(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
17 October 2019 (17.10.2019)

‘O 0000 0 O 0
(10) International Publication Number

WO 2019/200398 Al

WIPO I PCT

(51) International Patent Classification:
C120 1/6827 (2018.01) G16B 30/00 (2019.01)
C120 1/6886 (2018.01) G16B 40/00 (2019.01)

(21) International Application Number:
PCT/US2019/027525

(22) International Filing Date:
15 April 2019 (15.04.2019)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/657,606 13 April 2018 (13.04.2018) UsS
62/658,891 17 April 2018 (17.04.2018) UsS
62/827,044 30 March 2019 (30.03.2019) UsS

(71) Applicant: DANA-FARBER CANCER INSTITUTE,
INC. [US/US]; 450 Brookline Avenue, Boston, MA
02215-5450 (US).

(72) Inventor; and
(71) Applicant: CARTER, Scott L. [US/US], 141 Erie St. #2,
Cambridge, MA 02139 (US).

(74) Agent: HALSTEAD, David P et al.; Foley Hoag LLP, 155
Seaport Boulevard, Boston, MA 02210-2600 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(54) Title: ULTRA-SENSITIVE DETECTION OF CANCER BY ALGORITHMIC ANALYSIS

10000 1DNA input (ng)

58000

k]

5 6000 -

m

S

® 4000 -

02000

O ) l’ H i H ¥ 13
0 2000 4000 6000 8000 10000

Attempted coverage
Fig. 1A

w0 20197200398 A 1 | 000 T 00000 YOO 0

(57) Abstract: Ultra-sensitive detection of cancer by algorithmic analysis. In various embodiments, a sample comprising a plurality
of polynucleotides is analyzed. A plurality of sequences of the plurality of polynucleotides is received. The plurality of sequences is
provided to a trained classifier. The trained classifier is adapted to accept a plurality of sequences and output a class label indicative
of the presence of a somatic variant within the plurality of sequences. A class label is received from the trained classifier indicative of
the presence of a somatic clone within the plurality of sequences.
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ULTRA-SENSITIVE DETECTION OF CANCER BY ALGORITHMIC ANALY SIS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 62/657,606,
filed April 13, 2018, U.S. Provisional Application No. 62/658,891, filed April 17, 2018, and
U.S. Provisional Application No. 62/827,044, filed March 30, 2019, which are hereby

incorporated by reference in their entireties.

BACKGROUND
[0002] Embodiments of the present disclosure relate to whole-genome sequencing, and more

specifically, to ultra-sensitive detection of cancer by algorithmic analysis.

BRIEF SUMMARY
[0003] According to embodiments of the present disclosure, methods of and computer
program products for analyzing samples comprising a plurality of polynucleotides are
provided. In various embodiments, a plurality of sequences of the plurality of
polynucleotides is received. The plurality of sequences is provided to a trained classifier.
The trained classifier is adapted to accept a plurality of sequences and output a class label
indicative of the presence of a somatic variant within the plurality of sequences. A class label
indicative of the presence of a somatic clone within the plurality of sequences is received
from the trained classifier.
[0004] In some embodiments, based on the label, it is indicated whether a cancer clone is
present in the sample. In some embodiments, based on the label, it is indicated whether a
clonal expansion is present in the sample. In some embodiments, the label has an associated

probability.
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[0005] In some embodiments, clinical data are provided to the trained classifier, the clinical
data being related to an originator of the sample. In some embodiments, the clinical data
comprise an indication of smoking by the originator of the sample. In some embodiments,
the clinical data comprise family history of the originator of the sample. In some
embodiments, population data are provided to the trained classifier, the population data being
related to an originator of the sample.

[0006] In some embodiments, the plurality of sequences comprise a plurality of somatic
variants.

[0007] In some embodiments, trained classifier comprises an artificial neural network. In
some embodiments, the trained classifier comprises a regression model. In some
embodiments, the trained classifier comprises a random decision forest. In some
embodiments, the trained classifier comprises an SVM. In some embodiments, the neural
network is a convolutional neural network. In some embodiments, the artificial neural
network is a recurrent neural network.

[0008] In some embodiments, the sample comprises blood. In some embodiments, the
sample comprises cerebrospinal fluid. In some embodiments, the plurality of polynucleotides
comprises DNA. In some embodiments, the plurality of polynucleotides comprises
methylated DNA. In some embodiments, the plurality of polynucleotides comprises RNA.
[0009] In some embodiments, fragment lengths of the plurality of sequences are provided to
the trained classifier.

[0010] In some embodiments, the sequencing is at a depth of 100x or less. In some
embodiments, the sequencing is at a depth of 85x or less. In some embodiments, the
sequencing is at a depth of about 20x to about 85x. In some embodiments, the sequencing is
at a depth of about 20x to about 100x. In some embodiments, the plurality of polynucleotides
is sequenced to obtain the plurality of sequences.

2.



WO 2019/200398 PCT/US2019/027525

[0011] According to embodiments of the present disclosure, methods of and computer
program products for analyzing samples comprising a plurality of polynucleotides are
provided. In various embodiments, at least one prior sequence of a polynucleotide associated
with a tumor genome is received. A generative model is fitted to the at least one prior
sequence. A plurality of sequences of the plurality of polynucleotides is received. The
generative model is applied to the plurality of sequences to determine a probability that a first
somatic clone is present in the plurality of sequences. Based on the probability, a label
indicative of the presence of the first somatic clone in the sample is determined.

[0012] In some embodiments, the label has an associated probability. In some embodiments,
the generative model comprises a linear-Gaussian model. In some embodiments, the
generative model comprises a linear-negative binomial model. In some embodiments, the
generative model comprises a latent factor model. In some embodiments, the generative
model comprises a factor analysis model.

[0013] In some embodiments, a phylogenetic tree is inferred from the at least one prior
sequence. In some embodiments, the generative model is updated based on the plurality of
sequences. In some embodiments, the at least one prior sequence comprises a second somatic
clone, and based on the updated generative model, a probability that the sample contains the
second somatic clone is determined.

[0014] In some embodiments, the at least one prior sequence comprises a second somatic
clone, and, based on the updated generative model, a probability that the sample contains a
descendent of the second somatic clone is determined. In some embodiments, the at least one
prior sequence comprises a second somatic clone, and, based on the updated generative
model, a probability that the sample contains a third somatic clone related to the second
somatic clone within the phylogenetic tree is determined. In some embodiments, based on
the updated generative model, a probability that the sample shares at least one somatic

-3-
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mutation with the at least one prior sequence is determined. In some embodiments, based on
the updated generative model, a probability that the sample shares at least one clonal
expansion with the at least one prior sequence is determined.

[0015] In some embodiments, based on the label, it is indicated whether a cancer clone is
present in the sample. In some embodiments, based on the label, it is indicated whether a
clonal expansion is present in the sample. In some embodiments, the label has an associated
probability. In some embodiments, the plurality of sequences comprise a plurality of somatic
variants.

[0016] In some embodiments, the sample comprises blood. In some embodiments, the
sample comprises cerebrospinal fluid. In some embodiments, the plurality of polynucleotides
comprises DNA. In some embodiments, the plurality of polynucleotides comprises
methylated DNA. In some embodiments, the plurality of polynucleotides comprises RNA.
[0017] In some embodiments, the sequencing is at a depth of 100x or less. In some
embodiments, the sequencing is at a depth of 85x or less. In some embodiments, the
sequencing is at a depth of about 20x to about 85x. In some embodiments, the sequencing is
at a depth of about 20x to about 100x. In some embodiments, the plurality of polynucleotides
is sequenced to obtain the plurality of sequences.

[0018] According to embodiments of the present disclosure, methods of and computer
program products for analyzing samples comprising a plurality of polynucleotides are
provided. In various embodiments, a plurality of sequences of the plurality of
polynucleotides is received. One or more inherited variant and one or more somatic variant
among the plurality of sequences are identified. The one or more inherited variant is
provided to a first trained classifier. The one or more somatic variant is provided to a second
trained classifier. The presence of aneuploidy in the plurality of polynucleotides is
determined by the first and second trained classifier.

-4 -
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[0019] In various embodiments, the plurality of sequences comprise a plurality of somatic
variants. In various embodiments, the first or second trained classifier comprises an artificial
neural network. In various embodiments, the first or second trained classifier comprises a
regression model. In various embodiments, the first or second trained classifier comprises a
random decision forest. In various embodiments, the first or second trained classifier
comprises an SVM. In various embodiments, the artificial neural network is a convolutional
neural network. In various embodiments, the artificial neural network is a recurrent neural
network.
[0020] In various embodiments, the sample comprises blood. In various embodiments, the
sample comprises cerebrospinal fluid. In various embodiments, the plurality of
polynucleotides comprises DNA. In various embodiments, the plurality of polynucleotides
comprises methylated DNA. In various embodiments, the plurality of polynucleotides
comprises RNA.
[0021] In various embodiments, the sequencing is at a depth of 100x or less. In various
embodiments, the sequencing is at a depth of 85x or less. In various embodiments, the
sequencing is at a depth of about 20x to about 85x. In various embodiments, the sequencing
is at a depth of about 20x to about 100x. In various embodiments, the plurality of
polynucleotides is sequenced to obtain the plurality of sequences.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0022] Figs. 1A-B are plots of the expected number of unique reads as a function of raw
sequencing depth for cfDNA samples.
[0023] Fig. 2 illustrates sensitive detection of cancer in ¢cfDNA using reference-tumor
somatic copy number alterations (SCNAs) according to embodiments of the present

disclosure.
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[0024] Figs. 3A-C depict power calculations for cancer detection using a typical lung-cancer
genome as a tumor reference genome.

[0025] Figs. 4A-F illustrate improved detection of allelic imbalance in highly impure tumor
DNA samples according to embodiments of the present disclosure.

[0026] Fig. S illustrates the power to detect de novo subclinical cancer using mutational
signature analysis according to embodiments of the present disclosure.

[0027] Figs. 6A-C illustrate exemplary integrative analysis of genomic copy-number and
point mutation according to embodiments of the present disclosure.

[0028] Fig. 7 illustrates a method of analyzing a sample comprising a plurality of
polynucleotides according to embodiments of the present disclosure.

[0029] Fig. 8 illustrates a method of analyzing a sample comprising a plurality of
polynucleotides according to embodiments of the present disclosure.

[0030] Figs. 9A-B provide data illustrating robust detection of subclinical lung cancer in a
patient according to embodiments of the present disclosure.

[0031] Figs. 10A-E are 2D scatter plot of exemplary variant-allele fraction according to
embodiments of the present disclosure.

[0032] Figs. 11A-C provide data illustrating robust detection of breast cancer in a patient
according to embodiments of the present disclosure.

[0033] Figs. 12A-0 are 2D scatter plots of exemplary variant-allele fraction according to
embodiments of the present disclosure.

[0034] Figs. 13A-AD are 2D scatter plots of exemplary variant-allele fraction according to
embodiments of the present disclosure.

[0035] Fig. 14A is a graph of the expected number of tracking variants detected against

cancer fraction according to embodiments of the present disclosure.



WO 2019/200398 PCT/US2019/027525

[0036] Fig. 14B is a graph of detection power against cancer fraction according to
embodiments of the present disclosure.
[0037] Fig. 15 depicts a computing node according to an embodiment of the present

disclosure.

DETAILED DESCRIPTION
[0038] Early detection is one of the most effective ways to increase the cure rate for cancer,
which remains the second leading cause of death in the United States. One approach to non-
invasive early cancer detection is to perform genomic analysis of cell-free DNA (¢cfDNA),
also known as liquid biopsy. Since genome sequencing of plasma cfDNA from routine blood
draws can be used to detect the presence of DNA shed from tumors, this approach holds the
potential to make early cancer detection a routine clinical procedure.
[0039] Genomic analysis of plasma cell free DNA (¢fDNA) is useful due to its ability to non-
invasively assay potential cancer-vulnerabilities in metastatic patients. Plasma cfDNA
genotyping has a high positive predictive value (PPV) for detecting driver mutations in
oncogenes like EGFR and KRAS, making it useful as a tool for detecting driver mutations and
guiding use of targeted therapies. As discussed above, the fundamental limitation of plasma
genotyping is that sensitivity for detecting known tumor-related mutations is imperfect. For
example, CT-imaging can discern lung nodules as small as 0.034 cm’, corresponding to an
expected cancer-cfDNA fraction of 1.4x107* (95% CI: 6.4x107¢ — 3.1x107%) whereas the
current limit of detection for targeted genotyping is approximately 1/1,000.
[0040] Clinically meaningful increases in detection sensitivity can be realized using the WGS
approaches described herein. Among patients with advanced EGFR-mutant non small-cell
lung cancer (NSCLC), rapid reductions in plasma mutations can be seen in the initial months
on therapy, followed by re-emergence prior to radiographic disease progression. Some
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metastatic lung cancers shed very little tumor DNA into the plasma, resulting in false
negatives even with highly sensitive assays. This highlights the imperfect sensitivity of
alternative PCR-based plasma genotyping assays, which are unable to detect circulating
tumor DNA in patients with advanced NSCLC having a response to therapy.

[0041] Several alternative technical approaches may be taken to achieve improved
sensitivity, including ultradeep sequencing and personalized (or bespoke) sequencing assays.
Bespoke assays aim to increase sensitivity through PCR amplification of specific selector
regions where mutations exist in a patient’s cancer. Applicability of such an approach is
limited by the need to sequence the tumor and then develop personalized PCR primers for
detection of tumor DNA, a logistically complex process which might impair routine clinical
use. Ultradeep sequencing assays aim to increase sensitivity through deep sequencing of key
regions of the genome. Such an approach can be costly, is inherently limited in breadth, and
may not improve sensitivity given the low levels of circulating DNA present in patients with
a low burden of cancer.

