I *I Innovation, Sciences et Innovation, Science and CA 2955444 C 2019/05/28

Déeveloppement economique Canada Economic Development Canada
Office de |la Propriete Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 955 444
(12) BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2014/08/20 (51) Cl.Int./Int.Cl. GO6F 9/60 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2016/02/25 (72) Inventeurs/Inventors:
. _ CALLEGARI, ANDRES C., US;
(45) Date de delivrance/lssue Date: 2019/05/28 SHI GENBAO US
(85) Entree phase nationale/National Entry: 201//01/17 DUNN, MICHAEL, US:
(86) N° demande PCT/PCT Application No.: US 2014/051923 LYNCH, JOE, US
(87) N° publication PCT/PCT Publication No.: 2016/028293 (73) Proprietaire/Owner:

LANDMARK GRAPHICS CORPORATION, US
(74) Agent: PARLEE MCLAWS LLP

(54) Titre : OPTIMISATION D'UTILISATION DE RESSOURCES MATERIELLES INFORMATIQUES LORS D'UN TRAITEMENT DE
DONNEES DE PRECISION VARIABLE
(54) Title: OPTIMIZING COMPUTER HARDWARE RESOURCE UTILIZATION WHEN PROCESSING VARIABLE PRECISION DATA

Memory 110
Application
Data 115
Software
h 4
Application 120 Graphics
APl 126
Ul Manager
199 g G.raph.iCS
Libraries
128
Rendering
Manager
124 0S8 130
Hardware
CPU 140 GPU 142 » Display 150

(57) Abrege/Abstract:
Systems and methods for optimizing hardware resource utllization when processing variable-precision data are provided.
Application data objects are processed using either a central processing unit (CPU) or the relatively lower precision data

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada

CA 2955444 C 2019/05/28

anen 2 955 444
(13) C

(57) Abrege(suite)/Abstract(continued):

processing requirements of a dedicated math processing unit, e.g., a graphics processing unit (GPU), based on a level of precision
determined for each application data object. The level of precision Is used to calculate at least one bounding value for each
application data object. The bounding value Is compared to a selected precision threshold in order to determine whether the
application data object can be processed by the GPU at a relatively lower level of precision without an undesirable loss of
computational precision.

w0 2016/028293 A1 IIIHN A1 HAY KO0 DWW 000 RCL A A A ORE

(43) International Publication Date
25 February 2016 (25.02.2016)

CA 02955444

(19) World Intellectual Property
Organization
International Burecau

WIPOIPCT

2017-01-17

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2016/028293 Al

(1)

(21)

(22)

(25)

(26)
(71)

(72)

International Patent Classification:
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2014/051923

International Filing Date:
20 August 2014 (20.08.2014)

Filing Language: English
Publication Language: English
Applicant: LANDMARK GRAPHICS CORPORA-

TION [US/US]; 2107 City West Blvd., Bldg. 2, Houston,
Texas 77042 (US).

Inventors: CALLEGARI, Andres C.; 12115 Lismore
Lake Dr., Cypress, Texas 77429 (US). SHI, Genbao;
17523 Indian Springs CT, Sugar Land, Texas 77479 (US).
DUNN, Michael; 3323 Sunset Blvd., Houston, Texas
77005 (US). LYNCH, Joe; 5314 Hanneck Valley Lane,
Katy, Texas 77450 (US).

(74) Agents: RAJ, Vinu et al.; Haynes and Boone, LLP, 2323
Victory Avenue, Suite 700, Dallas, Texas 75219 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
W,

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: OPTIMIZING COMPUTER HARDWARE RESOURCE UTILIZATION WHEN PROCESSING VARIABLE PRECI-

SION DATA
Memory 110 ¥’
Application
Data 115
Software
A 4
Application 120 Graphics
APl 126
Ul M
1&12nzager G_raph.ics
Libraries
128
Rendering
Manager
194 0S 130
A
h 4
Hardware
CPU 140 GPU 142 » Display 150

(57) Abstract: Systems and methods for optimizing hardware re-
source utilization when processing variable-precision data are
provided. Application data objects are processed using either a
central processing unit (CPU) or the relatively lower precision
data processing requirements of a dedicated math processing
unit, e.g., a graphics processing unit (GPU), based on a level of
precision determined for each application data object. The level
of precision 1s used to calculate at least one bounding value for
cach application data object. The bounding value is compared to
a selected precision threshold mn order to determine whether the
application data object can be processed by the GPU at a relat-
ively lower level of precision without an undesirable loss of com-
putational precision.

CA 02955444 20177-01-17

WO 2016/028293 A1 IO A0 DA VLYY 1

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

OPTIMIZING COMPUTER HARDWARE RESOURCE UTILIZATION WHEN
PROCESSING VARIABLE PRECISION DATA

FIELD OF THE DISCLOSURE
The present disclosure relates generally to the field of computer data processing and,
more specifically, to techniques for managing computer hardware resource utilization when

processing different pieces of data.

BACKGROUND

Software applications for large-scale data analysis and visualization have become
essential tools for achieving business objectives in many industries. Such applications are
ogenerally used to quickly process large quantities of data to enable the data to be visualized
or scarched to find key 1nsights, patterns, and important details about the data itself. In the
oil and gas industry, for example, such applications may be used to generate computer
simulation models of a petroleum reservoir in order to gain a better understanding of the
reservolr's physical composition as well as 1ts economic potential for hydrocarbon
exploration and production. The computer models may be generated based on, for example,
seismic data representative of the subsurface geological features including, but not limited
to, structural unconformities, faults, and folds within different stratigraphic layers of the
reservolr formation. The computer models may be used by petroleum engineers and
geoscientists to visualize two-dimensional (2D), three-dimensional (3D), or
four-dimensional (4D) representations of particular stratigraphic features of interest and to
simulate the flow of petroleum or other fluids within the reservorr.

The processing requirements of data visualization and simulation applications
generally include performing a substantial number of mathematical computations with
varying levels of precision 1n a relatively short period of time. The level of precision used to
process a piece of data for such an application may vary over a wide range depending on the
particular binary format used to represent that data. An example of such a variable-precision
binary data format 1s the Institute of Electrical and Electronics Engineers (IEEE) standard
format for floating-point computations (or IEEE 754 standard). The range of different
precision data formats defined by the IEEE 754 standard includes the 32-bit single-precision
binary floating-point format, the 64-bit double-precision, and the 128-bit
quadruple-precision binary floating-point formats. However, even higher precision binary
floating-point formats, e¢.g., a 256-bit octuple-precision format, may be supported as well.
Some application programs that utilize the IEEE 754 standard data formats to perform

floating-point computations may also require a relatively high level of computational
1

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

precision 1n addition to speed of execution. Examples of such applications include, but are
not limited to, interactive 3D or 4D simulation and real-time 3D/4D graphics visualization,
which may be used for gaming applications or scientific data analysis and visualization
applications.

To optimize the performance and execution speed of such computation-intensive
applications, computer data processing systems may include specialized hardware resources
that can be used 1n conjunction with the central processing unit (CPU) to accelerate data
processing and floating-point operations. Such hardware resources may include, for
example, a dedicated graphics processing unit (GPU) or a mathematics co-processor having
an array of floating-point processing units designed to operate in parallel to efficiently
process large amounts of numerical data. For example, a data processing system may
include one or more GPU units 1in the form of dedicated processors or specialized electronic
circuits that operate in conjunction with the CPU units to provide hardware accelerated
graphics processing and rendering functionality. The CPUs and GPUSs 1n this example may
be separate components of a graphics data processing pipeline in which the GPUs are
configured to render processed graphics data to a display.

CPUs are great for processing sequential and branching code, but they are not very
good for massive parallel computation of vector and scalar data. CPU hardware units
typically include one or more processing cores, €.g., 1n the order of tens or dozens for some
high-end workstations. Each GPU hardware unit, on the other hand, may include thousands
of scalar and vector processing cores. While 1t 1s possible to use clusters or nodes of a
thousand or more CPUs for a high-end processing system, the size and cost of such a system
would grow exponentially high. Furthermore, the performance of such a high-end system
may not scale as expected 1n many computation/visualization intensive workflows, as the
different cluster/node components may have to be connected through less than optimal
hardware components.

Although modern CPUs generally support 64-bit data formats, many of the GPUs 1n
usc today natively support only 32-bit single-precision data formats. While GPUSs that offer
native support for extended 64-bit double-precision or “full-precision” floating-point data
formats are available, the use of such high-precision data formats for floating-point
computations may negatively impact system performance. This 1s primarily due to the
increased memory and bandwidth requirements associated with the relatively large data
sizes of these floating-point formats and to the hardware implementation details.

Consequently, those willing to compromise some data accuracy in favor of improved

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

application performance may prefer to use 32-bit GPUs over the slower 64-bit GPUs.
However, there are application contexts that require a higher level of precision than a 32-bit
GPU can provide. In these cases, a portion of the floating-point operations may need to be
performed by a 64-bit CPU 1n order to avoid any loss in computational precision that would
lead to a significant reduction 1n the quality of the visualization presented to a user or to the
user’s experience 1n using the application.

In data processing/visualization systems using a combination of 32-bit GPU and
64-bit CPU hardware, the operations performed by the 64-bit CPU, particularly for graphics
rendering and data visualization applications, may still require the use of a 32-bit
floating-point application programming interface (API) associated with the 32-bit GPU
hardware since 1t 1s the GPU that will ultimately be managing and creating the rendering
information to be displayed. Accordingly, the CPU will be required to perform a number of
additional memory allocations, transformations, and data conversion steps to appropriately
process variable-precision floating-point data that eventually will be rendered/visualized by
the GPU. Such additional operations performed by the CPU generally reduce the available
system hardware resources and significantly increase application execution time for large
data. Thus, data processing systems using different hardware resources (¢.g., combination of
32-bit/64-bit GPUs and 64-bit CPUs) to support variable-precision floating-point data

formats may experience significant performance 1ssues.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary computer system for optimizing hardware
resource utilization when processing variable precision data.

FIG. 2 illustrates an exemplary data processing pipeline including different data
flows for processing application data objects using the computer system of FIG. 1.

