is being manipulated by another
processor). Accordingly, memory-mapped semaphore manipulations imply a
bus lock or other locking mechanism during a typical read-modify-write cycle
to ensure atomicity. Bus locking, however, may not be possible unless all
nrocessors share a common bus, and significantly impacts performance and
scalability of the multiprocessor design. Moreover, some mechanisms for
ensuring atomic operations rely on special instructions in the microprocessor
instruction set architecture (ISA). Such a requirement greatly limits the
flexibility in processor selection. A need exists for a method and system for
manipulating memory-mapped semaphore registers that does not suffer the

locking penalties associated with conventional atomic memory operations.

Atomicity can be ensured by making the semaphore cacheable and
using cache coherency mechanisms such as the MESI protocol to enforce
atomicity. Alternatively the semaphore can be made uncacheable so that it
exists only in the shared memory space and processor bus lock mechanisms
used prevent all processor communication until the semaphore management
operation completes. In either case, when a semaphore is being concurrently
shared by a large processor count there are performance and implementation

ISSues.

Using a cached semaphores requires one processor to modify the
semaphore and then propagatﬁe the modification to all other caches having
copies of the semaphore. To migrate a cache line with write access from one
processor to another quite often involves multiple memory read transactions
along with one or more cache coherency operations and their accompanying

replies. The latency of acquiring exclusive access to a cache line is a

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

10

15

20

25

30

function of the number of processors that currently share access to the line.
Because of this, using cache coherency mechanisms such as the MESI
protocol do not scale well. Given that it is desirable to configure memory as
cacheable (specifically, using a write allocate cache policy), and that the
cache coherency protocol is designed to support upwards of 40 processors,
inevitably there will be parallel applications where large processor counts will

be using shared memory locations to synchronize program flow.

Host bus locking ensures atomicity in a very brute force manner. The
atomic operation support in the 1A32 instruction set with uncached memory
requires two bus operations: a read, followed by a write. While these
operations proceed a bus lock is asserted which prevents other processors
from gaining access to and utilizing the unused bus bandwidth. This is
particularly detrimental in computer systems where multiple processors and
other components share the host bus potentially creating conditions for
system deadlock. Asserting bus lock by any agent using the host bus will

prevent the other processors from being able to start or complete any bus

transaction targeting memory.

Similar issues exist for any atomic memory operation. An atomic
memory operation is one in which a read or write operation is made to a
shared memory location. Even when the shared memory location is
uncached, the atomic memory operation must be completed in a manner that
ensures that any processors that are accessing the shared memory location

are prevented from reading the location until the atomic operation is

completed.

More complex multiprocessor architectures combine multiple processor
boards where each processor board contains multiple processors coupled
together with a shared front side bus. [n such systems, the multiple boards are
interconnected with each other and with memory using an interconnect network
that is independent of the front side bus. In essence, each of the
multiprocessing boards has an independent front side bus. Because the front

side bus is not shared by all of the system processors, coherency mechanisms

CA 02414438 2004-10-28"

such as bus locking and bus snooping, which operate only on the front side
bus, are difficult if not impossible to implement.

Hence, semaphore management operations consume bus bandwidth
that is merely overhead. Accordingly, it is desirable to provide a semaphore
5 management mechanism and method that operates _efﬁciently'to minimize
- overhead. More specifically, a means for providing semaphore management
that does not rely on either cache coherency mechanisms or bus locking
mechanisms is needed. '

SUMMARY OF THE INVENTION

10 ~ Briefly stated, the present invention involves a method and apparatus
for implementing ‘semaphores In a multiprocessor includihg a plurality of data
processing units. A plurality of memory banks having a shared address
space are coupled to the processors to enable reading and writing data
betwéen the processors and memory banks. A plurality of semaphore

15 registers are implémented within the shared address space of the memory
banks wherein the semaphore registers are accessible by the processors
using memory operations directed at the portion of the shared address space

‘allocated to the semaphore régisters. '

