WORLD INTELLECTUAL

PCT

International Bureau

PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 96/42041

27 December 1996 (27.12.96)

(21) International Application Number: PCT/US96/07838

(22) International Filing Date: 3 June 1996 (03.06.96)

(30) Priority Data:
08/474,096 7 June 1995 (07.06.95) uUs
08/486,797 7 June 1995 (07.06.95) US

(71) Applicant: OPEN MARKET, INC. [US/US]; 215 First Street,
Cambridge, MA 02142 (US).

(72) Inventors: LEVERGOOD, Thomas, Mark; 9 North Street,
Hopkinton, MA 01748 (US). STEWART, Lawrence, C.; 1
Arborwood Drive, Burlington, MA 01803 (US). MORRIS,
Stephen, Jeffrey; 3 Kings Pine Road, Westford, MA 01886
(US). PAYNE, Andrew, C.; 5 Lewis Street, Lincoln, MA
01773 (US). TREESE, George, Winfield; 81 Saco Street,
Newton, MA 02164 (US). GIFFORD, David, K.; 26 Pigeon
Hill Road, Weston, MA 02193 (US).

(74) Agents: SMITH, James, M. et al.; Hamilton, Brook, Smith &
Reynolds, Two Militia Drive, Lexington, MA 02173 (US).

(81) Designated States: AU, CA, DE, GB, IL, IP, European patent
(AT, BE, CH, DE, DK, ES, F, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: INTERNET SERVER ACCESS CONTROL AND MONITORING SYSTEMS

New URL w/SID

"(57) Abstract

Trans DB

Authentication
Server

Acct DB

This invention relates to methods for controlling and monitoring access to network servers. In particular, the process described in the
invention includes client-server sessions over the Internet involving hypertext files. In the hypertext environment, a client views a document
transmitted by a content server with a standard program known as the browser. Each hypertext document or page contains links to other
hypertext pages which the user may select to traverse. When the user selects a link that is directed to an access-controlled file, the server
subjects the request to a secondary server which determines whether the client has an authorization or valid account. Upon such verification,
the user is provided with a session identification which allows the user to access to the requested file as well as any other files within the

present protection domain.

applications under the PCT.
AM Ammenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

B) Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI Coéte d’Ivoire
CM Cameroon

CN China

CS Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

Codes used to identify States

Gabon

FOR THE PURPOSES OF INFORMATION ONLY

GB
GE
GN
GR

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

party to the PCT on the front pages of pamphlets publishing international

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 96/42041 PCT/US96/07838

INTERNET SERVER ACCESS CONTROIL AND MONITORING SYSTEMS

Reference to Appendix

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights
whatsoever.

Background of the Invention
The Internet, which started in the late 1960s, is a
vast computer network consisting of many smaller networks

that span the entire globe. The Internet has grown
exponentially, and millions of users ranging from
individuals to corporations now use permanent and dial-up
connections to use the Internet on a daily basis worldwide.
The computers or networks of computers connected within the
Internet, known as "hosts", allow public access to
databases featuring information in nearly every field of
expertise and are supported by entities ranging from
universities and government to many commercial
organizations.

The information on the Internet is made available to
the public through "servers". A server is a system running
on an Internet host for making available files or documents
contained within that host. Such files are typically
stored on magnetic storage devices, such as tape drives or
fixed disks, local to the host. An Internet server may
distribute information to any computer that requests the
files on a host. The computer making such a request is
known as the "client", which may be an Internet~connected

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-2 -

workstation, bulletin board system or home personal
computer (PC).

TCP/IP (Transmission Control Protocol/Internet
Protocol) is one networking protocol that permits full use
of the Internet. All computers on a TCP/IP network need
unique ID codes. Therefore, each computer or host on the
Internet is identified by a unique number code, known as
the IP (Internet Protocol) number or address, and
corresponding network and computer names. In the past, an
Internet user gained access to its resources only by
identifying the host computer and a path through
directories within the host’s storage to locate a requested
file. Although various navigating tools have helped users
to search resources on the Internet without knowing
specific host addresses, these tools still require a
substantial technical knowledge of the Internet.

The World-Wide Web (Web) is a method of accessing
information on the Internet which allows a user to navigate
the Internet resources intuitively, without IP addresses or
other technical knowledge. The Web dispenses with command-
line utilities which typically require a user to transmit

sets of commands to communicate with an Internet server.

Instead, the Web is made up of hundreds of thousands of
interconnected "pages", or documents, which can be
displayed on a computer monitor. The Web pages are
provided by hosts running special servers. Software which
runs these Web servers is relatively simple and is
available on a wide range of computer platforms including
PC’s. Equally available is a form of client software,
known as a Web "browser", which is used to display Web
bages as well as traditional non-Web files on the client
system. Today, the Internet hosts which provide Web
servers are increasing at a rate of more than 300 per
month, en route to becoming the preferred method of
Internet communication.

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-3

Created in 1991, the Web is based on the concept of
"hypertext" and a transfer method known as YHTTPY
(Hypertext Transfer Protocol). HTTP is designed to run
primarily over TCP/IP and uses the standard Internet setup,
where a server issues the data and a client displays or
processes it. One format for information transfer is to
create documents using Hypertext Markup Language (HTML).
HTML pages are made up of standard text as well as
formatting codes which indicate how the page should be
displayed. The Web client, a browser, reads these codes in
order to display the page. The hypertext conventions and
related functions of the world wide web are described in
the appendices of U.S. Patent Application Serial No.
08/328,133, filed on October 24, 1994, by Payne et al.
which is incorporated herein by reference.

Each Web page may contain pictures and sounds in
addition to text. Hidden behind certain text, pictures or
sounds are connections, known as "hypertext links"
("links"), to other pages within the same server or even on
other computers within the Internet. For example, links
may be visually displayed as words or phrases that may be

-underlined or displayed in a second color. Each link is

directed to a web page by using a special name called a URL
(Uniform Resource Locator). URLs enable a Web browser to
go directly to any file held on any Web server. A user may
also specify a known URL by writing it directly into the
command line on a Web page to jump to another Web page.

The URL naming system consists of three parts: the
transfer format, the host name of the machine that holds
the file, and the path to the file. An example of a URL
may be:

http://www.college.univ.edu/Adir/Bdir/Cdir/page.html,

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-4 -

where "http" represents the transfer protocol; a colon and
two forward slashes (://) are used to separate the transfer
format from the host name; "www.college.univ.edu" is the
host name in which "www" denotes that the file being
requested is a Web page; "/Adir/Bdir/cdir" is a set of
directory names in a. tree structure, or a path, on the host
machine; and "page.html" is the file name with an
indication that the file is written in HTML.

The Internet maintains an open structure in which
exchanges of information are made cost-free without
restriction. The free access format inherent to the
Internet, however, presents difficulties for those
information providers requiring control over their Internet
servers. Consider for example, a research organization
that may want to make certain technical information
available on its Internet server to a large group of
colleagues around the globe, but the information must be
kept confidential. Without means for identifying each
client, the organization would not be able to provide
information on the network on a confidential or
preferential basis. In another situation, a company may

want to provide highly specific service tips over its

Internet server only to customers having service contracts
Or accounts.

Access control by an Internet server is difficult for
at least two reasons. First, when a client sends a request
for a file on a remote Internet server, that message is
routed or relayed by a web of computers connected through
the Internet until it reaches its destination host. The
client does not necessarily know how its message reaches
the server. At the same time, the server makes responses
without ever knowing exactly who the client is or what its
IP address is. While the server may be programmed to trace
its clients, the task of tracing is often difficult, if not
impossible. Secondly, to prevent unwanted intrusion into

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-5-=

private local area networks (LAN), system administrators
implement various data-flow control mechanisms, such as the
Internet "firewalls", within their networks. An Internet
firewall allows a user to reach the Internet anonymously
while preventing intruders of the outside world from
accessing the user’s LAN.

Summary of the Invention

The present invention relates to methods of processing
service requests from a client to a server through a
network. 1In particular the present invention is applicable
to processing client requests in an HTTP (Hypertext
Transfer Protocol) environment, such as the World-Wide Web
(Web). One aspect of the invention involves forwarding a
service request from the client to the server and appending
a session identification (SID) to the request and to
subsequent service requests from the client to the server
within a session of requests. 1In a preferred embodiment,
the present method involves returning the SID from the
server to the client upon an initial service request made
by the client. A valid SID may include an authorization
identifier to allow a user to access controlled files.

In a preferred embodiment, a client request is made
with a Uniform Resource Locator (URL) from a Web browser.
Where a client request is directed to a controlled file
without an SID, the Internet server subjects the client to
an authorization routine prior to issuing the SID, the SID
being protected from forgery. A.content server initiates
the authorization routine by redirecting the client’s
request to an authentication server which may be at a
different host. Upon receiving a redirected request, the
authentication server returns a response to interrogate the
client and then issues an SID to a qualified client. For a
new client, the authentication server may open a hew
account and issue an SID thereafter. A valid SID typically

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

- -

comprises a user identifier, an accessible domain, a key
identifier, an expiration time such as date, the IP address
of the user computer, and an unforgettable digital
signature such as a cryptographic hash of all of the other
items in the SID encrypted with a secret key. The
authentication server then forwards a new request
consisting of the original URL appended by the SID to the
client in a REDIRECT. The modified request formed by a new
URL is automatically forwarded by the client browser to the
content server.

When the content server receives a URL request
accompanied by an SID, it logs the URL with the SID and the
user IP address in a transaction log and proceeds to
validate the SID. When the SID is so validated, the
content server sends the requested document for display by
the client’s Web browser.

In the preferred embodiment, a valid SID allows the
client to access all controlled files within a protection
domain without requiring further authorization. a
protection domain is defined by the service provider and is
a collection of controlled files of common protection
within one or more servers.

When a client accesses a controlled Web page with a
valid SID, the user viewing the page may want to traverse a
link to view another Web page. There are several
possibilities. The user may traverse a link to another
page in the same path. This is called a "relative link".

A relative link may be made either within the same domain
or to a different domain. The browser on the client
computer executes a relative link by rewriting the current
URL to replace the old controlled page name with a new one.
The new URL retains all portions of the old, including the
SID, except for the new page name. If the relative link
points to a page in the same protection domain, the SID
remains valid, and the request is honored. However, if the

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-] -

relative link points to a controlled page in a different
protection domain, the SID is no longer valid, and the
client is automatically redirected to forward the rewritten
URL to the authentication server to update the SID. The
updated or new SID provides access to the new domain if the
user is qualified.

The user may also elect to traverse a link to a
document in a different path. This is called an "absolute
link". 1In generating a new absolute link, the SID is
overwritten by the browser. 1In the preferred embodiment,
the content server, in each serving of a controlled Web
page within the domain, filters the page to include the
current SID in each absolute URL on the page. Hence, when
the user elects to traverse an absolute 1ink, the browser
is facilitated with an authenticated URL which is directed
with its SID to a page in a different path. 1In another
embodiment, the content server may forego the filtering
procedure as above-described and redirect an absolute URL
to the authentication server for an update.