FIGS. 3A and 3B 1illustrate exemplary scene graphs for representing application data
objects as a collection of nodes within a hierarchical tree structure.

FIG. 4 1s a process flowchart of an exemplary method for optimizing hardware
resource utilization when processing application data objects with varying levels of data
precision.

FIG. 5 158 a process flowchart of an exemplary method for optimizing hardware
resource utilization when processing data objects with varying levels of precision for a

graphics application.

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

FIG. 6 1s a block diagram of an exemplary general-purpose computing system 1in

which embodiments of the present disclosure may be implemented.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Embodiments of the present disclosure are directed to optimizing hardware resource
utilization when processing data with varying levels of precision on single or multiple
processing systems. The hardware resources may include multiple data processing systems
or a single system 1ncluding multiple cores, which are each capable of processing data 1n the
form of individual or atomic units. The level of precision of a particular piece of data (or
“data object”) may be based on, for example, the binary format used to represent the data as
1t 18 stored 1n memory or processed 1n a data processing system. Such variable-precision data
formats may include, but are not limited to, single-precision (32-bit) and double-precision
(64-bit) floating point binary data formats, ¢.g., as defined by a technical standard, such as
the Institute of Electrical and Electronics Engineers (IEEE) standard for floating-point
computation (or IEEE 754 standard). As will be described 1n further detail below, the
techniques disclosed herein may be used to adaptively process application data objects by
dynamically selecting the appropriate hardware resource or processing unit to utilize for
processing each individual data object based on a level of precision determined for that data
object. Such data processing may include performing different computations and other types
of operations using variable-precision floating-point data.

In one example, a data visualization system used for rendering applications data may
include a 32-bit graphics processing unit (GPU) 1n addition to a 64-bit general-purpose
central processing unit (CPU). The application data in this example may be segmented into
relatively smaller data chunks or data objects. Each data object may be processed as an
individual or atomic data unit, which may be represented using any of the above-described
variable precision floating-point data formats. The GPU may be a dedicated processor or
specialized electronic circuit that operates in conjunction with the CPU to provide hardware
accelerated graphics processing and rendering functionality. The CPU and GPU may be, for
example, separate components of a graphics processing pipeline 1n which the GPU may be
configured to render processed graphics data to a display device coupled to the system or to
a data storage device. In some embodiments, the CPU and GPU may be implemented as
separate cores of a single hybrid processing unit, where the latter processing unit may have

n”’ number of CPU cores and “m” number of GPU cores for balancing and maximizing the

computing capabilitics of the processor. Also, in some cases, the GPU may be used to

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

perform the same computations as the CPU. Accordingly, the GPU may be used as a
vector/scalar hardware acceleration unit that can be used not only for graphical data
processing but also for accelerating computations performed by the CPU. The native binary
data format supported by the CPU 1n this example may be the 64-bit double-precision
floating point data format of the IEEE 754 standard, while the GPU may optimally support
operations using only the 32-bit single-precision floating point data format of the IEEE 754
standard. Consequently, any 64-bit data processed by the CPU genecrally needs to be
converted to a 32-bit data format prior to being sent to the GPU for final processing and
rendering. In order to avoid any significant or undesirable loss of data precision during
computations, ¢.g., below a desired level of precision, the CPU may be configured to
perform the necessary floating-point calculations for processing the data in the 64-bit
double-precision format prior to converting 1t to the 32-bit single-precision format for the
GPU. However, the calculations performed by the CPU using 64-bit data may cause
unnecessary memory allocations, reduced bandwidth, and performance bottlenecks.
Moreover, these calculations may have to be reapplied to the entire data whenever any
previously used calculation parameter is changed. The techniques described herein may
therefore be used to dynamically select between computations performed using the 64-bit
CPU cores and computations performed using the 32-bit GPU cores for processing cach of a
plurality of data objects involving floating-point computations based on a desired level of
precision for a particular data object. These techniques allow the computer data processing
system to be optimally tuned in order to optimize hardware resource utilization while
minimizing unwanted loss in computational precision. These techniques also allow the
processed data to be reused without having to reprocess most or all of the data as a result of
any changes made to a calculation parameter.

As noted above, 1n some embodiments, the CPU and GPU may be separate cores of a
hybrid processor that natively merges the CPU and GPU processing capabilities into a single
processing architecture. Such processors may provide large scale vector and scalar
processing capabilities that are seamlessly and natively built into the processor architecture
itself, without requiring any specialized co-processing hardware units. In such a hybrid
processor, the data processing functionalities of the CPU and GPU may be divided between
separate cores of the hybrid processor. For example, separate cores within the hybrid
processing unit may be designated to perform the types of data processing operations
traditionally performed by either the CPU or GPU. It should further be noted that the

separate data processing functionality described herein can also be performed within a farm

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

of local and/or remote processing hardware, where the data 1s broken into smaller pieces and
cach piece processed by a selected processing entity.

While the examples provided herein may be described in the context of graphics
visualization tools or applications for processing and rendering graphics data, 1t should be
noted that the techniques disclosed herein are not intended to be limited thereto and that
these techniques may be applied to other types of applications including, for example, any
application involving floating-point computations using different floating-point binary data
formats of varying levels of precision. Also, while the examples provided herein may be
described 1n the context of visualization application for petroleum reservoir modeling, 1t
should be noted that the embodiments of present disclosure are not intended to be limited
thereto.

In the interest of clarity, not all features of an actual implementation or methodology
arc described 1n this specification. Also, the “exemplary” embodiments described herein
refer to examples of the present disclosure. It will of course be appreciated that in the
development of any such actual embodiment, numerous implementation-specific decisions
must be made to achieve the developers’ specific goals, such as compliance with
system-related and business-related constraints, which will vary from one implementation to
another. Morcover, 1t will be appreciated that such a development effort might be complex
and time-consuming, but would nevertheless be a routine undertaking for those of ordinary
skill 1n the art having the benefit of this disclosure. Further aspects and advantages of the
various embodiments and related methodologies of this disclosure will become apparent
from consideration of the following description and drawings.

It would also be apparent to one of skill in the relevant art that the embodiments, as
described herein, can be implemented in many different embodiments of software,
hardware, firmware, or a combination thercof and may be implemented 1n one or more
computer systems or other processing systems. Any actual software code used for the
specilalized control of hardware to implement embodiments is not limiting of the detailed
description. Thus, the operational behavior of embodiments will be described with the
understanding that modifications and variations of the embodiments are possible, given the
level of detail presented herein.

FIG. 1 1s a block diagram of an exemplary computer system 100 for optimizing
hardware resource utilization when processing variable precision data. As shown 1n FIG. 1,
system 100 includes a memory 110 for storing application data 115, a set of software and

hardware components for processing data, and a display 150. The software 1n this example

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

includes an application 120, a graphics application programming interface (API) 126, one or
more graphics libraries 128, and an operating system (OS) 130. The data processing
hardware 1ncludes a central processing unit (CPU) 140 and a graphics processing unit (GPU)
142. Memory 110 may be any type of computer-readable storage medium coupled to or
integrated with system 100 for storing different types of data and software instructions or
executable code. Memory 110 may also be used to store portions of application 120,
oraphics API 126, graphics libraries 128, and OS 130. Display 150 may be any type of
display device coupled to or integrated with system 100. Examples of such display devices
include, but are not limited to, a cathode ray tube (CRT) monitor, light emitting diode (LED)
display, and touch-screen display. Display 150 may be used to display graphics and other
types of data, which may be output by GPU 142 or a display controller (not shown) of system
100. In some implementations, display 150 may be replaced by an external storage device so
that computations performed by CPU 140 and GPU 142 can be stored for later used. The
stored computational data can be used by, for example, other hardware and/or software
processing stages that may be implemented for relatively more complex hardware/software
processing environments than that shown in FIG. 1.

While not shown 1n FIG. 1, 1t should be noted that system 100 may be a component
of a larger and more complex hardware system. Accordingly, system 100 may include
additional software and hardware components including, for example, different software and
hardware interfaces for sending and receiving information to and from various sources.
Such an interface may include a communications interface and links for sending and
receliving information to and from a remote computer over high-speed 1nterconnects or a
local-arca or wide-arca network, such as the Internet. System 100 may also include an
interface for performing input/output (I/O) from/to local/remote users and devices, for
example, a mouse, QWERTY keyboard, touch-screen, camera, microphone, a T9 keyboard,
and any other physical and/or electronic device capable of receiving and/or sending 1/0.
Accordingly, display 150 may be used as an output device to present information in response
to input received from a user, device component, or networked computing device.

CPU 140 1n this example may be one or more general-purpose processors for reading
and executing software instructions, including code and data, stored in a computer-readable
storage medium (e.g., memory 110). The code and data may be associated with an
application program (¢.g., application 120) executable by CPU 140 at system 100 or by both
CPU 140 and GPU 142 1n newer hybrid processor systems that seamlessly integrates both

types of hardware. GPU 142 may be a dedicated processor or specialized electronic circuit

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

that operates 1n conjunction with CPU 140 to provide hardware accelerated data processing
capabilities for system 100. However, for purposes of this example only, 1t 1s assumed that
CPU 140 natively supports higher-precision floating-point data formats more optimally than
GPU 142. For example, CPU 140 may provide native support for processing data using
64-bit double-precision or higher-precision data formats while GPU 140 may more
optimally support only 32-bit single-precision floating-point data formats. As will be
described 1n further detail below, CPU 140 and GPU 142 may represent different stages of a
processing pipeline for processing application data 115 wusing variable-precision
floating-point data formats and presenting the results of such processing, ¢.g., by rendering
or visualizing the processed data, for a user via display 150.

In some implementations, GPU 142 may be a graphics accelerator (or graphics card)
communicatively coupled to CPU 140 wvia an internal data bus or communication
infrastructure of computer system 100. Alternatively, GPU 142 and CPU 140 may be fully
integrated into the processor and both share processor and hardware resources 1n the same
manner. GPU 142 may be used, for example, to process and render graphics data objects to
display 150. The graphics data objects 1n this example may be stored as part of application
data 115 mm memory 110. However, 1t should be noted that GPU 142 1s not limited to
processing graphical data. Further, GPU 142 may be used to process non-graphical data
including, for example, any type of data involving floating-point, matrix, or vector/scalar
computations.