[0042] The limited DNA in input material imposes a fundamental physical limitation on
detection. Accordingly, targeted PCR or deep-coverage NGS assays are unlikely to achieve
useful sensitivity for patients with subclinical cancer. Such patients will typically shed only a
few nanograms of cfDNA per tube of blood — the mass equivalent of approximately 1,000
genomes (3.6ng) — so the resolution to quantify any given mutation cannot be greater than 1
in 1,000, even assuming error-free sequencing. In practice, this limitation is made even more
severe by the limited efficiency (10-30%) of adaptor ligation prior to PCR amplification of

DNA for NGS, resulting in loss of the majority of DNA fragments during library preparation.

[0043] Referring to Figs. 1A-B, plots are provided of the expected number of unique reads as
a function of raw sequencing depth, illustrating the diminishing returns on increasing
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attempted coverage when using limited-input cfDNA samples. The y-axis shows the
expected number of unique reads (true coverage) as a function of raw sequencing depth
attempted (x-axis). Highlighted curve 101 corresponds to an input DNA mass of 3.6ng, a
typical quantity obtainable from plasma cfDNA in a patient with subclinical cancer. Fig 1B
is a zoomed in view of Fig. 1A, showing that moderate-depth coverage is possible with
limited DNA input. Assuming 30% adaptor-ligation efficiency, then 100X attempted
coverage will yield 85X de-duplicated (true) coverage (dashed lines).

[0044] In general, coverage (or depth) in DNA sequencing is the number of reads that
include a given nucleotide in the reconstructed sequence. Deep sequencing refers to the
general concept of aiming for high number of replicate reads of each region of a sequence.
Even though the sequencing accuracy for each individual nucleotide may be very high, the
very large number of nucleotides in a genome means that if an individual genome is only
sequenced once, there will be a significant number of sequencing errors. Many positions in a
genome contain rare single-nucleotide polymorphisms (SNPs).

[0045] A further limitation of targeted-sequencing approaches is that that they are unable to
distinguish benign from malignant clones, since many indolent clonal expansions harbor
driver mutations identical to those found in deadly cancers. All somatic tissues result from an
evolutionary process, whereby repeated rounds of mutation and selection result in mosaic
genetic heterogeneity. Although cancer can be thought of as an extreme case involving
strong positive selection and clonal expansion, such expansions have also been demonstrated
in physiologically normal tissues, and are likely pervasive. Distinguishing benign from
malignant clones requires methods that can incorporate genome-wide clonal co-variation to

sensitively track clonal populations and match them to population-level knowledge banks.



WO 2019/200398 PCT/US2019/027525

[0046] To address these and other shortcomings of alternative approaches, various
embodiments of the present disclosure leverage breadth of genomic coverage, rather than
depth, to achieve ultra-sensitive detection of somatic clonal expansions consistent with
cancer. Whole genome sequencing (WGS) to moderate depth (20-100x) can provide
excellent sensitivity to detect the presence of somatic cancer clones by statistical integration
of weak evidence from up to millions of somatic alterations, even though the sensitivity to
detect any single cancer mutation is low. WGS approaches described herein address the
challenge of clonal heterogeneity by statistical reconstruction of phylogenetic trees relating
all somatic clones detected in a given patient. Longitudinal tracking of clones, rather than
mutations, enables discrimination between benign (slow growing) and malignant (fast
growing) clones; even if both harbor identical drivers, they may be distinguished by their
unique passenger mutations, of which hundreds to millions may be revealed by WGS.

[0047] The calculations depicted in Fig. 1 illustrate that various approaches described herein
enable a transformational sensitivity increase of up to three orders of magnitude over
alternative approaches, and thus, improve early detection of a range of cancers. The
approaches described herein may be applied with existing whole-genome sequencing (WGS)
of plasma-based cfDNA obtained from peripheral blood collected during the course of
clinical care. It will be appreciated that, in addition, the present disclosure is applicable to
any other polynucleotides that may be sequenced by WGS techniques, including DNA, RNA,
methylated DNA, or isolated fragments thereof.

[0048] As set out herein, clonal phylogeny inference may be applied to low-purity
longitudinal cfDNA sequencing data. In this way, improved signal-to-noise ratios is achieved
in somatic DNA copy-number and mutation calling. Various embodiments leverage clonal
deconvolution and statistical reconstruction of phylogenetic trees relating all somatic clones
detected in a given patient.

-10 -
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[0049] In various embodiments, a flexible statistical analysis toolkit is provided to detect
minute de novo somatic clones. Methods are provided for blinded detection of somatic
clones consistent with cancer. Various embodiments apply Bayesian statistics to integrate
evidence from signatures of aneuploidy and mutation that are learned from population-level
analyses of TCGA datasets. These may be adapted to the risk profile of the patient being

monitored.

[0050] The statistical approaches to WGS provided herein transform plasma-based
genotyping liquid biopsy from a tool used for guiding palliative therapy of metastatic cancer
into diagnostics that can be used to detect subclinical cancer and impact cure rates in early-
stage, curable cancers. In various embodiments, the techniques described herein are useful
to:

o Identify patients who would benefit from additional adjuvant therapy to prevent or delay
clinical recurrence based on the presence of residual cancer-derived cfDNA following
therapy with curative intent.

e Measure the extent of a patient’s response to immune-checkpoint blockade therapy,
where imaging is inherently ambiguous due to the pseudo-progression phenomenon,
whereby inflammation due to therapeutic efficacy can be indistinguishable from tumor
progression — a major problem in clinical decision-making.

e Enable precision interception of cancer in healthy individuals by ultrasensitive blood-
based cfDNA screening and monitoring. Approaches are provided to tailor such
screening to an individual’s risk profile as determined by family history, germline risk

alleles, and environmental exposures.
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e Study the clonal dynamics of cancer during therapy using liquid biopsy to sample disease
states at high temporal resolution — such studies can reveal the cancer subclones sensitive
to a therapy and provide an early readout of efficacy as well as insights into genetic
drivers of resistance and/or sensitivity. Ultrasensitive readout of clonal fractions at each
timepoint allows these techniques to be applied in cases where the overall cancer-cfDNA
shed is very low or when the change in clonal fraction between time-points is very small.

[0051] The statistical methods provided herein outperform alternative methods for accurate

somatic variant calling from next-generation sequencing data, and thus have broad

applicability to cancer genome characterization in virtually all contexts. The probabilistic
methods provided herein can be directly applied to various sequencing strategies, including
whole-exome sequencing, targeted clinical gene panels, or whole-genome sequencing. This
confers enormous flexibility to design cost-effective studies and encourages widespread
adoption.

[0052] The novel computational methods provided herein for fully automated clonal

deconvolution and phylogenetic reconstruction are broadly applicable to the study of intra-

tumor heterogeneity and evolution. This is particularly true for studies based on cfDNA
and/or archival formalin-fixed paraffin-embedded (FFPE) blocks, for which single-cell

sequencing will never be an option.

[0053] Whole-genome sequencing (WGS) to moderate depth (20-100x) can provide excellent
sensitivity to detect the presence of somatic cancer clones, even though the sensitivity to
detect any single cancer mutation is low. This is because the probabilities of various cancer-
genome alterations being represented in a sample of cfDNA are statistically independent of
one another. Therefore, sensitive detection can be achieved by statistical integration of weak
evidence from up to millions of somatic alterations. This approach can realize a

-12 -
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transformational sensitivity increase of at least three orders of magnitude over alternative
approaches.

[0054] In various embodiments, deep learning techniques are used to dramatically improve
the sensitivity and specificity for distinguishing true point mutations from sequencing
artifacts. Linear-Gaussian dimensionality reduction is used in some embodiments to remove
noise from genomic copy-ratio profiles.

[0055] In various embodiments, joint estimation of allelic ratios at heterozygous SNP sites
across all samples from a given patient is performed, which can be combined with panel-
based SNP phasing using the Baum-Welch algorithm for hidden Markov models to achieve
unprecedented sensitivity to identify allelic imbalance due to aneuploidy — a hallmark of
cancer genomes.

[0056] In various embodiments, multi-sample inference of clonal phylogeny is provided.
Methods are provided to statistically infer cancer phylogenies from mixed DNA sequencing
data.

[0057] Ultrasensitive phylogenetic monitoring using reference tumor-genome is provided.
Such embodiments enable optimal exploitation of all available information about a patient’s
cancer genome in order to increase sensitivity to detect recurrence.

[0058] Ultrasensitive detection of de novo somatic clones is provided without use of a
reference tumor-genome, based on integrating signals from aneuploidy and mutational
signatures associated with cancer. These can be tuned to a patient’s personal risk profile

based on family history and/or environmental exposures.

[0059] As set out below, in various embodiments, methods for clonal phylogeny inference
are applied to low-purity longitudinal cfDNA sequencing data. All somatic tissues result
from an evolutionary process, whereby repeated rounds of mutation and selection result in

-13 -



WO 2019/200398 PCT/US2019/027525

mosaic genetic heterogeneity. Computational methods may be used to deconvolve complex
DNA sequencing data obtained from genetically heterogeneous cancer tissue-samples in
order to infer tumor content, DNA ploidy, whole-genome doubling, absolute copy-numbers,
and subclonal alterations.

[0060] Statistical clonal-deconvolution is successful due to fact that aneuploidy is an early
and pervasive event in many cancers. Most human tumor samples are parsimoniously
explained by a single dominant clone discernable by aneuploidy, often containing smaller
nested copy-number and sequence variants. This pattern has been confirmed by single-cell
DNA sequencing, revealing nearly indistinguishable copy-number profiles among the 1,000s
of primary-tumor cells sequenced. This observation is also highly consistent with classic
models of tumorigenesis. Although human cancer tissues are genetically heterogeneous,
discrete clonal phylogenies can be readily reconstructed using statistical analysis of bulk
cancer-tissue DNA sequencing data. It follows that multiple samples of cancer-tissue from
the same patient provide increased power to discern tumor clonal substructure and lessen the
reliance on parsimony.

[0061] In various embodiments, robust and general Bayesian methods are provided. Such
approaches intrinsically operate on all available samples from a given patient through all
stages of analysis, including processing of raw read-count data to call somatic variants,
resolution of clonal populations, and inference of phylogenetic relationships. Various
approached herein cope with inherent ambiguity in the data when only a small number of
patient-samples are available for inference, such as in TCGA or clinical sequencing. Many
inferences of interest, such as whether a given point-mutation is homozygous, can still be
made reliably even when other aspects of the sample(s) are not uniquely identified. In
addition, these methods naturally gain more power for clonal reconstruction as more samples
from a given cancer are sequenced.

-14 -
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[0062] Methods for robust multi-sample inference of somatic variation and clonal phylogeny
can be extended to enable a transformative increase in the sensitivity at which subclinical
cancer may be detected.

[0063] Referring to Fig. 2, sensitive detection of cancer in cfDNA using reference-tumor
somatic copy number alterations (SCNAs) detected in WGS data is illustrated. Rectangles
201, 202 highlight a high-level focal amplicon visually apparent in both samples. cfDNA
was collected from the cerebro-spinal fluid (CSF) and plasma at the same clinical visit. The
patient had active lepto-meningeal disease, but no active extracranial disease.

[0064] Referring to Figs. 3A-C, power calculations for cancer detection using a typical lung-
cancer genome as a tumor reference genome are provided. All calculations assume a
sequencing error-rate of 1 in 1,000 and control the false positive rate at 1%. In Fig. 3A,
SCNAs (50% of the genome aneuploid at 1-copy imbalance), Log copy-ratios were modeled
at 1kb resolution as Gaussian with variance 0.15, similar to typical values obtained from
WGS data. In Fig. 3B, Mutations (2 million SSNVs) are illustrated. In Fig. 3C, Allelic
imbalance at SNPs is illustrated, an indicator of aneuploidy.

[0065] Anecdotal data with clinical specimens as illustrated in Fig. 2, as well as simulation
data as illustrated in Fig. 3 demonstrate that multi-sample inference of somatic variation and
clonal phylogeny can be used with moderate-depth (20-85x) WGS using low-input DNA, and
can detect low-level tumor DNA in settings where ultra-deep targeted sequencing would be
inefficient. Alternative approaches to deal with cancer heterogeneity other than the statistical
deconvolution methods are mostly inapplicable to cfDNA samples, since they utilize (i)
single-cell sequencing data; (i1) complex structural genomic variants, which will not be well

powered for detection in cfDNA samples due to fact that cfDNA is sheared into short
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fragments of 166bp; or (iii) long-range haplotype-resolved reads, also not compatible with
short cfDNA fragments.

[0066] In various embodiments, denoising total copy-ratio profiles with linear-Gaussian
dimensionality reduction is provided. Denoising algorithms are applied for improved
estimation of somatic copy-ratios from DNA sequencing depth. These methods extends
probabilistic principal component analysis to model library size, using a generative linear-
Gaussian model whereby each sample is projected onto a linear combination of latent bias
factors, each having a mean and precision for each genomic region.

[0067] In various embodiments, multi-sample inference of allelic ratios is provided that
operate on multiple patient-samples simultaneously. This is statistically more powerful the
single sample approaches, since all samples from a given patient must share the same SNP
genotypes. Thus, even DNA samples that contain almost no tumor may be assessed
accurately for allelic imbalance, provided at least one high-purity tumor-sample is available
to learn the SNP phases.

[0068] In various embodiments, multi-sample inference of clonal phylogeny is provided. A
phylogenetic framework is provided that regularizes model complexity by leveraging
biological assumptions regarding clonal evolution and phylogeny (e.g., most mutations occur
once during evolution and are clonally transmitted to all descendants, other than in cases of
mutation loss by segmental deletion). These assumptions are highly consistent with plausible
models of somatic clonal evolution and have demonstrated broad empirical support in
numerous cancer datasets. This model thus has greater statistical power and confers
robustness to sequencing artifacts, which are unlikely to be consistent with a well-resolved
phylogeny. Furthermore, as a result of jointly modeling all samples from a given patient
together, more power is gained as more patient-samples are sequenced, since more complex
phylogenies can gain definitive support.
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[0069] Inference of tumor purity and ploidy is provided that operates on multiple tissue
samples simultaneously. Such methods infer the number of distinct somatic clones &
represented in the s samples sequenced, as well as the clonal phylogeny relating them
(represented as a k < k matrix T, where T; ; = 1 if clone 7 is an ancestor of clone j, and 0
otherwise), and the clonal fractions in each sample (represented as an s x & matrix P, where
the rows sum to 1). In addition, the segmental somatic copy-numbers in each clone are
represented as a k x n matrix D, where 7 is the number of segments. The first row of D,
corresponding to the germline, is set to 2 in all segments other than regions of copy-number
polymorphism or sex chromosomes, and subsequent rows (clones) contain the integer change
in copy-number at that clone / segment.