An absolute link may also be directed to a controlled
file in a different domain. Again, such a request is
redirected to the authentication server for processing of a
new SID. An absolute link directed to an uncontrolled file
is accorded an immediate access.

In another embodiment, a server access control may be
maintained by programming the client browser to store an
SID or a similar tag for use in each URL call to that
particular server. This embodiment, however, requires a
special browser which can handle such communications and is
generally not suitable for the standard browser format
common to the Web.

Another aspect of the invention is to monitor the
frequency and duration of access to various pages both
controlled and uncontrolled. A transaction log within a
content server keeps a history of each client access to a

WO 96/42041 PCT/US96/07838

10

15

20

25

30

-8~

page including the link sequence through which the page was
accessed. Additionally, the content server may count the
client requests exclusive of repeated requests from a
common client. Such records provide important marketlng
feedback including user demand, access pattern, and
relationships between customer demographics and accessed
pages and access patterns.

The above and other features of the invention
including various novel details of construction and
combinations of parts will now be more particularly
described with reference to the accompanying drawings and
pointed out in the claims. It will be understood that the
particular devices and methods embodying the invention are
shown by way of illustration only and not as limitations of
the invention. The principles and features of this
invention may be employed in varied and numerous
embodiments without departing from the scope of the
invention.

Brief Description of the Drawings:

Figure 1 is a diagranm illustrating the Internet

operation.

Figure 2A is a flowchart describing the preferred
method of Internet server access control and monitoring.
Figure 2B is a related flowchart describing the

details of the authentication process.

Figure 3 illustrates an example of a client-server
exchange session involving the access control and
monitoring method of the present invention.

Figure 4 is an example of a World Wide Web page.

Figure 5 is an example of an authorization form page.

Figure 6 is a diagran describing the details of the
translation of telephone numbers to URLs.

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-9~

Detailed Description of the Invention:

Referring now to the drawings, Figure 1 is a graphical
illustration of the Internet. The Internet 10 is a network
of millions of interconnected computers 12 including
systems owned by Internet providers 16 and information
systems (BBS) 20 such as Compuserve or America Online.
Individual or corporate users may establish connections to
the Internet in several ways. A user on a home PC 14 may
purchase an account through the Internet provider 16.

Using a modem 22, the PC user can dial up the Internet
provider to connect to a high speed modem 24 which, in
turn, provides a full service connection to the Internet.
A user 18 may also make a somewhat limited connection to
the Internet through a BBS 20 that provides an Internet
gateway connection to its customers.

Figure 2A is a flowchart detailing the preferred
process of the present invention and Figure 4 illustrates a
sample Web page displayed at a client by a browser. The
page includes text 404 which includes underlined link text
412. The title bar 408 and URL bar 402 display the title
and URL of the current web page, respectively. As shown in
Figure 4, the title of the page is "Content Home Page" and
the corresponding URL is "http://content.com/homepage".
When a cursor 414 is positioned over link text 412b, the
page which would be retrieved by clicking a mouse is
typically identified in a status bar 406 which shows the
URL for that link. 1In this example the status bar 406
shows that the URL for the pointed 1link 412b is directed to
a page called "advertisement" in a commercial content
server called "content". By clicking on the link text, the
user causes the browser to generate a URL GET reguest at
100 in Figure 2A. The browser forwards the request to a
content server 120, which processes the request by first
determining whether the requested page is a controlled
document 102. If the request is directed to an

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-10-

uncontrolled page, as in "advertisement" page in this
example, the content server records the URL and the IP
address, to the extent it is avqilable, in the transaction
log 114. The content server then sends the requested page
to the browser 116 for display on the user computer 117.

If the request is directed to a controlled page, the
content server determines whether the URL contains an SID
102. For example, a URL may be directed to a controlled
pPage name "report", such as "http://content.com/report",
that requires an SID. If no SID is present, as in this
example, the content server sends a "REDIRECT" response 122
to the browser 100 to redirect the user’s initial request ‘
to an authentication server 200 to obtain a valid SID. The
details of the authentication process are described in
Figure 2B and will be discussed later, but the result of
the process is an SID provided from the authentication
server to the client. 1In the above example, a modified URL
appended with an SID may be: "http://content.com/[SID]/
report". The preferred SID is a sixteen character ASCII
string that encodes 96 bits of SID data, 6 bits per
character. It contains a 32-bit digital signature, a 16-
bit expiration date with a granularity of one hour, a 2-bit
key identifier used for key management, an 8-bit domain
comprising a set of information files to which the current
SID authorizes access, and a 22-bit user identifier. The
remaining bits are reserved for expansion. The digital
signature is a cryptographic hash of the remaining items in
the SID and the authorized IP address which are encrypted
with a secret key which is shared by the authentication and
content servers.

If the initial GET URL contains a SID, the content
server determines whether the request is directed to a page
within the current domain 106. If the request having a SID
is directed to a controlled page of a different domain, the

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-11-

SID is no longer valid and, again, the user is redirected
to the authentication server 123.

If the request is for a controlled page within the
current domain, the content server proceeds to log the
request URL, tagged with SID, and the user IP address in
the transaction log 108. The content server then
validates the SID 110. Such validation includes the
following list of checks: (1) the SID’s digital signature
is compared against the digital signature computed from the
remaining items in the SID and the user IP address using
the secret key shared by the authentication and content
servers; (2) the domain field of the SID is checked to
verify that it is within the domain authorized; and (3) the
EXP field of the SID is checked to verify that it is later
than the current time.

If the validation passes, the content server searches
the page to be forwarded for any absolute URL links
contained therein 112, that is, any links directed to
controlled documents in different content servers. The
content server augments each absolute URL with the current
SID to facilitate authenticated accesses across multiple

- content servers. The requested page as processed is then

transmitted to the client browser for display 117. The
user viewing the requested Web page may elect to traverse
any link on that page to trigger the entire sequence again
100.

Figure 2B describes the details of the authentication
Process. The content server may redirect the client to an
authentication server. The REDIRECT URI, might be:
"http://auth.com/authenticate?domain=[domain]&URL=http://
content.com/report". That URL requests authentication and
specifies the domain and the initial URL. In response to
the REDIRECT, the client browser automatically sends a GET
request with the provided URL.

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-12-

Whenever the content server redirects the client to
the authentication server 200, the authentication server
initiates the authorization process by validating that it
is for an approved content server and determining the level
of authentication required for the access requested 210.
Depending on this level, the server may challenge the user
212 for credentials. If the request is for a low level
document, the authentication may issue an appropriate SID
immediately 228 and forego the credential check procedures.
If the document requires Credentials, the authentication
server sends a "CHALLENGE" response which causes the client
browser to prompt the user for credentials 214. 2
preferred credential query typically consists of a request
for user name and password. If the user is unable to
provide a password, the access is denied. The browser
forms an authorization header 300 from the information
provided, and resends a GET request to the authentication
server using the last URL along with an authorization
header. For example, a URL of such a GET request may be:
"http://auth.com/authenticate?domain=[domain]&URL=http://
content.com/report and the authorization header may

'be:"AUTHORIZE:[authorization]".

Upon receiving the GET request, the authentication
server queries an account database 216 to determine whether
the user is authorized 218 to access the requested
document. A preferred account database may contain a user
profile which includes information for identifying
purposes, such as client IP address and password, as well
as user demographic information, such as user age, home
address, hobby, or occupation, for later use by the content
server. If the user is authorized, an SID is generated 228
as previously described. If the user is not cleared for
authorization, the authentication server checks to see if
the user qualifies for a new account 220. If the user is
not qualified to open a new account, a page denying access

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

-13-~

222 is transmitted to the client browser 100. If the user
is qualified, the new user is sent a form page such as
illustrated in Figure 5 to initiate a real-time on-line
registration 224. The form may, for example, require
personal information and credit references from the user.
The browser is able to transmit the data entered by the
user in the blanks 502 as a "POST" message to the
authentication server. A poST message causes form contents
to be sent to the server in a data body other than as part
of the URL. If the registration form filled out by the new
user is valid 226, an appropriate SID is generated 228. If
the registration is not valid, access is again denied 222.

An SID for an authorized user is appended ("tagged")
230 to the original URL directed to a controlled page on
the content server. The authentication server then
transmits a REDIRECT response 232 based on the tagged URL
to the client browser 100. The modified URL, such as
"http://content.com/[SID]/report" is automatically
forwarded to the content server 120.

Figure 3, illustrates a typical client-server exchange
involving the access control and monitoring method of the
Present invention. 1In Step 1, the client 50 running a
browser transmits a GET request through a network for an
uncontrolled page (UCP). For example, the user may request
an advertisement page by transmiiting a URL "http://
content.com/advertisement", where "content.com" is the
Server name and "advertisement" is the uncontrolled page
name. In Step 2, the content server 52 processes the GET
request and transmits the requested page, "advertisement".
The content server also logs the GET request in the
transaction database 56 by recording the URL, the client IP
address, and the current time.

In Step 3, the user on the client machine nmay elect to
traverse a link in the advertisement page directed to a
controlled page (CP). For example, the advertisement page

WO 96/42041 PCT/US96/07838

10

15

20

25

30

35

=14~

may contain a link to a controlled page called "report".
Selecting this link causes the client browser 50 to forward
a GET request through a URL which is associated with the
report file "http://content.com/report". The content
server 52 determines that the request is to a controlled
page and that the URL does not contain an SID. In Step 4,
the content server transmits a REDIRECT response to the
client, and, in Step 5, the browser automatically sends the
REDIRECT URL to the authentication server 54. The REDIRECT
URL sent to the authentication server may contain the
following string:
"http://auth.com/authenticate?domain=[domain]&URL=http://
content.com/report"

The authentication server processes the REDIRECT and
determines whether user credentials (CRED) are needed for
authorization. 1In Step 6, the authentication server
transmits a "CHALLENGE" response to the client. As
previously described, typical credentials consist of user
name and password. An authorization header based on the
credential information is then forwarded by the client
browser to the authentication server. For example, a GET
URL having such an authorization header is:

"http://autho. com/authent1cate°doma1n—[domaln]&URL =http://
content.com/report and the authorization header may

be : "AUTHORIZE: [authorization]". fThe authentication server
processes the GET request by checking the Account Database
58. If a valid account exists for the user, an SID is
issued which authorizes access to the controlled page
"report" and all the other pages within the domain.

As previously described, the preferred SID comprises a
compact ASCII string that encodes a user identifier, the
current domain, a key identifier, an expiration time, the
client IP address, and an unforgeable digital signature.