Application 120 may be any type of software application program executable at
system 100. Application 120 may be implemented, for example, as a standalone application
program, as a piece of a larger program being run on various processing systems, or as a
plug-in module that 1s 1nstalled as part of a web browser executable at system 100. In an
example, application 120 may be a data wvisualization program for rendering
two-dimensional (2D), three-dimensional (3D), and/or four-dimensional (4D) graphical
representations/animations of real-world/synthetic objects and/or model simulations. Such
objects may include, but are not limited to, subsurface geological features of a petroleum
reservoir, as will be described 1n further detail below. The graphical representation of each
object may be stored as, for example, a graphics data object or model 1in a computer-readable
storage medium accessible to system 100. The application data objects may be stored and/or
processed using different levels of precision, for example, as either 32-bit single-precision
data or 64-bit double-precision data. As described above, the graphics data objects

associated with application 120 may be stored 1n memory 110, ¢.g., as part of application

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

data 113, for later processing and rendering by GPU 142. It should be noted that application
data 115 might also include text and other types of non-graphical data associated with
application 120. It should also be noted that embodiments of the present disclosure are not
intended to be limited to applications for graphics data processing and visualization.

As shown 1n FIG. 1, application 120 includes a user interface (UI) manager 122 and a
rendering manager 124. In an example, Ul manager 122 may provide a graphical user
interface (GUI) including an image viewer for displaying the graphics data objects within a
view of a 3D virtual environment. The GUI also may include various Ul controls that enable
a user at system 100 to change the current view of the 3D environment or manipulate the
s1z¢, position, or orientation of selected objects within the environment. As the user interacts
with Ul control clements of the GUI, the visual representation of the 3D environment and
oraphics objects displayed in the GUI’s image viewer may be updated automatically in
accordance with the received user input.

In an example, relevant portions of application data 115 may be read from memory
110 1n response to the user input recerved by Ul manager 122. The portions of application
data 115 that are read from memory 110 may include, for example, graphics data objects
corresponding to the current view of the 3D environment being presented in the image
viewer. In some implementations, the graphics data objects and 3D environment 1n this
example may be rendered and presented within the i1mage viewer based on various
commands sent by rendering manager 124 to GPU 142.

In a further example, rendering manager 124 may utilize graphics API 126, graphics
libraries 128, and/or OS 130 to send the appropriate commands to GPU 142 for rendering
different views of the virtual environment and/or graphics data objects within the image
viewer displayed using display 150. Application 120, graphics API 126, graphics libraries
128, and OS 130 may correspond to, for example, different layers of a software stack for
implementing the graphics rendering functionality of system 100. Each layer of the stack
may be used to provide support features needed by software components located 1n relatively
higher layers that may be located above it in the stack. Accordingly, in this example,
application 120 may represent the highest or top layer of the stack, followed by graphics API
126, graphics libraries 128, and OS 130. However, 1t should be noted that any of these layers
might be combined as desired for a particular implementation. For example, 1n some
implementations, graphics API 126 and graphics libraries 128 may be implemented as
components of OS 130. In other implementations, application 120 may be part of a larger

application that runs on multiple hardware system units.

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

As the base or bottom layer of the software stack in this example, OS 130 may
provide a low-level interface between the hardware resources, including GPU 142, and the
other software components of system 100. OS 130 may also provide windowing
functionality to support the various Ul controls, ¢.g., provided via the above-described GUI
of application 120, and to facilitate interaction with the user and obtain user input and
instructions.

Graphics libraries 128 may represent the next layer above OS 130. Graphics libraries
128 may 1nclude, for example, a set of routines, protocols, and utilities that may be used to
implement the graphics functionalities of system 100. The routines may be accessible to
rendering manager 124 of application 120 (and other software applications executable at
system 100) via, for example, graphics API 126, ¢.g., the layer above graphics libraries 128.
In an example, graphics API 126 may provide rendering manager 124 with access to
different rendering and state control functions that can be used to change one or more
selected visual properties of a rendered graphics data object. Examples of such visual
properties include, but are not limited to, lighting, materials, texture, and transparency. The
particular state control and other rendering functions accessible through graphics API 126
may be defined by graphics libraries 128. Examples of other rendering functions defined by
graphics library 128 may include, but are not limited to, gecometric and raster primitives,
RGBA or color index mode, display list or immediate mode, viewing and modeling
transformations, lighting and shading, hidden surface removal, alpha blending
(translucency), anti-aliasing, texture mapping, atmospheric effects (fog, smoke, haze),
feedback and selection, stencil planes, and accumulation buffer. Graphics libraries 128 may
be implemented using, for example, one or more standardized graphics libraries including,
but not Iimited to, the Open Graphics Library (OpenGL). In some implementations,
graphics libraries 128 can be used to perform partial numerical computations tasks using
GPU techniques, since computations performed 1nside the GPU 142 can be read back into
the hardware memory 110 for further processing by the local hardware units or by other
hardware units.

To properly render 2D and 3D application data objects to display 150, rendering
manager 124 may use graphics API 126 to send the appropriate commands to GPU 142 for
generating the proper graphical representation to be presented 1n the 1image viewer of the
GUI, as described above. As will be described in further detail below 1n reference to the

example shown 1n FIG. 2, rendering manager 124 may be used as an initial stage of a

10

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

processing pipeline including CPU 140 and GPU 142 for processing data using
variable-precision floating-point data formats.

It should be appreciated that embodiments of this disclosure may be practiced with a
variety of computer-system configurations, €.g. any type of computing device containing
onc or more computer systems 100, or any type of computing device having one or more
processors (¢.g., CPU 140) and a memory (e.g., memory 110) for executing and storing
instructions. Examples of such a computing device include, but are not limited to, a server,
computer clusters, a desktop computer, a laptop computer, a tablet or other handheld
computer, a personal digital assistant (PDA), a cellular telephone, a network appliance, a
camera, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a
media player, a navigation device, an email device, a game console, or a combination of any
these computing devices or other computing devices. Alternatively, system 100 may be
implemented 1n a distributed-computing environment or server farm 1in which tasks may be
performed by multiple processing devices with shared or separate memory components that
ar¢ linked through a communications network. In a distributed-computing environment,
program modules may be located in both local and remote computer-storage media
including memory storage devices. The present disclosure may therefore be implemented
using various hardware devices, software, or a combination thereof.

FIG. 2 1llustrates an exemplary data processing pipeline 200 for processing a set of
application data objects 210. For purposes of discussion, processing pipeline 200 will be
described using computer system 100 of FIG. 1, as described above. However, processing
pipeline 200 is not intended to be limited thereto. In the example shown in FIG. 2,
application data objects 210 may include different types of data objects associated with an
application, ¢.g., application 120 of FIG. 1, executable at system 100, as described above. In
some 1mplementations, the application may be a data visualization program, and application
data objects 210 may include graphics data objects to be processed and rendered to display
150. Such graphics data objects may be, for example, graphical models representing
different real-world objects to be rendered within a 3D virtual environment, as described
above. However, as previously noted, the techniques disclosed herein are not intended to be
limited to graphics applications and may be used for processing non-graphical data.

In one example, the aforementioned data visualization application may be used to
provide a graphical representation of a petroleum reservoir simulation model. The
visualization application 1n this example may be used to render different views and timelines

of the reservoir model including representations of particular attributes (e.g. gas saturation)

11

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

and features of the reservoir within a virtual 3D environment rendered to display 150. A
user, €.g., a reservoir engineer, may interact with a GUI of the application program to
manipulate the rendered views, ¢.g., by changing a position and/or orientation of the model
within virtual 3D space. In this way, the application may enable the user to examine
particular reservoir features of interest including, for example, sclected attributes of
reservolr surfaces corresponding to the edges, top, and bottom portions of the reservoir
model. Accordingly, the graphics data objects 1n this example may be representations of
various subsurface geological structures across different stratigraphic layers of a reservorr.
The graphical representation of each object or structure may be based on, for example, the
interpretation of seismic data resulting from the reflection of sonic waves propagated
through the underground reservoir formation. The seismic data may be interpreted and used
to represent various stratigraphic features associated with the petroleum reservoir including,
but not limited to, horizons, volumes, wells, surfaces, and grids, at a particular time or as a
series of time events/sequences.

As shown 1n FIG. 2, application data objects 210 may be provided as mnput to
rendering manager 124. As described above, rendering manager 124 may correspond to an
initial stage of a processing pipeline including CPU 140 and GPU 142 for processing data
and rendering 1t to display 150. Also, as described above, CPU 140 may be a
general-purpose processing unit that natively supports 64-bit double-precision floating-point
data formats. GPU 142 may be a data processing unit that 1s used to accelerate floating-point
computations and that may optimally support only 32-bit single-precision floating-point data
formats. However, it should be noted that the techniques described herein may be applied to
processing units that support even higher-precision data formats (e.g., quad-precision,
octuplet-precision, etc.).

It should be appreciated that GPU 142 1n this example may be a dedicated data
processing unit having a large array of tloating point units (FPUSs), ¢.g., thousands of FPUSs,
which are designed to perform a large number of floating-point computations in parallel.
While the FPUs may have relatively high latencies for processing floating-point data, they
also have significant memory bandwidth capabilities to allow the FPU array as a whole to
perform efficiently. CPU 140, on the other hand, may have only a small number of FPUs
and therefore have only a fraction of the floating-point data processing capabilitics of GPU
142. General-purpose processors, such as CPU 140, are typically designed for
sequential/branching execution while dedicated data processing units, such as GPU 142, are

designed for massive parallel processing of scalar/vector data.

12

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

As will be described 1n further detail below, rendering manager 124 1n this example
may be used to determine when it would be appropriate to process an application data object
using the faster-performance and lower-precision (e.g., 32-bit single-precision) data format
of GPU 142 rather than the slower-performance and higher-precision (e.g., 64-bit
double-precision) data format of the CPU 140. Further, rendering manager 124 may be used
to dynamically select the most appropriate processing data flow option or pathway for a
grven data object based on the level of precision of the data object relative to a predetermined
or selected precision threshold.