[0070] The following matrix equation is obtained for total copy-ratio (tCR): tCR = WPTD.
W is an s x s diagonal matrix of nuisance factors: the inverse of the average ploidy of all
clones in each sample, weighted by their clonal fractions. This factor, is necessary to convert
mixed integer copy-numbers into copy-ratios, reflecting the fact that a constant mass of DNA
library is input for sequencing, so sequencing depth reflects locus concentration, rather than
absolute count. The above equation along with the copy-ratio error-model allows inference
of P, T, and D. Furthermore, this equation can be extended to also incorporate allelic-
fractions at each segment (using allelic depth at heterozygous SNPs), as well as the
multiplicity of somatic mutations in each clone. Because each of these data-sources are
independent and measured with defined error, a combined likelihood can be calculated,
allowing integration of evidence from each source of data available for a given cancer.
Algorithms are provided to fit this model using a hybrid approach incorporating greedy

search and importance sampling.
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[0071] In various embodiments, ultrasensitive phylogenetic monitoring is provided using
reference tumor-genome. In order to optimally leverage prior knowledge of a patient’s tumor
genome to enable ultrasensitive detection, the model above is fit using all available patient
samples with an appreciable amount of cancer-derived cfDNA (e.g., pre-operative high-shed
cfDNA samples, or else sampled cancer tissue). A low-shed cfDNA sample may then be
analyzed using this phylogenetic model of the patient’s cancer simply by adding a new row to
P for the new sample. This leaves only 4-1 free parameters to optimize (the fraction of each
somatic clone present in the new sample), and optimally utilizes all of the copy-ratio, allelic
ratio, and mutational profiles of all known clones. The probability of cancer being present in
the sample is equivalent to the probability than any of the 4-1 somatic clonal fractions is > 0.
[0072] Because cancers are likely to continue evolving during monitoring, this can be
extended to increase the weight of evidence from variants at internal branches of the cancer’s
clonal phylogeny. This could increase sensitivity since those variants are more likely to be
present at relapse. One advantageous property of this approach is that, as more samples are
sequenced, the more resolved the phylogeny will become, and detection power will increase
monotonically. This approach can deliver clinically transformative increases in sensitivity, as

illustrated in Fig. 3.

[0073] As set out above, optimal statistical methods are provided for multi-sample somatic
variant calling and clonal phylogenetic reconstruction. Many samples undetectable using
ddPCR (~1/1,000) sensitivity will be detectible using the WGS approaches provided herein.
Because WGS of cfDNA alone may not be adequately powered to detect all cryptic cancer
clones of potential interest, aberrant methylation patterns may be incorporated by performing

whole-genome bisulfide sequencing (WGBS).
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[0074] In various embodiments, a flexible statistical analysis toolkit to detect minute de novo
somatic clones is provided. For cases where no reference tumor-genome exists at appreciable
fraction, such as cancer screening, techniques are provided for maximally sensitive detection
of de novo somatic clones consistent with the presence of cancer. These techniques leverage
the genomic properties of cancer — such as common mutational processes and/or pervasive
aneuploidy — in order to achieve sensitive discrimination of cancer clones from sequencing
artifacts in the largest number of samples. As in the monitoring case discussed above, the
fact that millions of somatic variants may be independently observed using WGS is leveraged
to achieve sensitivity. Several statistical approaches are provided to this problem, that can
achieve high sensitivity.

[0075] Referring to Figs. 4A-F, improved detection of allelic imbalance in highly impure
tumor DNA samples by combining panel-based statistical phasing with cfDNA-based
phasing is illustrated. Curves show inferred posterior probability density functions over the
quantity f, the fraction of DNA derived from the minor homologous chromosome. Results
obtained using only observed imbalances in allelic depth at heterozygous SNP sites to infer
segmental allelic imbalance are compared with those obtained by combining panel-based
haplotype phasing with tumor allelic depth. The combined approach yields densities
substantially more concentrated at the true fvalues (dashed vertical lines). This effect is
especially pronounced as f approaches 0.5 (perfect allelic balance). These results were
obtained by simulating 100X coverage of a genomic segment containing 10,000 heterozygous
SNP sites and a probability of panel-based switch-error of 1 in 1,000 SNPs.

[0076] Referring to Fig. 5, power to detect de novo subclinical cancer using mutational
signature analysis is illustrated. Even without a paired tumor tissue or high-shed cfDNA
sample, low-level cancer clones can still be identified at clinically relevant sensitivity using
Bayesian methods for mutational signature analysis. This will allow them to be applied in a
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cancer-screening setting, or when no reference tumor-genome is available. Results are based
on simulated 100X whole-genome sequencing with an error-rate of 1 in 1,000 sequenced
bases (with 300M total spurious variants due to sequencing-errors expected in the data). The
indicated number of mutations generated by the smoking signature were simulated. Each
point on the curves was generated by repeating the simulation 1,000 times and computing the
fraction of runs where cancer was detected. The detection threshold was selected by holding
the false-positive rate fixed at 0.01. Dashed lines around each curve represent 99% credible

intervals.

[0077] As set out herein, even without a reference tumor genome, sensitive detection of
cancer in cfDNA is possible using statistical approaches. A flexible and robust statistical
analysis toolkit is provided to detect minute somatic clones consistent with subclinical cancer
in cfDNA samples using moderate depth whole-genome sequencing. In order to optimally
integrate evidence from multiple classes of genomic alterations so that sensitivity is
maximized, statistical methods are provided integrating evidence from multiple cancer-
associated mutational processes using a hierarchical Bayesian model.

[0078] In various embodiments, ultrasensitive detection of de novo somatic clones using
aneuploidy is provided. Aneuploidy is a hallmark of nearly all cancers, and is pervasive in
epithelial cancers. Statistical frameworks are provided to use somatic copy number
alterations (SCNAs) in two ways to detect de novo clonal expansions: (a) by the resulting
imbalance in the allelic depth — the number of reads supporting the alternate (variant) and
reference allele at heterozygous SNPs (hets), and (b) by the effect on the total number of
reads at each locus, quantified in terms of total copy-ratio (tCR).

[0079] The allelic imbalance model may be described as follows. At het h, the number of alt
reads is distributed as a, ~ Binomial(Ny, f,), where N, is the total read count (alt+ref) and
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fr 1s the fraction of copies in the sample that contain the alt allele. In particular, in copy
neutral regions, a, ~ Binomial(Ny, 1/2). More generally, for all hets within a region of
constant copy number, f}, is either ¢p or 1 — ¢ depending on the phase, where ¢ or 1 — ¢ are
the fractions of copies of that region coming from each homologous chromosome. To model
this, a time-inhomogeneous hidden Markov model (HMM) with a Binomial emission
distribution is used, with the hidden state representing both the phase and the value of ¢. For
each cancer type t, an HMM is defined with a transition matrix sequence informed by
previous data on commonly amplified/deleted regions, and informed by a patient-specific
estimate of phase using a panel-based haplotype-phasing method such as SHAPEIT2.
Maximum likelihood estimates of the set of ¢ values are computed using the Baum-Welch
algorithm. For a patient with alt read counts a = (a,, ..., ay) athets h = 1, ..., H, the
marginal likelihood p(a|t) of cancer type t is computed using a specialized Laplace
approximation, summing over all possible sequences of hidden states and integrating over the
¢ parameters. Total log copy-ratios r = (ry, ..., 1) forbins b = 1, ..., B can be incorporated
into the HMM using a Gaussian emission model.

[0080] Combining tumor allelic-imbalance with panel-based phasing dramatically improves
the concentration of the posterior distribution over fas illustrated in Fig. 4, demonstrating
that this technique improves sensitivity to confidently identify aneuploid genomic segments
in cryptic somatic clones. We will further extend these methods to incorporate prior
information from genetic recombination maps tailored to the inferred ancestry of the input
sample. Such information can be incorporated into our HMM by increasing the state-
transition probability corresponding to switch-errors in regions of high meiotic

recombination.
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[0081] In various embodiments, ultrasensitive detection of de novo somatic clones using
mutational signatures is provided. The idea behind this technique is to examine all possible
genomic variants, even if they have only a single supporting sequencing read. In the case of
mutations, this is expected to produce an enormous number of false positives: 3 billion bases
x 100x coverage x 1/1,000 error-rate = 300M errors expected. Detection leverages the fact
that many lung cancer genomes associated with tobacco smoking will be heavily
mutagenized by a well-established mutational process that mutates DNA bases in a highly
non-random manner easily appreciated by considering the base substitution within its 5’ and
3’ sequence context.

[0082] Specifically, each candidate somatic single-nucleotide substitution (SSNV) can be
classified according to the bases involved in the substitution and the bases immediately
adjacent on the 5' and 3' sides, e.g., sACG3 > s AGGs3, resulting in 96 such classes of SSNV.
Different types of cancer exhibit different relative proportions of these SSNV classes.
Further, these proportions can be decomposed into characteristic signatures or frequency
profiles (Wyg, Way, ..., Wog ) corresponding to common mutational processes kK = 1, ..., K.
The number of SSNVs of each class is well modeled by a Poisson distribution — specifically,
x; ~ Poisson(YK_, w;,0)) where x; denotes the number of SSNVs of class i in the sample,
and 8, represents the patient's exposure to mutational process k.

[0083] Novel statistical methods are provided to leverage this information to detect
cancerous clonal expansions using the presence of signatures that are highly consistent with
cancer. More precisely, a Bayesian approach is taken where for each cancer type t a targeted
model is defined specifying a subset of active mutational processes and a prior distribution
p(0]t) on the patient's exposure to each active process, which may be informed by covariates

such as known environmental exposure or familial history. The marginal likelihood of cancer
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type tis then p(x|t) = [ p(x|0)p(0]t)dO for a patient with SSNV substitution class counts
x = (xq, ..., X96). Although exact computation of these integrals is prohibitively complex, a
fast algorithm using the Laplace approximation may be applied. This approximation may be
validated using Markov chain Monte Carlo (MCMC) sampling.

[0084] Power calculations as shown in Fig. § demonstrate the utility of this approach for
early detection of lung cancer. Variable numbers of mutations from the smoking process are
simulated, as well as 300M errors. For realistic numbers of smoking-associated mutations
(between 100K and 1M), this technique alone is powered to detect cancer clones as small as
1/1,000 shedding cells as shown in Fig. §5. This technique may be applied to mutational
signatures (or combinations thereof) other than tobacco exposure. This technique may be
combined with other genomic analyses (for, e.g., aneuploidy) to improve sensitivity.

[0085] To evaluate the evidence for clonal expansions, various embodiments use a Bayesian
approach to integrate information from all of these models. A patient-specific prior
probability of each cancer type ¢ is defined based on covariates and any previous test data
that may be available for the patient. The posterior probability is computed of each cancer
type t — as well as the null model of no cancer (t = 0) —using Bayes’ formula: p(t|x, a,r) <
p(x|t)p(a, r[t)p(t), modeling the SSNV class counts x as conditionally independent of the
het alt read counts a and the total copy ratios r, given t. From this, the posterior probability
of the presence of a cancer clone can easily be computed as Y.;-o p(t|x, a,1).

[0086] In various embodiments, filtering of sequencing artifacts is provided using deep
learning. One of the challenges with somatic mutation analysis in the ultrasensitive detection
paradigm is that many somatic variants appear at low allele fractions (even a single
supporting read), making it difficult to distinguish them from sequencing errors. In practice,

this is made even worse because the lack of adequate base-specific error-models from cfDNA
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WGS data requires an assumption that the per-site error-rate is the genome-wide average of
1/1,000, even though many sites have lower error, and some have more. Furthermore,
various properties of the sequencing reads can inform error-probabilities, meaning that even
genome-wide base-level models will not be optimal for error suppression.

[0087] A bank of filters may be used for read-covariates and a site-level panel-of-normals
(PoN). In such approaches, a filter removes potential calls based on a single attribute the
filter is designed to detect. However, such filters are hard and do not consider other
covariates. If one filter detects something mildly suspicious, but the potential variant passes
all other filters easily, it is still removed. Additionally, such filters are generally developed
off of general human observations, which may not identify more subtle tells. Another issue is
that all the filters are tweaked to work well with a specific kind of sequencer and other
sequencers may have a completely different error space. A deep learning model addresses
these problems of filter-based approaches.

[0088] In various embodiments, a neural network classifier is applies. A neural network
learns useful covariates, provided the model is deep enough, allowing the network to detect
patterns that may be indicative of sequence errors that humans aren’t going to notice. Other
benefits include a reduced reliance on a panel of normal genome sequences, which serves to
detect rare kinds of errors that aren’t covered by filters in the old model. If a neural network
is trained well it has no need for such a panel, since it should have learned ways to identify
these kinds of errors.

[0089] Suitable artificial neural networks include but are not limited to a feedforward neural
network, a radial basis function network, a self-organizing map, learning vector quantization,
a recurrent neural network, a Hopfield network, a Boltzmann machine, an echo state network,
long short term memory, a bi-directional recurrent neural network, a hierarchical recurrent
neural network, a stochastic neural network, a modular neural network, an associative neural
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network, a deep neural network, a deep belief network, a convolutional neural networks, a
convolutional deep belief network, a large memory storage and retrieval neural network, a
deep Boltzmann machine, a deep stacking network, a tensor deep stacking network, a spike
and slab restricted Boltzmann machine, a compound hierarchical-deep model, a deep coding
network, a multilayer kernel machine, or a deep Q-network.

[0090] Various examples provided herein use a neural network classifier. However, it will
be appreciated that a variety of other classifiers are suitable for use according to the present
disclosure, including random decision forest, linear classifiers, support vector machines
(SVM), or neural networks such as recurrent neural networks (RNN).

