
(12) United States Patent
Evans et al.

USOO7206940B2

US 7,206,940 B2
Apr. 17, 2007

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND SYSTEMS PROVIDING PER
PXEL SECURITY AND FUNCTIONALITY

(75) Inventors: Glenn F. Evans, Kirkland, WA (US);
Paul England, Bellevue, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 911 days.

(21) Appl. No.: 10/178,822

5,572,235 A 11/1996 Mical et al.
5,577,125 A 11/1996 Salahshour et al.
5,727,062 A 3, 1998 Ritter
5,881,287 A 3, 1999 Mast

(Continued)
FOREIGN PATENT DOCUMENTS

WO WO O2,25416 3, 2002

OTHER PUBLICATIONS

Bruce Schneier, Applied Cryptography, 1996, John Wiley & Sons,
Inc. pp. 30-31.*

(Continued)
(22) Filed: Jun. 24, 2002 Primary Examiner Kambiz Zand
(65) Prior Publication Data Assistant Examiner Benjamin E. Lanier

US 2003/02353O4 A1 Dec. 25, 2003 (57) ABSTRACT

(51) Int. Cl. Various described embodiments provide for per-pixel func
G06F II/30 (2006.01) tionality in connection with pixel data that is processed by
G06F 2/14 (2006.01) a video card for rendering on a display monitor. That is, pixel
G06F 7/04 (2006.01) data that is associated with individual pixels that are to be
G06F 7/30 (2006.01) rendered on a display monitor are imparted with a charac
H04L 9/32 (2006.01) teristic that enables various functionalities to be imple
H04L 9/00 (2006.01) mented at the pixel level. In one embodiment, per-pixel
G06K 9/00 (2006.01) functionality is provided by including, in the pixel data

(52) U.S. Cl. 713/193; 380/201; 380/210; itself, a specification of an auxiliary function that is to be
380/239; 713/194; 726/26: 726/27 performed on the pixel data associated with the individual

(58) Field of Classification Search None pixels. For example, the security of the pixel data associated
See application file for complete search history. with each pixel can be enhanced by providing the ability to

encrypt and decrypt the pixel data for individual pixels. A
(56) References Cited Ration of RE it. can be used for A. the

U.S. PATENT DOCUMENTS pixel data can then be included in the pixel data itself such
that when the pixel data is processed for rendering, a

4,757,534 A 7/1988 Matyas et al. Suitably configured decryptor can access the key specifica
4,962.533. A 10/1990 Krueger et al. tion and decrypt the pixel data.
5,297.206 A 3, 1994 Orton 380.30
5,379,344 A 1/1995 Larsson et al.
5,537.467 A 7/1996 Cheng et al. 12 Claims, 11 Drawing Sheets

900 v

Rec Green Blue Auxiliary

902 AuxiliaRY FUNCTONTABLE
Value Auxiliary Function
O Function 1

1 Function 2
2 Function 3

256 Function 256

US 7,206,940 B2
Page 2

5,898,779
5,963,909
6,044, 182
6,047,342
6,055,314
6,064,739
6,072,873
6,115,819
6,330,624
6,408,390
6.421,733
6,859,832
6,934,389
7,024,558
7,055,038

2002fOO 12432

U.S. PATENT DOCUMENTS

A 4, 1999
A * 10, 1999
A 3, 2000
A 4, 2000
A 4, 2000
A * 5, 2000
A 6, 2000
A 9, 2000
B1 12, 2001
B1 6, 2002
B1 T/2002
B1 2, 2005
B2 8, 2005
B1* 4, 2006
B2 5, 2006
A1 1, 2002

Squilla et al.
Warren et al.
Daly et al.
Depew
Spies et al.
Davis
Bewick
Anderson
Cromer et al.
Saito
Tso et al.
Gecht et al.
Strasser et al.
Satake
Porter et al.
England et al.

- - - - - - 380/200

- - - - - - 713, 176

2002/0136408 A1 9, 2002 Garcia
2002fO169979 A1 11, 2002 Zimmer
2005, 0102264 A1 5/2005 Nason et al.
2005, 0102266 A1 5/2005 Nason et al.
2005/0204185 A1 9, 2005 Nason et al.
2006, O123248 A1 6/2006 Porter et al.

OTHER PUBLICATIONS

Choudhury, Abhijit K. et al., “Copyright Protection for Electronic
Publishing Over Computer Networks.” IEEE Network, May/Jun.
1995, pp. 12-20.
“High-bandwidth Digital Content Protection System, Revision 1.0”
Feb. 17, 2000, Intel Corporation, Hillsboro, OR 97 124,
XP002305414 Retrieved from the Internet: URL: http://www.digi
tal-cp.com/data/HDCP10.pdf>.

* cited by examiner

US 7,206,940 B2 Sheet 1 of 11 Apr. 17, 2007 U.S. Patent

so??de 19

US 7,206,940 B2 Sheet 2 of 11 Apr. 17, 2007 U.S. Patent

(s)

00

? g?žWOH) |

US 7,206,940 B2 Sheet 4 of 11 Apr. 17, 2007 U.S. Patent

€907

US 7,206,940 B2 Sheet 5 of 11 Apr. 17, 2007 U.S. Patent

909 Z09 009

g. 424 ?Oeguns Áueuulud e go suo?ôæu eunoes euouu uo euo eu?eG

909 Z09 009

U.S. Patent Apr. 17, 2007 Sheet 7 of 11 US 7,206,940 B2

S

US 7,206,940 B2 Sheet 8 of 11 Apr. 17, 2007 U.S. Patent

Z06

| | |LLLLLLLLLLLLLLLITTITTTTT N—^—^—^—^

US 7,206,940 B2 Sheet 9 of 11 Apr. 17, 2007 U.S. Patent

900 || Z00|| 000||

US 7,206,940 B2 Sheet 10 of 11 Apr. 17, 2007 U.S. Patent

27 %

// ±

US 7,206,940 B2 Sheet 11 of 11 Apr. 17, 2007 U.S. Patent

g, '^% eIqel lºxId Kuepuoo.es

US 7,206,940 B2
1.

METHODS AND SYSTEMIS PROVIDING PER
PXEL SECURITY AND FUNCTIONALITY

TECHNICAL FIELD

This invention relates to methods and systems for pro
cessing data using video cards.

BACKGROUND

Typically, content that resides on a computer can come
under attack by individuals who wish to steal or modify the
content. As an example, consider the case of a content
author, Such as a movie studio or a user publishing content
on the web. Typically these individuals will publish video
content that has restrictions on how users can view it. This
content can typically be viewed or rendered on a computer
Such as a personal computer. A great deal of time, effort and
money is spent each year by unscrupulous individuals and
organizations trying to steal or otherwise inappropriately
obtain Such video content. Additionally, consider the case of
eCommerce software that enables individuals to transact, for
example, banking transactions. The data that is displayed on
a display monitor for the user to review and manipulate can
come under attack by rogue Software applications executing
on the user's computer. That is, rogue programs or devices
can and often do try to inappropriately obtain content once
it has been received on a computer, such as a personal
computer.
One solution for content security can include various

Software-based digital rights management (DRM) solutions.
The problem here is that no matter how good the software
based, tamper-resistant, “hard-to-observe DRM system that
does the Software rendering is—ultimately, the bits get
written out to a video card where they can be “seen” or even
copied by other software. This presents a sphere of vulner
ability. Thus, the video card that processes the video content
can be the subject of software attacks.