In Step 8, the authentication server redirects the client
to the tagged URL, "http://content.com/[SID]/report", to

WO 96/42041 PCT/US96/07838

10

15

20

25

30

35

~15~

the client. 1In Step 9, the tagged URL is automatically
forwarded by the browser as a GET request to the content
server. The content server logs the GET request in the
Transaction database 56 by recording the tagged URL, the
client IP address, and the current time. In Step 10, the
content server, upon. validating the SID, transmits the
requested controlled page "report" for display on the
client browser.

According to one aspect of the present invention, the -
content server periodically evaluates the record contained
in the transaction log 56 to determine the frequency and
duration of accesses to the associated content server. The
server counts requests to particular pages exclusive of
repeated requests from a common client in order to
determine the merits of the information on different pages
for ratings purposes. By excluding repeated calls, the
system avoids distortions by users attempting to "stuff the
ballot box." In one embodiment, the time intervals
between repeated requests by a common client are measured
to exclude those requests falling within a defined period
of time.

Additionally, the server may, at any given time, track
access history within a client-server session. Such a
history profile informs the service provider about link
transversal frequencies and link paths followed by users.
This profile is produced by filtering transaction logs from
one or more servers to select only transactions involving a
particular user ID (UID). Two subsequent entries, A and B,
corresponding to requests from a given user in these logs
represent a link traversal from document A to document B
made by the user in question. This information may be used
to identify the most popular links to a specific page and
to suggest where to insert new links to provide more direct
access. In another embodiment, the access history is
evaluated to determine traversed links leading to a

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-16~

purchase of a product made within commercial pages. This
information may be used, for example, to charge for
advertising based on the number of link traversals from an
advertising page to a product page or based on the count of
purchases resulting from a path including the
advertisement. 1In this embodiment, the server can gauge
the effectiveness of advertising by measuring the number of
sales that resulted from a particular page, link, or path
of links. The system can be configured to charge the
merchant for an advertising page based on the number of
sales that resulted from that page.

According to another aspect of the present invention,
a secondary server, such as the authentication server 200
in Figure 2B, may access a prearranged user profile from
the account database 216 and include information based on
such a profile in the user identifier field of the SID. 1In
a preferred embodiment, the content Server may use such an
SID to customize user requested pages to include
personalized content based on the user identifier field of
the SID.

In another aspect of the invention, the user may gain
access to domain of servers containing journals or
publications through a subscription. In such a situation,
the user may purchase the subscription in advance to gain
access to on-line documents through the Internet. The user
gains access to a subscribed document over the Internet
through the authorization procedure as described above
where an authorization indicator is preferably embedded in
a session identifier. In another embodiment, rather than
relying on a prepaid subscription, a user may be charged
and billed each time he or she accesses a particular
document through the Internet. In that case, authorization
may not be required so long as the user is fully identified
in order to be charged for the service. The user

10

15

20

25

30

WO 96/42041 PCT/US96/07838

-17-

identification is most appropriately embedded in the
session identifier described above.

In another aspect of the invention, facilities are
provided to allow users to utilize conventional telephone
numbers or other identifiers to access merchant services.
These merchant services can optionally be protected using
SIDs. 1In a preferred embodiment, as shown in Figure 6, a
Web browser client 601 provides a "dial" command to accept
a telephone number from a user, as by clicking on a "dial"
icon and inputting the telephone number through the
keyboard. The browser then constructs a URL of the form
"http://directory.net/NUMBER", where NUMBER is the A
telephone number or other identifier specified by the user.
The browser then performs a GET of the document specified
by this URL, and contacts directory server 602, sending the
NUMBER requested in Message 1.

In another embodiment, implemented with a conventional
browser, client 601 uses a form page provided by directory
server 601 that prompts for a telephone number or other
identifier in place of a "dial" command, and Message 1 is a
POST message to a URL specified by this form page.

' Once NUMBER is received by directory server 601, the
directory server uses database 604 to translate the NUMBER
to a target URL that describes the merchant server and
document that implements the service corresponding to
NUMBER. This translation can ignore the punctuation of the
number, therefore embedded parenthesis or dashes are not
significant. .

In another embodiment an identifier other than a
number may be provided. For example, a user may enter a
company name or product name without exact spelling. 1In
such a case a "soundex" or other phonetic mapping can be
used to permit words that sound alike to map to the same
target URL. Multiple identifiers can also be used, such as

10

15

20

25

30

35

WO 96/42041 PCT/US96/07838

~18~

a telephone number in conjunction with a product name or
extension.

In Message 2, Directory server 602 sends a REDIRECT to
client 601, specifying the target URL for NUMBER as
computed from database 604. The client browser 601 then
automatically sends Message 3 to GET the contents of this
URL. Merchant server 603 returns this information in
Message 4. The server 602 might have returned a Web page
to the client to provide an appropriate link to the
required document. However, because server 602 makes a
translation to a final URL and sends a REDIRECT rather than
a page to client 601, the document of message 4 is obtained
without any user action beyond the initial dial input.

The Target URL contained in Message 3 can be an
ordinary URL to an uncontrolled page, or it can be a URL
that describes a controlled page. If the Target URL
describes a controlled page then authentication is
performed as previously described. The Target URL can also
describe a URL that includes an SID that provides a
preauthorized means of accessing a controlled page.

Among benefits of the "dial" command and its
implementation is an improved way of accessing the Internet
that is compatible with- conventional telephone numbers and
other identifiers. Merchants do not need to alter their
print or television advertising to provide an Internet
specific form of contact information, and users do not need
to learn about URLs.

In the approach a single merchant server can provide
multiple services that correspond to different external
"telephone numbers" or other identifiers. For example, if
users dial the "flight arrival" number they could be
directed to the URL for the arrival page, while, if they
dial the "reservations" number, they would be directed to
the URL for the reservations page. A "priority gold"
number could be directed to a controlled page URL that

10

15

WO 96/42041 PCT/US96/07838

=19~

would first authenticate the user as belonging to the gold
users group, and then would provide access to the "priority
gold" page. An unpublished "ambassador" number could be
directed to a tagged URL that permits access to the
"priority gold" page without user authentication.

This invention has particular application to network
sales systems such as presented in U.s. Patent Application
Serial No. 08/328,133, filed October 24, 1994, by Payne
et al. which is incorporated herein by reference.

Equivalents:

Those skilled in the art will know, or be able to
ascertain using no more than routine experimentation, many
equivalents to the specific embodiments or the invention
described herein. These and all other equivalents are
intended to be encompassed by the following claims.

PCT/US96/07838

WO 96/42041
-20-
Appendix
/* Tclidsid
* Scans an ascii line and finds an ascii SID. (no validation though)
* Inputs:
* lineoftext
* Returns:

*

*

ascii bin_sid, if a sid is found it is returned.

*/

int Tclldsid(ClientData dummy, Tcl_Interp *interp,

/*

int argc, char **argv)

{

char *sidp, *cp;
interp-sresult[0] = 0;

if (arge != 2)
{
interp-s>result = "wrong # args";
return TCL_ERROR;
}
sidp = (char *) strstr(argv[i], r/@@") ;
if (sidp == NULL) return TCL_OK;
cp = (char *) strstr(sidp+l,"/v);
if ((ep == NULL) && (strlen(sidp) != 19)) return TCL_OK;
if ({cp - sidp) != 19) return TCL_OK;
strnepy (interp-s>result, sidp,19);
interp-s>result[19] = 0;
return TCL_OK; '

}

* Register commands with interpreter.
*/
int SidSupInit (Tcl_Interp *interp)

{

Tcl_CreateCommand (interp, "packsid", TclPacksid, NULL,
Tcl_CreateCommand (interp, "unpacksid", TclUnpackSid, NULL,

NULL) ;
NULL) ;

Tcl_CreateCommand (interp, "unpacksidnovalidate™, TclUnpackSidNoValidate,
NULL,

Tcl_CreateCommand (interp, "issid", Tclldsig,
return TCL OK;

}

SUBSTITUTE SHEET (RULE 26)

NULL, NULL);

WO 96/42041 PCT/US96/07838

* compute_ihash --

Compute the MD5 hash for the specified string, returning the hash as
* a 32b xor of the 4 hash longwords.

* Results:
* hash int.

* Side effects:
* None.

int compute_ihash{char *str)
{
MD5_CTX md5;
unsigned char hash[16];
unsigned int *pl;
unsigned int hashi = 0;

MD5Init (&md5) ;

MD5Update (&md5, str, strlen(str));
MD5Final (hash, &md5);

Pl = (unsigned int *) hash;

hashi = *pl++;

hashi = *pl++;
hashi “= *pl++;
hashi = *pl++;
return hashi;

* ticket.c --
* Commands for TICKET.

* Copyright 1995 by Open Market, Inc.
* All rights reserved.

* This file contains proprietary and confidential information and
* remains the unpublished property of Open Market, Inc. Use,

* disclosure, or reproduction is prohibited except as permitted by
* express written license agreement with Open Market, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-22-

* Steve Morris

* morris@OpenMarket.com

*

* Created: Wed Mar 1 1995

* $Source: /omi/proj/master/omhttpd/Attic/ticket.c,v $

*

*/

#if !defined(lint)

static const char rcsid[] ="$Header: /omi/proj/master/omhttpd/Attic/ticket.c,v
2.

#endif /*not lint=*/

#include <stdio.hs
#include <sys/utsname.h>
#include "httpd.h"
#include "md5.h"
#include "ticket.h"

static TICKET Server TicketServerData;

/*
* This file implements all the ticket/sid related functions for the server.

* The region commands RequireSID and Xxxxx can be used to limit

* access to groups of files based on the authentication of the requestor.