Application data objects 210 may comprise, for example, a plurality of data objects
having varying levels of precision. Applications data objects 210 may include, for example,
a combination of single-precision and double-precision (or even higher-precision) data
objects. Each of application data objects 210 may be represented using, for example, any of
the IEEE 754 standard variable precision floating-point formats. The floating-point format
used to represent a particular data object may be based on, for example, the level of precision
of the data object relative to the precision requirements of the application for a given context
or application feature to which that data object pertains. Optionally, when deciding to use a
lower precision floating-point format, the numerical range of the data object can be analyzed
and adjusted to be closer to one, ¢.g., the point at which the IEEE 754 binary format
precision 1s maximized. Thus, we can significantly improve the precision of any further
computations involving these refactored objects. The values within the adjusted numerical
range can be restored for the refactored object by using the GPU 142 hardware acceleration
capabilities.

As shown 1n FIG. 2, processing pipeline 200 includes separate data flows 201 and
202 for processing application data objects 210, including a data object 212 and a data object
214. For purposes of this example, 1t 1s assumed that data object 212 1s a double-precision
(DP) data object and that data object 214 1s a single-precision (SP) data object. However, 1t
should be noted that data objects 212 and 214 are not intended to be limited thereto and that
cach of data objects 212 and 214 may be represented using any of the above-described
variable-precision floating-point data formats.

In some 1implementations, each of the application data objects 210 may comprise a
block or chunk of related data derived from a larger application dataset and processed as
individual or atomic data units. Further, these data chunks may be sorted according to the
different precision requirements of the application. Rendering manager 124 may analyze

cach data chunk or application data object to determine a level of precision for that data

13

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

object. The level of precision of cach data object may then be used to calculate one or more
bounding values for that data object. The number of bounding values calculated for a
particular data object may depend on, for example, whether or not the data object 1s within a
desired level of precision or needs to be adjusted to improve the overall computational
precision, €.g., by normalizing the data to be within a desired range of values or by
confirming that the object precision values are within the precision target needed by the
computing application, module, or graphics. Rendering manager 124 may then select the
most appropriate data flow and corresponding set of hardware resources to utilize for
processing the data object based on the determined level of precision. This may include, for
example, calculating the minimum and maximum extents of the data to be processed by the
computing hardware. In some implementations, the bounding value(s) or minimum and
maximum extents may be for a bounding volume of a graphics data object or set of objects to
be processed. In an example, data objects 212 and 214 may be graphics data objects
corresponding to different parts of a 3D graphical model, and the bounding volume may be a
bounding box, ¢.g., 1n the form of a 3D cube or 2D square or rectangle. Rendering manager
124 may then determine whether the calculated bounding value(s), ¢.g., minimum and
maximum extents, exceed a predetermined or selected precision threshold or limit. The
rendering manager 124 will apply a set of linear transforms 220 to the minimum and
maximum e¢xtent values and determine if the transformed extents exceed the desired
threshold targets. If 1t 1s determined that these extents do not exceed the desired threshold,
then rendering manager 124 may direct the graphics object to be rendered using the GPU 142
hardware accelerated transforms. This allows optimal processing of all of the data
associated with the object. This also allows the data to be processed without having to rely
on the relatively slower CPU 140 to reprocess the entire data every time a parameter
associated with one or more of the linear transforms 220 changes. The rendering manager
124 precision threshold test uses the slower CPU 140 double precision capabilities to process
only the extent values of the graphics object.

The precision threshold may be based on, for example, a desired level of precision
for representing cach of the application data objects 210. The precision threshold may
correspond to the upper limit of the range of numerical values that can be represented using a
selected precision binary floating-point data format. For example, the range of integer
values that may be represented using the IEEE 754 standard 32-bit single-precision binary
floating-point format is 1 to 16,777,215 (or 2°*-1), where the number of significant bits is 24

(23 explicit bits + 1 implicit) and the difference between successive numbers (or “gap™) 1s 1.

14

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

Thus, the precision threshold and binary floating-point format in this example may need to
be adjusted 1f the maximum integer value to be represented for a desired level of precision
exceeds the upper limit of 16,777,215. Similarly, the precision threshold or limit may be
adjusted based on the desired numerical precision between successive floating point
numbers, ¢.g., according to a particular gap value. The precision threshold can be selected to
ensure that all the targeted integer range values will be accounted for in the computations and
processed correctly. This helps to protect application programs from common
computational errors when representing integers with floating point numbers.

The integer/floating values associated with each data object 1n this example may
correspond to a set of coordinates that may be used to graphically represent the object 1n 2D,
3D, 4D, etc. coordinate space. For example, cach of data objects 212 and 214 may be
defined by a collection of points, where the position of cach point can be mapped to a set of
coordinates within a virtual 3D environment, as described above. The collection of points
and coordinates for cach object may therefore be used to define the object’s location,
orientation, size, and shape within the 3D environment. However, in order to properly
represent data objects 212 and 214 within a view of the 3D environment to be rendered to
display 150, one or more linear transformations (or transforms) may need to be applied to
cach data object. This may include, for example, transforming a set of coordinates
associated with each object from a default or local coordinate space to a real-world 3D
coordinate space, ¢.g., according to the particular view of the 3D environment being
rendered. Examples of different transforms that may be applied to data objects 212 and 214
include, but are not limited to, translations, rotations, unit conversions, and scaling. In the
reservolr simulation example described above, the transforms also may include geodetic
datum corrections and true vertical depth (TVD/TVDSS) calculations.

In some 1implementations, data objects 212, 214, and other application data objects
210 may be organized 1n a hierarchical data structure, such as a scene graph. As will be
described 1n further detail below with respect to FIGS. 3A and 3B, the scene graph may
include a hierarchy of parent and child nodes representing various graphics data objects to be
rendered as part of a graphical scene. The scene graph also may include one or more
transform nodes that define the types of transforms to be applied for each data object. The
objects (or nodes corresponding thereto) may be arranged according to their logical and
spatial relation to each other and 1n relation to a graphical scene, ¢.g., a particular view of the
3D environment, 1n which the objects are to be rendered. In the above-described reservoir

stmulation example, the scene graph may represent the spatial relationship between different

15

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

layers of horizons, volumes, and/or other stratigraphic features within a reservoir formation,
where each node may represent a particular stratigraphic feature (e.g., a volume or horizon)
that 1s a parent or child to at least one¢ other node representing another feature (e.g., a
different horizon or volume) within the hierarchy. However, 1t should be noted that the
scene graph and graphics data objects are not intended to be limited to stratigraphic features
of a reservoir simulation model and that the graphics data objects within the scene graph may
be representations of any set of real-world or virtual objects to be rendered as part of a
oraphical scene to a display (e.g., display 150 of FIG. 1, as described above).

FIGS. 3A and 3B 1illustrate exemplary scene graphs 300A and 300B, respectively, for
representing graphics data objects as a collection of nodes within a hierarchical tree
structure. In an example, scene graphs 300A and 300B may be different versions of a scene
graph used to represent the same set of application data objects for processing by either the
CPU or the GPU. Scene graph 300A may be, for example, a representation of the
application data objects to be processed by the CPU, and scene graph 300B may be another
representation of the application data objects to be processed by the GPU. As shown 1n FIG.
3A, scene graph 300A includes a hierarchy of nodes starting from a root node 302A and
ending with leaf nodes corresponding to different data objects 320A. Also, as shown in FIG.
3A, cach of the data objects 320A may be associated with at least one of various group nodes
310A. Each of the group nodes 310A may represent, for example, a group of related data
objects. Although FIG. 3A shows only a single data object 320A for each group node 310A,
it should be appreciated that each group node may be associated with multiple data objects.
Scene graph 300B of FIG. 3B 1s similar to scene graph 300A but also includes transform
nodes 315 that are associated with cach of various data objects 320B and/or their
corresponding group nodes 310B. Transform nodes 315 may be used to specify parameters
for the set of linear transforms to be applied to a particular data object or group of data
objects that may be associated with the same group node. Further, each transform node may
include, for example, a transform matrix that specifies the particular linear transforms to be
applied to each of the corresponding data objects 320B. The transform matrix may also
specify various transform parameters, whose values may be changed 1n order to apply the
transform 1n different ways. By using the transform node, within the specified transform
parameter guidelines, the application can simply modify the transform matrix transform
parameters and avoid having to use the slower CPU 140 to reprocess the entire object data.

This also assures that the transformed object data 1s within the required precision boundaries,

16

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

which permits the use of GPU 142 transforms which are casier to change relative to data
changes.

Referring back to FIG. 2, rendering manager 124 may use the pre-calculated native
data object minimum and maximum values of data objects 212 and 214 and apply the linear
transforms to the extent which will then be used for later precision threshold calculations...
In an example, rendering manager 124 may use the IEEE 754 64-bit double precision
capabilitiecs of CPU 140 to obtain the transformed double-precision bounding box extent
values for each data object based on the transformation operations to be performed for that
object. Rendering manager 124 may then compare the transformed double-precision
bounding box extent results for cach of data objects 212 and 214 to a selected precision
threshold 1n order to determine whether the data object should be processed using data flow
201 or data flow 202. As described above, the selected precision threshold may be, for
example, the maximum or upper limit of integer values that can be represented using the
IEEE 754 32-bit single-precision data format or may be a graphics related precision
threshold.

In the example shown 1n FIG. 2, 1f the bounding box extent values calculated for data
object 214 are determined to be smaller or equal to the precision threshold, rendering
manager 124 may select data flow 202 for processing data object 214. As shown 1n FIG. 2,
data flow 202 mvolves using GPU 142 to process data object 214. The processing
performed by GPU 142 may include applying one or more transforms 230. Transforms 230
may include, for example, hardware-based linear transforms, ¢.g., OpenGL transforms,
which can be applied to data object 214 directly 1n the hardware of GPU 142 1tself. As such,
the entire data contained 1n data object 214 can be hardware processed by GPU 142 without
having to rely on CPU 140, thereby leaving CPU 140, and other hardware resources, free to
perform other data processing functions while executing the application. Thus, transforms
230 may be applied by GPU 142 without any impact on application execution time and
allowing the object data to become a constant whenever a transform parameter changes. In
contrast, data object 212 1s dynamically changed whenever a transform parameter changes,
forcing the CPU 140 to fully process all the object data values with the associated CPU 140
processing load and associated hardware resources overhead. Further, data flow 202 allows
rendering manager 124 to leverage the high-performance single-precision data processing
capabilities of GPU 142, which can significantly improve application performance and
reduce 1ts memory and bandwidth requirements, thereby freeing up system resources for

other applications.