[0091] In an exemplary embodiment, a deep neural network model learns on the sequence
context surrounding a potential somatic variant, as well as some upstream MuTect
annotations and summary statistics obtained from the reads at the site of a potential variant.
The network is designed to initially process the positional information of the sequence
context separately from the read annotations. The sequence context surrounding the potential
variant is converted to a 1-hot encoding and then fed through a series of 1-dimensional
convolution layers. The goal is to have this section learn specific sequence motifs that can
provide information on how to classify a potential variant. The read annotations are fed in as
a normalized vector and processed through a series of dense layers. The goal is to have this
section learn relationships between annotations that can be useful in classifying a potential
variant. The information from these upstream sections of the network is merged and
processed through more dense layers. This allows the network to learn relationships between
annotations and sequence motifs. The information is then passed through a softmax function
producing a vector of length two with elements that sum to one. The first element of the
vector is the probability the variant provided is real and the second element is the probability
that it is a sequencing artifact. When training the network this output is then given to a
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binary cross-entropy loss function along with the actual label of the variant, which allows the
network to be trained through back-propagation. After the network is trained the greater of
the two values identifies how the potential variant is classified.

[0092] In an exemplary implementation, gold-standard variant calls from DREAM challenge
batches 1 and 3 are used for training and its performance is tested on batches 2 and 4. An
accuracy of 97.12% is achieved with a true-positive rate (TPR) of 96.02% and a false-
positive rate of 1.79%. This approach therefore has great promise in increasing our ability to

sensitively identify cryptic de novo cancer clones using mutational signatures.

[0093] The methods described herein may be evaluated by performing in-silico mixing of
WGS data from tumor-normal pairs generated, for example, from the Cancer Genome Atlas
(TCGA). Aligned reads from tumor-normal BAM pairs may be mixed in variable defined
fractions. The resulting mixtures may be analyzed as set forth herein to infer the fraction of
tumor DNA present — both using the pure tumor genome as a reference, and using the de
novo detection techniques. These mixtures allow generation of validation data for these
methods over mixing fractions that might be difficult or expensive to achieve in the
laboratory.

[0094] Referring now to Fig. 6, integrative analysis of genomic copy-number and point
mutation data across 8 samples is illustrated. In this example CSF, plasma, brain metastasis,
and primary tumor samples are drawn from the same patient and subjected to whole-exome
sequencing. In the 1st column of Fig. 6A, inference of genome-wide copy-ratios from
sequencing data is shown. The black horizontal line indicates segmented copy-ratio values.
Colored points show the raw data, with color alternating between orange and blue for
adjacent segments. The 2nd column shows inference of allelic copy-ratios from sequencing
data. Variant allele fraction (VAF; y-axis) is plotted at all heterozygous SNP sites. Points
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are colored according to whether they fall on the major (red) or minor (allele). Purple points
are in regions of equal allelic copy-numbers. The 3rd column shows inference of absolute
allelic copy-number from sequencing data. Horizontal bars indicate absolute copy-numbers
(adjusted for sample purity and ploidy). Black corresponds to total copy-number. Pink
corresponds to minor-allele copy number. The 4th column shows rescaling of VAF of
somatic point mutations to units of multiplicity: the number of alleles per cell. This rescaling
adjusts for sample’s purity and ploidy and allows subclonal mutations to be identified and
quantitated. Green corresponds to mutations present in 100% of the cancer cells in the
sequenced sample. Pink corresponds to subclonal mutations present in <100% of cancer
cells. In Fig. 6B a phylogenetic tree is depicted derived from these same samples showing
that the cfDNA from CSF samples was more related to the brain metastasis, and was
divergent from plasma samples and the primary tumor. Fig. 6C shows a matrix of SSNVs
(columns) by samples (rows) showing the evidence for the inferred tree.

[0095] As described herein, cfDNA is used as a biomarker for residual disease after
definitive therapy, or as a pre-diagnostic test to screen for early-stage lung cancers.
However, the imperfect sensitivity of existing assays represents a huge roadblock for these
pursuits. If 20% of metastatic NSCLC are undetectable in plasma ¢fDNA (particularly those
involving the lungs only), assay sensitivity will likely be inadequate as a screening tool for
early stage curable lung cancers.

[0096] The use of liquid biopsies as a window to the genetic evolution of central nervous
system (CNS) metastases has significant implications for the diagnosis and monitoring of
these patients. The genetic drivers of central nervous system (CNS) metastases differ from
their matched primary tumors and extracranial metastases in ways that impact clinical
decision-making. The results of whole-exome sequencing was conducted in order to
construct a global phylogenetic tree relating all cancer subclones detected in each patient.
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These analyses revealed stark divergence between inter- and extra-cranial disease. This
finding presents a major barrier for the use of plasma-based liquid biopsy to effectively
inform treatment decisions in patients with CNS metastases, since the cancer clones
represented in plasma may by highly divergent from those in the CNS. Furthermore, in
patients without extra-cranial disease, plasma may contain only very small amounts of
cfDNA, only a small fraction of which is likely to be cancer-derived. Unfortunately, lumbar
puncture to collect CSF is an invasive procedure and may not be possible for most patients
with CNS metastases. Thus, the capability to access CNS tumor genetics via a peripheral
blood (or some other readily accessed biospecimen) would extend the potential benefit of
precision targeting of therapy to CNS cancer.

[0097] The ultra-sensitive detection methods described herein may be applied to WGS data
from paired plasma-CSF cfDNA samples in order to better understand anatomic partitioning

of cancer subclones in CNS metastasis.

[0098] In the below discussion of an exemplary Allelic CapSeg model, the following
terminology is used. For observed data (per segment), a denotes the number of reads
supporting alternate base at each SNP and n denotes the total number of reads at each SNP.
Model parameters (segment level) includes f € [0 — 0.5], the fraction of minor homologous
chromosome and 7 > 0, the total copy-ratio. The minor homologous chromosome copy-ratio
is denoted ft. The major homologous chromosome copy-ratio is denoted (1 — f)7. f and T
remain independent, even conditionally on the data, unlike SNP arrays. This simplifies
inference. The simplest model for the probability of a; alternate reads at SNP i given f is

formed from a mixture of 2 binomial distributions:
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Priadfng = ';é(gii}{%ﬁ'&{ﬁg . ng) + Binom{e, (1~ ony))

FEquation 1

[0099] The two binomial mixtures represent two possible phases to observe heterozygous
SNPs: in phase 1 (alt minor) and phase 2 (ref minor). Using Bayes’ rule, this can be inverted
to obtain an expression for the likelihood of f given data for all the SNPs on the segment:

Fr(flan) « I I(:; {Binom{e,|f, ) + Binom{e, {(1 ~ ), ‘ﬁ‘-s}}) Pr{fiH)

§ s

LEquation 2

[0100] Outliers may also be observed, which can be modeled using a third mixture

distribution (uniform on unit interval), having weight &:

Fr{flan) E [ (T’{Biﬁﬁ:ﬂﬂi{ii o 4 Binom{e (1~ ond )+ e} Pr{f &Yy

FEquation 3

[0101] Adding an outlier component is important to make inferences on f robust to outliers
(e.g., genotyping errors). In an exemplary embodiments, € = 0.005.

[0102] The quality of this model may be evaluated using normal (germline) samples, where
f =0.5.

[0103] The simple Binomial sampling model may be further improved by introducing a
sample-level model parameter, sr, The average value by which SNPs are skewed in this
sample. For example, observed AF = sy X true AF.

[0104] This model may be further improved, as can be seen by a quantile-quantile plot of P-
values for the SNPs against their expected quantities under the null distribution. The model

is inflated, having an excess of highly significant SNPs (lambda =1.34).
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[0105] The model may be improved by adding an additional sample level parameter v. This
parameter allows specification of additional overdispersion using a Beta-Binomial model.
Lower values imply more weight in the tails of the distribution, meaning that it expects to see
more SNPs with skewed allelic fractions even when f = 0.5. This parameter can be
interpreted as the number of prior pseudo-observations in the sense implied by the conjugate
relationship between the binomial density and with a Beta prior distribution over the true
value of p. Adding this parameter allows a much better fit on normal samples, with many
values of lambda near 1.0.

[0106] In general, binomial sampling of X successes in n trials with probability of success p
is given as:

X ~ Bin(n, p)

, then

P(X = klp,n) = L(p (1= )

k) =

Equation 4

[0107] In Bayesian modeling, p is considered as a random variable with a prior distribution:

n(pla, B) = Beta(a, §)
p* (1 —p)!

Equation 5

[0108] This leads to the analytically tractable composition integral to obtain the predictive

distribution:
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FEquation 6

f(k

[0109] Under maximum entropy assumptions, this distribution represents the optimal
integration of information relevant to predict the next (n + 1)th trial after observing n prior
trials with a successes and £ failures. Notice that the above quantity may be calculated
directly, without the need for grid or numerical optimization methods — this makes it very
easy to use.

[0110] To make the optimal inferences regarding the true allelic fraction f in the context of
expected bias favoring observation of the reference allele, this distribution is adapted to
represent uncertainty about observed a and n values equivalent to having information about
f from v observations with a; alternate and f; reference allele counts in the case of SNPs in

phase 1 (alt minor):
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FEquation 7

and analogous counts a, and £, for phase 2 (ref minor):
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[0111] We then obtain:

Er{fla s ) o 4.(5* = {L5{a 0 8, PYPe( A1)

¥ ) Pe(f1H}

{iseia i:mami{fr by, B 1) + Beta-Binom{e o, Baon))

FEquation 9

[0112] If sy = 1 then in the limit of v — oo this is equivalent to the above Binomial model.
[0113] Before jointly fitting all segment level parameters T and f, along with the two sample
level parameters s; and v, the simpler case of normal samples may be considered, where it
may be assumed that that T = 1 and f = 0.5 for all segments. s; and v are therefore jointly
optimized using coordinate ascent with a numerical optimizer to obtain § and .

[0114] Fitting this model in ~100 normal exomes, there is a strong correlation between ¢
and log V. The quality of this fit indicates that model fitting could be simplified by estimating
only § from the data and then estimating log ¥ by inserting Sy into a linear model: logv =
asy + b, with @ and b learned in a panel of normal exomes.

[0115] This simplification facilitates model fitting in cancer samples, where segment level
parameters 7 and f must also be fit. Because f and the remaining sample level parameter s,
are conditionally independent of 7, they may be optimized separately using coordinate ascent
with a numerical optimization.

[0116] Even in an aneuploid tumor sample, many segments will be present at allelic balance,
that is, both homologous chromosomes have the same copy-ratio. In these cases, f = 0.5.
However, random fluctuations in the observed data may cause ML estimates of f to be < 0.5.
From a Bayesian perspective, for a given segment, the free parameter f may not be a justified

addition to the simpler model where f = 0.5.
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[0117] We write the evidence for the two models, this quantity represents the extent to which
the model fits the data, averaged over all configurations of free parameters weighted by their
probability given the data (posterior) multiplied by their prior distributions. For the allelic
balance model, there is no free parameter f at the segment level, and the evidence is

equivalent to the above data likelihood with f=0.5:
Pria n{H) = L{f = 05]an &, 3}

FEquation 10

[0118] In the case of the more complex model H, this evidence calculation requires

integration over the posterior distribution of the free parameter f:

.5
Pria.njH,) = J L{fla.n, s, 0)Pr(F{H)df
¥

FEquation 11

[0119] A uniform prior density is specified on f over 0 to 0.5, resulting in Pr(f|H;) = 2.

Considering H, and H; to be the only possible models, Bayes’ rule may be applied to obtain:

Pr {{I, n i :}{\\ } Pr f\}?{{; }
Pr{a, n|H,)Pr(Hy) + Pria, n|H,)Pr(H,)

Pr(Hyla,n) =

FEquation 12

and Pr(Hi|a,n) = 1 — Pr(H,|a, n). Equal prior probabilities for the two models are

specified: Pr(Hy) = Pr(H,) = %

[0120] In DNA, there are four bases: cytosine (C), thymine (T), adenine (A), and guanine

(G). Cytosine always pairs with guanine, and thymine always pairs with adenine. Thus,
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distinguishing one of the two strands of a given DNA molecule, there are four possible base
pairs at each point: C-G, G-C, T-A, and A-T.

[0121] When considering base pair substitutions at a given point, the convention is to
distinguish the strand containing the pyrimidine (C or T) before the substitution has been
made. (Cytosine and thymine are pyrimidines, whereas adenine and guanine are purines.)

With this convention, there are six possible types of substitutions at any given point:

Table 1

[0122] Sometimes, these are abbreviated as C>A, C>G, C>T, T>A, T>C, and T>G, denoting
only the pre-substitution pyrimidine and what it changes to.

[0123] These six classes can be further divided by considering the left-right context, that is,
the bases adjacent to the point of substitution. The convention is to label the context in terms
of the bases (C, T, A, or G) on the 5' and 3' sides on the strand containing the pre-substitution
pyrimidine. For instance, in a substitution C>A, the C may be flanked by a T on the 5' side

and a G on the 3' side:

Table 2

[0124] There are 4 X 4 = 16 different contexts for each of the original six substitution types.
Therefore, there are 16 X 6 = 96 substitution types when context is taken into account.
[0125] At each position in the genome (except for a negligible fraction at chromosome ends),
one of the two strands contains a pyrimidine C or T, flanked by bases on the 5' and 3' sides,
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say, X and Y, respectively: i.e., XCY or XTY. This defines 2 X 4 X 4 = 32 possible states at
each point. For each such state, a mutation causing a substitution at this point can result in

one of three possibilities:

Table 3

[0126] Note that, as before, there are 32 X 3 = 96 types of substitution.

[0127] Focusing still on one position € in the genome, assume mutations at € occur as a time-
homogeneous continuous-time Markov process, holding the left-right context fixed (i.e.,
holding the neighboring base pairs constant). More precisely, when the current state is a, it
remains a for an Exp(|Ag,|) amount of time and then transitions to b # a with probability
Agp/|Agql, where Ais a 32 X 32 matrix such that (i) Ay, = 0 foraa # b, and (ii) Y Agp =
0. This is equivalent to saying that transitions from a to b occur with rate A,y; thus, A is
called the transition rate matrix.