In another aspect the present invention involves a method of operating
20 a multiproceSsor computing system in which a plurality of Processors
generate memory requests. A plurality of memory banks are provided that
| have a shared address space and responsive to memory requests to read
and write data. A crossbar network couples the plurality of processors with
the plurality of memory banks. 'A portion of the shared address space in each |
25 memory bank is dedicated to semaphore registers. The dedicated portion of
memory is designated as uncacheable. A plurality of processes are executed
on one or more of the plurality of processofS. At runtime, a portion of the
- shared address space is allocated to the plurality of processes. Preferably, at
Ieast one of the physiéal semaphore registers in a particular memory bank is

10

15

20

25

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

mapped into the common address space allocated to the plurality of

processes in the particular memory bank.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a multiprocessor computer environment in which the

present invention is implemented,;

Fig. 2 shows portions of an exemplary multiprocessor in accordance

with the present invention;

Fig. 3 illustrates cache coherency mechanisms associated with a

memory bank in accordance with the present invention; and

Fig. 4 shows a memory mapping diagram illustrating operation of a

semaphore mechanism in accordance with the present invention; and

Fig. 5 and Fig. 6 illustrate an exemplary addressing format used to

read and write the contents of semaphores 303.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In general the present invention involves the allocation of a small, fixed
range of shared memory as "semaphore registers”. Semaphore registers are
data structures that hold state information such as flags, counters and the
like. Semaphore manipulation typically involves very “simple” operations, that
include: test , write, set, clear, test and set, and, fetch with some primary
operation (i.e. increment, decrement, AND, OR, and the like). Semaphores
are often used to share information and/or resources amongst a plurality of
software processes. Semaphore registers represent a type of uncached

memory structure.

An important feature of the present invention is to provide a scheme by
which atomic operations can be performed on memory mapped registers
using conventional "read" and "write" memory references that are supported
by virtually all microprocessors. However, the present invention alleviates the

need for a read/modify/write cycle in manipulating semaphores.

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

In accordance with the present invention, the semaphore registers
reside on the memory banks and are allocated a portion of the sharea
address space so all processors in the multiprocessor system have access {o
them with substantially uniform latency. Also, because shared memory is
used, existing processor-to-memory communication networks can be used
without need for a special-purpose network dedicated to managing
semaphore traffic. Also, semaphore manipulations are accomplished by
fundamental memory operations such as read and write operations such that

virtually any microprocessor and instruction set architecture can be used.

The present invention is illustrated and described in terms of a general-
purpose multiprocessing computing system comprising a number of
substantially identical microprocessors having integrated cache memory.
Although this type of computing system is a good tool for illustrating the
features and principles of the present invention, it should be understood that
a heterogeneous set of processors may be used. Some processors may
include integrated cache, some processors may include external cache, and
vet other processors may have no cache at all. The invention is illustrated In
terms of a shared memory system, but certain aspects will have application in
partitioned memory systems as well. Accordingly, the specific examples
given herein are supplied for purposes of illustration and understanding and
are not to be viewed as limitations of the invention except where expressly
stated. Moreover, an important feature of the present invention is that it is
readily scaled upwardly and downwardly to meet the needs of a particular
application. Accordingly, unless specified to the contrary the present
invention is applicable to significantly larger, more complex network
environments as well as small network environments such as conventional

local area network (LAN) systems.

Fig. 1 shows a multiprocessor computer environment in which the
present invention is implemented. Multiprocessor computer system 100
incorporates N processor boards 101. Each processor board 101 is logically

referred to as a processor node 101. Each processor board 101 comprises

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

one or more microprocessors, such as processors P1 and P2, having
integrated cache memory in the particular examples. Processor boards 101
may be configured in groups sharing a common front side bus (FSB) 104 and
sharing a common gateway through a bridge 107 to host bus network 102.
An exemplary processor is the Pentium® || Xeon™ processor manufactured
by Intel Corporation which can be configured as single processors and
symmetric multiprocessors (SMP) of up to four processors. Clustered

designs of multiple SMP systems are also available.