FIG. 1 shows an exemplary video (or graphics) card 100
that includes a bus connector 102 that inserts into a port on
a typical computer. Video card 100 also includes a monitor
connector 104 (e.g. a 15-pin plug) that receives a cable that
connects to a monitor. Video card 100 can include a digital
video-out socket 106 that can be used for sending video
images to LCD and flat panel monitors and the like.
The modern video card consists of four main components:

the graphics processor unit (GPU) 108, the video memory
110, the random access memory digital-to-analog converter
(RAMDAC) 112, and the driver software which can be
included in the Video BIOS 114.
GPU 108 is a dedicated graphics processing chip that

controls all aspects of resolution, color depth, and all ele
ments associated with rendering images on the monitor
screen. The computer's central processing unit or CPU (not
shown) sends a set of drawing instructions and data, which
are interpreted by the graphics card's proprietary driver and
executed by the card’s GPU 108. GPU 108 performs such
operations as bitmap transfers and painting, window resizing
and repositioning, line drawing, font Scaling and polygon
drawing. The GPU 108 is designed to handle these tasks in
hardware at far greater speeds than the Software running on
the system's CPU. The GPU then writes the frame data to
the frame buffer (or on-board video memory 110). The GPU
greatly reduces the workload of the system's CPU.
The memory that holds the video image is also referred to

as the frame buffer and is usually implemented on the video
card itself. In this example, the frame buffer is implemented

10

15

25

30

35

40

45

50

55

60

65

2
on the video card in the form of memory 110. Early systems
implemented video memory in standard DRAM. However,
this requires continual refreshing of the data to prevent it
from being lost and cannot be modified during this refresh
process. The consequence, particularly at the very fast clock
speeds demanded by modern graphics cards, is that perfor
mance is badly degraded.
An advantage of implementing video memory on the

video card itself is that it can be customized for its specific
task and, indeed, this has resulted in a proliferation of new
memory technologies:

Video RAM (VRAM): a special type of dual-ported
DRAM, which can be written to and read from at the
same time. It also requires far less frequent refreshing
than ordinary DRAM and consequently performs much
better;

Windows RAM (WRAM): as used by the Matrox Mil
lennium card, is also dual-ported and can run slightly
faster than conventional VRAM;

EDO DRAM: which provides a higher bandwidth than
DRAM, can be clocked higher than normal DRAM and
manages the read/write cycles more efficiently:

SDRAM: Similar to EDO RAM except the memory and
graphics chips run on a common clock used to latch
data, allowing SDRAM to run faster than regular EDO
RAM:

SGRAM: Same as SDRAM but also supports block writes
and write-per-bit, which yield better performance on
graphics chips that Support these enhanced features;
and

DRDRAM: Direct RDRAM is a totally new, general
purpose memory architecture which promises a 20-fold
performance improvement over conventional DRAM.

Some designs integrate the graphics circuitry into the
motherboard itself and use a portion of the system's RAM
for the frame buffer. This is called “unified memory archi
tecture' and is used for reasons of cost reduction only and
can lead to inferior graphics performance.
The information in the video memory frame buffer is an

image of what appears on the screen, stored as a digital
bitmap. But while the video memory contains digital infor
mation its output medium the monitor—may use analog
signals. The analog signals require more than just an “on” or
“off” signal, as it is used to determine where, when and with
what intensity the electron guns should be fired as they scan
across and down the front of the monitor. This is where
RAMDAC 112 comes into play as described below. Some
RAMDACs also support digital video interface (DVI) out
puts for digital displays such as LCD monitors. In Such
configurations, the RAMDAC converts the internal digital
representation into a form understandable by the digital
display.
The RAMDAC plays the roll of a “display converter”

since it converts the internal digital data into a form that is
understood by the display.

Even though the total amount of video memory installed
on the video card may not be needed for a particular
resolution, the extra memory is often used for caching
information for the GPU 108. For example, the caching of
commonly used graphical items—such as text fonts and
icons or images—avoids the need for the graphics Sub
system to load these each time a new letter is written or an
icon is moved and thereby improves performance. Cached
images can be used to queue up sequences of images to be
presented by the GPU, thereby freeing up the CPU to
perform other tasks.

US 7,206,940 B2
3

Many times per second, RAMDAC 112 reads the contents
of the video memory, converts it into a signal, and sends it
over the video cable to the monitor. For analog displays,
there is typically one Digital-to-Analog Converter (DAC)
for each of the three primary colors the CRT uses to create
a complete spectrum of colors. For digital displays, the
RAMDAC outputs a single RGB data stream to be inter
preted and displayed by the output device. The intended
result is the right mix needed to create the color of a single
pixel. The rate at which RAMDAC 112 can convert the
information, and the design of GPU 108 itself, dictates the
range of refresh rates that the graphics card can Support. The
RAMDAC 112 also dictates the number of colors available
in a given resolution, depending on its internal architecture.
The bus connector 102 can support one or more busses

that are used to connect with the video card. For example, an
Accelerated Graphics Port (AGP) bus can enable the video
card to directly access system memory. Direct memory
access helps to make the peak bandwidth many times higher
than the Peripheral Component Interconnect (PCI) bus. This
can allow the system's CPU to do other tasks while the GPU
on the video card accesses system memory.

During operation, the data contained in the on-board
Video memory can be provided into the computer's system
memory and can be managed as if it were part of the
system's memory. This includes such things as virtual
memory management techniques that the computers
memory manager employs. Further, when the data contained
in the system's memory is needed for a graphics operation
on the video card, the data can be sent over a bus (such as
a PCI or AGP bus) to the video card and stored in the
on-board video memory 110. There, the data can be accessed
and manipulated by GPU 108 as described above.

This invention arose out of concerns associated with
providing methods and systems for protecting data. In
particular, the invention arose out of concerns associated
with providing methods and systems that are resistant to
Software attacks, particularly those attacks that are waged by
a rogue application executing on a user's machine.

SUMMARY

The various methods and systems described herein are
directed to supplying a secure channel for software execut
ing on a host computer. The methods and systems address
and provide Solutions for an attack model in which rogue
Software executing on the host computer attempts to inap
propriately obtain or otherwise manipulate data. Some
embodiments can provide pixel data that can be kept con
fidential (in that untrusted Software applications cannot read
the data off of the display screen). In addition, other embodi
ments can preserve the integrity of the pixel data by detect
ing whether the pixel data has been inappropriately manipu
lated.

Various embodiments are based on a decryption engine
that is located on a video card very late in the video
processing chain such that programmatic access to
decrypted pixel data is denied.

In addition, various embodiments provide for per-pixel
functionality. That is, pixel data that is associated with
individual pixels that are to be rendered on a display monitor
are imparted with a characteristic that enables various func
tionalities to be implemented at the pixel level. In one
embodiment, per-pixel functionality is provided by includ
ing, in the pixel data itself, a specification of an auxiliary
function that is to be performed on the pixel data associated
with the individual pixels. For example, the security of the

10

15

25

30

35

40

45

50

55

60

65

4
pixel data associated with each pixel can be enhanced by
providing the ability to encrypt and decrypt the pixel data for
individual pixels. A specification of a key that can be used
for decrypting the pixel data can then be included in the
pixel data itself such that when the pixel data is processed
for rendering, a suitably configured decryptor can access the
key specification and decrypt the pixel data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that shows various components
of an exemplary video or graphics card that is intended for
use in a computer system.