[0128] Let S} denote the state at locus £ at time ¢, and let 57 be the state at £ for the normal

(germline) genome of the individual under consideration. Let {& Y be
the probability that the state is b at time ¢ given that the state is a at time 0. From the theory

of continuous-time Markov chains, we have that

FEquation 13

where exp(-) denotes the matrix exponential. Since the mutation rates Ay, are very small, it

is reasonable to use a first-order Taylor approximation, P* ~ I + tA.
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[0129] Let a; and b; denote the starting and ending states, respectively, for each of the

N
¢ , and define s =

substitution types [ = 1, ...,96. Let S A
X} is the number of positions that undergo substitution i.

[0130] Consider all of the positions £ that are in state a at time 0, and to simplify the math,
let us assume that no two of these positions are adjacent. Of the 32 states, only four of them
can be reached from a: the state can remain at a, or one of three substitutions can occur.
Suppose these three substitutions are i = 1,2,3, so that the starting states are a; = a, = az =

a and the ending states are by, b,, b, respectively. Letting

%
Y

FEquation 14

[0131] Since n is large and t4, is on the order of 1/n, then letting ¢ = nti, we have

< %
i

shasd and 1 when x; <

n, which is the case with high probability. Plugging these into Equation 14 yields

FEquation 15

[0132] By Stirling's approximation,
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......

FEquation 17

when n is large, xy < n, and t4, is on the order of 1/n.
[0133] For each of the 32 states a, the same approximation applies to the set of positions

starting in state a. Modeling these 32 sets independently, we have

FEquation 18

~

%1 In other words, the counts of the 96 substitution types are

where ¢
approximately distributed as independent Poisson random variables with rates n;t4;.

[0134] The preceding derivation ignores the fact that a substitution at one position changes
the context of the two adjacent positions. However, since it is rare for mutations to occur at
two adjacent positions, this should be negligible.

[0135] Suppose counts x;; are obtained for subjects j = 1, ..., ], for substitution types { =
1,..,1

2

where [ = 96. The derivation above suggests using the following model:

FEquation 19
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where t; is the age (or exposure time) of subject j, and n;; is the number of positions that are
in state a; in the normal genome of subject j, out of all positions that were measured, which
maybe a subset of the genome due to low sequencing depth or exome sequencing for
example.

[0136] Each subject is exposed to multiple mutational processes, e. g., UV radiation,
smoking, replication errors, etc., each of which has a different rate profile across the 96
substitution types. Since rates are additive in a continuous-time Markov process, it is natural
to model the subject-specific mutation rates 4;; as linear combinations of these mutational
process rate profiles, with nonnegative weights depending on the exposure of the subject to

each process. Thus, we assume a representation of the form

FEquation 20

where the weight 6;;, > 0 is the exposure of subject j to process k, and (1yy, ..., 71y is the rate
profile for mutational process k.
[0137] The exposures 6;; are measured in units of time, and the rates 7, are measured in
mutations per time unit for a single position. If we measure time in years, then the
parameters have the following interpretation:

n;;Tik 1s the expected number of substitutions of type i in subject j due to one year of
exposure to process k.

8k 1s the number of years that subject j has been exposed to process k.
[0138] Since the rates for single position are exceedingly small, it is convenient to put them

on a more interpretable scale by moving a fixed constant from n;; to . Specifically, by
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moving a factor of 10°, one can measure n; ;j in Mbp (millions of basepair positions) and
measure 7;; in mutations/Mbp/year.

[0139] Due to sequencing errors and other technical artifacts, occasionally a position will be
erroneously counted as mutated. To account for this in the model, we consider the k = 1
process to represent technical errors, and we set the corresponding profile to a fixed vector of
rates (114, ---, 771) based on historical data.

[0140] A statistical issue with this particular representation is that there is a non-
identifiability between the r's and 6y, 's, since arbitrary constants ¢, can be moved between

them. This makes it problematic to consistently estimate r and 8 from x data alone. One

Y

way of dealing with this is to normalize the r's by enforcing the constraint Ylaera = for
all k.

[0141] However, from a Bayesian perspective, this non-identifiability is not a fundamental
problem since the posterior distribution is still well defined. Additional data on process-
specific mutation rates (such as experimental data) can be used to help estimate 7y, resolving
the non-identifiability. A practical disadvantage of enforcing the normalization constraint is
that it complicates inference somewhat when the start counts n;; vary across subjects j. We
explore both normalized and unnormalized approaches.

[0142] Often, covariates such as age, sex, smoking habits, family history, UV exposure, and
so on, are available on each subject. Later, we construct a regression-based prior on the 6's
that takes into account subject-specific covariates. Further, we present an algorithm for
inferring the regression coefficients.

[0143] First, we present a simplified model that is interesting in its own right, and illustrates
some key aspects of the inference algorithm we propose. Later, we will augment the model

by (i) introducing indicator variables to allow 8;; values to be exactly O (enabling inference
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for K as well as inferring which processes are active in which subjects), (i) incorporating the

start counts n;;, and (iii) using a regression model for the prior on 8 in order to handle

s
covariates.

,

[0144] We describe two versions of the model: a normalized version with ) 7, and

an unnormalized version. Suppose

1

‘

‘
Yook
“rn

FEquation 21

for the normalized version, or

FEquation 22

for the unnormalized version. The likelihood for this model is

e,

FEquation 23

Sy

[0145] Due to the sum over k in the factor % <«

V\‘, it seems that there do not exist
conditionally conjugate priors for the r's and 8's. Interestingly, however, by introducing a
well-chosen auxiliary variable, we can find conditionally conjugate priors.

[0146] Let us introduce

REe

fori=1,..,landj =1, ...,J, where ¥
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which is, incidentally, equal to b 3 Thus, the auxiliary variable Y has
the effect of breaking up the sum over k, and as a result it is easy to do inference using Gibbs

sampling on the augmented joint distribution.

[0147] The augmented joint distribution is ¥ % The full
conditionals are derived as follows.

Updating y. Sample from the multinomial distribution in Equation 24.

Updating 8. For each j and k,

3
.
“rnpnit

pe

FEquation 28
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and thus H P

fad . LR T
“% and step (a) holds singe <™= ™ *

¥ " which does not depend on .

Updating r (unnormalized case).

o

3

TN LSRN T 1S

FEquation 29

A ¥

R

where *
[0148] To accurately recover the true values of r and 6, it is essential to infer K (the number
of mutational processes). A principled Bayesian approach would be to place a prior on K and
simply consider the posterior distribution on K. However, this tends to be complicated and
computationally burdensome, involving dimension-changing moves or using indicator
variables to include or exclude a subset of processes.

[0149] Automatic relevance determination (ARD) is an expedient alternative that effectively
selects a subset of processes by driving the coefficients of any unneeded processes to be close
to zero. For some models, ARD can be implemented by maximization of the marginal
likelihood (also known as type-II maximum likelihood). However, for the NMF models we
are interested in, the marginal likelihood does not have a closed form. Nonetheless, ARD can
still be performed via a particular choice of data-dependent hyperprior that we describe here.
The basic idea is to choose a hyperprior that favors having few active processes, and the key
is to calibrate the strength of the hyperprior to match the corresponding likelihood, so that it
is not too strong and not too weak.

[0150] First, as usual in ARD, we parameterize the model in a way that gives each process k

a common scale. In the r-normalized version of the model, we modify the prior on 6:
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Lo Linmmny

FEquation 30

and in the unnormalized version, we also modify the prior on 7

i
&

with a common mean #%

Then, in both versions we use a hyperprior on the means: #% ™ *

1, ..., K. The full conditional distribution for y is then, for the normalized version,

o R s Py -

N S o Y 3 N o 3

B O 1 g i3

PR & il
§

o3

sy,

7

-

<

where <% * The full conditionals for 8;;, and

13, are modified to use * * instead of b or B.
[0151] The key is to choose ag and b, appropriately, so as (i) to favor small values of pk and
(ii) to have appropriately calibrated strength so that the hyperprior will be just strong enough

to drive down pk for any unneeded processes. To see how to do this, we will focus on the
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normalized version; the unnormalized version is similar. Since the prior mean is

o

N
kX

', in order to accomplish (i), we can choose 733 for some

# ¥ For (ii), note that the full conditional for uk has mean

o
Lropns
P4

ettt

o,
>
o
s,
po
ek
o
il
.
H
'
e
2
o
“are,
Py
P

a convex combination of the prior mean 4} and the average . Thus, in
order to make the prior have commensurate strength, we need to choose s ~ 3 to be the same
order of magnitude as J,. Empirically, just choosing s = -+ 1 seems to work fine.

[0152] For processes k that are unneeded to fit the data, the parameters pk will be driven to
0, or more precisely, driven to = £. Consequently, € should be chosen to be significantly
smaller than the values of 8 that one expects to encounter.

[0153] Here, we put together the pieces from the previous sections, to provide the Markov

chain Monte Carlo (MCMC) algorithm for this basic model.

Input: ¥

Output: Samples of i

3

(unnormalized), and set

k3

Set -‘:s\i WA

Initialize 0, r, and y randomly (e.g., by sampling from the prior).

Iteratively repeat the following steps to obtain MCMC samples:

¢ where

“fori=1,...landj=1,..,].

-44 -



WO 2019/200398 PCT/US2019/027525

oforj=1,..,Jandk =1,..,K.

3. (Normalized version) Sample

¥ where

",
s

- fork=1,..,K.
[0154] To briefly demonstrate this model, we apply it to simulated data. Data for three
different scenarios are generated: (a) (/,/, Ky) = (96,100,5), (b) (1,], Ky) = (96,200,10),

and (¢) (1,], Ky) = (96,400,20). For each scenario, we generate 10 simulated data sets by

sampling true parameters ; independently,

§. ARG
Y

and then sampling data % ™ fori=1,...,landj=1,..,]
independently given the parameters.

[0155] For the model, we choose a = 1, a = 0.5, and set K to be (a) 10, (b) 20, and (¢) 30
for

the three scenarios, respectively. We use € = 0.01 for the ARD tolerance parameter. For
illustration purposes, we only use the normalized version of the model; the unnormalized

version yields similar results. On each data set, we run the MCMC chain for 2000 iterations

total, discarding the first 1000 as burn-in.
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[0156] The model is symmetric up to permutations of the labels k, so label switching is a
potential issue complicating estimation of the parameters. However, empirically we do not
observe any label switching, so averaging across MCMC samples provides interpretable
estimates of the parameters, even though in theory one would need to account for the
possibility of label switching.

[0157] To estimate K, we apply a threshold to the estimated hyperparameters ik, keeping
only those processes k such that fik > 4e¢.

[0158] To facilitate comparison with the true parameters (which are not identifiable due to

the possibility of moving a constant ¢ between “ and i), we normalize the true

* where e 3.

parameters by setting *
[0159] As a benchmark, we compare results with the ARD NMF algorithm of Tan and
Févotte (2013) (specifically, their #1 algorithm for Poisson data), with their parameters set to
a = 5 and their suggested choice of b. We use the same values of K as for our algorithm.
The Tan-Févotte algorithm seeks a maximum a posteriori (MAP) estimate. ARD NMF

results for scenario (a) are given in Table 4.

Table 4
[0160] ARD NMEF results for scenario (b) are given in Table 5.

Table 5

[0161] ARD NMF results for scenario (c) are given in Table 6
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Table 6

[0162] The results shown are averaged over the 10 randomly generated data sets for each
scenario. In scenarios (a) and (b), both algorithms estimated the number of processes
correctly in all 10 data sets, i.e., (a) K = K, = 5 and (b) K = K, = 10. In scenario (c), the
estimates in the 10 runs were K = 20,19,21,20,20,20,19,20,19,19 for our algorithm, and

-

K = 18,19,19,20,19,19,18,19,18,18 for the Tan-Févotte algorithm.

[0163] The distance metrics are defined as follows: vl is the chi-squared distance

averaged across the columns, i.e., * #% - Similarly,

rmse(x, y) is the root-mean-squared error averaged across the columns, i.e., rmse(xy) =

Since the order of the columns is not identifiable, to
compute the distances we first permute the columns to minimize the distance, using a greedy
algorithm to avoid searching over all K! permutations. In cases where K # K,, we pad the
smaller matrix with dummy columns filled with 1/1 for r and O for 6.

[0164] Our MCMC algorithm is consistently much more accurate in estimating r and 8 than
the Tan-Févotte MAP algorithm. For estimating K, the two methods seem to be comparable

in accuracy. The reason why the Tan-Févotte estimates perform so poorly with respect to

“} is that a number of its i values are very small or equal to 0, causing the chi-
squared distance to blow up.

[0165] A further advantage of our MCMC algorithm is that it provides uncertainty
quantification rather than simply point estimates. For example, the MCMC samples can be

used to construct posterior credible intervals for quantities of interest.
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[0166] A copy ratio is the relative concentration of copies of a given locus in a given sample.
In other words, it is the proportion of copies of a given locus out of all copies of observed loci
in a sample, divided by the corresponding proportion in a normal sample. Total copy ratio
refers to the copy ratio including copies from both homologous chromosomes, as opposed to
haplotype-specific copy ratio.

[0167] In order to estimate copy ratios from sequencing data, it is necessary to account for
the fact that different loci have different propensities of being observed, due to the physics of
the measurement technology. Further, a significant reduction in copy ratio estimation error
can be obtained by measuring typical noise profiles from a large panel of normal samples,
and subtracting off the projection onto this set of noise profiles.

[0168] Let ny, = number of reads of locus £ in sample s. This is the observed data. Later, in
the point mutation model, we will also consider the number of reference versus alternate
reads. (Note: We use the notation a: = b to mean that a is defined to be b.)