Processors 101 are bidirectionally coupled to shared memory 103
through interconnect network 102. Interconnect network 102 preferably
implements a full crossbar connection enabling any processor board 101 to
access any memory location implemented in any memory bank 105. Shared
memory 103 is configured as a plurality M of memory banks 105. Each
memory bank 105 may itself comprise a group of memory components.
Preferably shared memory 103 is organized as a plurality of "lines"” where
each line is sized based on the architecturally defined line size of cache within
processors 101. A line in memory or cache is the smallest accessible unit of
data although the present invention supports memory architectures that

permit addressing within a line.

Each processor board 101 may include a front side bus (FSB) gateway
interface 106 that enables access to local memory 108 and peripheral
component interconnect (PCI) bridge 110. In the particular examples local
memory 108 is not included in the address space of shared memory 103 and
is shared only amongst processors P1 and P2 coupled to the same front side
bus 104 as the FSB crossbar 106. PCI bridge 110 supports conventional PCI
devices to access and manage, for example, connections to external network
111 and/or storage 112. It is contemplated that some processor boards 101

may eliminate the PCI bridge functionality where PCI devices are available
through other boards 101.

Significantly, the front side bus 104 of each processor board 101 is

independent of the front side bus 104 of all other processor boards 101.

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

Hence, any mechanisms provided by, for example, the 1A32 instruction set to

perform atomic operations will not work as between processors located on
different boards 101.

Memory operations are conducted when a processor P1 or P2
executes an instruction that requires a load from or store to a target location
in memory 103. [n executing a memory operation the processor first
determines whether the target memory location is represented, valid and
accessible in a cache. The cache may be onboard the processor executing
the memory operation or may be in an external cache memory. In case of a
cache miss, the memory operation is handled by bridge 107. Bridge 107
generates a access request to host bus network 102 specifying the target
location address, operation type (e.g., read/write), as well as other control
information that may be required in a particular implementation. Shared
memory 103 receives the request and accesses the specified memory
location. In the case of a read operation the requested data is returned via a
response passed through host bus network 102 and addressed to the bridge
107 that generated the access request. A write transaction may return an
acknowledgement that the write occurred. In the event an error occurs within
shared memory 103 the response to bridge 107 may include a condition code

indicating information about the error.

Fig. 2 illustrates a specific implementation and interconnect strategy
supporting implementations of the present invention. In the implementation of
Fig. 2 there are sixteen segments labeled SEGMENT_0 through
SEGMENT 15. Each segment includes a processor group 201. A processor
group 201 in a particular example includes thirty two processors, each
coupled to processor switch 202 through a bi-directional data and command
interface. Processor switch 202 includes an output to a trunk line 214 for each
memory bank group 205. Similarly, each memory switch 203 includes an
output to the trunk line 214 for each processor group 201. In this manner, any
processor group can be selectively coupled to any memory bank group through

appropriate configuration of processor switch 202 and memory switch 203.

L0

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

Fig. 3 shows important semaphore management mechanisms
associated with a memory bank 205 in accordance with the present invention.
Memory switches 203 communicate with trunk lines 214 (shown in Fig. 2) to
send and receive memory access requests to memory controller 301. Upon
receiving a memory access request, memory switch 203 passes information
including the target memory address and processor node identification, as
well as control and mode information to memory controller 301. The target
memory address refers to a location in memory bank data portion 302 or a
portion of the memory address space that has been allocated to semaphore

controller 302.

The processor |D is a value indicating a unique processor node 101 in
a multiprocessor system that is conducting the memory operation. In a
particular embodiment this information is passed between switch 203 and
memory controller 301 within memory bank 301 as a data packet having
defined fields for the various types of information. The specific layout of this

data packet is chosen to meet the needs of a particular implementation.

Most of the shared address space is allocated for data and instructions
in memory 302. Memory 302 is organized as a plurality of memory lines 312,
also called cache lines. In a particular example each memory line 312 is 256
bits wide and memory 302 includes a variable number of lines depending on
the amount of physical memory implemented. Memory 302 is allocated to
executing processes using available memory management and allocation
mechanisms in a substantially conventional manner. Typically, a group of
executing processes will share a common address space that is allocated 1o
those processes at runtime. Typically all or a significant portion of the

conventional memory area 302 is designated as cacheable memory.