* The two commands are very similar, and only differ in the method used to

* present the authentication data (via the URL) and in handling of the

* failing access case. For failing TICKET’s, a "not authorized" message is

* generated. For failing (or absent) SID’s, a REDIRECT (either local or via
* CGI script) is performed to forward the request to an authentication

server.
*

* RequireSID domainl [domain2 ... domainn]
*

* This command denies access unless the specified properties are

* true of the request. Only one RequireSID or xxxxx command can

* be used for a given region, though it may specify multiple domains.
*

*

*/

static int ProcessRequires (ClientData clientData, Tcl_Interp *interp,

int argc, char **argv, int flavor);
static int DomainNameCmd(ClientData clientData, Tcl_Interp *interp,

int arge, char **argv) ;
static int GetDomain (char *domname, int dflt);

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-23-

static char *GetAsciiDomain (char *domname, char *dflt);

static int computer_ihash (char *str);

static char *computerHash (char *str);

static char *GetSecret(int kid);

static int GetKidByKeyID (char *keyID) ;

static char *CreateSid (HTTP_Request *reqPtr, int dom, int uid, int kid,
int exp, int uctx);

static void freeTicketRegbata (void *dataPtr) ;

static void DumpStatus (HTTP_Request *reqPtr);

static void TICKET DebugHooks (ClientData clientData, char *suffix,

HTTP_Request *regPtr);

static int ParseSid (HTTP_Request *reqPtr) ;

static int ParseTicket(HTTP_Request *reqgPtr) ;

static char *fieldParse(char *str, char sep, char **endptr);

void TICKET ConfigCheck();

void DumpRusage (HTTP_Request *reqPtr) ;

/*
T T T T e e
*
* TICKET RequireSidCmd --
*
* Checks that the requested URL is authorized via SID to access this
* region. If the access is not authorized and we do not have a "remote"
* authentication server® registered, then an "unauthroized message"
* is returned. If a "remote authentication server" has been
* declared, we REDIRECT to that server, passing the requested URL and
* required domain‘’s as arguments.
*
* Results:
* Normal Tcl result, or a REDIRECT request.
*
* Side effects:
* Either an "unauthorized access" message or a REDIRECT in case of
error.
%
T e e
*/

static int TICKET RequireSidCmd(ClientData clientData, Tcl_Interp *interp,

int argec, char **argv)

{

if (TicketGlobalData(EnableSidEater)) return TCL_OK;
return(ProcessRequires (clientData, interp,arge, argv, ticketsid));

}

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-24-
* ProcessRequired --
*
* Checks that the requested URL ig authorized to access this
* region. The error cases are treated differently for SID v.s. TICKET.
* For Ticket’s, an unauthorized access generates a returned error
message.
* For SID’s, we first look to see if we are operating in "local
authentica
* mode", if we are, we generate a new SID, into the URL and re-process
the
* If not in "local" mode, we look for the presence of a
remoteauthenticati
* server, if we have one declared (in the conf file) we REDIRECT to it
pas
* the FULL url and a list of domains that would have been legal. 1If
the
* authentication server was not found we return an error message.
*
* Results:
* Normal Tcl result, a local reprocess command, or a REDIRECT request.
*
* Side effects:
* Either an "unauthorized access" message or a REDIRECT in case of
error.
*
K o e o
*/

static int ProcessRequires(ClientData clientData, Tcl_Interp *interp,
int arge, char **argv, int flavor)
{
HTPP_Request *reqPtr = (HTTP_Regeust *) client Data;
HTTP_Server *serverPtr;
TICKET Request *ticketPtr;
DString targetUrl;
DString escapeUrl;
int i, required_dom;
int firstlegalDom = -1;
char *NewSid, *cp;

DStringInit (&targetUrl) ;
DStringInit (&escapeUrl) ;

/* fetch the server private and ticket specific extension data */

serverPtr = reqPtr=>serverPtr;

ticketPtr = (TICKET Request *) HT_GetReqExtData (regPtr,
TicketServerData.tic

ASSERT (ticketPtr != NULL);

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-25-

/* compare the requesting SID/Ticket<DOMs to authorized list of domains */
/* a match OR any valid domain and a required domain of TicketFreeArea is
su
for (i = 1; i < arge; i++)
{
required_dom = GetDomain(argv([i] -1);
if (required_dom != -1)
{ .
if (firstLegalDom == -1) firstLegalDom = required_dom;
if ((ticketPtr->sidDom == required_dom) ||
(ticketPtr->valid && (ticketPtr->sidDom != -1) &&
(required_dom == TicketGlobalData (FreeArea))) H
((ticketPtr->ticketDom == required dom) &&
(time (0) <= ticketPtr->ticketExp) &&
((DStringLength(&ticketPtr->ticketIP) == 0) H
(strcmp(DStringValue(&ticketPtr—>ticketIP), DStringValue (&reqPtr-

>r

{

DStringFree (&targetUrl) ;
DStringFree (&escapeUrl) ;
return TCL OK;

}

/* count the number of domain crossing that caused re-auth */
if ((flavor == ticketSid) && (ticketPtr-s>sidDom) != -1) IncTicketCounter (Cou

/* authorization failed, if this was a sid url, and local auth is enabled */
/* or this was an access to the free area */
/* insert a new sid in the url, and REDIRECT back to the client 8?
if (TicketGlobalData (EnableLocalAuth) I
({(firstLegalDom == TicketGlobalData(FreeArea))

&& (flavor == ticketSid) && (firstLegalbDom != -1)))
{
if ((DStringLength (&reqPtr-surl) != 0) &&
(DStringValue (&reqPtr->url) [0] != /Y)Y

{

HTTP_Error (reqPtr, NOT_FOUND, "access denied due to poorly formed url");
DStringFree (&targetUrl) ;
DStringFree (&escapeUrl) ;
if (!ticketPtr->valid)
DStringFree (&ticketPtr->sid);
return TCL_RETURN;

}

NewSid = CreateSid(reqPtr,

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-26-

firstLegalDom, ticketPtr-suid,

TicketGlobalData(CurrentSecret), TicketGlobalData(LocalAuthExp)

ticketPtr-suctx);
DStringFree(&ticketPtr—>sid);
DstringAppend (&ticketPtr->sid, NewSid, -1);
ComposeURL (regPtr, DStringValue(&rethr->url), &targetUrl) ;
IncTicketCounter (CountLocal Redirects) ;
HTTP_Error*reqPtr, REDIRECT, DstringValue(&targetUrl));
DStringFree (&targetUrl) ;
DStringFree (&escapeUrl) ;
if (lticketPtr->valid)

DStringFree (&ticketPtr->sid);

return TCL_RETURN;

}

/* authorization failed, build the REDIRECT URL arg’s. */
/* If present, REDIRECT to authentication server */

if ((DstringLength(&TicketGlobalData(AuthServer)) != 0) && (flavor == ticket
{
if ((DStringLength(&rethr—>url) = 0) &&
(DStringValue (&reqPtr-s>url) [0] 1= +/7))

{

HTTP_Error(reqPtr, NOT_FOUND, "access denied due to poorly formed url");
DStringFree (&targetUrl) ;

DStringFree (&escapeUrl) ;
if (lticketPtr-svalid)
DstringFree (&ticketPtr->gid) ;

return TCL_RETURN ;

}
DStringAppend(&targetUrl, DStringValue(&TicketGlobalData(AuthServer)), -1)
DStringAppend (&targetUrl, "?url=", -1);

ComposeURL (reqPtr, DStringValue(&rethr->ur1), &escapeUrl)
EscapeUrl (&escapeUrl) ;
DStringAppend(&targetUrl,DStringValue(&escapeUrl), -1);
DStringAppeal (&targetUrl, "&domain=", -1)
DStringTrunc(&escapeUrl, 0);
DStringAppend (&escapeUrl, "{=, -1);
for (i=1; i < argec; i++)
{
Cp = GetAsciiDomain*argv(i], NULL) ;
if (cp != NULL)
{
DStringAppend (&escapeUrl, cp, -1);
DStringAppend (sescapeUrl, ", =1);

}

i

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-27-

DStringAppend (&escapeUrl, v, -1);
EscapeUrl (&escapeUrl) ;
DStringAppend(&targetUrl,DStringValue(&escapeUrl), -1);
DStringFree (&escapeUrl) ;
HTTP_Error (reqPtr, REDIRECT, DStringValue(&targetUrl));
IncTicketCounter(CountRemoteRedirects);
DStringFree (&targetUrl) ;
if (!ticketPtr-s>valid)

DStringFree(&ticketPtr—>sid);
return TCL_RETURN;

}

/* authorization failed, if this is a ticket access, decode the */
/* reason and handl via a redirect to a handler, or punt a */
/* no access message */
if ((flavor == ticketTicket) && (firstLegalDom {= -1) && (ticketPtr->ticketD
{
/* check For IP address restrictions */
if ((DStringLength(&ticketPtr->ticket IP) 1= 0) &&
(DstringLength(&TicketGlobalData(TicketAdrHandler)) = 0) &&
(strcmp(DStringValue(&ticketPtr->ticketIP), DstringValue (s¢regPtr->remo
{
DStringAppend (&targetUrl, DstringValue(&TicketGlobalData(TicketAdrHandle
DStringAppend (&targetUrl, DStringValue(&ticketPtr->fields), -1);
DStringAppend (&targetUrl, "gurl=", -1);
DStringAppend (&targetUrl, DStringValue(&rethr->url), -1);
IncTicketCounter(CountTicketAddr);
HTTP_Error (reqPtr, REDIRECT, DStringValue(&targetUrl));
DStringFree (&targetUrl) ;
return TCL_RETURN;

}

/* check for expired tickets */
if (time(0) > ticketPtr->ticketExp)

{

DStringAppend (&targetUrl, DStringValue(&TicketGlobalData(TicketEpoandle
DStringAppend (&targetUrl, DStringValue(&ticketPtr->fields), -1);
DStringAppend (&targetUrl, "gurl=", -1);

DStringAppend (&targetUrl, DStringValue (&reqPtr->url), -1);
IncTicketCounter(CountExpiredTicket);/*

HTTP_Error (reqPtr, REDIRECT, DStringValue(&targetUrl));
DStringFree(&targetUrl);
return TCL_RETURN;

}

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-28-

/* no handler, punt a message */

HTTP_Error (reqPtr, FORBIDDEN, "access denied by Require ticket/sid region
co

IncTicketCounter(CountNoRedirects);

if (!lticketPtr->valid)

DStringFree(&ticketPtr->sid);

DStringFree (&targetUrl) ;

DStringFree (&escapeUrl) ;

return TCL_RETURN;

}

* Get(Ascii)Domain --

* These routine performs an ascii to binary domain name lookup,

* indexed by 'key’) from the server’s domain name catalog. Name/number

* pair’s are loaded into the catalog at configuration time with the

* with the "Domain" configuration command. The Ascii version returns

* a pointer to a character string that represents the domain number.

* The non Ascii version returns an integer representing the domain number.

* Results:

* Integer value of domain. If no domain is available, returns deflt.