FIG. 2 is a block diagram of an exemplary computer
system that can employ video cards in accordance with the
described embodiment.

FIG. 3 is a block diagram that shows various components
of an exemplary video or graphics card in accordance with
one embodiment.

FIG. 4 is a block diagram that shows an exemplary
primary Surface having secure and non-secure regions.

FIG. 5 is a flow diagram that describes steps in a method
in accordance with one embodiment.

FIG. 6 is a flow diagram that describes steps in a method
in accordance with one embodiment.

FIG. 7 is a block diagram that shows an exemplary
primary Surface having a secure region and a non-secure
region.

FIG. 8 is a block diagram that shows a display screen
having overlapping windows.

FIG. 9 is a diagram that shows exemplary pixel data and
an associated auxiliary function table.

FIG. 10 is a flow diagram that describes steps in a method
in accordance with one embodiment.

FIG. 11 is a diagram that shows an exemplary per-pixel
key table in accordance with one embodiment.

FIG. 12 is a flow diagram that describes steps in a method
in accordance with one embodiment.

FIG. 13 is a diagram that shows an exemplary table in
accordance with one embodiment.

DETAILED DESCRIPTION

Exemplary Computer System
FIG. 2 illustrates an example of a suitable computing

environment 200 on which the system and related methods
described below can be implemented.

It is to be appreciated that computing environment 200 is
only one example of a suitable computing environment and
is not intended to suggest any limitation as to the scope of
use or functionality of the media processing system. Neither
should the computing environment 200 be interpreted as
having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary
computing environment 200.
The various described embodiments can be operational

with numerous other general purpose or special purpose
computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use with the
media processing system include, but are not limited to,
personal computers, server computers, thin clients, thick
clients, hand-held or laptop devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, main
frame computers, distributed computing environments that
include any of the above systems or devices, and the like.

US 7,206,940 B2
5

In certain implementations, the system and related meth
ods may well be described in the general context of com
puter-executable instructions. Such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. that perform particular tasks or implement par
ticular abstract data types. The embodiments can also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote computer storage media including
memory storage devices.

In accordance with the illustrated example embodiment of
FIG. 2, computing system 200 is shown comprising one or
more processors or processing units 202, a system memory
204, and a bus 206 that couples various system components
including the system memory 204 to the processor 202.

Bus 206 is intended to represent one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) bus also known as Mezzanine bus.
Computer 200 typically includes a variety of computer

readable media. Such media may be any available media that
is locally and/or remotely accessible by computer 200, and
it includes both volatile and non-volatile media, removable
and non-removable media.

In FIG. 2, the system memory 204 includes computer
readable media in the form of volatile, such as random
access memory (RAM) 210, and/or non-volatile memory,
such as read only memory (ROM) 208. A basic input/output
system (BIOS) 212, containing the basic routines that help
to transfer information between elements within computer
200, such as during start-up, is stored in ROM 208. RAM
210 typically contains data and/or program modules that are
immediately accessible to and/or presently be operated on
by processing unit(s) 202.

Computer 200 may further include other removable/non
removable, Volatile/non-volatile computer storage media.
By way of example only, FIG. 2 illustrates a hard disk drive
228 for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a “hard drive'), a magnetic disk drive 230 for reading from
and writing to a removable, non-volatile magnetic disk 232
(e.g., a “floppy disk”), and an optical disk drive 234 for
reading from or writing to a removable, non-volatile optical
disk 236 such as a CD-ROM, DVD-ROM or other optical
media. The hard disk drive 228, magnetic disk drive 230,
and optical disk drive 234 are each connected to bus 206 by
one or more interfaces 226.

The drives and their associated computer-readable media
provide nonvolatile storage of computer readable instruc
tions, data structures, program modules, and other data for
computer 200. Although the exemplary environment
described herein employs a hard disk 228, a removable
magnetic disk 232 and a removable optical disk 236, it
should be appreciated by those skilled in the art that other
types of computer readable media which can store data that
is accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, random access memories

10

15

25

30

35

40

45

50

55

60

65

6
(RAMs), read only memories (ROM), and the like, may also
be used in the exemplary operating environment.
A number of program modules may be stored on the hard

disk 228, magnetic disk 232, optical disk 236, ROM 208, or
RAM 210, including, by way of example, and not limitation,
an operating system 214, one or more application programs
216 (e.g., multimedia application program 224), other pro
gram modules 218, and program data 220. A user may enter
commands and information into computer 200 through input
devices such as keyboard 238 and pointing device 240 (such
as a “mouse'). Other input devices may include a audio/
Video input device(s) 253, a microphone, joystick, game
pad, satellite dish, serial port, Scanner, or the like (not
shown). These and other input devices are connected to the
processing unit(s) 202 through input interface(s) 242 that is
coupled to bus 206, but may be connected by other interface
and bus structures, such as a parallel port, game port, or a
universal serial bus (USB).
A monitor 256 or other type of display device is also

connected to bus 206 via an interface, such as a video
adapter or video/graphics card 244. In addition to the
monitor, personal computers typically include other periph
eral output devices (not shown), such as speakers and
printers, which may be connected through output peripheral
interface 246.
Computer 200 may operate in a networked environment

using logical connections to one or more remote computers,
such as a remote computer 250. Remote computer 250 may
include many or all of the elements and features described
herein relative to computer.
As shown in FIG. 2, computing system 200 is commu

nicatively coupled to remote devices (e.g., remote computer
250) through a local area network (LAN) 251 and a general
wide area network (WAN) 252. Such networking environ
ments are commonplace in offices, enterprise-wide com
puter networks, intranets, and the Internet.
When used in a LAN networking environment, the com

puter 200 is connected to LAN 251 through a suitable
network interface or adapter 248. When used in a WAN
networking environment, the computer 200 typically
includes a modem 254 or other means for establishing
communications over the WAN 252. The modem 254, which
may be internal or external, may be connected to the system
bus 206 via the user input interface 242, or other appropriate
mechanism.

In a networked environment, program modules depicted
relative to the personal computer 200, or portions thereof,
may be stored in a remote memory storage device. By way
of example, and not limitation, FIG. 2 illustrates remote
application programs 216 as residing on a memory device of
remote computer 250. It will be appreciated that the network
connections shown and described are exemplary and other
means of establishing a communications link between the
computers may be used.

Overview

The various methods and systems described herein are
directed to supplying a secure channel for software execut
ing on a host computer. The methods and systems address
and provide Solutions for an attack model in which rogue
Software executing on the host computer attempts to inap
propriately obtain or otherwise manipulate data.
The various embodiments can provide a secure execution

environment in which data can be securely rendered on a
display screen for a user to interact with. The described
embodiments can embody, among other characteristics, one
or both of the following characteristics.