Cache coherency unit 305 operates in conjunction with cache directory
304 to manage cache coherency across the multiple processors that may
have cached copies of cacheable memory locations. Each entry 314
corresponds to a memory line within memory 302. Cache coherency chip

301 may be implemented as a custom integrated circuit such as an ASIC, a

10

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

one time or re-programmable logic device such as a programmable gate
array, or as discrete components coupled in a conventional circuit board or
multi-chip module. Cache coherency chip 301 uses the memory address to
access cache coherency directory 304. Cache coherency directory 304
includes a multi-bit entry 314 for each memory line in the shared memory
address space of the particular memory bank data portion 320. Cache
directory 314 includes a plurality of entries 314, each 36 bits wide in a
particular example. Each entry 314 contains a value indicating the current

state of the corresponding memory line.

In accordance with the present invention, a portion of the shared
address space of each memory bank is allocated to hardware semaphores,
hereinafter referred to as the "hardware semaphore portion". References to
the hardware semaphore portion are sent to semaphore controller 302 rather
than conventional memory portion 302. The hardware semaphore portion of
the address space is designated as uncacheable. In a particular example,
the size of hardware semaphore portion is selected to allocate a fixed
address space of about 4K byte to each physical processor in the system.
Hence, a system with 321 processors will allocate a total of 1.25MB, spread
amongst the memory banks 205, to hardware semaphore controller 303. In
an exemplary system the total address space available is in the order of
64GB or more. Hence, the portion allocated to hardware semaphores is

relatively smaill.

Normal memory read/write operations address locations within
conventional memory portion 302 as the executing processes cannot be
assigned address space within the hardware semaphore portion by the virtual
memory management system. The present invention introduces a new
system call into the operating system code to map one or more of the
physical semaphore registers within semaphore controller 302 into the
process' common address space. This enables the processes to read and
write data with the hardware semaphore registers by conventional memory

operations.

11

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

10

15

20

25

30

For any multiprocessor system having a number "n" physical
processors, there may be "n" processes executing in addition to an OS
process executing at any given time. Each process should have its own
semaphore register, hence the system should support n+1 semaphore

registers.

Atomicity of semaphore operations is important to ensure that any
operation that manipulates a semaphore value is completed before another
operation that reads or manipulates the semaphore can take place. Inthe
preferred implementation, serialization of memory operations is under the
control of bridge controller 107 shown in Fig. 1. Bridge controller 107 includes
mechanisms referred to as "fence operations” that impose order on memory
operations that affect uncached address space. A programmer uses the
fence operations to ensure correctness. These mechanisms ensure that
uncached memory references are completed before allowing any cached
read/write or uncached read operations to proceed. Uncached memory
references are memory operations that specify an uncached area of the
address space, including to the hardware semaphore portion of the address
space. These mechanisms operate in a similar manner in conjunction with
the present invention to ensure that semaphore manipulations, which appear
to bridge controller 107 as uncached memory operations, are serialized. This
implicitly guarantees that all references to the uncached hardware semaphore
area 303 will be serialized. This functionality is akin to the prior methods of
stalling the memory bus during a semaphore write operation. However, the
negative impacts are significantly curtailed by stalling these memory
transactions in the manner described herein. It is contemplated that
semaphore modification operations will take no more than six clock cycles to
complete as compared to the upwards of hundreds of clock cycles previous

bus stalling techniques incurred.

Fig. 4 shows a conceptual diagram illustrating an exemplary layout of
the semaphore registers within the context of the entire memory address

space. The linear address space 401 represents the common block of

12

10

15

20

25

30

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

address spaced assigned to a given set of independent or common executing

processes. Physical address space 402 represents the available physical

'memory in which the memory portions 302 and 303 (shown in Fig. 3) are

physically implemented. As shown in Fig. 4, a number of physical memory
lines are allocated to hardware semaphore registers 303. In the particular
example, each memory line is 64 bits wide so that in normal operation

memory reads and writes are performed in 8-byte wide groups of data.