* Side effects:
* None.

static int GetDomain (char *domname, int deflt)
HashEntry *entryPtr;
DString DomName;

DStringInit (&DomName) ;
DStringAppend (&DomName, domname, -1);
strtolower(DStringValue(&DomName));

entryPtr = FindHashEntry(&TicketServerData.Domains,
DStringValue (&DomName)) ;

DStringFree (&DomName) ;

if (entryPtr == NULL) return deflt;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-29-

return (int) GetHashValue (entryptr) ;

}

static char * GetAsciiDomain (char *domname, char *deflt)

{

HashEntry *entrypbtr;
static char buffer[64];
DString DomName;

DStringInit (&DomName) ;
DStringAppend (DomName, domname, -1);
strtolower(DStringValue(&DomName));

entryPtr = FindHashEntry(&TicketServerData.Domains,
DstringValue (&DomName)) ;

DstringFree (&DomName) ;

if (entryPtr == NULL) return deflt;

sprintf (buffer, "gdv, (int) GetHashValue (entryPtr)) ;
return buffer;

}

* TICKET InsertLocalSid --

* Given a URL, inspect it to see if it refers to the local server/port
* if it does, and it does not already contain a SID, insert one if
* the current request included one. Note, for port 80 access we look

* for a match with and without the port specifier.
*

* Results:

* None.
*

* Side effects:
A SID may be inserted into the URL.

void TICKET_InsertLocalSid(HTTP_Request *reqPtr, DString *result)

{

HTTP_Server *serverPtr;
TICKET Request *ticketPtr;
char tmp[32];

DString patterni;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 ' PCT/US96/07838

-30-

DString pattern2;
DString tmp url;
DString *hitPattern * NULL;

ticketPtr = (TICKET Request *) HT_GetRegExtData (reqPtr,
TicketServerData.tic

if (ticketPtr == NULL) return;

serverPtr = regPtr->serverPtr;

DStringInit (&patternil);
DstringInit (&pattern2);
DStringInit (&tmp_ url);

DStringAppend (&patternl, "http://v, -1);

1

DstringAppend (&patterni, DStringValue(&serverPtr—>serverName), -1);
DstringAppend(&pattern2, DStringValue (¢patterni), -1);
sprintf (tmp, ":%4", serverPtr->server port);

DStringAppend (&patterni, tmp, -1);

if ((DStringLength (result) »= DstringLength (&patternl)) &&
(strncasecmp(DStringValue(&patternl), DstringValue (result),
DStringlengt hitPattern = &patterni;
else
if ((serverPTR-->server port == 80) &s&
(DStringLength (result) »>= DStringLength (s&pattern2)) s&s
(strncasecmp(DStringValue(&patternz), DStringValue (result),
DStringlength hitPattern + &pattern2;

if (hitPattern ! = NULL)

{

DStringAppend (&tmp_url, DstringValue (hitPattern), -1;

DstringAppend (tmp_url, DStringValue(&ticketPtr->sid), -1);

DStringAppend (&tmp url, &DStringValue (result)
[DStringLength(hitPattern)],

DStringFree (result) ;

DstringAppend (result, DStringValue(&tmp_url), -1):
DStringFree (&tmp_url) ;

}

DsStringFree (&patternl) ;
DStringFree (&pattern2) ;
DstringFree (&tmp_url) ;
}

/*

_ SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

* CreateSid --
*

This routine takes the passed arguments and creates a sid.
*
* Results:
* A sid.

*

* Side effects:

char * CreateSid (HTTP_Request *reqPtr, int dom, int uid, int kid, int exp,
int uctx)
{
int bsid[3] = {0,0,0};
char temp_str([512};
DString hash;
int act_hash;
static char sid[e64];
unsigned int expire time;
char *secret;
char *hashp;
char *cp;
unsigned char *ecp;
unsigned int eda;
int endian = 1;

DStringInit (&hash) ;
expire_time =time(0)+ exp;

put_sid(dom_1lw, dom_pos, dom_mask, dom) ;

put_sid(uid 1w, uid pos, uid mask, uid);

put_sid(kid 1w, kid pos, kid mask, kid);

put_sid(exp lw, esp_pos, exp_mask,
(expire_time>>exp shft amt))

put_sid(uctx_1lw, uctx_pos, uctx_mask, uctx);

put_sid(rev_lw, rev_pos, rev_mask, sid_rev_zero);

secret = GetSecret (kid) ;
ASSERT (secret ! = NULL);
DStringAppend (&hash, secret, -1);

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-32-

DstringAppend (&hash, DStringValue(&rethr—>remoteAddr), -1;
sprintf (temp str, "$08x%08x", bsid[2],bsid[1]);
DstringAppend (&hash, temp str, -1);
/* format of the hash string is %s%s%08x%08x",
secret,ip_addr,bsid[z[,bsid[l
hashP = DStringValue (&hash) ;
act_hash = compute_ihash (hashp) ;
while (*hashP ! = 0) *hashP++ = 0;
DStringFree (&hash) ;
/* fix endian(&act_hash, ecp, eda); */

-put_sid(sig_lw, sig_pos, sig mask, act_hash)

/* fix endian(&bsid[0], ecp, eda); */
fix endian(&bsid[1], ecp, eda);
fix endian*gbsid[2], ecp, eda);

#if (1 ==
Dumpsid() ;
#endif

cp = radix64encode_noslash((char *) bsid, 12);
strepy(sid, SID prefix);

strcat (sid, cp);

free(cp) ;

return(sid) ;

}

* compute hash --

* Compute the MD5 hash for the specified string, returning the hash as
* a 32 b xor of the 4 hash longwords.

*

* Results:

hash int.

*

* Side effects:
None.

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-33-
*/

static int compute_ihash(char *str)

{

MD5_CTX md5;

unsigned char hash[16];
unsigned int *pl;
unsigned int hashi = 0;

MDInit (s&mds) ;

MDUpdate (&md5, (unsigned char *) str, strlen(str));
MDFinal (hash, &mds);

Pl = (unsigned int *) hash;

hashi = *pl++;
hashi = *pl++;
hashi *= *pl++;
hashi *= *pl++;
return hashi;

}

* computeHash --

* Compute the MD5 hash for the specified string, returning the hash as

* a 32-character hex string.
*

* Results:

" Pointer to static hash string.
*

* Side Effects:

* None.

static char *computeHash (char *str)
{

int i;

MD5_CTX mds5;

unsigned char hash[16];

static char hashstr([33];

char *q;

SUBSTITUTE SHEET (RULE 26) ‘

WO 96/42041 PCT/US96/07838

-34-

MD5Init (&md5) ;

MD5Update (&md5, (unsigned char *) str, strlen(str))
MD5Final (hash, &mds);

g = hashstr;

-
!

for(i=0; i<16; i++ {
sprintf(q, "%02x", hashl[i]);

q += 2;

}

*q = '\0’;

return hashstr;
}
/*
e e e
*

* TICKET ParseTicket --
* Called by dorequest, before any region commands or mount handlers
* have run. We parse and handle incomeing sid’s and tickets.

* Results:
* None.

* Side effects:

*/
int TICKET ParseTicket (HTTP Request *reqgPtr)

{

int status = HT OK;
IncTicketCounter (CountTotalUrl) ;
status = ParseSid(reqgPbtr);

if (TicketGlobalData(EnableTicket) && (status == HT OK)) status =
ParseTicke return status;

* ParseSid --

*

SUBSTITUTE SHEET (RULE 26)

WO 96/42041

*

int ParseSid(HTTP_Request *regPtr)

Called by TICKET ParseTicket, before any region
have run. We parse and handle incomeing sid’s.

Results:
None.

Side effects:

{

TICKEKT Request *ticketPtr;
HTTP_Server *serverPtr;
DString hash;

Int i;

char *cp, *cpl;

int *bsid=NULL, act_hash;

unsigned int cur_tim, tdif, exp_tim;

char *secret;

char temp_str[512];
char *hashP;

int sid_ok = 0;
unsigned char *ecp;
unsigned int eda;
int endian = 1;

int ip1,ip2, ip3, ip4;

PCT/US96/07838

commands or mount handle

/* fetch the server private ticket extension data x/
/* note that this sets up a default ticket block for both SID’s and Ticket a

serverPtr = regPtr-s>serverPtr;

ticketPtr (TICKET Request *) HT GetRegExtData (reqPtr, TicketServerData.tic

ASSERT (ticketPtr == NULL);

ticketpPtr =

DStringInit (&ticketPtr-s>sid);

DStringInit(&ticketPtr—>fields);
DStringInit(&TicketPtr—>signature);
DStringInit(&TicketPtr—>ticketIP);

t
t
t
t
t

icketPtr-svalid 0;
icketPtr->sidDom = -1;

icketPtr-s>ticketDom = -1;
icketPtr->ticketExp = -1;
icketPtr->uid = 0

(TICKET Request *) Malloc(sizeof(TICKET_Request));
HT_AddRegExtData (reqPtr,
DStringInit (&ticketPtr->rawUrl)

TicketServerData.ticketExtensionId, ticketPtr, free

SUBSTITUTE SHEET (RULE 286)

WO 96/42041 PCT/US96/07838

-36-

TicketPtr->uctx = 0;
sscanf(DStringValue(&rethr—>remoteAddr), "%d.%d.%d.%d", &ip1, &ip2, &ip3, &
ticketPtr-s>uid = (((ipl+ip2)<<24) | ((ip3+ip4)<<16) | (rand() & OxXFFFF)) ;
ticketPtr-s>uctx = 1;

/* we are done if sids are not enabled, or this url does not have a sid */
if (! (TicketGlobalData (EnableSid))) return HT OK;
cpl = DStringValue (&reqPtr-surl;

if (strstr(cpl, SID prefix) ! = cpl)
return HT OK;
if (strlen(cpl) == sidLength)

{
DStringAppend (&reqPtr->url, n/w, -1);
DStringAppend (&reqPtr->path, "/v, -1);
cpl = DStringValue (&reqPtr-surl);
}
cp = strchr(cp1+sizeof(SID_prefix),'/');
if ((ep - cpl) != sidLength)
return HT OK;
IncTicketCounter (CountSidurl) ;

DStringInit (&hash) ;

/* if sid eater is enabled, rewrite the url without the sid, and reprocess t
if (TicketGlobalDat(EnableSidEater))

{

DStringAppend (&hash, DStringValue(&rethr->url), -1);

DStringFree (reqPtr-surl) ;

DStringAppend (&reqPtr->url, DStringValue(&hash)&hash)+sidLength, -1);

DStringTrunc(&hash, 0);

DStringAppend (shash, DStringValue (®Ptr-.path), -1);

DStringFree (&reqPtr->path) ;

DStringAppend(&rethr—>path, DStringValue(&hash)+sidLength, -1);

DsStringFree (&hash) ;

IncTicketCounter(CountDiscardedsidUrl);

return HT_OK;

}

DStringAppend (&ticketPtr-s>sid, DStringValue(&rethr->url), sidLength) ;

/* first convert the SID back to binary*/

i= DStringLength(&ticketPtr—>sid)-3;

bsid = (int *) radix64decode_noslash(DStringValue(&ticketPtr->sid)+3
iif ((bsid == NULL) || (i !+12)) goto rtn_exit;

» i, &)

fix endian(&bsid[0], ecp, eda);
fix endian(&bsid[1], ecp, eda);
fix endian(&bsid[2], ecp, eda);

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-37-
/* check the SID version field */
if (get_sid(rev_lw,rev_pos,rev_mask) ! = sid_rev_zero) goto sid bad;
if (get_sid(rsrvl_lw,rsrvl_pos,rsrvl_mask) ! = 0)) goto sid_bad;

if (get_sid(rsrvz_lw,rsrv2_pos,rsrv2_mask) !+ 0) goto sid_bad;

/* Get a pointer to the secret */ .
secret = GetSecret(get_sid(kid_lw,kid_pos,kid_mask));
if (secret == NULL) goto sid_bad;

/* hash the sid and check the signaturex/
DStringAppend (&hash, secret, -1);