17

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

While data object 214 1s shown 1n the example of FIG. 2 as being a single-precision
(SP) data object, data object 214 18 not intended to be limited thereto. Thus, 1n a different
example, data object 214 may be a double-precision data object, ¢.g., as initially represented
and processed by CPU 140 using a double-precision floating-point data format. However,
rendering manager 124 may nevertheless determine that the bounding value(s) calculated for
data object 214 are still within the selected precision threshold and therefore select data flow
202 as the optimal data flow for processing data object 214.

As shown 1n FIG. 2, CPU 140 may still be used 1n data flow 202 to perform various
pre-processing operations that may be necessary to prepare data object 214 for processing by
GPU 142. Such pre-processing operations may include, for example, performing any
necessary format conversions, €.g., for converting data object 214 from a double-precision
floating-point format to the single-precision format supported by GPU 142. The latter
format conversion 1s just needed once for data flow 202, since the data object 214 may be
stored as a static data object, €.g., as one of data objects 320B within scene graph 300 B of
FIG. 3B. In contrast, data flow 201 may require the format conversion to be executed cach
time the linear transform parameters change for data flow 201 since some or all of the values
of data object 212" may change after cach CPU 140 transformation processing event and
thercby, preventing the previously stored values associated with data object 212' (e.g., with
on¢ of data objects 320A within scene graph 300A of FIG. 3A) from being reused. The
operations performed by CPU 140 may also include determining appropriate computational
hardware parameters (¢.g., transform matrix for transforms 230) to be applied to data object
214 by GPU 142. Similar to data flow 201, rendering manager 124 may use CPU 140 to
generate an output dataset using a single-precision floating-point format based on data object
214 and the associated parameters for processing by GPU 142. The processing performed by
GPU 142 for data object 214 1n data flow 202 may be hardware-accelerated floating-point
computations including, for example, hardware-based transforms applied to data object 214.
The hardware-based linear transforms applied by GPU 142 may be based on, for example,
different transform parameters of a transform matrix associated with data object 214, ¢.g.,
within the output data set generated using CPU 140, as described above. In some
implementations, upon determining that the level of precision of data object 214 does not
exceed the selected precision threshold, data object 214 may be passed directly to GPU 142
for processing, thereby avoiding the further use of CPU 140 for data processing operations
involving different variable-precision floating-point data formats. A major advantage of

using the hardware transform capabilities of GPU 142 as opposed to CPU 140 for processing

18

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

a data object 1s that any transform-related changes for the data object require modifications
only to the data object's transform parameters 1n a transform node of a scene graph, without
requiring changes to the data object itself or an entire data node corresponding to the object
in the scene graph. Thus, the techniques disclosed herein provide a mechanism to maximize
the overall performance and execution speed of a computation-intensive application while
reducing IEEE 754 floating-point 1ssues caused by variable-precision application data. The
techniques disclosed here further provide a way to fine-tune application performance based
on the desired computational precision and accuracy.

As an alternative to data flow 202, rendering manager 124 may select data flow 201
for processing data object 212, for example, if the transformed bounding box extent values
calculated for data object 212 exceed the selected precision threshold or limit. Extent values
orcater than the selected precision threshold may indicate that using GPU 142 to process data
object 212, e.g., by applying one or more transforms 220, may lead to significant overtlow or
an unacceptable loss of precision. Thus, as shown 1n FIG. 2, data flow 201 involves using
CPU 140 to process data object 212. The processing performed by CPU 140 may include,
for example, a predetermined set of operations, including multiple floating-point
computations needed to apply transforms 220 to the entire data 1n data object 212°. Also, to
preserve the original application data for further use, CPU 140 may need to use a separate
working copy of data object 212 since the processing changes the data object 212 data every
time there 1s a transform parameter changes. Accordingly, CPU 140 may have to perform
additional memory allocations and data duplication operations for storing a working copy of
data object 212 to be processed. Also, in contrast to the hardware-based transforms applied
by GPU 142, the transformed data may not be able to be reused, in 320A, since changes
made to any of the transforms 220 or linear transform parameters require CPU 140 to
reprocess and reapply the transforms for all of the data and node 320A to be replaced each
time. As CPU 140 1n this example performs data processing operations using
double-precision (64-bit) data formats, the processed 64-bit data needs to be converted to the
single-precision (32-bit) format supported by GPU 142. As shown 1n FIG. 2, CPU 140 may
generate a single-precision output dataset 2127 for GPU 142 which will contain the
processed and converted data object 212 values.

The use of double-precision data and the additional data processing operations
performed by CPU 140, as described above, causes a significant reduction 1n system
performance and available resources, particularly as the size of the data objects being

processed grows larger. Thus, having the option of data flow 202 may provide a significant

19

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

reduction of redundant data, memory allocations, and unnecessary processing by CPU 140,
particularly when executing high performance visualization applications. A smaller
memory footprint and optimized application performance also enables such applications to
be more user interactive/responsive and to be executed more effectively on mobile devices,
c.g., laptops, tablets, mobile phones, etc. Moreover, having the capability to dynamically
select which hardware resources (e.g., CPU 140 or GPU 142) to utilize for processing
application data objects using variable-precision floating-point formats allows the run-time
performance of the application to be adjusted or fine-tuned according to a desired level of
precision for a given application usage context, ¢.g., particular workflow, ecarly data
overview schemes, visualization, or particular data type.

FIG. 4 1s a process flowchart of an exemplary method 400 for controlling hardware
resource utilization when processing application data objects with varying levels of
precision. For purposes of discussion and explanation, method 400 will be described using
computer system 100 of FIG. 1, as described above. However, method 400 1s not intended to
be limited thereto. Also, for discussion purposes, method 400 will be described using data
processing pipeline 200 of FIG. 2, as described above, but method 400 1s not intended to be
limited thereto. As shown 1n FIG. 4, method 400 includes steps 402, 404, 406, 408, 410,
412,414, 416, and 418. The steps of method 400 may be implemented using, for example,
rendering manager 124 and CPU 140 of FIGS. 1 and 2, as described above.

Method 400 begins 1n step 402, which includes analyzing and preparing an
application data object to be processed. As described above, the application data object may
be one of a plurality of data objects associated with an application. Such data objects may
include, for example, data objects to be processed by a set of computational
parameters/algorithms or graphics data objects associated with a data analysis and
visualization application, ¢.g., application 120 of FIG. 1, as described above. Accordingly,
the processing of the application data object may include applying one or more transforms in
order to properly render a graphical representation of the data object to a display, e¢.g., as part
of a view of a virtual 3D environment. Additional details regarding the processing of
graphical application data objects will be described below with respect to FIG. 3.

Method 400 then proceeds to step 404, which includes determining a level of
precision of the application data object to be processed. The level of precision may be
targeted so that all integers 1n a defined computational range are accounted for, or the level
of precision may be designed to ensure that the rendering of objects 1nto a display possess

certain amount of precision between them, etc. In step 406, at least one transformed

20

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

bounding value set for the application data object 1s calculated based on the level of precision
determined 1n step 404. Steps 408 and 410 include determining whether the calculated
bounding value exceeds a precision threshold selected for the application data object by
comparing the transformed bounding value to the selected precision threshold. If the
calculated bounding value set 1s determined not to exceed the selected precision threshold,
method 400 proceeds to step 412, which includes generating an output dataset including the
application data object to be processed by a data processing unit. The data processing unit
may be, for example, a dedicated math co-processor, graphics accelerator, hybrid processor,
or GPU (¢.g., GPU 142 of FIGS. 1 and 2, as described above). The generated output dataset
1S then sent to the data processing unit 1n step 418 for any additional processing and enabling
information related to the application data object to be output to a display (e.g., display 150
of FIGS. 1 and 2, as described above). This may include, for example, outputting or
rendering a representation of the application data object to the display.

However, 1f the bounding value calculated 1n step 406 1s determined to exceed the
selected precision threshold, method 400 proceeds to step 414, in which the data object 1s
processed according to a predetermined set of operations. The predetermined set of
operations may include, but are not limited to, applying one or more transforms to a copy of
the data contained 1n the data object, as described above. An output dataset 1s then generated
in step 416 based on the processed application data object. As before, the generated output
dataset 1s sent to the data processing unit 1n step 418 for enabling information related to the
processed data object to be output to a display.

FIG. 5 1s a process flowchart of an exemplary method 500 for optimizing hardware
resource utilization when processing graphics data objects of an application using varying
levels of precision. Like method 400 of FIG. 4, method 500 will be described using
computer system 100 of FIG. 1 and data processing pipeline 200 of FIG. 2, as described
above, for discussion purposes only and 1s not intended to be Iimited thereto. Also, like

method 400, method 500 may be implemented using, for example, rendering manager 124

and CPU 140 of FIGS. 1 and 2, as described above. As shown in FIG. 5, method 500
includes steps 502, 504, 506, 508, 510, 512, 514, 516, 518, 520, and 522.

Method 500 begins 1n step 502, which includes determining a level of precision of an
application data object to be processed. As described above, the application data object may
be onec of a plurality of data objects derived from a larger dataset associated with an
application (e.g., application 150 of FIG. 1, as described above). Step 504 1includes

calculating the transformed values of the original minimum and maximum extents of a

21

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

bounding volume, ¢.g., in the form of a bounding box, as described above. The application
data object may be, for example, a three-dimensional (3D) graphical model, and the
bounding value may include a plurality of bounding values corresponding to coordinates of
the bounding box in 3D space. Method 500 then proceeds to step 506, which includes
determining whether the bounding box extents exceed the precision threshold.