The hardware semaphore memory area 303 holds a cluster of
hardware semaphore registers. The cluster of registers is preferably mapped
to a common linear address space shared by a plurality of processes. It
should be noted that the memory management system and/or microprocessor
architecture impose some practical limit on the size and organization of
semaphore registers. In the particular examples, semaphore “clusters” are
allocated on 4KB boundaries because the virtual memory (VM) management
of the processor provides for multiprocessing protection mechanisms down to
that granularity. Managing the semaphore register allocation involves
allocating or assigning a particular hardware semaphore register within
controller 304 to a particular process by the VM system so as to avoid
assignment of a single register to unrelated processes. Management at a
cluster level provides efficiency over, for example, allocating individual or

small groups of hardware semaphore registers on a register-by-register basis.

As illustrated in the exploded portion of Fig. 4 each memory line holds
either one (1) 64 bit or two (2) 32-bit semaphore registers two semaphore
registers 403. In the particular examples, each semaphore register 403 in the
exemplary implementation is 32-bits wide. The meaning and use of each bit

within a semaphore is at the discretion of the application itself.

Fig. 5 and Fig. 6 illustrate an exemplary addressing format used to
read and write the contents of semaphores 303. These examples assume a
32-bit virtual address (shown in Fig. 5) and a 36-bit physical address (shown
in Fig. 6). In both cases, bits [0:2] are byte offset bits provided to determine

whether the memory is being referenced as a 64 or 32 bit operation, bits [3:4]

13

10

15

20

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

are operation code specifiers for the register and bits [5:11] indicate a
particular semaphore within a cluster. The remaining bits [12:31] of the virtual
address indicate the virtual base of the semaphore cluster of interest. In the
physical address format shown in Fig. 6, bits [12:19] indicate the clusier
number to identify a particular cluster within the plurality of clusters shown in
Fig. 4. The physical base of the semaphores is indicated by bits [20:35] as

shown In Fig. 6.

To access any specific 32-bit hardware semaphore within a cluster the
address is calculated by combining the virtual cluster base address with the
semaphore number and the read/write operation code. The operation code is

encoded into the word select (WS) bits as indicated in Table 1.

WS
MemOP 00b 01b 10b 11b
Write Shrwrite | clear And Or
Read Test test & set | Fetch & increment | fetch & decrement

Table 1

The following briefly summarizes the read operations described in Table 1:
Test/ShrRead (WS=00b)

Read and return contents of requested semaphore register.
opdef: SHR TEST32[ShrReg]
SHR_ TEST64[ShrRe(]
Synonym: SHR READ32[ShrRkeg]
SHR READG4[ShrReg]
Test&Set (WS=01Db)

Read and return bit (2°) of requested semaphore register.

Set semaphore register bit 2° to a nonzero value (i.e.,=1).

opdet: SHR TSET32[ShrRed]
SHR TSET64[ShrReq]

14

CA 02414438 2003-01-09

WO 02/15021 PCT/US01/08597

10

15

20

25

Fetch&Increment (WS=10b)

Read and return contents of requested semaphore register.

opdef: SHR INC32[ShrReq]
SHR _INC64[ShrRed]
32 or 64-bit signed increment of requested semaphore register after reaa.

Fetch&Decrement (WS=I1b)

Read and return contents of requested semaphore register.

opdetf: SHR DEC32[ShrReg]
SHR DEC64[ShrReg]

32 or 64-bit sighed decrement of requested semaphore register after read.

The following briefly describes the write operations shown in Table. 1:

ShrWrite (WS=00b)

Store 32- or 64-bit data from write packet into requested semaphore register.

opdef: SHR WRITE32[ShrReq]
SHR_ WRITEG64|ShrReg]
NOTE: Setting a semaphore register is accomplished by writing any data

value (register/immediate) with bit 2%=1.

Clear (WS=01 b)

Zero contents of requested 32- or 64-bit semaphore register.

opdef SHR CLR32[ShrReg]
SHR CLR64[ShrReg]

AND (WS=10b)

AND 32- or 64-bit data from write packet with requested semaphore register.