DStringAppend (&hash, DstringValue (&reqPtr-s>remoteAddr), -1);

sprintf (temp_str, "%08x%08x", bsid[2],bsid[1]);

dstringAppend (&hash, temp_str, -1);

/* format of the hash string is %s%s%08x%08x", secret,ip_addr,bsid[zl,bsid[l

hashP = DStringValue (&hash);
act_hash = compute_ihash (hashp) ;
while (*hashP != 0) *hashP== 0;
fix_endian(&act_hash, ecp, eda);

if (act_hash != get_sid(sig_lw,sig_pos,sig_mask)) goto sid_bad;

/* is is ok, may be expired, but good enough to id user */
ticketPtr->uiid = get_sid(uid 1llw,uid_pos,uid_mask) ;
ticketPtr-suctx = get_sid(uctx_lw,uctx_pos,uctx_mask);

/* do the SID experation processing*/
cur_tim = (time(0)>>exp_shft_amt) & exp_mask;
expp_tim = get_sid(exp_lw,exp_pos,exp_mask);
tdif = (exp_tim - cur_tim) & OXffff;
if (tdif > OX7fff)

{

IncTicketCounter (countExpSid) ;

goto sid_exp;

}

/* sid is fine, save the sid state, update the url’s */
ticketPtr->sidbDom = get_sid(dom_lw,dom_pos,dom mask) ;
ticketPtr-svalid = 1; '

sid ok = 1;

IncTicketCounter (CountValidsid) ;

sid_bad:
if (! (sid_ok)) IncTicketCounter (CountInvalidsig) ;
sid_exp:

DStringAppend(&ticketPtr->rawUrl, DstringValue (®Ptr-spath), -1);

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCTIUS9§/07838

-38-

DStringTrunc(&rethr->path, 0);
DStringAppend(&rethr->path, DStringValue(&ticketPtr->rawUrl)+sidLength, -1)

DStringTrunc(&ticketPtr->rawUrl, 0);

DStringAppend(&ticketPtr->rawUrl, DStringValue(&rethr->ur1), -1);
DStringTrunc (&reqPtr->url, 0);

DStringAppend (&reqPtr-surl, DStringValue(&ticketPtr->rawUrl)+sidLength, -1);

rtn_exit:
DStringFree (ghash) ;
if (bsid != NULL) free (bgid) ;
return HT OK;

}

* freeTicketRegData
%*

* This routine frees the storage used by ticket specific request
* data.

* Results:

* None.

* Side effects:
* Memory freed.

*/

itatic void freeTicketRquata(void *dataPtr)
{
TICKET Request *ticketPtr = dataPtr;
DStringFree(&ticketPtr->rawUrl);
DStringFree(&ticketPtr->sid);
DStringFree(&ticketPtr—>fields);
DStringFree(&ticketPtr->signature);
DStringFree(&ticketPtr->ticketIP);
free(ticketptr) ;

}

* GetSecret --

*

* Given a binary keyID, returns an ascii secret from the

 SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-39-

* secrets store.
* for untranslatable names, return NULL.

* Results:

* "I've got a secret, now you do too"

* Side effects:

*

*/

char *GetSecret (int kid)

{

HashEntry "entryPtr;

entryPtr + FindHashEntry(&TicketServerData.SecretsKid, (void *) kid);
if (entryPtr == NULL) return NULL;
return DstringValue(((DString *)GetHashValue(entryPtr));

}

* GetKidByKeyID --

* Given an ascii KeyID return the binary Key ID.
* for untranslatable names, return -1.

* Results:

* "I've got a secret, now you do too"

* Side effects:

int GetKidByKeyID (char *keyID)

{

HashEntry *entryPtr;

entryPtr = FindHashEntry(*&TicketServerData.KeyID< (void *) keyID) ;
if (entryPtr == NULL) return -1;
return (int) GetHashValue (entryPtr) ;

}

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

/*

* fieldParse --

* Given a string, a separator character, extracts a field up to. the

* separator into the result string.

* Does substitution on ’%XX’ sequences, and returns the pointer to the
* character beyond last character in ’*endptr’.

* Results:
* Returns a malloc’ed string (caller must free), or NULL if an

* error occurred during processing (such as an invalid %’ sequence) .

* Side effects:
* None.

*
*
*/
#define SIZE_INC 200

statiic char *fieldParse (char *str, char sep, char **endptr)

{

char buf[3];

char c;

char *end, *data, *p;
int maxlen, len;

len = 0;
maxlen = SIZE_INC;
p = data = malloc(maxlen);

/*

* Loop through string, until end of string or sep character.
*/

while (*str && *str I= sep) |

if (*str == 737) {

if (tisxdigit(str([1]) || tisxdigit (str[2])) {
free(data);
return NULL;

}

buf[0] = str [1];

buf[1] = str [2];

buf[2] = "\o’;
¢ = strtol (buf, &end, 16);
str += 3;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-41-
} else if (*str == r47) {
c = 1 I;
str++;
} else

C = *str++;

*p++ = C;

len++;

if (len >= maxlen) {
maxlen += SIZE_INC;
data = realloc(data, maxlen) ;
p = data + len;

}

}

*pr+ = 1\0';
*endptr = str;
return data;

* DomainNameCmd --

* A call to this routine, builds the ascii domain name

* to binary domain name maping structure for a numeric domain.
* Syntax is Domain number namel name2 name3 name. . .name_last

* At least one name isg required. The number is decimal and

* can be any value except -1. -1 is reserved as a marker

* for untranslatable names.

* Results:
* None.

* Side effects:

* Commands are validate, and entries added to the map

static int DomainNameCmd(ClientData clientData, Tcl_Interp *interp,
int arge, char **argv)
{
int new,i;
HashEntry *entryPtr;
int DomNumber;
DString DomName;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-42-

if (arge <3)
{
Tcl AppendResult (interp, argv[0], " directive: wrong number of
"arguments, should be \"3\"n,
(char *) NULL);
return TCL_ERROR;

}

DStringInit (&DomName) ;

if (((sscanf(argv[1], "%d", &DomNumber) ! = 1 || (DomNumber == -1)))
{
Tcl_AppendResult (interp, argv[0], ® directive: v,
"Domain number must be an integer, and not equal to -1v,
", value found was ",argv[i],
(char *) NULL);
return to TCL_ERROR;
}
for (i = 2; 1 < arge; i++)
{
DStringFree (&DomName) ;
DStringAppend (&DomName, argv([i], -1);
strtolower (DString Value (&DomName)) ;
entryPtr = CreateHashEntry(&TicketServerData.Domains, DStringValue
(&DomNam
if (new == 0)
{

Tcl_AppendResult (interp, argv[o], * directive:

"Duplicate domain name specified, '", argv[i], wrw,
(char *) NULL);
return TCL_ERROR;

}

SetHashValue (entryPtr, DomNumber) ;

}

DStringFree (&DomName) ;
return TCL_OK;

}

* SecretsCmd --
* A call to this routine, builds kid to secrets table

* Results:

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-43-

* None.

*

* Side effects:

* Secrets are stored.

static int SecretsCmd(ClientData clientDate, Tcl Interp *interp,
int arge, char **argv)
{
int newKid, newKeyID;
HashEntry *entryPtrKid = NULL, *entryPtrKeyID = NULL;
int Kid;
DString *dsptrkid;

if (arge ! = 4)
{
Tcl_AppendResult (interp, argv[0], " directive: wrong number of *
"arguments, should be \"4\" »,
(char *) NULL);
return TCL_ERROR;

}

if (sscanf(argv(2], "%d", &Kid) ! = 1)

{

Tcl_AppendResult (interp, argv(o],
" directive: KXeyID must be an integer",
", value found was ‘", argv[2], nrn,
(char *) NULL);

return TCL_ERROR;

'}

entryPtrKid = CreateHashEntry(&TicketServerData.SecretsKid, (void *) Kid, &n
if (strlen{argv([i]))
entryPtrKeyID = CreateHashEntry(&TicketServerData.KeyID, (void *) argv[i],
if ((newKid == |] ({newKeyID == 0) && strlen(argv(i])))
{
Tcl_AppendResult (interp, argv|[0],
" directive: Duplicate Secret specified for KeyID ‘",
argv[i],
(char *) NULL);
return TCL_ERROR;
}
if (strlen(argv(1]))
{
dsptrKid = (DString *) malloc (sizeof (DString)) ;
DStringInit (dsptrKid) ;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-44-

DStringAppend (dsptrKid, argv[3], -1);

SetHashValue (entryPtrkid, dsptrKid) ;
}

SetHashValue (entryPtrKeyID, Kid);
return TCL OK;

}

* TICKET Initialize --

* Calls all the necessary routines to initialize the ticket subsystem.

* Results:

* None.

* Side effects:
* Commands added to the region interpreter.
* SID "/ee" url catcher declared.

int TICKET Initialize (HTTP_Server &serverPtr, Tcl_Interp *interp)
{
TicketServerData.ticketExtensionId = HT_RegisterExtension (serverbtr,
"ticket

InitHashTable(&TicketServerData.SecretsKid, TCL_ONE_WORD_KEYS);
InitHashTable(&TicketServerdata.KeyID, TCL_STRING_KEYS) ;
InitHashTable(&TicketServerData.Domains, TCL_STRING_KEYS) ;

/* initialize Server ticket data */
DStringInit(&TicketGlobalData(AuthServer));
DStringInit(&TicketGlobalData(TicketEpoandler))
DStringInit(&TicketGlobalData(TicketAdrHandler))
TicketGlobalData(FreeArea) = 0;
TicketGlobalData(EnableLocalAuth) =0
TicketGlobalData(CurrentSecret) = 0;
TicketGlobalData(Enablesid) = 0;
0
0

7

TicketGlobalData(EnableTicket) =

TicketGlobalData(EnableSidEater) = 0;
TicketGlobalData(LocalAuthExp) = 60*30;

i

/* ticket event counters */

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

~45-

TicketGlobalData (CountTotalUrl) =
TicketGlobalData (CountSiduUrl) =
TicketGlobalData (CountValidsSid) =
TicketGlobalData (CountExpSid) =
TicketGlobalData(CountInvalidSid) =
TicketGlobalData(CountCrossDomain) =
TicketGlobalData (CountLocalredirects) =
TicketGlobalData(CountRemoteRedirects) =
TicketGlobalData(CountNoRedirects) =
TicketGlobalData(CountDiscardedSidUrl) =

~

~

~

-~

~

/* Ticket related Config éommands */
Tcl_CreateCommand(interp, "Domain", DomainNameCmd,
(ClientData) serverPtr, NULL) ;
Tcl_CreateCommand(interp, "Secrets", o SecretsCmd,
(ClientData) serverPtr, NULL);
Tcl_CreateCommand (interp, "AuthenticationServer", CmdStringValue,
(ClientData) &TicketGlobalData(AuthServer), NULL) ;
Tcl_CreateCommand (interp, "TicketExpirationHandler", CmdStringValue,
(ClientData) &TicketGlobalData(TicketEpoandler), NULL) ;
Tel_CreateCommand (interp, "TicketAddressHandler", CmdStringValue,
(ClientData) &TicketGlobalData(TicketAdrHandler), NULL) ;