If the bounding box extents exceed the precision threshold, method 500 proceeds to
steps 508, 510,512, 514, and 516. Step 508 includes allocating memory for storing a copy of
the double-precision application data object values. In step 510, the application data object
double-precision values are copied to the allocated memory location. The resulting data
object 1s then processed 1n step 512, e.g., by CPU 140 of FIG. 1, by calculating and applying
one¢ or more linear transforms for representing the application data object within 3D space or
virtual 3D environment, as described above. The application data object 1n this example
may be a graphics data object represented using at least a double-precision data format. The
level of precision of the application data object may be relatively higher than the
floating-point precision data format supported by the graphics data processing unit or GPU,
c.g., GPU 142 of FIGS. 1 and 2, as described above, used to process and render the data
object to a display. Thus, the data format of the processed data object may be converted in
step 514 to a format that matches the level of precision supported by the GPU. The
reformatted data, ¢.g., in the form of a single-precision output dataset, 1s then sent to the
GPU for processing and rendering to a display, as described above.

Alternatively, 1f the bounding box extents are determined to be within the precision
threshold or threshold limits, method 500 proceeds to steps 518, 520, and 522. Step 518
includes determining the linear transforms to be applied by the GPU to the data object. As
the data object may be represented by default using a double-precision data format, the data
object may be reformatted in step 520 to match the single-precision format of the GPU
hardware, as described above. In step 522, the reformatted data object 1s sent to the GPU to
be processed and rendered to a display. Note that this reformatted data object will not need
to be recreated, as it will remain a constant in data object 320B. In an example, a
single-precision output dataset including the data object and an indication of the hardware
transforms to be applied by the GPU may be generated and sent to the GPU. The indication
may be 1n the form of a transform matrix specifying parameters and/or values of the
transforms to be applied, as described above. It should be noted that the steps of method 500
arc not necessarily performed 1n sequential order or the order depicted in FIG. 5 and that two

or more of these steps (e.g., steps 518 and 520) may be performed 1n parallel.

22

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

Advantages of method 500 of FIG. 3, as described above, include providing a way to
render graphics data without artifacts caused by floating-point binary precision 1ssues and
the advantage of only needing to calculate the reformatted data object node once 320B no
matter how the transform parameters are changed by the application, since changing the
transform parameters just forces a change in the indication (hardware transform matrix
parameters). For example, a common visualization technique used to avoid rendering
artifacts for relatively large data values (e.g., above a selected precision threshold or value
range) 1S to subtract (e.g., using the CPU) a value from the original data object (e.g., subtract
a value from one of a set of coordinates associated with the object) in order to normalize or
reduce the data value to a relatively smaller value range, ¢.g., bringing the data value closer
to zero, thereby increasing computational precision while processing the data using a IEEE
754 variable-precision floating-point data format. This may also increase the computational
precision of the GPU hardware, thereby enabling the GPU hardware to render the processed
data object at a higher detail, without any unwanted rendering artifacts. Such rendering
artifacts may be due to any one of various recasons, and a loss of precision during
floating-point computations 1S a very common one. A problem with conventional
subtraction-based visualization techniques 1s that the original data has to be pre-processed by
the CPU together with the associated transforms that may need to be applied. Since the
transforms generally have to be applied to the data as a whole, a selected precision range
may not be optimal for different objects that may have different modeling parameters and
precision requirements. In contrast with such conventional normalization techniques,
method 500 enables the application data to be broken down 1nto smaller atomic units that can
be processed independently as needed. A level of precision for each data unit may be
determined by analyzing the potential transformed value ranges of the data unit. Based on
this analysis, method 500 allows the data transformation operations to be performed entirely
by the GPU, without having to pre-process the data using the CPU first.

FIG. 6 1s a block diagram of an exemplary general-purpose computing system 600 1n
which embodiments of the present disclosure may be implemented. System 600 can be a
computer, phone, PDA, or any other type of electronic device. Such an electronic device
includes various types of computer readable media and interfaces for various other types of
computer readable media. As shown 1n FIG. 6, system 600 includes a permanent storage
device 602, a system memory 604, an output device interface 606, a system communications
bus 608, a read-only memory (ROM) 610, processing unit(s) 612, an input device interface

614, and a network 1nterface 616.

23

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

Bus 608 collectively represents all system, peripheral, and chipset buses that
communicatively connect the numerous internal devices of system 600. For instance, bus
608 communicatively connects processing unit(s) 612 with ROM 610, system memory 604,
and permanent storage device 602.

From these various memory units, processing unit(s) 612 retrieves instructions to
execute and data to process 1n order to execute the processes of the subject disclosure. The
processing unit(s) can be a single processor or a multi-core processor 1n different
implementations.

ROM 610 stores static data and instructions that are needed by processing unit(s) 612
and other modules of system 600. Permanent storage device 602, on the other hand, 1s a
read-and-write memory device. This device 18 a non-volatile memory unit that stores
instructions and data even when system 600 1s off. Some implementations of the subject
disclosure use a mass-storage device (such as a magnetic or optical disk and 1ts
corresponding disk drive) as permanent storage device 602.

Other implementations use a removable storage device (such as a tloppy disk, flash
drive, and 1ts corresponding disk drive) as permanent storage device 602. Like permanent
storage device 602, system memory 604 1s a recad-and-write memory device. However,
unlike storage device 602, system memory 604 1s a volatile read-and-write memory, such a
random access memory. System memory 604 stores some of the instructions and data that
the processor needs at runtime. In some implementations, the processes of the subject
disclosure are stored 1n system memory 604, permanent storage device 602, and/or ROM
610. For example, the various memory units include instructions for optimizing hardware
resource utilization when processing variable-precision data in accordance with some
implementations. From these various memory units, processing unit(s) 612 retrieves
instructions to execute and data to process 1n order to execute the processes of some
implementations.

Bus 608 also connects to mput and output device interfaces 614 and 606. Input
device interface 614 enables the user to communicate information and select commands to
the system 600. Input devices used with mput device intertace 614 include, for example,
alphanumeric, QWERTY, or T9 keyboards, microphones, and pointing devices (also called
“cursor control devices’). Output device interfaces 606 enables, for example, the display of
images generated by the system 600. Output devices used with output device interface 606
include, for example, printers and display devices, such as cathode ray tubes (CRT) or liquid

crystal displays (LCD). Some implementations include devices such as a touchscreen that

24

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

functions as both mnput and output devices. It should be appreciated that embodiments of the
present disclosure may be implemented using a computer including any of various types of
input and output devices for enabling interaction with a user. Such interaction may include
feedback to or from the user in different forms of sensory feedback including, but not limited
to, visual feedback, auditory feedback, or tactile feedback. Further, input from the user can
be received 1in any form including, but not limited to, acoustic, speech, or tactile input.
Additionally, interaction with the user may include transmitting and receiving different
types of information, ¢.g., in the form of documents, to and from the user via the
above-described interfaces.

Also, as shown 1n FIG. 6, bus 608 also couples system 600 to a public or private
network (not shown) or combination of networks through a network interface 616. Such a
network may 1nclude, for example, a local area network (“LAN™), such as an Intranet, or a
wide arca network (“WAN”), such as the Internet. Any or all components of system 600 can
be used in conjunction with the subject disclosure.

These functions described above can be implemented in digital electronic circuitry,
in computer software, firmware or hardware. The techniques can be implemented using one
or more computer program products. Programmable processors and computers can be
included in or packaged as mobile devices. The processes and logic flows can be performed
by one or more programmable processors and by one or more programmable logic circuitry.
General and special purpose computing devices and storage devices can be interconnected
through communication networks.

Some 1mplementations include clectronic components, such as microprocessors,
storage and memory that store computer program 1nstructions 1n a machine-readable or
computer-readable medium (alternatively referred to as computer-readable storage media,
machine-readable media, or machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, recad-only compact discs (CD-ROM),
recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable
DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, ectc.), flash memory (¢c.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and
recordable Blu-Ray® discs, ultra density optical discs, any other optical or magnetic media,
and floppy disks. The computer-readable media can store a computer program that 1S
executable by at least one processing unit and includes sets of instructions for performing

various operations. Examples of computer programs or computer code include machine

23

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

code, such as 1s produced by a compiler, and files including higher-level code that are
executed by a computer, an electronic component, or a miCroprocessor using an interpreter.

While the above discussion primarily refers to microprocessor or multi-core
processors that execute software, some implementations are performed by one or more
integrated circuits, such as application specific integrated circuits (ASICs) or field
programmable gate arrays (FPGASs). In some immplementations, such integrated circuits
execute mstructions that are stored on the circuit itself. Accordingly, the steps of exemplary
methods 400 and 500 of FIGS. 4 and 5, respectively, as described above, may be
implemented using a computer system including processing circuitry or a computer program
product including nstructions which, when executed by at least one processor, causes the
processor to perform functions relating to these methods.

As used 1n this specification and any claims of this application, the terms

4

“computer”’, “‘server’, “processor’, and “memory”’ all refer to electronic or other
technological devices. These terms exclude people or groups of people. As used herein, the
terms “‘computer readable medium” and “computer readable media” refer generally to
tangible, physical, and non-transitory electronic storage mediums that store information in a
form that 1s readable by a computer.

Embodiments of the subject matter described 1n this specification can be
implemented 1n a computing system that includes a back end component, ¢.g., as a data
server, or that includes a middleware component, €.g., an application server, or that includes
a front end component, ¢.g., a client computer having a graphical user interface or a Web
browser through which a user can interact with an implementation of the subject matter
described 1n this specification, or any combination of one or more such back end,
middleware, or front end components. The components of the system can be interconnected
by any form or medium of digital data communication, ¢.g., a communication network.
Examples of communication networks include a local area network (“LAN) and a wide arca
network (“WAN”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad
hoc peer-to-peer networks).

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network.
The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other. In some

embodiments, a server transmits data (e€.g., a web page) to a client device (e.g., for purposes

of displaying data to and receiving user input from a user interacting with the client device).

26

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

Data generated at the client device (€.g., a result of the user interaction) can be received from
the client device at the server.