Semaphore-register = Semaphore_register AND Write-Packet-data.
OR (WS=1 1 b)

OR 32- or 64-bit data from write packet with requested semaphore register.
Semaphore register = Semaphore-register OR Write-Packet-data.
Table 2 sets out examples of memory references and corresponding

semaphore operation using the Intel Architecture 32 (IA32) instruction set. In

15

10

15

20

CA 02414438 2003-01-09
WO 02/15021 PCT/US01/08597

Fig. 2 "%edi" points to base of current assigned cluster, which is a 4KB

semaphore region:

Processor Operation Operation

(i.e. memory reference)

mov! 0(%edi),%eax SHR TEST32[0] (ShrRead)

movl 8(%edi),%eax SHR_TSET32FOI 32 bit & set =1

movl 16(%edi),%eax SHR_INC32[0] fetch and increment

moVl 24(%edi),%eax SHR_DEC32|0] fetch and decrement
movl %eax,0(%edi) Write contents of %eax (Shriwrite)

mov! %eax,8(%edi) SHR CLR32[0], clear (%eax ignored)
movl $0X55555555, 16(%edi) Clear all odd bits in semaphore register 0
movl $0XAAAAAAAA, 24(%edi) Set all odd bits in semaphore register O

Table 2

Atomic operations can be completed in one memory reference without
ever asserting a bus lock. Hence, the hardware semaphore implementation
in accordance with the present invention has approximately half the memory
traffic of conventional uncached atomic operations and potentially greater
reductions in memory/coherency traffic for cached semaphores. Any
semaphore reference is completed without ever asserting a memory bus lock,
thus allowing other bus agents access to memory resources. This
implementation alleviates the need for a third network. Moreover, the present
Invention uses existing memory management capabilities to map multiple
processors to one memory space (multiple physical processors accessing a
common cluster). Any atomic operation to a specific semaphore register from
one or more concurrently referencing processor is completed in one memory
reference. No hardware deadlock conditions are likely which eliminates the
need for costly and complex logic to detect a deadlock situation between two

Or more processors.

Although the invention has been described and illustrated with a

certain degree of particularity, it is understood that the present disclosure has

16

CA 02414438 2003-01-09
WO 02/15021 PCT/US01/08597

been made only by way of example, and that numerous changes in the
combination and arrangement of parts can be resorted to by those skilled in
the art without departing from the spirit and scope of the invention, as

hereinafter claimed.

17

PraR

CA 02414438 2004-10-28

What is claimed i1s:

1. A multiprocessor data processing system
comprising:

a plurality of microprocessors;

a plurality of memory banks having a shared address
space;

a network coupling the memory banks and the
microprocessors to enable memory operation messages to be
communicated between the memory and the microprocessors;

a first portion of the shared address space allocated
to conventional memory operations;

a plurality of semaphore registers implemented within
a second portion of the shared address space of the memory
banks, wherein the semaphore registers are accessible by
the microprocessors through the network; and

a bridge controller coupled to the memory banks and
operable to prevent any cached read/write or uncached read
operation to proceed until all semaphore write operations

have completed.

2. The system of claim 1 wherein the semaphore
registers are implemented in a fixed range of the memory

address space allocated to each of the memory banks.

3. The system of c¢laim 1 wherein the semaphore
registers are assigned at runtime to specific software

processes.
4. The system of claim 1 wherein the portion of the

shared address space in which the semaphore registers are

implemented is uncacheable.

18

CA 02414438 2004-10-28

5. The system of c¢laim 1 wherein the semaphore
registers support atomic operations 1including test, set,
test&set, clear, signed increment, signed decrement, and

shared read/write.

6. The system of c¢laim 5 wherein the atomic
operations are encoded into an address specifying the
semaphore using a read or write memory operation natively

supported by the microprocessors.

7. A method of communicating state information in a
multiprocessor computing system comprising:

providing a plurality of microprocessors generating
memory requests, each memory request specifying an
addressed within a shared address space;

allocating a portion of the shared address space in
each memory bank to semaphore registers;

accessing the state information by any of the
plurality of microprocessors using memory operations
specifying a target address within the portion of the
shared address space allocated to the semaphore registers;

specifying a wvirtual base portion 1in the memory
request containing a value indicating a base address 1in
which a cluster of semaphore registers resides;

specifying a semaphore identification portio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>