US 7,206,940 B2
7

The first characteristic is that the data, e.g. pixel data that
resides on the video card, can be kept confidential. This
means that untrusted Software applications (or rogue appli
cations) cannot read the data off of the display screen or
from video memory. The confidentiality aspect is useful in
the digital workplace arena because if one is rendering video
or pixel data, it is desirable to be able to send video data to
the video card in a way Such that a "cracking tool running
on the computer cannot read the data. For example, consider
that a user is working in a secure email program that enables
them to receive data in encrypted form. Various embodi
ments can enable the data to be rendered onto the display
screen without the risk of a rogue application being able to
access the data.
The second characteristic is that of integrity. By this is

meant that, fundamentally, one does not want untrusted
software (or rogue software) to be able to manipulate the
data that is displayed on portions of a display screen.
Consider, for example, an eCommerce setting in which a
user arranges, via Software executing on their computer, to
pay a certain entity S100. The user might simply type in the
dollar amount in a window displayed on their display screen.
It is possible, however, for a rogue application to change the
“S100 to “S1000. Understandably, this is undesirable.

Additionally, if some untrusted Software does inappropri
ately manipulate the data in some way, it would be desirable
to be able to tell that this has occurred. Accordingly, some
of the embodiments described below provide a means by
which data manipulation can be detected.

Exemplary Embodiments
The embodiments described below are directed to pro

viding secure video output—that is, video output that is not
Susceptible to Software attack. Various embodiments can
provide window-based protections that can be selectively
applied to regions (i.e. windows) on the user's display
screen, rather than the whole Screen area itself although
whole screen protection is not excluded. The secure video
output cannot typically be read by untrusted software. This
behavior provides protection for content such as premium
content (e.g. videos, books), as well as a wide variety of
general e-Commerce and security applications.

In addition, various embodiments can provide so-called
secure dialogs that are not obscureable (either partially or
completely) by untrusted dialogs. This behavior is most
useful in the context of general e-Commerce transactions.

The embodiments described below are encryption-based
Solutions that provide secure video output. Advantages of
the various embodiments are that the embodiments are
typically easy to implement and have virtually no impact on
existing software architectures.
Some of the embodiments about to be described are based

on a decryption engine that is located on the video card very
late in the video processing chain. In the examples described
in this document, many aspects of the embodiments are
implemented in hardware—other aspects can be imple
mented in firmware and software as well.
A desirable feature of the inventive embodiments is that

various data that is to be displayed on a user's display Screen
is encrypted. Accordingly, attacks that are directed to steal
ing the data will result only in encrypted data being stolen.
Encryption techniques can be utilized such that any stolen
encrypted data is mathematically infeasible to decrypt.
Additionally, decryption of the encrypted data takes place at
a point in the processing chain such that there is no pro
grammatic access to the decrypted bits that are to be
displayed. That is, there is no software access to the

10

15

25

30

35

40

45

50

55

60

65

8
decrypted bits so that rogue Software executing on the user's
computer cannot access the decrypted bits.

In one embodiment, a decryptor is located on the video
card and is placed intermediate the GPU and the display
converter (e.g. the RAMDAC). The decryptor is desirably
implemented in hardware and can process the encrypted data
in “real time' as the video card is rastering the frame-buffer
to the display converter.

Exemplary Architecture
FIG. 3 shows an exemplary video (or graphics) card 300

in accordance with one embodiment. Card 300 includes a
bus connector 302 that plugs into a port on a typical
computer. Video card 300 also includes a monitor connector
304 (e.g. a 15-pin plug) that receives a cable that connects
to a monitor. Video card 300 can, but need not, include a
digital video-out (e.g. DVI) socket 306 that can be used for
sending video images to digital displays and the like.

Like the video card of FIG. 1, video card 300 comprises
a graphics processor unit (GPU) 308, video memory 310,
display convertor or random access memory digital-to
analog converter (RAMDAC) 312, and driver software
which can be included in the Video BIOS 314.
GPU 308 is a dedicated graphics processing chip that

controls all aspects of resolution, color depth, and all ele
ments associated with rendering images on the monitor
screen. The memory controller (sometimes integrated into
the GPU) manages the memory on the video card. The
computer's central processing unit or CPU (not shown)
sends a set of drawing instructions and data, which are
interpreted by the graphics card's proprietary driver and
executed by the card's GPU 508. GPU 308 performs such
operations as bitmap transfers and painting, window resizing
and repositioning, line drawing, font Scaling and polygon
drawing. The GPU can then write the frame data to the frame
buffer (or on-board video memory 310).
The information in the video memory frame buffer is an

image of what appears on the screen, stored as a digital
bitmap. RAMDAC 312 is utilized to convert the digital
bitmap into a form that can be used for rendering on the
monitor, as described above.

In addition to these components, in this embodiment,
video card 300 comprises a memory controller 316 and a
control processor 318 that can include a key manager 319.
The video card also includes a decryptor 320. These com
ponents can be implemented in any Suitable hardware,
software, firmware or combination thereof.
Memory controller 316 receives data on the video card

and manages the data in the video memory 310. The memory
controller can also be responsible for managing data trans
fers between the video card and system memory.
A control processor 318 is provided and can include a key

manager 319. The control processor can be responsible for
organizing cryptographic functions that take place on the
video card. For example, the control processor 318 can
communicate, via a dedicated bus or secure channel, with
decryptor 320 to ensure that the decryptor has the decryption
capabilities that it needs to properly decrypt pixel data that
has been encrypted for security reasons. The control pro
cessor 318, through the key manager 319, can manage keys
that are associated with encrypting and decrypting pertinent
pixel data. In some embodiments the control processor can
be implemented as a separate integrated circuit chip on the
video card.

Decryptor 320 is configured or configurable to decrypt
pertinent pixel data. For example, as described in more
detail below, data that is to be protected can be encrypted
and written to a secure region comprising part of the

US 7,206,940 B2
9

so-called “primary surface' or desktop surface of the video
cards memory that contains data that is used by the RAM
DAC 512 for rendering an image on the monitor. The
encrypted image may be copied to a temporary location in
the video memory before being copied to the primary
Surface. The encrypted image could also be assembled into
other display Surfaces (commonly called overlay or sprite
Surfaces) if the video card hardware arranges that these
surfaces are mixed with or overlay the primary surface. The
control processor 318 can set the encryption keys that are to
be used to encrypt data and can provide decryption keys to
the decryptor 320 for use in decrypting encrypted pixel data.
Once the data has been decrypted, the data can be passed
through to the RAMDAC for further processing.

It should be appreciated and understood that while the
decryptor is illustrated as a separate component, the RAM
DAC or a module within the GPU can be provided with
suitable decryption functionalities so as to effectively oper
ate as a decryptor.

In operation, a secure or trusted Software application 322
or a remote server can set up a shared key between the
decryptor 320 and the software application. The software
application can then use the key to generate encrypted pixel
data that can be stored in memory (either video memory 310
or system memory).

There are typically a couple of different ways that the
pixel data can get written into the protected regions of the
primary surface or frame buffer. First, the encrypted pixel
data can be written directly to the frame buffer via a “move”
operation that the CPU memory controller arranges. Second,
an application (such as secure application 322) can assemble
the pixel data that is to be protected in System memory
where in encrypted form. In this case, encrypted data in the
system memory will eventually be copied to the primary
Surface for decryption and rendering.
The control processor can then ensure that the decryptor

320 knows which key to use to decrypt the pixel data before
the data is sent to the RAMDAC 312 (or before it is rendered
on the monitor).