It 1s understood that any specific order or hierarchy of steps in the processes
disclosed 1s an 1llustration of exemplary approaches. Based upon design preferences, it 18
understood that the specific order or hierarchy of steps in the processes may be rearranged,
or that all 1illustrated steps be performed. Some of the steps may be performed
simultancously. For example, in certain circumstances, multitasking and parallel processing
may be advantageous. Morcover, the separation of various system components in the
embodiments described above should not be understood as requiring such separation 1n all
embodiments, and 1t should be understood that the described program components and
systems can generally be integrated together 1n a single software product or packaged into
multiple software products.

The foregoing methods and systems disclosed herein are particularly useful 1n
optimizing hardware resource utilization when processing variable-precision data. In one
embodiment of the present disclosure, a computer-implemented method for optimizing
hardware resource utilization when processing variable-precision data includes determining
a level of precision of an application data object to be processed, calculating at least one
bounding value for the application data object based on the determined level of precision,
and determining whether the calculated bounding value exceeds a selected precision
threshold. When the calculated bounding value 1s determined not to exceed the selected
precision threshold, an output dataset including the application data object to be processed
by a data processing unit 1s generated. When the calculated bounding value is determined to
exceed the selected precision threshold, the application data object 1s processed according to
a predetermined set of operations and the output dataset 1s generated based on the processed
application data object. The generated output dataset 1s sent to the data processing unit for
cnabling information related to the application data object to be output to a display.

In a further embodiment of the above-described method, the application data object
1s a three-dimensional (3D) graphical model, the bounding value includes a plurality of
bounding values corresponding to coordinates of a bounding box 1n 3D space, and the data
processing unit 18 a graphics processing unit. In yet a further embodiment, processing the
application data object comprises calculating at least one data transform for representing the
application data object within 3D space and applying the calculated data transform to the
application data object. In yet a further embodiment, the calculated data transform includes

one or more linear transformations to be applied to the application data object. In yet a

27

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

further embodiment, the predetermined set of operations includes allocating memory for
storing a copy of the application data object, copying the application data object to the
allocated memory, and applying the one or more linear transformations to the application
data object. In yet a further embodiment, the level of precision of the application data object
1s relatively higher than a data precision associated with the data processing unit for
processing data, and generating the output dataset further comprises converting the level of
precision of the application data object to the data precision associated with the data
processing unit. In yet a further embodiment, the application data object is represented using
a double-precision floating-point binary data format, and converting the level of precision of
the application data object comprises converting the application data object from the
double-precision floating-point binary data format to a single-precision floating-point binary
data format. In yet a further embodiment, the application data object includes a plurality of
application data objects, where a type of cach of the plurality of application data objects 18
determined and the selected precision threshold 1s modified for each application data object
to be processed based on the determined type of that application data object. In yet a further
embodiment, the plurality of application data objects are represented using different nodes of
a scene graph. In yet a further embodiment, the scene graph corresponds to a graphical
representation of a hydrocarbon reservoir, and the plurality of application data objects
correspond to different stratigraphic features associated with the hydrocarbon reservoir
being represented. In yet a further embodiment, the different stratigraphic features of the
hydrocarbon reservoir include wells, surtaces, horizons, volumes, and grids, and each of the
plurality of application data objects include coordinate values representing physical
locations of the structural components of the hydrocarbon reservoir. In yet a further
embodiment, the different nodes of the scene graph include transform nodes corresponding
to the plurality of application data objects, where each transform node specifies parameters
for one or more data transforms to be applied to the corresponding data object. In yet a
further embodiment, the computer-implemented method further comprises detecting a
change 1n at least onc of the transform parameters and when the bounding value 1s
determined to exceed the precision threshold: modifying the scene graph based on the
detected change; reprocessing the application data object based on the modified scene graph
and data transform parameters specified by the corresponding transform node; and
regenerating the output dataset based on the reprocessed application data object. However,
when the bounding value 1s determined to be within the precision threshold, an indication of

the detected change 1s sent to the data processing unit, where the data processing unit 18

28

10

15

20

25

30

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

configured to apply the change automatically to the application data object without
reprocessing and without having to modify the scene graph.

In another embodiment of the present disclosure, a computer-implemented method
for adaptively processing variable precision data comprises determining a level of precision
of each of a plurality of application data objects to be processed by a data processing unit,
calculating bounding values for each application data object based on the corresponding
level of precision determined for that application data object, comparing the calculated
bounding values of each application data object with a selected precision threshold for that
application data object, generating an output dataset for each application data object based
on the comparison, wherein the output dataset includes transform data to be used by the data
processing unit for processing the application data object, only when the corresponding
bounding values are within the selected precision threshold, and providing the generated
output dataset to the data processing unit for processing the corresponding application data
object. In a further embodiment, generating an output dataset for each application data
object comprises determining whether the calculated bounding values of each application
data object exceeds the selected precision threshold and when the bounding values are
determined to exceed the selected precision threshold for the application data object,
processing the application data object according to predetermined transform operations and
generating the output data set based on the processed application data object.

In yet another embodiment of the present disclosure, a system for optimizing
hardware resource utilization when processing variable-precision data comprises at least one
processor and a machine-readable medium comprising instructions stored therein, which
when executed by the processor, cause the processor to perform functions including
functions to: determine a level of precision of an application data object to be processed;
calculate at least one bounding value for the application data object based on the determined
level of precision; determine whether the calculated bounding value exceeds a selected
precision threshold; generate an output dataset including the application data object to be
processed by a data processing unit when the calculated bounding value 1s determined not to
exceed the selected precision threshold; when the calculated bounding value 1s determined
to exceed the selected precision threshold, process the application data object according to a
predetermined set of operations and gencrate the output dataset based on the processed
application data object; and send the generated output dataset to the data processing unit for

cnabling a representation of the application data object to be output to a display.

29

10

15

20

25

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

In yet another embodiment of the present disclosure, a computer readable medium
stores computer-readable instructions, which when executed by a computer (or processor
thercotf) cause the computer to perform a plurality of functions, including functions to for
optimizing hardware resource utilization when processing variable-precision data comprises
at least one processor and a machine-readable medium comprising instructions stored
therein, which when executed by the processor, cause the processor to perform functions
including functions to: determine a level of precision of an application data object to be
processed; calculate at least one bounding value for the application data object based on the
determined level of precision; determine whether the calculated bounding value exceeds a
selected precision threshold; generate an output dataset including the application data object
to be processed by a data processing unit when the calculated bounding value 1s determined
not to exceed the selected precision threshold; when the calculated bounding value 1s
determined to exceed the selected precision threshold, process the application data object
according to a predetermined set of operations and generate the output dataset based on the
processed application data object; and send the generated output dataset to the data
processing unit for enabling a representation of the application data object to be output to a
display.

Although various embodiments and methodologies have been shown and described,
the present disclosure 1s not limited to such embodiments and methodologies and will be
understood to include all modifications and variations as would be apparent to one skilled 1n
the art. For example, although described in the context of a hydrocarbon reservoir
application, the present disclosure 1s also applicable to other ficlds that involve processing
variable-precision binary floating-point data. Therefore, 1t should be understood that this
disclosure 1s not intended to be limited to the particular forms disclosed. Rather, the
intention 18 to cover all modifications, equivalents and alternatives falling within the spirit

and scope of the disclosure as defined by the appended claims.

30

10

15

20)

25

30

CLAIMS

WHAT IS CLAIMED IS:

1. A computer-implemented method for optimizing hardware resource utilization when
processing variable-precision data, the method comprising:
determining, by a central processing unit, a level of precision of an application data
object to be processed, wherein the application data object is one of a plurality of application
data objccts represented by different nodes of a scene graph, the different nodes including
transtform nodes corresponding to the plurality of application data objects, each transform
node specifying parameters for one or more data transforms to be applied to a corresponding
application data object;
calculating, by the central processing unit, at least one bounding value for the
application data object based on the determined level of precision, the at least one bounding
value corresponding to a maximum extent of a bounding volume for the application data
object;
determining, by the central processing unit, whether the calculated bounding value
exceeds a precision threshold;
when the calculated bounding value 1s determined not to exceed the selected precision
threshold, sending, by the central processing unit to a graphics processing unit, the
application data object to be processed by the graphics processing unit and rendered to a
display device coupled to the graphics processing unit;
when the calculated bounding value 1s determined to exceed the precision threshold:
processing, by the central processing unit, the application data object
according to a predetermined set of operations; and
generating, by the central processing unit, the output dataset based on the
processed application data object; and
sending, to the graphics processing unit, the generated output dataset to be
rendered to the display device;
detecting a change 1n at least one of the parameters specified by the transform
node corresponding to the application data object to be processed;
when the bounding value 1s determined to exceed the precision threshold;
modifying the scene graph based on the detected change;
reprocessing the application data object based on the modified scene graf)h;

and

31
CA 2955444 2018-04-30

10

15

20)

25

30

regenerating the output dataset based on the reprocessed application data

object; and
when the bounding value is determined to be within the precision threshold, sending
an indication of the detected change to the graphics processing unit, the graphics processing
unit being contigured to apply the change automatically to the application data object without

reprocessing and without having to modify the scene graph.

2. The method of claim 1, wherein the application data object is a three-dimensional
(3D) graphical model, the bounding value includes a plurality of bounding values

corresponding to coordinates of a bounding box in 3D space.

3. The method of claim 2, wherein processing the application data object comprises:
calculating at least one data transform for representing the application data object
within 3D space; and

applying the calculated data transform to the application data object.

4, The method of claim 3, wherein the calculated data transform includes one or more

linear transformations to be applied to the application data object.

5. The method of claim 4, wherein the predetermined set of operations includes
allocating memory for storing a copy of the application data object, copying the application
data object to the allocated memory, and applying the one or more linear transformations to

the application data object.

0. The method of claim 1, wherein the level of precision of the application data object is
relatively higher than a data precision associated with the graphics processing unit for
processing data, and the method further comprises converting the level of precision of the

application data object to the data precision associated with the graphics processing unit.

7. The method of claim 6, wherein the application data object is represented using a
double-precision tloating-point binary data format, and converting the level of precision of
the application data object comprises converting the application data object from the double-

precision floating-point binary data format to a single-precision floating-point binary data

format.