[0169] Let C;: = number of cells in sample s, for s = 1, ..., S. (Unobserved)

[0170] Let pgi: = proportion of cells in sample s from population k, fors =1, ...,5, k =

1, ..., K. (Unobserved)

[0171] Let gg.,: = number of copies of segment m in each cell from population k, for k =
1,..,K,m=1,.., M. (Unobserved for cancer populations, 2 for normal diploid populations)
[0172] Let ty;: = 1 if population i is an ancestor of population k, otherwise ty;: = 0 (for k =
1,..,K,i=1,..,K) (Unobserved) We take the convention that the set of ancestors of k
includes k itself, so £, = 1. Note that this defines a phylogenetic tree with each population
as a node.

[0173] Let m,: = index of the segment containing locus £, for £ = 1, ..., L (Unobserved)
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[0174] Let us define the normal population to be indexed by k = 1.

[0175] We would like to infer the matrices P = (pgi), Q@ = (qym), and T = (&y;), and the
segmentation assignments m,. Estimating the copy ratios is the first step toward doing that.
[0176] One approach is to construct a generative model, and perform posterior inference
given the ng,'s. However, standard inference techniques such as MCMC and variational
Bayes do not seem to work well on this problem, since the space of Q's and T's is large and is
complicated by strong dependencies and constraints, making the space difficult to explore.
[0177] The alternative explored here is to incrementally infer what we can from what we
know, chipping away at the problem until we arrive at sets of plausible values of P, @, and T.
The plan is then to use these inferred values to construct an importance sampling distribution

that will yield fully Bayesian inferences.

[0178] Gt = number of cells in sample s from population k.

[0179] & % = number of copies of segment m from population k, in sample s.

[0180] Then the true concentration of locus £ in sample s is

Dt

e
Ruanaat’ Kl

FEquation 35

[0181] Dividing this by the true concentration of locus € for a normal sample, namely 1/L,

yields the true copy ratio,

FEquation 36

[0182] However, we do not get to observe the true copy ratio directly, since only a fraction
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Prend o

of copies are observed as reads. Note that, by definition, o , so we only need

to estimate the 7¢,'s up to a multiplicative constant, say s, such that ry, =

o

"*_ In particular, we have

FEquation 37

where o, denotes proportionality with respect to €.

LRV

[0183] Let EE proportion of copies of locus £ that are read (i.e., observed) in sample s.

P . .
[0184] Then % ™ « number of copies of locus € read in sample s.

This is our observed number of reads, from above.

™ total number of reads in sample s,
assuming each read contains only one locus.

[0186] So, from our observed data, we can compute the empirical copy ratio,

FEquation 38

[0187] Note that this eliminates C,, one of our unknowns.

[0188] However, comparing this with the true copy ratio, we see that we are still left with the

issue of ¥ varying across different loci €. As a first step toward mitigating this, we could
divide by the empirical copy ratio for a normal sample s’, in which everything but the y’s

cancel,

-50 -



WO 2019/200398 PCT/US2019/027525

it

FEquation 40

[0190] Here, the first approximation is by applying the law of large numbers to the

[

denominators: , where is defined to be this limit,

~ 43¢ independently for some distributions “*¢" If

o

S

and it is assumed that %

then this is approximation is reasonable. The second approximation is by applying the law of

&
s

large numbers as *

[0191] Thus, we could estimate 75, by

FEquation 41

X . . .
where >~ means approximately proportional to, as a function of £.
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[0193] Thus, the vectors  +
directions (or, noise profiles) in L-dimensional space that are typical for samples of the

e

£y
random vector * **

[0194] The idea is to remove any component of our cancer copy ratio profile estimate

' that can be explained by the noise profiles. Specifically, what is
done is to center the data at zero (subtract off the mean), take the projection of our centered
estimate onto the space spanned by the noise profiles, and then subtract this projection from
the centered estimate. Another way of viewing this is that we are computing the residuals
after regressing the estimate onto the noise profiles.

[0195] The mathematical details are as follows. For notational convenience, let's reindex the

¥1 (and the cancer

sample s is not one of these). Let ™ ! (i.e., subtract off the sample mean over

. _:ji inanan _\'\
s"), and form the matrix <% ™ }

[0196] Likewise, let ¢ "%, where s is our cancer sample, and denote

17

ERRLE LI ) ) .
¥ 9% (je., AT is the pseudoinverse of A). Then AA™y is the
p

[0197] Let :

projection of y onto the column space of A4 (i.e., onto the span of the mean-centered noise

profiles). The residuals, then, are

FEquation 42
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[0198] The vector is an improved estimate of total copy ratios for
cancer sample s. This is repeated for each cancer sample s, using the same matrix A from

the panel of normals.

[0199] The total copy ratio estimates are then used (along with the alt/ref read counts at
heterozygous loci) to obtain haplotype-specific copy ratio estimates. The haplotype-specific

copy ratio estimates are, in turn, used to choose segment assignments m,. This allelic

CapSeg method is described further above.

[0200] From the segment assignments m, and the locus-level total copy ratio estimates

2

we can improve our estimates of total copy ratio by combining the estimates within each
segment, since the true total copy ratio is constant within each segment (assuming the

segmentation is valid). Thus, we can estimate total copy ratio for all loci in segment m as

FEquation 43

N §8 0 ¥y &
“““ 1. T = 38y

¥ is the set of loci in segment m, and the constant of

proportionality is determined by the constraint that e

[0201] The standard error of this average (adjusted for multiplying the constant of propor-

tionality), say @ can be used as a rough estimate of the standard deviation of the estimator

[0202] Using a probabilistic model, or at least some form of shrinkage, can provide
substantial improvement in copy ratio estimation accuracy. In high-dimensional estimation

problems like this, empirical averages are often not very accurate (e.g., the classic example is
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Stein's paradox). A natural choice would be a Poisson model with sample-specific effects
and locus-specific effects, along with some form of noise reduction using the normal panel.

[0203] Also, subtracting off the noise projection doesn't make complete sense to me. Since

,

the noise * is multiplicative rather than additive, it seems like it would make
more sense to divide by something rather than subtract something.

[0204] In order to separate the populations, as a next step toward recovering P, @, and T, we

will consider the estimated total copy ratios Y ag our input data, along with estimates of the

~

C A& N )
standard deviation ¥s¥  of the * =% estimators.

VO

[0205] Indexed by segment m, the true total copy ratios are @ % Lot Bl

3

where %'+ is such that & °

[0206] ThuS, deﬁning Tave O Ve e

i

Equation 44

should be on the order of s

where the error s .. Equivalently, in matrix notation,

£

letting 1 e

H H
ATEYER S

e e 3 ‘“t‘: . I fiteae. = £ .
[0207] Let s “™ < andfork = 2, ..., K, let "% -5 e ™ ¥pagws where pay, is the
parent of population k in the tree T. (k = 1 is the normal population.) In other words, dy,
is the change in segment m's total copy number that occurred when population k arose from

its parent population. We refer to dy,,, as the copy delta at population k, for segment m.
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[0208] Then S ¥0X

i
§

Fog T
3 P

Defining B

FEquation 47

[0209] Equivalently, in matrix notation, @ = TD, where D = (d,,,). Therefore,

Equation 48
where B: = PT.

[0210] Plugging this into the equation for Foma above, we get

FEquation 49

‘ ' O e WY W2
Or, in matrix form, ** WH e .

[0211] The B matrix has a natural interpretation, namely, by, is the proportion of cells in
sample s that are descended from population k (i.e., that belong to a population descended

from k). We refer to the b's as descended cell fractions (DCFs).

of F e
(2§ T 9 g 3 R

[0212] For any given segment m, the copy deltas ‘ £ should be approximately
independent across the different populations. This is not exactly true, since the copy number

cannot be negative, and if it reaches zero then it cannot become positive after that. However,
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¢
a R

& are close enough to independent to be exploited to obtain a

the idea is that *¥ses > -

reasonable estimate in practice.

Tl

[0213] If s o are independent, and are not Gaussian distributed, then the
problem of

recovering WB and D given R is precisely the independent components analysis (ICA)
problem.

[0214] Note that since by; = 1 for all s, we can solve for ¥ and B given the product ¥B.
Also, by definition, the first row of D is d; = (2,2, ...,2,2), so we only need to infer the
remaining rows. To simplify notation a bit, let's define A: = WB.

[0215] For this problem, ICA algorithms do not work well for recovering the full matrices A
and D. In part, this is because the inverse transformations (the w's below) are often not
orthogonal, as assumed in standard ICA, and in part it is because we have additional
information about the distribution of the copy deltas dy,;,.

[0216] Single-unit ICAmay be applied to recover one row of D at a time. An estimate of D
then directly yields an estimate of A via a pseudoinverse calculation.

[0217] First we look at how to estimate a single row of D using single-unit ICA. Then we
show how to estimate A given an estimate of D. Finally, we describe how to find the
remaining rows of D by using residual R matrices.

[0218] The first step is to standardize the data matrix R to have zero mean and covariance

matrix equal to the identity, considering each column as an input vector. Specifically, let

S
P
Y

1" be the mth column of R. Let C be the empirical covariance matrix

e,
e

. {\ e .
of the z's, i.e., i “s¢ . Factorize C
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as C = UVUT, where the columns of U are the eigenvectors of C, and V is the diagonal

matrix with the corresponding eigenvalues on the diagonal. Then, letting

FEquation 50

we have that ¥t -+ - ¥ag = are linearly transformed versions of the columns of R with

zero empirical mean and empirical covariance equal to the identity.

[0219] After this standardization step, single-unit ICA searches for a vector *' &

~ with

3

% such that the empirical distribution of **

A is as non-
Gaussian as possible. This is done using a rapidly converging approximate Newton's method
optimization initialized at a random w. Non-Gaussianity is measured by an approximation to
negentropy.

[0220] A linear combination of independent variables is more Gaussian than each of the

uncombined variables. As a result, Gaussianity should be minimized when w extracts one of

¥

the original rows of D (recall that fedvae oo B8 gre assumed to be roughly independent).

) R
X& Y

43 7 should be

More precisely, when Gaussianity is minimized, **
approximately equal to one of the rows of D, up to a multiplicative factor of undetermined
scale and sign.

[0221] To infer the scale o of the multiplicative factor, we use the fact that the entries of D

o W
N 3

Py Yoo,

CR I SRR

FAS bES e R T

are integers, mostly zeros or near zero. So in order for *

approximate a row of D, its entries should look like samples from a Gaussian mixture with

components centered at the integers, with the mixture weights favoring the components near
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0. Thus, we use the likelihood under such a Gaussian mixture model to infer the scale o and
also to score the quality of w.

[0222] The single-unit ICA procedure does not always yield a high-quality w, since there are
usually multiple local optima in the optimization. Thus, we generate a number of candidate
w's by running the procedure with different randomly chosen initializations.

[0223] The candidate w's are then ranked by the mixture model-based score. The highest

ranking w is selected, and an estimate of a row of D is formed by setting

¥, where o is the estimated scale factor and [y] denotes

R

* rounded off to the nearest integer. (This may be improved by assigning points to

components using the mixture model.)
[0224] Given an estimate of the copy delta matrix D, even if only for a subset of populations,

we can obtain an estimate A of the columns of WB for the corresponding populations.

FFEY s‘f}é

[0225] This is done by first setting A e B , where is the pseudoinverse of 4.

[0226] Since the correct sign for each row of Iy is not determined by ICA, we need to infer
the appropriate sign for each column of A. The entries of A must all be nonnegative. Thus,
we can simply multiply each column of A by the sign of its average in order to correct the
sign for that column. We then force all entries of A to be nonnegative by setting any
remaining negative values to 0. The same sign flips performed on columns of 4 are also
applied to the corresponding rows of D to correct its signs as well.

[0227] To estimate the full matrices A and D, we use the procedures described above in a

stepwise fashion, adding one population at a time, as follows.
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1

0228] Initialize with only the normal population: ~ =~ = ¢ % and
[ y pop

% N e
§3 e o e S
£ S ES ¥y
st . TR )

[0229] Then, repeat the following steps to add populations:

1. Compute the residual copy ratio matrix

T4

2. Apply the single-unit ICA procedure described above to R (instead of R), to
obtain a new estimated row d.

3. Append d to D, and update A using the procedure above. Also correct the signs of
D as described there.

4. Stop adding populations if the newly added column of A has very small entries and
the score (or some other test statistic for fit) is not very good. Otherwise, go to step 1.

[0230] Discard any rows of D that are low quality (using a criterion based on the score or

some other test statistic for fit), and recompute A as above.

[0231] Lastly, solve for the unique ¥ and & such that ¥ » 8= S ol s, and

¥ is diagonal.
[0232] Occasionally it happens that at a given step, the newly added column of 4 is nearly
identical to an existing column. If this occurs (e.g., if the correlation is greater than 0.995),

then discard this column and instead use the next highest scoring candidate d.
[0233] With a minor adjustment, the same algorithm can be applied to haplotype-specific

copy ratio (HSCR) data that is phased within each segment (but not necessarily phased across

segments).
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[0234] Let {f“ * be the copy number of segment m of haplotype h, for a cell in population k
(for h € {1,2}). Here, it is assumed that within a given segment m, the label h refers to the
same haplotype in all populations k, but importantly, the labeling does not have to be

consistent from segment to segment.

[0235] Then ** is the haplotype-specific copy ratio of haplotype h

}x Fode :
for sample s and segment m. Here, *~ and <"+ are the same values as in the case of total

copy ratio.

') 1e., the total

copy ratio is the sum of the HSCRs.

RN
AT
R
RS

= of the HSCR ' = can be obtained from an estimate ' 3¢ of the

[0237] An estimate

total copy ratio along with alt/ref read counts at heterozygous (non-mutated) loci within the

segment. Here, we will assume that estimates s are given, which we will treat as input

data, along with estimates ~ »=x of the standard deviations of these estimators.