Thus, in this example, there is a mechanism by which one
or more keys can be shared between trusted entities. Data
can be encrypted on the video card and decrypted at a point
in the data processing chain so that unencrypted data that is
to be rendered to a display monitor is not susceptible to a
software attack. Untrusted or rogue entities that try to read
the encrypted data out of the protected region(s) of the
primary Surface will read only encrypted data which is
effectively useless to them. Additionally, this holds true
when VRAM memory is mapped into system memory via
virtual memory management techniques. Thus, whether the
data that is Supposed to be in the protected region(s) of the
primary Surface is either on the video card or mapped into
the system's memory, it is encrypted and thus protected.

Secure Window(s)
In one embodiment, one or more secure windows are

provided and can be used to display confidential data on a
user's display Screen. The secure windows on a user's
display Screen are associated with and correspond to secure
regions of the primary Surface in the video cards memory
(or system memory if virtual memory management tech
niques are used). As an example, consider FIG. 4.

There, a diagrammatic representation of the video cards
primary surface is shown generally at 400. Primary surface
400 comprises a region 402 (shaded) that contains unen
crypted data, and one or more regions that contain encrypted
data. In this particular example, two exemplary secure

10

15

25

30

35

40

45

50

55

60

65

10
regions 404, 406 can contain encrypted data. Each secure
region's corresponding secure window is shown at 404a.
406a respectively.

In this embodiment, decryptor 320 (FIG. 3) is configured
to pass through all of the pixel data in region 402 without
modifying (i.e. decrypting) it. That is, since the data residing
in region 402 is not encrypted, there is no need for the
decryptor 320 to decrypt the data. However, the decryptor
does decrypt the encrypted data that resides in regions 404
and 406.
The pixel data within regions 404, 406 can be decrypted

by the decryptor using a key associated with the Secure
region. In some embodiments, a single key can be associated
with all of the secure regions. In other embodiments, each
secure region can have its own associated key. One reason
for having separate keys for each of the secure regions is that
Some secure regions may not be associated with certain
applications that can access other secure regions. For
example, assume that a secure email application is associ
ated with one secure region in which encrypted email is to
reside. Assume also that an eCommerce application is asso
ciated with a different secure region. There is really no
reason for the email application to have access to the Secure
region associated with the eCommerce application. Yet, if
there is only one key for all of the secure regions, then
presumably all applications that can access one secure
region can access all other secure regions. Accordingly, by
providing a different key for each of the secure regions,
access to each secure region is limited to only those appli
cations that should can have access.

Alternatively, in another embodiment, a central entity (a
“mixer” or “compositor') could take several regions and
transcrypt them to a common key to be decrypted by the
display hardware. Each application would have to trust the
compositor entity.

FIG. 5 is a flow diagram that describes steps in an
encryption method in accordance with one embodiment. The
method can be implemented in any suitable hardware,
software, firmware or combination thereof. In the present
example, the method can be implemented, at least in part, by
a suitably configured video card—an example of which is
given above.

Step 500 defines one or more secure regions of a primary
Surface. The regions can comprise any suitable shape and
size. In the example above, the secure regions happen to be
rectangular in shape. The regions are desirably smaller in
dimension than that necessary to occupy the entire display
screen when rendered to the display screen. Step 502 asso
ciates at least one key with individual secure regions of the
primary Surface. The key or keys can be used to encrypt
and/or decrypt pixel data that is to reside in the secure
region. Step 504 uses the key or keys to encrypt pixel data.
This step can be implemented by trusted system software,
firmware and/or hardware. For example, a secure application
Such as application 322 can cause pixel data to be encrypted.
Step 506 writes or otherwise moves the encrypted pixel data
to a secure region of the primary Surface. Note that once the
pixel data is encrypted, the underlying decrypted pixel data
is protected from theft.

FIG. 6 is a flow diagram that describes steps in a decryp
tion method in accordance with one embodiment. The
method can be implemented in any suitable hardware,
software, firmware or combination thereof. In the present
example, the method can be implemented, at least in part, by
a suitably configured video card—an example of which is
given above.

US 7,206,940 B2
11

Step 600 provides encrypted data in a secure region of the
video cards primary surface. Step 602 provides a key
associated with the secure region. This step can be imple
mented by control processor 318 (FIG. 3). For example, the
control processor can provide one or more keys to the
decryptor for use in decrypting the encrypted pixel data.
Step 604 uses the key to decrypt the encrypted data in the
secure region of the primary Surface. This step can be
implemented by decryptor 320 (FIG. 3). Note that the point
in the pixel data-processing chain where decryption takes
place is programmatically inaccessible. Thus, the decrypted
pixel data is protected from software attack. Step 606 then
provides the decrypted data to a display converter for further
processing which includes rendering the pixel data onto the
user's display screen.

Implementation Example
In one implementation, encryption and decryption can

take place using a public-key-based engine. A control pro
tocol can allow software, such as a security application, to
send commands in encrypted form to the control processor
318 (FIG. 3), and receive cryptographic acknowledgements
to ensure that the commands have been executed. If the
platform provides an intrinsically secure channel, then there
is no need to use a cryptographic channel for command and
key exchange: commands and keys can be sent directly to
the secure video device.
Any Suitable command set can be used. As an example,

the following commands (or ones similar to them) can be
used:

GetPK () Return the device public encryption key
SetSec () Set a secure region shape and encryption

key for that region shape.
ClearSec () Clear the encryption for a region

In some embodiments, the decryptor 320 can infer the
geometry of the secure region so that it can decrypt
encrypted pixel data within the region. In yet other embodi
ments, the decryptor can be informed of the geometry. This
can be useful when, for example, a secure window is
dragged and dropped to a different location on the user's
display screen. For example, the GPU 308 can embody a
geometry processor (not specifically illustrated) which
maintains a list of the secure regions of the primary Surface
and various security data that are associated with those
regions. The security data can include the X- and y-coordi
nates of the regions, width and height dimensions of the
region and the key associated with the particular region. The
decryptor 320 can be notified of this security data so that
when it begins to process pixel data, it knows whether a
particular pixel belongs to one of these regions and needs to
be decrypted, or whether the particular pixel data is to be
passed through to the RAMDAC. If a secure window is
moved, the geometry processor can notify the decryptor of
the new coordinates of the security window.

In one example architecture the public key and control
functionality can be modularized into a discrete external
device with on-board flash memory (similar to a smart
card). Conversely, the decryptor 320 can be incorporated
into the GPU silicon (i.e. integrated with the GPU). The
control processor 318 can then pass decryption keys directly
to the GPU. As an alternative preventative measure to avoid
Software attacks, a dedicated bus or other secure channel can
be provided between the control processor 318 and the GPU
308. In this case, the control processor still needs to manage

10

15

25

30

35

40

45

50

55

60

65

12
the geometry and keys of the protected regions, but system
Software can send commands and data in “plain-text as
opposed to using an encrypted channel.