32
CA 2955444 2018-04-30

10

15

20

23

30

8. The method of claim 1, further comprising:
determining a type of each of the plurality of application data objects; and
moditying the precision threshold for each application data object to be processed

based on the determined type of that application data object.

0. The method of claim 1, wherein the scene graph corresponds to a graphical
representation of a hydrocarbon reservoir, and the plurality of application data objects

correspond to different stratigraphic features associated with the hydrocarbon reservoir being

represented.

10. The method of claim 9, wherein the different stratigraphic features of the hydrocarbon
reservoir include wells, surfaces, horizons, volumes, and grids, and each of the plurality of
application data objects include coordinate values representing physical locations of the

structural components of the hydrocarbon reservoir.

11. A system for optimizing hardware resource utilization when processing variable-
precision data, the system comprising:
at least one processor; and
a machine-readable medium comprising instructions stored therein, which when
executed by the processor, cause the processor to perform functions including functions to:
determine a level of precision of an application data object to be processed,
wherein the application data object is one of a plurality of application data objects
represented by different nodes of a scene graph, the different nodes including transform
nodes corresponding to the plurality of application data objects, each transform node
specifying parameters for one or morc data transforms to be applied to a corresponding
application data object;
calculate at least one bounding value for the application data object based on
the determined level of precision, the at least one bounding value corresponding to a

maximum extent of a bounding volume for the application data object;

determine whether the calculated bounding value exceeds a precision
threshold;

send, to a graphics processing unit, the application data object to be processed

by the graphics processing unit and rendered to a display device coupled to the graphics

33
CA 2955444 2018-04-30

10

15

20

25

30

processing unit, when the calculated bounding value 1s determined not to exceed the precision

threshold;

when the calculated bounding value 1s determined to exceed the precision
threshold:

process the application data object according to a predetermined set of
operations performed by the processor; and

generate an output dataset based on the processed application data object; and

send, to the graphics processing unit, the generated output dataset to be

rendered to the display device;

detecting a change in at least one of the parameters specified by the transform
node corresponding to the application data object to be processed;
when the bounding value 1s determined to exceed the precision threshold:
modity the scene graph based on the detected change;
reprocess the application data object based on the modified scene
graph; and
regenerate the output dataset based on the reprocessed application data
object; and
when the bounding value is determined to be within the precision threshold, send an
indication of the detected change to the graphics processing unit, the graphics processing unit
being configured to apply the change automatically to the application data object without

reprocessing and without having to modify the scene graph.

12. The system of claim 11, wherein the application data object is a three-dimensional
(3D) graphical model, the bounding value includes a plurality of bounding values
corresponding to coordinates of a bounding box in 3D space, and the processor processes the
application data object by performing functions to:

calculate at least one data transform for representing the application data object within
3D space; and

apply the calculated data transform to the application data object.

13. The system of claim 12, wherein the calculated data transform includes one or more
lincar transtormations to be applied to the application data object, and the predetermined set
of operations cause the processor to perform functions to:

allocate memory for storing a copy of the application data object;

34
CA 2955444 2018-04-30

10

15

20

25

30

copy the application data object to the allocated memory; and

apply the one or more linear transformations to the application data object.

14. The system of claim 13, wherein the level of precision of the application data object is
relatively higher than a data precision required by the graphics processing unit for processing
data, and the functions performed by the processor further include functions to convert the
level of precision of the application data object to the required data precision of the graphics

processing unit.

15. The system of claim 11, wherein the functions performed by the processor further
include functions to:

determine a type of each of the plurality of application data objects; and

modify the precision threshold for each application data object to be processed based

on the determined type of that application data object.

16. The system of claim 15, wherein the scene graph corresponds to a graphical
representation of a hydrocarbon reservoir, and the plurality of application data objects
represented by the different nodes of the scene graph correspond to different stratigraphic

teatures of the hydrocarbon reservotr.

17. A non-transitory computer-readable storage medium having computer-readable
instructions stored thereon, which when executed by a processor cause the processor to
pertorm a plurality of functions, including functions to:

determine a level of precision of an application data object to be processed, wherein
the application data object is one of a plurality of application data objects represented by
difterent nodes of a scene graph, the different nodes including transform nodes corresponding
to the plurality of application data objects, each transform node specifying parameters for one
or more data transtorms to be applied to a corresponding application data object;

calculate at least one bounding value for the application data object based on the
determined level of preciston, the at least one bounding value corresponding to a maximum
extent of a bounding value for the application data object;

determine whether the calculated bounding value exceeds a precision threshold;

35
CA 2955444 2018-04-30

10

15

20

23

30

send, to a graphics processing unit, the application data object to be processed by the
graphics processing unit and rendered to a display device coupled to the graphics processing
unit, when the calculated bounding value is determined not to exceed the precision threshold:;

when the calculated bounding value 1s determined to exceed the precision threshold:

process the application data object according to a predetermined set of

operations pertormed by the processor; and
generate the output dataset based on the processed application data object; and
send, to the graphics processing unit, the generated output dataset to be
rendered to the display device;
detect a change in at least one of the parameters specified by the transform node
corresponding to the application data object to be processed;
when the bounding value is determined to exceed the precision threshold:
modify the scene graph based on the detected change;
reprocess the application data object based on the modified scene graph; and
regenerate the output dataset based on the reprocessed application data object;
and
when the bounding value is determined to be within the precision threshold, send an
indication of the detected change to the graphics processing unit, the graphics processing unit
being configured to apply the change automatically to the application data object without

reprocessing and without having to modify the scene graph.

18. The non-transitory computer-readable storage medium of claim 17, wherein the
application data object 1s a three-dimensional (3D) graphical model, the bounding value
includes a plurality of bounding values corresponding to coordinates of a bounding box in 3D
space, and the functions performed by the computer include functions to:

calculate at least one data transform for representing the application data object within
3D space; and

apply the calculated data transform to the application data object.

19. The non-transitory computer-readable storage medium of claim 18, wherein the
calculated data transform includes one or more linear transformations to be applied to the
application data object, and the functions performed by the computer include functions to:

allocatc memory for storing a copy of the application data object;

copy the application data object to the allocated memory; and

36
CA 2955444 2018-04-30

10

15

apply the one or more linear transformations to the application data object.

20. The non-transitory computer-readable storage medium of claim 19, wherein the level
ot precision of the application data object is relatively higher than a data precision required
by the graphics processing unit for processing data, and the functions performed by the
computer further include functions to convert the level of precision of the application data

object to the required data precision of the graphics processing unit.

21. The non-transitory computer-readable storage medium of claim 17, wherecin the
functions performed by the computer further include functions to:

determine a type of cach of the plurality of application data objects; and

modity the precision threshold for each application data object to be processed based

on the determined type of that application data object.

22. The non-transitory computer-readable storage medium of claim 21, wherein the scene
graph corresponds to a graphical representation of a hydrocarbon reservoir, and the plurality
ot application data objects represented by the different nodes of the scene graph correspond

to different stratigraphic features of the hydrocarbon reservoir.

37

CA 2955444 2018-04-30

WO 2016/028293

CA 02955444 20177-01-17

PCT/US2014/051923

1/7
Memory 110
Application
Data 115
Software
Y
Application 120 Graphics
APl 126
Ul Manager
197 J G.raph.ics
Libraries
128
Rendering
Manager
194 OS 130
Hardware
CPU 140 GPU 142

Display 150

FIG. 1

CA 02955444 20177-01-17

PCT/US2014/051923

WO 2016/028293

217

0S| Ae|dsIq

0S| Aejdsiq

vVic
ias

¢ Ol

Alle]

vcl
labeuen

bulispuay

0gz- 4 12
1 ﬁ@\
vl NdO 0¥l NdD
1
0cz -
At
Z1Z 4a
%
dsS 1
vl NdO 0¥l NdD

.

/

012 $109lq0
eled
uoneoljddy

310A <

320A <

WO 2016/028293
Group
Node
1
Data
Object
1

CA 02955444 20177-01-17

PCT/US2014/051923

3/7
[300A
302A
Root
Node
Group
Node
2
Data
Data .
Object ObjeCt
2 N

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

4/7

302B
Root
Node
Group Group Group
310B < Node Node Node
1 2 N
Transform Transform Transform
315 - Node Node Node
1 2 n
320B - Data Data Dgta
Object Object Object
1 2 n
N

FIG. 3B

WO 2016/028293

CA 02955444 20177-01-17

S/7

Analyze application data object

i

Determine level of precision of data
object

i

Calculate bounding value(s) for data
object

l

Compare bounding value to selected
precision threshold for data object

410
Bounding value(s) YES g
<
threshold?
NO
v | 414
Process data object accordingto |-
predetermined set of operations
Generate output dataset from |/ 416

processed data object

i

Send output dataset to data
processing unit for output to a
display

PCT/US2014/051923

f412

Generate output dataset
from data object

FIG. 4

CA 02955444 20177-01-17

WO 2016/028293 PCT/US2014/051923

o/7

Determine level of precision of |/ SUZ
application data object

\ 4

4
Calculate data bounding box extents S >0
for data object

NO bounding box YES

within precision
threshold
?

' | P

Allocate memory for CPU processing Determine transformations to be
of application data object applied by GPU to data object

' . S5

Copy data object to allocated Reformat data object to match data
memory location precision of GPU hardware

4) f 522

512
Calculate and apply transforms to S Provide GPU with the reformatted
data object data and hardware transforms to be
i applied and rendered to a display

Reformat the processed data object | /= 914
to match data precision of GPU
hardware

i

f 516
Send the reformatted data to the
GPU for rendering to a display

FIG. 5

2017-01-17

CA 02955444

PCT/US2014/051923

WO 2016/028293

77

009 R«

919

a0 8|

MIOM)ON

9 Old

719 L9 019

90BIo)U|
90INS(] 10SS820.d NOH
1Nduj

809

aoeLIo)U|

92IA9(] Alows obel01g
NdinG WoIsAS
909 09 09

Memory 110

Application
Data 115

Software
v
Application 120 Graphics
APl 126
Ul Manager
122 J G'raph.iCS
Libraries
128
Rendering
Manager
124 OS 130
Hardware
CPU 140 GPU 142

f100

»

Display 150

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