[0238] The main adjustment that needs to be made from the case of total copy ratio is that

i

3

3
3

for the normal population k = 1, the haplotype-specific copy numbers * 3

are all equal to 1

rather than 2. So, to define the haplotype-specific copy deltas, we let Wi 7= 4 and for k =

N Dy .
st where * % is the parent of k in the tree T'.

o EE Y RO K
FITE Ldy A8 Y L g .3
thUS S S L oW Wi i
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FEquation 51

BUHE i
[0240] Therefore, in block matrix notation, letting ** '

FEquation 52
[0241] So, to obtain estimates B and D#S, we can use the same algorithm as in the case of
total copy ratio, but with R”S as input instead of R, and with the first row of DS set to 1
instead of 2.
[0242] Another adjustment is to modify the model distribution on haplotype-specific copy
deltas to favor somewhat smaller values compared to the model on total copy deltas (since a
total copy delta is the sum of the two haplotype-specific copy deltas).
[0243] The estimated haplotype-specific copy delta matrix D#S is phased across populations
pHS

but not across segments (unless the input HSCR matrix is phased across segments). In

other words, “*&= and %1 both refer to changes in the copy number of segment m for the

same haplotype, however, d «* may refer to changes in the copy number of
segment m for different haplotypes.

[0244] The DCF matrix B provides a substantial amount of information about the tree T. In
this section, we describe how to find the set of all trees that are consistent with an estimated
DCF matrix B, assuming estimates of the uncertainty in B are also given. This is done using

a recursive tree construction procedure combined with a sequence of hypothesis tests for the

plausibility of parent-children relationships. A threshold for rejecting implausible trees can
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be adjusted to make the procedure more permissive (find more trees) or less permissive (find
fewer trees).
[0245] Information about T can be recovered from B do to an inequality between a parent's

DCF and the DCFs of its children.

[0246] B = PT, i.e., , ¥ is the proportion of cells in sample s

that are descended from population k (i.e., that belong to a population descended from k).

t
7

FEquation 53

forall s = 1,...,S. In other words, the sum of the children is less or equal to their parent, in

terms of DCFs. We refer to this as the child-sum inequality.
[0248] The child-sum inequality can also be derived as follows. fo == Lip population { is a

descendant of population k (including k itself), otherwise oo == A g, ek

b,
5
P,

3% gince (a) [ is a descendant of k if eitheri = koriisa

descendant of a child of k, and (b) the descendants of the children do not overlap. (We use

% for the indicator function, i.e., RS TIFE s true, and is O otherwise.) Hence,

plugging this into the formula for by, we have

Equation 54
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[0249] Note that in particular, the DCFs are non-increasing as we go down the tree, i.e., if i is

H Y
. el
fad T gl

a descendant of &, then “'#* == s for ]l 5.

[0250] It turns out that the child-sum inequality is a necessary and sufficient condition for a

4R, 3 with Hag w 1

5o
tree to be consistent with B, when P is unknown. Suppose 8

€ (e

T
forall s, and * ~ is a tree matrix with root 1. Then B and T satisfy the child-

sum inequality for all s and k if and only if there exists a matrix such that

B = PT. B = PT implies the child-sum inequality. Suppose the child-sum inequality is

satisfied for all s and k. For each s and k, define Fak o5 ek 3 where

RE

& are the children of k.

5
Tt .

. v §d

Fren >
Then <% =~ forall s, k, and B = PT.

[0251] Here is described an algorithm that produces the set of trees that are consistent with B,
when P is unknown. To convey the basic structure of the algorithm, we first consider the
case in which B is known exactly.

[0252] By definition, we know that node 1 is the root of the true tree T, since it represents the

normal population.

.

i ~§

[0253] Given Sk & we say that a tree T' with nodes J is valid if it has root 1
and all of the child-sum inequalities are satisfied with respect to the corresponding columns
of B.

[0254] Given arooted tree T', an extension of T is a rooted tree that contains all of the nodes
of T’ and exhibits the same ancestor-descendant relationships among these nodes as T’ (but

not necessarily the same parent-child relationships).
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[0255] The problem of finding all valid trees on {1, ..., K} reduces to the following
subproblem: given a tree T*~1D with nodes 1, ..., k — 1, find all valid extensions to 1, ..., k
(i.e., all valid ways of adding node k to the tree in a way that preserves the existing ancestor-
descendant relationships).

[0256] This subproblem can be solved using the following recursive procedure, with input

T®&-1 Foreachi=1,..,k — 1, consider making k a child of {. Let J; be the children of i

in T*=1_ For each subset =¥ = , consider making J the children of k (and k a child of i),
while preserving all other parent-child relationships.

1. If the child-sum inequality would be violated for k (with J being the children of k)

PR

. PR N 1S O . . . . . .

or violated for i (with ** * = ¢ being the children of i), then reject this extension.
2. Otherwise, accept the extension as T®). If k = K then we have a complete valid

tree, so add T to a running list of complete valid trees. If k < K then recurse to find all

valid extensions of T® to 1, ...,k + 1.

[0257] Several optimizations may be applied to this procedure:

¥ . ‘-‘_\\_.\ .{g\__\ . . . . .
If ¥s& =7 ¥s¢ for some s, then we can reject all extensions in which k is a descendant

of i. To use this efficiently, we can visit nodes i of T®*~% in a depth-first traversal, and if

3 %
b
e O N

sk U5 for some s, then skip to the first non-descendant of i in T*~1).

PO : o
The search over subsets ** = * can be sped up by using the fact that if / is not a

§ -

valid set of children for k, then no superset £ 2 g valid either.

[0258] This algorithm is guaranteed to generate all valid trees on {1, ..., K}. Any tree with
root 1 can be constructed by starting with 1 as root and incrementally adding nodes k =

2, ..., K by making k a child of some i € {1, ..., k — 1} and moving a subset of the current

children of this i to instead be children of k, while preserving all other parent-child
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relationships. If there is a valid extension of a tree, then that tree is valid. By construction,
any tree generated by the algorithm is valid. Consider any validtree T on 1, ..., K. As above,
T can be constructed via a sequence of node insertions as in the algorithm, and each of the

. . 0 P (S . L .
intermediate trees & Ty v od in this sequence is guaranteed to be valid (since T is a

valid extension of each of them), so it will not be rejected. Therefore, the algorithm will

generate T

[0259] Referring now to Fig. 7, a method of analyzing a sample comprising a plurality of
polynucleotides is illustrated. At 701, the plurality of polynucleotides is sequenced to obtain
a plurality of sequences. At 702, the plurality of sequences is provided to a trained classifier.
The trained classifier is adapted to accept a plurality of sequences and output a class label
indicative of the presence of a somatic variant within the plurality of sequences. At 703, a
class label is received from the trained classifier indicative of the presence of a somatic

variant within the plurality of sequences.

[0260] Referring now to Fig. 8, a method of analyzing a sample comprising a plurality of
polynucleotides is illustrated. At 801, at least one prior sequence of a polynucleotide
associated with a tumor genome is read. At 802, a generative model is fit to the at least one
prior sequence. At 803, a plurality of sequences of the plurality of polynucleotides is read.
At 804, the generative model is applied to the plurality of sequences to determine a
probability that a first somatic clone is present in the plurality of sequences. At 805, based on
the probability, a label indicative of the presence of the first somatic clone in the sample is

determined.
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[0261] Referring now to Figs. 9A-B, data illustrating robust detection of subclinical lung
cancer in a patient according to embodiments of the present disclosure is provided. In Fig.
10A, each column represents the comparison of one sample to 36 cfDNA and gDNA WGS
samples. In each column, the 2nd and 4th rows are relevant. The 4th (elongated) row depicts
the number of alternate reads in samples (x-axis) vs. sites (y-axis). Shade indicates the
number of reads supporting the site, from O (white) to 5 or more (black). The sites shown in
each comparison must have been detected as somatic variants in both the test sample and in
the test patient. In each comparison, sites are sorted by the probability that they represent
somatic variants (sorted to the top of the y-axis of each plot), vs. sites w. high error rates
(sorted to the bottom). The test sample increments by column, ranging from 1 to 36 (the total
number of samples sequenced). The first two samples are from a single test patient.

[0262] Fig. 9B is a detail view of the inset of Fig. 9A. The inset shows the posterior
distribution over the number of variant sites that are due to cancer detected in the test sample
(second row). Only samples from the test patient show appreciable non-zero probability of
cancer detection. Note that data from the test sample is withheld from this calculation if it is
from the test patient.

[0263] Referring to Figs. 10A-E, each plot shows a 2D scatter plot of the variant-allele
fraction (the fraction of total reads reporting the alternate allele at a given locus; VAF).
Sample 2 represents a post-relapse high-tumor-shed state, whereas sample 1 was obtained at a
timepoint in which no cancer was detectible in the patient, either by imaging, deep DNA
sequencing (ddPCR), or other biomarker assays. Both samples are plasma-derived cfDNA.
[0264] Each column corresponds to classification of variants as inherited (het, AA, or BB), or
potentially somatic (outlier). The variants labeled as AA may also comprise error-prone sites
identified using a model trained on 30 other cfDNA WGS samples. The last column shows
all variants together will most-likely class indicated by color. The presence of a large number
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of somatic mutations (blue points > 0) in all both samples demonstrates the robust detection
somatic clones. These variants are heavily enriched in smoking-associated mutations (not
shown).

[0265] Referring now to Figs. 11A-C, data illustrating robust detection of breast cancer in a
patient according to embodiments of the present disclosure is provided. In Fig. 11A, each
column represents the comparison of one sample to 36 ¢fDNA and gDNA WGS samples. In
each column, the 2nd and 4th rows are relevant. The 4th (elongated) row depicts the number
of alternate reads in samples (x-axis) vs. sites (y-axis). Shade indicates the number of reads
supporting the site, from O (white) to 5 or more (black). The sites shown in each comparison
must have been detected as somatic variants in both the test sample and in the test patient. In
each comparison, sites are sorted by the probability that they represent somatic variants
(sorted to the top of the y-axis of each plot), vs. sites w. high error rates (sorted to the
bottom). The test sample increments by column, ranging from 1 to 36 (the total number of
samples sequenced). The first three samples are from a single test patient.

[0266] Figs. 11B-C are detail views of Fig. 11A, with Fig. 11B covering columns 1-3 and
Fig. 11C covering columns 4-7. The inset shows the posterior distribution over the number
of variant sites that are due to cancer detected in the test sample (2nd row). Only samples
from the test patient show appreciable non-zero probability of cancer detection. Note that
data from the test sample is withheld from this calculation if it is from the test patient.
[0267] Here, the three samples from the test patient represent cfDNA samples from plasma
and cerebrospinal fluid of a patient with brain metastasis and leptomeningeal disease from
breast cancer.

[0268] Referring to Fig. 12A-0, each plot shows a 2D scatter plot of the variant-allele
fraction (the fraction of total reads reporting the alternate allele at a given locus; VAF). Each
row (Figs. 12A-E; F-J; and K-O) corresponds to a comparison between two samples
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sequenced from a melanoma test patient. Sample SM-61EX7 is from tissue obtained from
surgical resection. The other two samples are from plasma-derived cfDNA.

[0269] Each column corresponds to classification of variants as inherited (het, AA, or BB), or
potentially somatic (outlier). The last column (Figs. 12E, J, O) shows all variants together
will most-likely class indicated by color. The variants labeled as AA may also comprise
error-prone sites identified using a model trained on 30 other cfDNA WGS samples. The
presence of a large number of somatic mutations (blue points > 0) in all samples

demonstrates the robust detection somatic clones. These variants are heavily enriched in UV-
associated mutations (not shown).

[0270] Referring to Figs. 13A-AD, each plot shows a 2D scatter plot of the variant-allele
fraction (the fraction of total reads reporting the alternate allele at a given locus; VAF). Each
row (Figs. 13A-E; F-J; K-O; P-T, U-Y; Z-AD) corresponds to a comparison between two
samples sequenced from a melanoma test patient. Sample SM-9ZE13 is from tissue obtained
from surgical resection. The other two samples are from plasma-derived cfDNA.

[0271] Each column corresponds to classification of variants as inherited (het, AA, or BB), or
potentially somatic (outlier). The variants labeled as AA may also comprise error-prone sites
identified using a model trained on 30 other cfDNA WGS samples. The last column (Figs.
13E, J, O, T, Y, AD) shows all variants together will most-likely class indicated by color.
The presence of a large number of somatic mutations (blue points > 0) in all samples
demonstrates the robust detection somatic clones. These variants are heavily enriched in UV-

associated mutations (not shown).

[0272] In various embodiments, fingerprint mutation detection in a subclinical cancer sample

is distinguished from sequencing error using mutational signatures and phylogenetic analysis.
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[0273] In various embodiments, the mutational signature model is extended beyond 96
single-base-substitution classes to include insertions and deletions, as well as di-nucleotide
and multi-nucleotide frequencies associated with mutational processes active in human
cancers.

[0274] In various embodiments, a statistical model is constructed to estimate the sequencing
error rate at any location in the genome, based on local sequence composition and additional
covariates. This model also utilizes ground-truth sequencing errors identified by overlapping
paired-end reads.

[0275] Various embodiments do not rely on a germline gDNA reference sample for a given
patient — the multi-sample phylogenetic classification of variants as germline vs. somatic
based on VAF combined with the mutational signatures classifier based on sequence context
obviates the need for such a reference sample. This is advantageous, as such reference
samples are often difficult to obtain, and even when they are available, may be misleading as
cancer-derived cfDNA may contaminate the gDNA.

[0276] In various embodiments, the strategy of paired whole-genome sequencing is applied
where DNA sequencing libraries are constructed using dual-index barcodes that uniquely
identify DNA-fragments in the input sample. Detection of cancer-fingerprint mutations in
the whole-genome sequencing of a test sample may subsequently be followed-up by
ultradeep sequencing of the same library, with targeted hybrid-capture of genomic regions
harboring detected fingerprint mutations. This provides another level of validation that the
detected fingerprint mutation was not due to sequencing error, and can substantially increase
the sensitivity of detection, while not compromising specificity.

[0277] Fig. 14A shows the expected number of fingerprint somatic single-nucleotide
substitutions (SSNVs) detected in a theoretical MRD liquid biopsy ¢fDNA sample, as a
function of cancer fraction. The total number of tracking fingerprint substitutions was
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100,000. 3.6 ng input DNA was modeled, resulting in 85x unique coverage, with base-level
WGS sequencing error rate was assumed to be 1/100. Detected tracking mutations are
designated as true-positive (TPs) if they were derived from cancer in the simulation, or false-
positives (FPs) if they were detected due to sequencing error.