In operation, the control processor 318 can be authenti
cated by secure software/hardware and can receive
encrypted commands like “set the encryption key for this
secure region to be X. The control processor can then return
a cryptographic response to ensure that the command was
properly executed, or if a secure channel is used, then a
simple acknowledgement will Suffice.
The encryption key can now be used to render video data

to the secure region. In most cases, this will be performed by
secure software running on the host; however, the bitmap to
be rendered can be assembled by any entity in possession of
the encryption key, and this may include remote devices or
servers, or other hardware on the PC platform. In such cases,
any insecure network can be used to send the encrypted
bitmap to the client PC. In this example, it may be possible
for adversarial code to read this encrypted data. However,
any data that is read by Such code is encrypted and effec
tively useless to the adversarial code. It may be possible, in
Some implementations, for adversarial code to modify the
encrypted data. Encrypted data that is modified will, how
ever, be decrypted into data which, when rendered on a
display screen, will appear logically out of context. For
example, Such data can appear, when rendered onto a display
screen as random noise/grey output. This sort of attack will
most assuredly be noticed by the user.

In addition, use of authentication information can ensure
that if pixel data is modified by adversarial code, the user
will be apprised of it. As an example, consider the following.
The secure data format can be required to comprise a certain
number of bits per pixel, e.g. 24 bits/pixel. Of the 24
bits/pixel, 8 bits can always be required to have a value of
Zero. The decryptor can then be configured to make non
compliant pixels flash purple, and can notify the control
processor that there has been an attack.

Further, other techniques can be used to ensure that if
pixel data is inappropriately modified. Such modification can
be detected. As an example, consider the following. A hash
can be computed for the pixel data associated with each
pixel that is to be rendered. As the pixel data is processed by
the display converter (e.g. the RAMDAC 312), the display
converter can then compute a hash of the pixel data and
compare the computed hash with the previously computed
hash for the pixel data. If there has been an inappropriate
data modification, then the hash comparisons will indicate
that Such has occurred.

Exemplary Encryption Techniques
Various encryption techniques can be utilized to ensure

that pixel data that resides in secure regions of the primary
surface is encrypted and then properly decrypted later by the
decryptor. Two exemplary encryption techniques are
described below—although other techniques can be used
without departing from the spirit and scope of the claimed
Subject matter.
A first encryption technique that can be used is a stream

cipher. Stream ciphers are typically very fast in Software and
very easy to implement in hardware. A stream cipher is a
type of symmetric encryption algorithm that typically oper
ates on Smaller units of plaintext, usually bits. A stream
cipher generates what is called a keystream (a sequence of
bits used as a key). Encryption is accomplished by combin
ing the keystream with the plaintext or bits, usually with the
bitwise XOR operation. The generation of the keystream can
be independent of the plaintext and ciphertext, yielding what
is termed a synchronous stream cipher, or it can depend on

US 7,206,940 B2
13

the data and its encryption, in which case the stream cipher
is said to be self-synchronizing. Most stream cipher designs
are for synchronous stream ciphers. The same stream cipher
can then be used to decrypt data that has been encrypted.
The stream cipher can be run over the entire primary

Surface in a manner that only decrypts data in the secure
regions of the primary surface. This, however, is not the best
choice as the stream cipher need not be run over the entire
primary Surface—but only those secure regions. Accord
ingly, the range over which the stream cipher is run can be
restricted so that the range is defined only with the bounds
of the secure region or regions. A desirable way of imple
menting a restricted range stream cipher is to define, for each
refresh of the display, a starting location for the stream
cipher—such as the top left pixel of a secure region. The
stream cipher can then be run within the secure region until
the bottom right pixel of the secure region is processed.
As an example, consider FIG. 7. There, a primary surface

700 comprises a region 702 in which unencrypted pixel data
is to reside and a secure region 704 in which encrypted pixel
data (encrypted with a stream cipher) is to reside. With an
appropriately range-restricted Stream cipher, the stream
cipher can be run starting at the location indicated at the top
left pixel, and ending at the location indicated at the bottom
right pixel. When the encrypted data is to be decrypted, the
decryptor (such as decryptor 320), can be notified of the
coordinates of the starting and stopping locations of the
stream cipher. One of the nice characteristics of this imple
mentation is that if the secure window associated with one
of the secure regions is dragged and dropped to another
location (which may invoke untrusted software to move the
window around), the encryption operation can continue to
take place at the new location. To implement this, the
encrypting entity need only be notified of the new coordi
nates of the secure window (and hence the secure region on
the primary Surface) so that the encrypting entity can per
form its encryption processing at the new location. Simi
larly, the decryptor 320 can also be notified of the location
so that it can run the stream cipher at the proper location for
decrypting the encrypted pixel data.
The encryptor can allow the stream cipher to continue

across several frames, thereby making differential attacks
more difficult. The key for the stream cipher can be changed
after each group of frames. To reduce the number of keys,
a fixed array of keys can be negotiated prior to being used.
The encryptor can cycle through the array of keys choosing
a different key for each group of frames.
A second encryption technique that can be used is a block

cipher. A block cipher is a type of symmetric-key encryption
algorithm that transforms a fixed-length block of plaintext
data or bits (unencrypted text or bits) into a block of
ciphertext (encrypted text or bits) of the same length. This
transformation takes place under the action of a user
provided secret key. Decryption is performed by applying
the reverse transformation to the ciphertext block using the
same secret key. The fixed length is called the block size, and
for many block ciphers, the block size is 64 bits. In the
coming years the block size will increase to 128 bits as
processors become more Sophisticated.
Of the two encryption techniques described above, a

stream cipher is the desirable choice as it is much faster than
a block cipher.

Authentication
In some embodiments, authentication techniques can be

utilized to ensure the integrity and identity of the video card.
Important goals for a secure Software application that is to
interact with a video card are that the application be able to

10

15

25

30

35

40

45

50

55

60

65

14
reliably authenticate that (1) the application is really com
municating with a video card, and not a piece of software
that is emulating a video card, and (2) that the application is
really communicating to a video card that obeys or conforms
to pre-defined rules associated with the rendering of the
pixel data.

Authentication techniques can be implemented in a
couple of different ways—e.g. through cryptographic certi
fication and other communication protocols.

Cryptographic certification pertains to building a video
card that is furnished with a certified key and a digital
certificate. Using its key and certificate, the video card can
engage in a cryptographic conversation with secure software
applications. For example, the digital certificate can be used
to authenticate the video card, and the certified key can be
used to encrypt communications that take place with the
secure application. To implement cryptographic certifica
tion, each video card can have a separate security IC chip
that is manufactured by a trusted entity. Cryptographic
certification techniques are well known and understood by
those of skill in the art. Accordingly, and for the sake of
brevity, cryptographic certification is not described in addi
tional detail here.

Another means of authentication can be associated with a
secure protocol that is established between secure applica
tions and the video card. Secure protocols can allow the
application to have some assurances that it is communicat
ing with a valid video card. For example, the trusted
application can issue a challenge to the video card to identify
itself and the card can respond with a response that it is a
trusted video card. Various known secure protocol tech
niques can be utilized.

Several advantages are provided by the embodiments
described above. First, techniques are provided that can
ensure that data (both on and off a video card) is protected
from software attacks. Protection is provided in the form of
encryption techniques that can be utilized to encrypt data
residing on the primary Surface of the video card. Decryp
tion can then take place at a point in the data processing
pipeline at which there is no Software access. Thus, any read
attacks by rogue Software will yield encrypted and essen
tially useless data. Thus, pixel data can be kept confidential.
Further, various techniques can enable the integrity of the
data to be preserved. That is, in the event of a data modi
fication attack, various detection methods can be employed
to ensure that the appropriate notifications are generated
(both application notifications and user notifications). Fur
ther, advantages are achieved by being able to define secure
regions of the primary Surface that are identified by a
particular geometry.