Tcl CreateCommand (interp, "FreeDomain", CmdIntValue,
(ClientData) &TicketGlobalData(FreeArea), NULL) ;
Tel_CreateCommand (interp, "EnableSidEater", CmdIntValue,
(ClientData) &TicketGlobalData(EnableSidEater), NULL);
Tcl_CreateCommand (interp, "EnableSidr, CmdIntValue,
(ClientData) &TicketGlobalData (EnableSid), NULL) ;
Tcl_CreateCommand (interp, "EnableTicket", CmdIntValue,
(ClientData) &TicketGlobalData(EnableTicket), NULL) ;
Tcl_CreateCommand (interp, "EnableLocalAuth", CmdIntValue,
(ClientData) &TicketGlobalData (EnableLocalAuth), NULL) ;
Tcl_CreateCommand (interp, "CurrentSecret", CmdIntValue,
(ClientData) &TicketGlobalData (CurrentSecret), NULL) ;
Tel_CreateCommand (interp, "LocalAuthExp", CmdIntValue,

(ClientData) &TicketGlobalData(LocalAuthExp), NULL) ;

HT_AddMounthandler (serverPtr, (ClientData) NULL, TICKET_ DebugHooks,
"/omiserver", NULL);

return HT_OK;

}

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-46-

* TICKET_Shutdown --

*

* Calls all the necessary routines to shutdown the ticket subsystem.
*
* Results:

* None.

* Side effects:
* Memory freed

void TICKET Shutdown (HTTP_Server *serverPtr)
{
HashEntry *entrybtr;
HashSearch search;
DString *dstring;

DStringFree(&TicketGlobalData(AuthServer));
DStringFree(&TicketGlobalData(TicketEpoandler));
DStringFree(&TicketGlobalData(TicketAdrHandler));

entryPtr = FirstHashEntry(&TicketServerData.SecretsKid, &search) ;
while (entryPtr ! = NULL)

{

dstring = GetHashValue (entryPtr) ;

DStringFree (dstring) ;

free(dstring);

entryPtr = NextHashEntryssearch) ;

}
DeleteHashTable(&TicketServerData.SecretsKid);
DeleteHashtable(&TicketServerData.KeyID);
DeleteHashTable(&TicketServerData.Domains);

}

* TICKET_AddRegion Commands --
*

* Add TICKET region commands for authentication/authorization
decisions.
*
* Results:
None.

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-47-
*

* Side effects:

Commands added to the region interpreter.

void TICKET_AddRegion Commands (HTTP_Request *reqPtr, Tcl_Interp *interp)
{
Tcl_CreateCommand (interp, "RequireSID", TICKET RequireSidCmd,
(ClientData) reqPtr, NULL) ;
Tcl_CreateCommand (interp, "RequireTicket", TICKET_RequireTicketCmd
(ClientData) regPtr, NULL);

!

* TICKET GetCGIVariables --
*

* Add TICKET CGI variables to the CGI variable table.
%*

* Results:
None.

* Side effects:
Extends the CGI variable hash table.

void TICKET GetCGIVariables (HITP_Request *req)

{
TICKET Request *ticketPtr = (TICKET Request *)
HT_ GetRegExtData (req.TicketS

/* .
* If there’s no extension data, then we're not doing a ticket. Just
return

*/

if (ticketPtr == NULL)
return) \;

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

-48-

if (DStringLength(&ticketPtr->rawUrl) ! = 0)

HT_AddCGIParameter (req, "TICKET_URL", DStringValue(&ticketPtr-
>rawUrl), FA

if (DStringLength (&ticketPtr->sid) I= 0)

HT_AddCGIParameter(req, "TICKET SID", DStringValue (&ticketPtr-
>sid), FALSE

if (DStringLength(&ticketPtr—>fields) I= 0)

HT_AddCGIParameter(req, "TICKET_FIELDS", DStringValue (&ticketPtr-
>fields).

if (DstringLength(&ticketPtr—>signature) l=0)

HT—AddCGIParameter(rqq, "TICKET SIGNATURE". DStringValue (&ticketPtr-
>signa

*TICKET GetUrl
*

* Return the orignal url (with sid)
*

* Results:

* The URL.

* Side effects:
None.

char * TICKET_GetUrl (HTTP_Request *reqPtr)

{

TICKET_Request *ticketPtr;

ticketPtr = (TICKET Request *)

HT_GetReqExtData (reqPtr, TicketServerData.ticketExtensionId);
if ((ticketPtr != NULL) &&
(DStringLength(&ticketPtr—>rawUrl) 1= 0))
return DStringValue(&ticketPtr->rawUrl);
else

return DStringValue(&rethr—>url);

* TICKET ConfigCheck

* Perform late configuration checks

SUBSTITUTE SHEET (RULE 26)

WO 96/42041. PCT/US96/07838

*

-49-

* Results:

*

*

* Side effects:

Possible message loged/printed, and program exit’d.

void TICKET ConfigCheck()

{

HashEntry *entryPtr;
int kid;

if ((TicketGlobalData(Enablesid) & -0x1) != Q)

{

LogMessage (LOG_ERR, "EnableSid must be 0 or 1v);
exit (0);

}

if (!(TicketGlobalData(EnableSid))) return;

kid = TicketGlobalData(CurrentSecret);
if (kid && kid_mask) != kid)

{

LogMessage (LOG-ERR; "CurrentSecret %d is invalid", kid);
exit (0);

}

entryPtr = FindHashEntry(&TicketServerData.SecretsKid, (void *) kid);

if (entryPtr == NULL)

{

LogMessage (LOG_ERR), "No secret defined for CurrentSecret %d", kid;
exit (0);

if ((TicketGlobalData(FreeArea) & ~0x255) 1= 0)

{

LogMessage (LOG_ERR, "FreeArea must be between 0 and 2554);
exit (0);

}

if ((TicketGlobalData(EnableSidTicket) & -0x1) != 0)

{

LogMessage (LOG_ERR, "EnableSidTicket must be 0 or 1");
exit (0);

}

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838

/*

*
*
*
*
*
*

*

t

-50-

if ((TicketGlobalData(EnableTicket) & -0x1) !- 0);

{

LogMessage (LOG_ERR, "EnableTicket must be 0 or 1v);
exit (0);

}

if ((TicketGlobalData(EnableLocalAuth) & -0x1) != 0)

{
LogMessage (LOG_ERR, "EnablLocalAuth must be 0 or 1");
exit (0);

TICKET_DebugHooks
Check for debug hooks and execute if found.

Results:
None.

Side Effects:
None.

atic void TICKET_DebugHooks (ClientData clientData, char *suffix,
HTTP_Request "regPtr)
{
if (stremp (suffix, "/ticketstatus") == 0)
{
DumpStatus (reqPtr) ;
HT_FinishRequest (reqPtr) ;
return;
}
HITP_Error(reqPtr, NOT FOUND, "access denied due to poorly formed url");
HT_FinishRequest (regPtr) ;

return;

DumpStatus --

Dump the server’s ticket stat’s

SUBSTITUTE SHEET (RULE 26)

WO 96/42041

* Results:

* None.

*

* 8ide effects:
* None.

#define BUFSIZE 1024
static void DumpStatus (HTTP_Request *reqPtr)

{

-51-

HTTP_Server *serverPtr = regPtr-s>serverPtr;

char tmp [BUFSIZE], timeStr [BUFSIZE] ;

struct utsname sysinfo;

time_t uptime;
int hours;

HTTP_BeginHeader (regPtr, "200 OK);

PCT/US96/07838

HTTP_SendHeader (reqPtr, "Content-type: text/html", NULL) ;
HTTP_EndHeader (reqPtr) ;

HTTP_Send(regPtr, "<titlesWebServer Ticket Status</titles"

HTTP_Send(reqPtr, "<p><hr>><p><h2>Ticket Log</h2>",

sprintf (tmp, *
HTTP_Send(reqPtr,
sprintf (tmp, "
HTTP_Send (regPtr,
sprintf (tmp, "

' HTTP) Send (reqptr,
sprintf (tmp, *
HTTP) Send (reqgPtr,
sprintf (tmp, "
HTTP) Send (reqgPtr,
sprintf (tmp, "
HTTP) Send (reqPtr,
sprintf (tmp,
HTTP) Send (reqgPtr,
sprintf (tmp, "
HTTP) Send (reqPtr,
sprintf (tmp, "

HTTP_Send (regPtr,

4

"<hl>WebServer Ticket Status</hl>:, NULL);

%s:

tmp, NULL);
%s:
tmp, NULL);
%s:
tmp, NULL);
%s:
tmp, NULL);
%s:
tmp, NULL);

%s:

tmp, NULL);

%s:

tmp, NULL);

%s:

tmp, NULL);

%s:

tmp, "</pres",

%d\n",

%d\n",

%d\n:,

%d\n:,

%d\n:,

%d\n:

%d\n:

%d\n:

%d\n:

’

"Number

of access

"Numbexr of SID URL's

"Number of Valid SID’s

"Number of Expired SID’s

"Number of Invalid SID’s

"Number

"Number

"Numbexr

"Number

NULL) ;

‘uptime = time (NULL) = serverPtr->started;

uname (&sysinfo) ;

of XDomain accesses

of Local Redirects

of Remote Redirects

of No Auth servers

SUBSTITUTE SHEET (RULE 26)

'

n
1

"

"<p><pre>\n", NULL);

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

WO 96/42041 PCT/US96/07838

/*

}

striftime (timeStr, BUFSIZE, "3a, %d-%b-%y %7T",
localtime(serverPtr->started));

springf (tmp, "Server runing on <ds%s (%s %¥s) port %d, has been up \
since %s.<p>", sysinfo.nodename, sysinfo.sysname,

sysinfo.release, ServerPtr->server_port, timeStr);
HTTP_Send(reqPtr, tmp, NULL);

sprintf (tmp, * Number of connections: %d\n",
serverPtr->numConnects) ;

HTTP_Send(reqgPtr, tmp, "<p><pre>\n", tmp, NULL);

sprintf (tmp, * Number of HTTP requests: %d\n",

HTTP_Send(regPtr, tmp, "</pre><ps>", NULL);

hours = max(uptime / 3600, 1);
sprintf (tmp, "This server is averaging %d requests per hour.<ps®
serverPtr->numRequests/hours);

HTTP_Send(reqgPtr, tmp. NULL);

DumpRusage (reqPtr) ;
DumpConnections (reqPtr); */

DNS_DumpStats (regPtr) ;

HTTP_Send (reqgPtr, "<p><hr><addresss>", DStringValue(&ht_serverSoftware),
"</address>\n", NULL);

regPtr->done = TRUE;

#undef BUFSIZE

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 96/42041 PCT/US96/07838

53

CLATMS

What is claimed is:

1.