Per-Pixel Auxiliary Functionality
In some embodiments, it can be desirable to provide

functionality at the granularity of individual pixels. For
example, the secure regions of the primary Surface do not
typically overlap. In some instances, however, users may
desire to move windows around on their display so that they
overlap. Overlapping regions can inject additional design
considerations into the design of the components that per
form the encrypting and decrypting functions.
As an example, consider FIG. 8. There, a display screen

such as one a user would see is shown generally at 800. A
secure window 802 is provided and, in addition, a non
secure window 804 is shown to overlap with the bottom
right corner of the secure window to define an overlapping
region 806. One problem that can arise from a situation such
as this is as follows. Region 806, when embodied on the
Video card's primary Surface, does not include encrypted

US 7,206,940 B2
15

data. Yet, the adjacent region corresponding to the secure
window 802 does contain encrypted data. If no adjustments
are made to take this into account, then it is possible that the
decryptor may decrypt the pixel data associated with over
lapping region 806. As this pixel data was not encrypted to
begin with, decrypting the data will provide erroneous data.

Accordingly, the embodiments about to be described
provide methods and systems that enable per-pixel function
ality. In one example, per pixel Security can be provided.

FIG. 9 shows a diagrammatic representation of pixel data
generally at 900. In this example, the pixel data comprises
32 bits of data. The Red (R), Green (G), and Blue (B) values
are indicated as eight bits each. It should be noted that while
the illustrated pixel data comprises 32 bits per pixel, the
pixel data can comprise more or less bits per pixel. Notice
in this example, that eight bits are left over—here designated
as “Auxiliary’. In order to make memory accesses more
efficient, GPUs prefer to read data in chunks that are
multiples of powers of 2. Hence 24 bits data is read as 32 bit
blocks, leaving 8 bits often unused but always read and
written with the used bits. These auxiliary bits can be used
to specify various auxiliary functions that can be imple
mented in connection with individual pixels that are to be
rendered to a display Screen. Examples of auxiliary func
tions can include, without limitation, alpha or transparency
inforformation, depth information, region identification
information, or color key information (to indicate regions to
be substituted with other data).

Other common video formats use 16 bits per pixel instead
of 24 or 32 bits per pixel. For example, RGB data can be
stored as 5 bits per pixel, leaving a single bit unused that
could be used to specify 2 auxiliary functions
One way of implementing auxiliary functionality is to

provide a table, such as table 902 that references or specifies
the auxiliary functionality. For example, using eight bits to
specific auxiliary functions can permit up to 256 auxiliary
functions to be specified. Accordingly, when the pixel data
is processed, the bits of pixel data pertaining to the auxiliary
functions can be processed to access and implement various
auxiliary functions.

FIG. 10 is a flow diagram that describes steps in a method
in accordance with one embodiment. The method can be
implemented in any suitable hardware, software, firmware
or combination thereof. In the present example, the method
can be implemented, at least in part, by a Suitably configured
Video card—an example of which is given above.

Step 1000 provides pixel data having a defined number of
bits per pixel. In the FIG. 9 example, there are 32 bits per
pixel. However, any suitable number of bits per pixel can be
utilized. Step 1002 uses one or more bits of the pixel data to
specify an auxiliary function. In the FIG. 9 example, eight
bits are used to specify auxiliary functions through the use
of the so-called “alpha channel” (the fourth unused chan
nel). By using the alpha channel's eight bits, 256 separate
auxiliary functions be specified. Step 1004 processes the bits
to access the auxiliary function. This step can be imple
mented by using the value of the auxiliary bits as an index
into an auxiliary function table such as table 902 (FIG. 9).
The table then references, for individual values, an auxiliary
function that can be implemented in connection with the
pixel data for a particular pixel. The reference in table 902
can be a pointer to Software code that implements the
auxiliary function, or it can comprise part of, or the entire
auxiliary function itself. Step 1006 then implements the
auxiliary function.

10

15

25

30

35

40

45

50

55

60

65

16
If the function 0 specified a null function, then old

applications will automatically be compatible with the new
scheme which utilizes the new auxiliary functions.

Per Pixel Security
Auxiliary bits of the pixel data can be used to provide

decryption functionality at the pixel level. For example,
assume that there is a secure region on the primary Surface
that is used for holding pixel data that is desired to be
protected. This pixel data can be encrypted, at the pixel
level, using an encryption key. Assume now that the auxil
iary bits of the encrypted pixel data specify a decryption key
can be utilized to decrypt the pixel data. Consider, for
example, FIG. 11 which shows a per pixel auxiliary function
table 1100. There, each value of the table is associated with
a particular key. For example, value “1” is associated with
“Key 1. value '2' is associated with “Key 2 and so on.
Accordingly, when the auxiliary pixel data indicates that a
particular key is associated with the pixel data, then the
decryptor can access the associated key and use the key to
decrypt the pixel data (typically 0). The auxiliary pixel data
can also hold a value that indicates that the pixel data is not
encrypted. In this case, the decryptor can simply pass the
associated pixel data along to the display converter for
further processing, allowing unencrypted data from appli
cations to seamlessly integrate with the new scheme.
The per pixel key table can hold individual keys that can

be used to decrypt the associated encrypted pixel data, or it
can hold references to keys that can be used to decrypt the
associated encrypted pixel data.
The table can also hold secondary (non-security) auxiliary

related data such as alpha values. This allows selective reuse
of values between security and the previous original use of
the auxiliary channel. For examples, value 1 through 3 could
be used to specify keys (with their own alpha value), while
leaving values 0 and 4 through 255 still available for
specifying their original alpha values.

FIG. 12 is a flow diagram that describes steps in a method
in accordance with one embodiment. The method can be
implemented in any suitable hardware, software, firmware
or combination thereof. In the present example, the method
can be implemented, at least in part, by a suitably configured
Video card—an example of which is given above.

Step 1200 encrypts pixel data that is associated with
individual pixels. Advantageously the encryption can take
place at the pixel level. This step can be implemented in any
Suitable way. For example, a secure application can cause
the pixel data to be encrypted. Alternately, other processes
can be utilized to encrypt the pixel data, examples of which
are given above. Step 1202 associates auxiliary data with the
pixel data. The auxiliary data specifies one or more decryp
tion keys that can be used to decrypt the pixel data. In some
cases, the auxiliary data can be considered to comprise the
pixel data itself as it comprises a portion of the bits that
comprise the pixel data (e.g. the alpha channel). Step 1204
receives the pixel data including any associated auxiliary
data. This step can be implemented, for example, by a
suitably configured decryptor. Step 1206 determines
whether the pixel data needs to be decrypted. This step can
be implemented by examining the auxiliary data. If the
auxiliary data contains values that are associated with the
decryption functionality, then decryption is necessary. If
decryption is necessary, then step 1208 uses the auxiliary
data to access a decryption key for the pixel data. This step
can be implemented by maintaining a table, such as table
1100, and using the table to access the appropriate decryp
tion key. Step 1210 then decrypts the pixel data using the
decryption key. If, on the other hand, step 1206 determines

US 7,206,940 B2
17

that decryption is not necessary, then step 1212 does not
decrypt the data. The step can be implemented by assigning
a particular value (e.g. 0) to the auxiliary data and using that
value to indicate that decryption is not necessary. The data
can then be passed along to the display converter for further 5
processing.
One advantage of selective per pixel encryption is that

applications can specify non-rectangular encryption regions.
Each pixel within a rectangular region which is not
encrypted, can be specified by the null encryption function 10
(index 0).

Secondary Table
In addition to the above-described table, a so-called

secondary table can be provided to contain additional infor
mation that is useful when processing pixel data. As an 15
example, consider FIG. 13 where a secondary pixel table
1300 is shown. In this example, each pixel in a secure region
of the primary Surface can have an associated entry in this
table. Thus, the “Pixel column identifies a particular pixel
region of the primary surface. In this example, table 1300 20
includes a “Process ID' column which can be used to
identify a process or entity that "owns' the particular region.
This column can be used, for example, to restrict access to
the particular pixel data to only those entities that should
have access. 25

Data Integrity
Additionally or alternately, table 1300 can be used to

verify the integrity of the pixel data. For example, a hash can
be computed of the unencrypted pixel data and stored in the
“Expected Hash” column of table 1300. Then, when the 30
pixel data is decrypted by, for example the decryptor,
another hash can be computed of the decrypted pixel data
and placed in the “Current Hash” column. By comparing the
expected hash with the current hash, a secure application or
the decryptor can ascertain whether any of the pixel data has 35
been manipulated or changed. If, for example, a rogue
application Successfully manipulates the unencrypted pixel
data, then the hash comparison will indicate that this has
occurred. On the other hand, if a rogue application manipu
lates the encrypted pixel data, the data will decrypt differ- 40
ently. Then, when a current hash is computed for the
decrypted data, the current hash will most assuredly not
favorably compare with the expected hash. The decryption
hardware can notify the application (or an agent on behalf of
the application) of the data compromise. The notification 45
could occur over a secure channel to the encrypting entity.
The application could also poll the video card to determine
whether the rendered video is that expected.

Other techniques can be utilized to ensure the integrity of
the data in the secure regions. For example, an attacker may 50
for some reason have per pixel addressability and thus be
able to manipulate the pixel data (including the auxiliary
data). To address this situation, a process can be imple
mented which, for every secure region, forces the auxiliary
data to assume a value that will cause the data to be 55
decrypted. Accordingly, this will minimize the effect of any
rogue applications that attack the auxiliary data by, for
example, changing the data to a value that will cause it to not
be decrypted.
Some of the advantages of per pixel auxiliary function- 60

ality (including per pixel security include, without limita
tion, that the associated tables (e.g. the key table) are
relatively small and cacheable. Further, no additional video
bandwidth can be required when the auxiliary data com
prises part of the bits that are already allocated for the pixel 65
data (e.g. the alpha channel). In addition, alpha values can
still be used in the event that the alpha channel is not used

18
to Support auxiliary functionality. Further, per pixel per
frame key control can allow for complex key transitions.
That is, keys can be cycled per frame, which can reduce
issues when Switching keys while playing the video. The
above techniques can also be used with non-RGB data, with
direct memory copies to the desktop, and with video over
lays.

Lastly, when a region is moved, the auxiliary encryption
index moves with the video data, ensuring that the encryp
tion information is perfectly synchronized and does not
require any additional hardware changes.

Conclusion
The various methods and systems described above supply

a secure channel for software executing on a host computer,
as well as address and provide Solutions for an attack model
in which rogue Software executing on the host computer
attempts to inappropriately obtain or otherwise manipulate
data. Through the inventive techniques video data that is to
be processed and rendered on a user's display can be kept
confidential and, in many instances, the integrity of the data
can be protected.

Although the invention has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.

The invention claimed is:
1. A video card configured to:
hold encrypted pixel data associated with individual pix

els that are to be rendered on a display monitor, the
pixel data containing color values and including por
tions that specify a key that can be used to decrypt the
pixel data for each associated pixel;

maintain a table having a column of index values and one
or more key specifications associated with the index
values and which can be used to access associated keys
for decrypting the encrypted pixel data;

use said portions of the pixel data that specify a key as an
index into the table to obtain an associated key:

use the associated key to decrypt encrypted pixel data,
wherein the table comprises multiple different key speci

fications, each specification being associated with a
different key, each key being associated with a different
secure region on a primary Surface in a memory of the
video card.

2. A method comprising:
providing pixel data on a video card, the pixel data

comprising multiple bits at least a portion of which
being encrypted, the pixel data specifying color values
and one or more keys that can be used to decrypt the
pixel data;

using the pixel data that specifies one or more keys to
access the one or more keys; and

decrypting the pixel data using the one or more keys,
wherein pixel data is encrypted using different cycled

keys, and wherein the pixel data can be decrypted using
different cycled keys.

3. The method of claim 2, wherein the act of using
comprises using the pixel data that specifies the one or more
keys as an index into a table that specifies the one or more
keys and thereafter accessing the one or more keys.

4. The method of claim 2, wherein the act of decrypting
is performed by a decryptor on the video card.

US 7,206,940 B2
19

5. The method of claim 2, wherein the act of decrypting
takes place at a processing point where there is no program
matic access to decrypted pixel data.

6. One or more computer-readable media having one or
more sets of computer-readable instructions thereon which,
when executed by one or more computers, implements the
method of claim 2.

7. A video card configured to implement the method of
claim 2.

8. A computing device comprising:
one or more processing units; and
a video card operably coupled with said one or more

processing units, wherein said video card is configured
tO:

hold encrypted pixel data associated with individual
pixels that are to be rendered on a display monitor,
the pixel data containing color values and including
portions that specify a key that can be used to decrypt
the pixel data for each associated pixel;

maintain a table having a column of index values and one
or more key specifications associated with the index
values and which can be used to access associated keys
for decrypting the encrypted pixel data;

use said portions of the pixel data that specify a key as an
index into the table to obtain an associated key:

use the associated key to decrypt encrypted pixel data,
wherein the table comprises multiple different key speci

fications, each specification being associated with a
different key, each key being associated with a different
secure region on a primary Surface in a memory of the
video card.

5

10

15

25

30

9. A system comprising:
one or more processing units;
one or more computer-readable media;
computer-readable instructions on the one or more com

puter-readable media which, when executed, imple
ment a method comprising:

providing pixel data on a video card, the pixel data
comprising multiple bits at least a portion of which
being encrypted, the pixel data specifying color values
and one or more keys that can be used to decrypt the
pixel data;

using the pixel data that specifies one or more keys to
access the one or more keys; and

decrypting the pixel data using the one or more keys,
wherein pixel data is encrypted using different cycled

keys, and wherein the pixel data can be decrypted using
different cycled keys.

10. The system of claim 9, wherein the act of using
comprises using the pixel data that specifies the one or more
keys as an index into a table that specifies the one or more
keys and thereafter accessing the one or more keys.

11. The system of claim 9, wherein the act of decrypting
is performed by a decryptor on the video card.

12. The system of claim 9, wherein the act of decrypting
takes place at a processing point where there is no program
matic access to decrypted pixel data.