A method of processing service requests from a client
to a server system through a network comprising:

forwarding a service request from the client to
the server system;

returning a session identifier from the server
system to the client; and

appending the session identifier to the request
and subsequent service requests from the client to the
server system within a session of requests.

" A method as claimed in Claim 1 wherein the server

system tracks an access history of sequences of

service requests within the session of requests.

A method as claimed in Claim 2 wherein the server
system tracks the access history to determine service
requests leading to a purchase made within the session
of requests.

A method as claimed in Claim 1 wherein the server

system counts requests to particular services

‘exclusive of repeated requests from a common client.

A method as claimed in Claim 1 wherein the server
system maintains a database relating customer
information to access patterns, the information
including customer demographics.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 96/42041 ‘ PCT/US96/07838

54

A method as claimed in Claim 1 wherein the server
system subjects the client to an authorization routine
prior to issuing the session identifier and the

- session identifier is protected from forgery.

A method as claimed in Claim 6 wherein the server
system comprlses plural servers including an
authentlcatlon server which provides session
identifiers for service requests to multiple servers.

A method as claimed in Claim 7 wherein:
a client directs a service request to a first
server which is to provide the requested service;
the first server checks the service request for a
session identifier and only services a service request
having a valid session identifier, and where the
service request has no valid identifier:
the first server redirects the service
request from the client to the authorization server;
the authorization server subjects the client
to the authorization routine and issues the session
identifier to be appended to the service request to
the first server;
the client forwards the service request
appended with the session identifier to the first
server; and
the first server recognizes the session
identifier and services the service request to the
client; and
the client appends the session identifier to
subsequent service requests to the server system and
is serviced without further authorization.

A method as claimed in Claims 1 or 7 wherein the
session identifier includes a user identifier.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 96/42041

10.

11.

12.

13.

14.

15.

1s6.

55

A method as claimed in Claims 1 or 7 wherein the

session identifier includes an expiration time for the
session.

A method as claimed in Claim 7 wherein the session
identifier provides access to a protected domain to
which the session has access authorization.

A method as claimed in Claim 11 wherein the session
identifier is modified for access to a different
protected domain.

A method as claimed in Claim 7 wherein the session
identifier provides a key identifier for key
management.

A method as claimed in Claims 1 or 7 wherein the
server system records information from the session
identifier in a transaction log in the server systen.

A method as claimed in Claims 1 or 7 wherein
communications between the client and server system
are according to hypertext transfer protocol and the
session identifier is appended as part of a path name
in a uniform resource locator. 4

A method as claimed in Claim 15 wherein the client
modifies the path name of a current uniform resource
locator using relative addressing and retains the
session identifier portion of the path name unmodified
for successive requests in the session.

SUBSTITUTE SHEET (RULE 26)

PCT/US96/07838

10

15

20

25

30

WO 96/42041

17.

18.

19.

20.

21.

56

A method as claimed in Claim 1 or 7 further comprising
excluding requests made to information from the client
within a defined period of time.

A.method of proceésing service requests from a client
to a server system through a network comprising:

responding to a request for a document received
from the client through the network;

appending a session identifier, which includes a
user identification, to the reQuest; and

returning the requested document wherein the
document is customized for a particular user based on
the user identification of the session identifier.

A method of processing service request for a document

. received from a client through network in which the

document has been purchased by a user comprising:
responding to a request for a document received

“from .a client through the network in which the
 document has been purchased by the user;

appending an authorization identifier to the

‘ request; and

returning the requested document if the
authorization identifier indicates that the user is
authorized to access the document.

A method as claimed in Claim 19, wherein the
authorization identifier is encoded within a session
identifier which is appended to the request. .

A method of processing service requests from a client
to a server system through a network comprising:
' responding to a request for a document received
from a client through the network;
appending a user identifier to the request;

SUBSTITUTE SHEET (RULE 26)

PCT/US96/07838

10

15

20

25

30

WO 96/42041

22.

23.

24.

25.

26.

57

returning the requested document to the client,
and;

charging the user identified in the identifier
for access to the document.

A method as claimed in Claim 21, wherein a user
identifier is encoded within a session identifier
which is appended to the request.

A method of processing service requests from a client
to a server system through a network comprising:
forwarding a service request from the client to
the server system; and
appending a session identifier to the request and
subsequent service requests from the client to the
server system within a session of requests.

An information system on a network comprising:

means for receiving service requests from clients
and for determining whether a service request includes
a session identifier;

means for providing the session identifier in
response to an initial service request in a session of
requests; and

means for servicing service requesté from a
client which include the session identifier, the
subsequent service request being processed in the
session.

An information system as claimed in Claim 24 wherein
the means for providing the session identifier is in a

server system which services the requests.

An information system as claimed in Claim 23 further

comprising an authorization routine for authorizing

SUBSTITUTE SHEET (RULE 26)

PCT/US96/07838

10

15

20

25

WO 96/42041 PCT/US96/07838

27.

28.

29.

30.

31.

32.

58

the client prior to issuing the session identifier and
means for protecting the session identifier from
forgery.

An information system as claimed in Claim 24 further
comprising a transaction log for recording information
from the session identifier.

An information system as claimed in Claim 24 further
comprising means for tracking access history of
sequences of service requests within the session.

An information system as claimed in Claim 24 further
comprlslng means for counting requests to particular
services exclusive of repeated requests from a common
client.

An information system as claimed in Claim 24 further
comprising a database relating customer information to
access patterns, the information including customer
demographics.

An information system as claimed in Claim 25 wherein
communications between the client and server system
are according to hypertext transfer protocol and the
session identifier is appended as part of a path name
in a uniform resource locator.

An information server on a network comprising:
means for responding to requests for hypertext
pages received from a client through the network by
returning the requested hypertext pages to the client;
means for responding to further requests derived
from links in the hypertext pages; and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 96/42041

33.-

34.

35.

36.

PCT/US96/07838

59

means for tracking the further requests derived
from a particular hypertext page.

An information server as claimed in Claim 32 wherein
the requests include a common session identifier and
the server tracks requests within a session of
requests.

An information server as claimed in Claim 32 further
comprising a data base relating customer demographics
to access patterns.

A method of providing access to information pages from
a client to a server system through a network
comprising:

providing a telephone number at the client;

mapping the telephone number to a target page
identifier using a translation database;

‘requesting information described by the page
identifier from the server system; and

displaying a page identified by the page
identifier at the client.

A method of providing access to information pages from
a client to a server system through a network
comprising:

providing a descriptor at the client;

mapping the descriptor to a target page
identifier using a translation database;

requesting at the client information described by
the page identifier from the server system without
further user action; and

displaying a page identified by the page
identifier at the client.

SUBSTITUTE SHEET (RULE 26)

10

15

WO 96/42041

37.

38.

39.

40.

41.

42.

43.

44.

PCT/US96/07838
60

A method as claimed in Claims 35 or 36 wherein the

translation database resides in the server system

which returns a uniform resource loctor in a REDIRECT

command to the client to cause the client to request

the information using the uniform resource locator.

A method as claimed in Claim 36 wherein the descriptor

comprises a telephone number.

A method as claimed'in Claim 36 wherein the descriptor

comprlses a descriptive term.

A method as claimed in Claim 39 wherein the term

includes a company name.

A method as claimed in Claim 39 wherein the term

includes a product name.

A method as

claimed in

identified by phonetic

‘A method as

target page

. A method as
target page

claimed in
identifier

claimed in

identifier

Claim 39 wherein the term is
mapping.

Claims 35 or 38 wherein the
describes a controlled page.

Claims 35 or 36 wherein the
is a uniform resource locator.

SUBSTITUTE SHEET (RULE 26)

WO 96/42041 PCT/US96/07838
1/7

INTERNET

24
26

FIG. 1

WO 96/42041

PCT/US96/07838

2/7
F Browser IOO
Joerum <5 [
Content
102 Server
120
l
l
122
/ ,l IOO\
Redirect
URL l Browser
I
106 |
' y y
14 Di?an?n [Authentication
\ , Server
Transaction ' ! \ZOO
Log Redirect | | - B
URL ,T rowser
URL+IP ,
o | /
122 100
Transaction Log |
URL +SID+ P |
22 |
/ l
Redirect 1‘ 5
URL | rowser
l
, 100
Filter 12 |
I
l
l

Browser / Dispiay

FIG. 2A

WO 96/42041 ’ PCT/US96/07838

Browser '
URL /Get Authen, [~ 100

——————————————————— Authentication

— * - l Server
etermine | _ 200
Level 210 :/
/2!4 | 124
I
Chalienge; f
Cred. Query ,‘ Browser
I
’ y
| | Authentication
| Header
218 : \
Authorized |
l
/ l
| Access ! ~
Denied — Browser
|
I
New Acct. Form II Browser
2247 l I
'l 100
|
i
l
| 100
Y l
Generate N : I
31D [1o URL Redirect '~ Browser
- _ ,

120__] Content

FIG. 2B Server

PCT/US96/07838

WO 96/42041

4/7

¢ 94

diS/m 14N mapN @

84 13y

19n13g
uolDbIUaY Ny

_ don puas (2) gy
0%
jusjuon .

g3 subay Janiag cs
on +9(1) T CLIN

40/0I1S /714N +39(6)

dd puss (QJ)

WO 96/42041

PCT/US96/07838
5/7
700
: 410
Doc. Title | CONTENT HOME PAGE _ —1-408"
Doc. URL | http: //Conten‘i.com/homepage ~402

Content1, content 2,content3, content 9,

/—4l2a
content 5, Link 1, content 6, content 7,

| —4l2p | -404
content 8, content 9, content 10, Link 2,

—————

414
content 11, content12, content 13, content 14,

412¢
Content I3, content 16, Link 3, content |7

http: //Content. com /advertisement ~406

FIG. 4

WO 96/42041 PCT/US96/07838
6/7

Document View

File Options Navigate Annotate Documents Help

Title: | How to join

URL: | http: /auth. com/service/nph- createacct. cgi

I. First name

2. Last name

3. Choose a screen name (nomore than I5 characters)

4.Choose a password (no more than IS characters)
Password:

Re-enter password:

5.E-mail address

6. Your birthdate (MM /DD/ YY

7 U.S. zip code, or country code
Zip /postal code:

ISO country code

us

FIG. 5

WO 96/42041 PCT/US96/07838
' 7/7

NUMBER to URL
Database —~604

Directory
Server —602
4
" " 2. REDIRECT
. T 1] "
$GET "NUMBER l TARGET- URL" [M]
Client — 60|
A
3. GET "TARGET-URL" 4. Send Page

Merchant Server (MS) —603

FIG. 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