[0278] Fig. 14B shows detection power as a function of cancer fraction using the paired
WGS approach, or with additional validation sequencing of all detected mutations using deep
targeted UMI sequencing in the original library. Power was calculated using a binomial
model and first considering the scenario where all detected fingerprint mutations were false
positives in the test WGS sample. In this case, the number of these errors that also produce
errors in the followup UMI validation was modeled using a binomial distribution with N
equal to the expected number of false-positives and p equal to the deep UMI-sequencing
error rate modeled as 1e-4, which accounts for both PCR errors in the 1st cycle of library
construction and read-mapping error. The quantile k of this distribution was computed
corresponding to 1 — the FDR rate — here 1e-4. The number of correctly validated mutations
was modeled as a binomial distribution with N equal to the number of expected true positives
detected in the paired WGS, and p equal to 1 — the UMI-error rate. Power was computed as
the probability of detecting at least k fingerprint mutations, which would cause rejection of
the null-hypothesis that all deep-UMI-validated mutations were due to errors at the desired

FDR.

[0279] Referring now to Fig. 15, a schematic of an example of a computing node is shown.
Computing node 10 is only one example of a suitable computing node and is not intended to

suggest any limitation as to the scope of use or functionality of embodiments described
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herein. Regardless, computing node 10 is capable of being implemented and/or performing
any of the functionality set forth hereinabove.

[0280] In computing node 10 there is a computer system/server 12, which is operational with
numerous other general purpose or special purpose computing system environments or
configurations. Examples of well-known computing systems, environments, and/or
configurations that may be suitable for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer systems, thin clients, thick
clients, handheld or laptop devices, multiprocessor systems, microprocessor-based systems,
set top boxes, programmable consumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud computing environments that include any
of the above systems or devices, and the like.

[0281] Computer system/server 12 may be described in the general context of computer
system-executable instructions, such as program modules, being executed by a computer
system. Generally, program modules may include routines, programs, objects, components,
logic, data structures, and so on that perform particular tasks or implement particular abstract
data types. Computer system/server 12 may be practiced in distributed cloud computing
environments where tasks are performed by remote processing devices that are linked
through a communications network. In a distributed cloud computing environment, program
modules may be located in both local and remote computer system storage media including
memory storage devices.

[0282] As shown in Fig. 15, computer system/server 12 in computing node 10 is shown in
the form of a general-purpose computing device. The components of computer system/server
12 may include, but are not limited to, one or more processors or processing units 16, a
system memory 28, and a bus 18 that couples various system components including system
memory 28 to processor 16.
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[0283] Bus 18 represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architectures. By way of example, and
not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component Interconnect (PCI) bus, Peripheral
Component Interconnect Express (PCle), and Advanced Microcontroller Bus Architecture
(AMBA).

[0284] Computer system/server 12 typically includes a variety of computer system readable
media. Such media may be any available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media, removable and non-removable
media.

[0285] System memory 28 can include computer system readable media in the form of
volatile memory, such as random access memory (RAM) 30 and/or cache memory 32.
Computer system/server 12 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a "hard drive"). Although not shown, a
magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk
(e.g., a "floppy disk"), and an optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be
provided. In such instances, each can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below, memory 28 may include at least
one program product having a set (e.g., at least one) of program modules that are configured
to carry out the functions of embodiments of the disclosure.
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[0286] Program/utility 40, having a set (at least one) of program modules 42, may be stored
in memory 28 by way of example, and not limitation, as well as an operating system, one or
more application programs, other program modules, and program data. Each of the operating
system, one or more application programs, other program modules, and program data or some
combination thereof, may include an implementation of a networking environment. Program
modules 42 generally carry out the functions and/or methodologies of embodiments as
described herein.

[0287] Computer system/server 12 may also communicate with one or more external devices
14 such as a keyboard, a pointing device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any devices (e.g., network card,
modem, etc.) that enable computer system/server 12 to communicate with one or more other
computing devices. Such communication can occur via Input/Output (I/O) interfaces 22.

Still yet, computer system/server 12 can communicate with one or more networks such as a
local area network (LAN), a general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 20. As depicted, network adapter 20 communicates
with the other components of computer system/server 12 via bus 18. It should be understood
that although not shown, other hardware and/or software components could be used in
conjunction with computer system/server 12. Examples, include, but are not limited to:
microcode, device drivers, redundant processing units, external disk drive arrays, RAID

systems, tape drives, and data archival storage systems, etc.

[0288] The present disclosure may be embodied as a system, a method, and/or a computer
program product. The computer program product may include a computer readable storage
medium (or media) having computer readable program instructions thereon for causing a
processor to carry out aspects of the present disclosure.
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[0289] The computer readable storage medium can be a tangible device that can retain and
store instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconductor
storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory),
a static random access memory (SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage
medium, as used herein, is not to be construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

[0290] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program

instructions from the network and forwards the computer readable program instructions for
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storage in a computer readable storage medium within the respective computing/processing
device.

[0291] Computer readable program instructions for carrying out operations of the present
disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions,
state-setting data, or either source code or object code written in any combination of one or
more programming languages, including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as the
“C” programming language or similar programming languages. The computer readable
program instructions may execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, in order to
perform aspects of the present disclosure.

[0292] Aspects of the present disclosure are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the disclosure. It will be understood that each block of

the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
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illustrations and/or block diagrams, can be implemented by computer readable program
instructions.

[0293] These computer readable program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified in
the flowchart and/or block diagram block or blocks.

[0294] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the functions/acts
specified in the flowchart and/or block diagram block or blocks.

[0295] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present disclosure. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
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block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

[0296] The descriptions of the various embodiments of the present disclosure have been
presented for purposes of illustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and spirit of the described
embodiments. The terminology used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement over technologies found in
the marketplace, or to enable others of ordinary skill in the art to understand the embodiments

disclosed herein.
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CLAIMS
What is claimed is:
1. A method of analyzing a sample comprising a plurality of polynucleotides, the
method comprising:
receiving a plurality of sequences of the plurality of polynucleotides;
providing the plurality of sequences to a trained classifier, the trained classifier
adapted to accept a plurality of sequences and output a class label indicative of the
presence of a somatic variant within the plurality of sequences;
receiving from the trained classifier a class label indicative of the presence of a
somatic clone within the plurality of sequences.
2. The method of claim 1, further comprising:
based on the label, indicating whether a cancer clone is present in the sample.
3. The method of claim 1, further comprising:
based on the label, indicating whether a clonal expansion is present in the sample.
4. The method of claim 1, wherein the label has an associated probability.
5. The method of claim 1, further comprising:
providing clinical data to the trained classifier, the clinical data being related to an
originator of the sample.
6. The method of claim 1, wherein the clinical data comprises an indication of smoking
by the originator of the sample.
7. The method of claim 1, wherein the clinical data comprises family history of the
originator of the sample.
8. The method of claim 1, further comprising:
providing population data to the trained classifier, the population data being related to
an originator of the sample.
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9.

The method of claim 1, wherein the plurality of sequences comprise a plurality of

somatic variants.

10. The method of claim 1, wherein the trained classifier comprises an artificial neural
network.

11. The method of claim 1, wherein the trained classifier comprises a regression model.
12. The method of claim 1, wherein the trained classifier comprises a random decision
forest.

13. The method of claim 1, wherein the trained classifier comprises an SVM.

14. The method of claim 10, wherein the artificial neural network is a convolutional

neural network.

15. The method of claim 10, wherein the artificial neural network is a recurrent neural
network.
16. The method of claim 1, wherein the sample comprises blood.
17. The method of claim 1, wherein the sample comprises cerebrospinal fluid.
18. The method of claim 1, wherein the plurality of polynucleotides comprises DNA.
19. The method of claim 1, wherein the plurality of polynucleotides comprises methylated
DNA.
20. The method of claim 1, further comprising:

providing fragment lengths of the plurality of sequences to the trained classifier.
21. The method of claim 1, wherein the plurality of polynucleotides comprises RNA.
22. The method of claim 1, wherein the sequencing is at a depth of 100x or less.
23. The method of claim 1, wherein the sequencing is at a depth of 85x or less.
24, The method of claim 1, wherein the sequencing is at a depth of about 20x to about
85x.
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25. The method of claim 1, wherein the sequencing is at a depth of about 20x to about
100x.
26. The method of claim 1, further comprising sequencing the plurality of polynucleotides
to obtain the plurality of sequences.
27. A system comprising:
a computing node comprising a computer readable storage medium having program
instructions embodied therewith, the program instructions executable by a processor
of the computing node to cause the processor to perform a method comprising:
sequencing the plurality of polynucleotides to obtain a plurality of
sequences;
providing the plurality of sequences to a trained classifier, the trained
classifier adapted to accept a plurality of sequences and output a class label
indicative of the presence of a somatic variant within the plurality of
sequences;
receiving from the trained classifier a class label indicative of the presence
of a somatic variant within the plurality of sequences.
28. The system of claim 27, the method further comprising:
based on the label, indicating whether a cancer clone is present in the sample.
29. The system of claim 27, the method further comprising:
based on the label, indicating whether a clonal expansion is present in the sample.
30. The system of claim 27, wherein the label has an associated probability.
31 The system of claim 27, the method further comprising:
providing clinical data to the trained classifier, the clinical data being related to an

originator of the sample.
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32.  The system of claim 27, wherein the clinical data comprises an indication of smoking
by the originator of the sample.
33. The system of claim 27, wherein the clinical data comprises family history of the
originator of the sample.
34. The system of claim 27, the method further comprising:
providing population data to the trained classifier, the population data being related to
an originator of the sample.
35. The system of claim 27, wherein the plurality of sequences comprise a plurality of

somatic variants.

36.  The system of claim 27, wherein the trained classifier comprises an artificial neural
network.

37. The system of claim 27, wherein the trained classifier comprises a regression model.
38.  The system of claim 27, wherein the trained classifier comprises a random decision
forest.

39.  The system of claim 27, wherein the trained classifier comprises an SVM.

40.  The system of claim 36, wherein the artificial neural network is a convolutional neural
network.

41.  The system of claim 36, wherein the artificial neural network is a recurrent neural
network.

42. The system of claim 27, wherein the sample comprises blood.

43, The system of claim 27, wherein the sample comprises cerebrospinal fluid.

44, The system of claim 27, wherein the plurality of polynucleotides comprises DNA.
45. The system of claim 27, wherein the plurality of polynucleotides comprises
methylated DNA.

46. The system of claim 27, the method further comprising:
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providing fragment lengths of the plurality of sequences to the trained classifier.

47. The system of claim 27, wherein the plurality of polynucleotides comprises RNA.

48. The system of claim 27, wherein the sequencing is at a depth of 100x or less.

49. The system of claim 27, wherein the sequencing is at a depth of 85x or less.

50. The system of claim 27, wherein the sequencing is at a depth of about 20x to about
85x.

51. The system of claim 27, wherein the sequencing is at a depth of about 20x to about
100x.

52. The system of claim 27, further comprising sequencing the plurality of

polynucleotides to obtain the plurality of sequences.

53. A computer program product for analyzing a sample comprising a plurality of

polynucleotides, the computer program product comprising a computer readable storage

medium having program instructions embodied therewith, the program instructions

executable by a processor to cause the processor to perform a method comprising:
sequencing the plurality of polynucleotides to obtain a plurality of sequences;
providing the plurality of sequences to a trained classifier, the trained classifier
adapted to accept a plurality of sequences and output a class label indicative of the
presence of a somatic variant within the plurality of sequences;
receiving from the trained classifier a class label indicative of the presence of a
somatic variant within the plurality of sequences.

54.  The computer program product of claim 53, the method further comprising:
based on the label, indicating whether a cancer clone is present in the sample.

55.  The computer program product of claim 53, the method further comprising:

based on the label, indicating whether a clonal expansion is present in the sample.
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56.  The computer program product of claim 53, wherein the label has an associated
probability.
57.  The computer program product of claim 53, the method further comprising:

providing clinical data to the trained classifier, the clinical data being related to an
originator of the sample.
58.  The computer program product of claim 53, wherein the clinical data comprises an
indication of smoking by the originator of the sample.
59.  The computer program product of claim 53, wherein the clinical data comprises
family history of the originator of the sample.
60.  The computer program product of claim 53, the method further comprising:
providing population data to the trained classifier, the population data being related to
an originator of the sample.
61.  The computer program product of claim 53, wherein the plurality of sequences
comprise a plurality of somatic variants.
62.  The computer program product of claim 53, wherein the trained classifier comprises
an artificial neural network.
63.  The computer program product of claim 53, wherein the trained classifier comprises a
regression model.
64.  The computer program product of claim 53, wherein the trained classifier comprises a

random decision forest.

65.  The computer program product of claim 53, wherein the trained classifier comprises
an SVM.
66.  The computer program product of claim 62, wherein the artificial neural network is a

convolutional neural network.
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67.  The computer program product of claim 62, wherein the artificial neural network is a
recurrent neural network.

68.  The computer program product of claim 53, wherein the sample comprises blood.
69.  The computer program product of claim 53, wherein the sample comprises

cerebrospinal fluid.

70.  The computer program product of claim 53, wherein the plurality of polynucleotides
comprises DNA.
71.  The computer program product of claim 53, wherein the plurality of polynucleotides

comprises methylated DNA.
72.  The computer program product of claim 53, the method further comprising:

providing fragment lengths of the plurality of sequences to the trained classifier.

73.  The computer program product of claim 53, wherein the plurality of polynucleotides
comprises RNA.
74.  The computer program product of claim 53, wherein the sequencing is at a depth of

100x or less.

75.  The computer program product of claim 53, wherein the sequencing is at a depth of
85x or less.
76.  The computer program product of claim 53, wherein the sequencing is at a depth of

about 20x to about 85x.

77.  The computer program product of claim 53, wherein the sequencing is at a depth of
about 20x to about 100x.

78.  The computer program product of claim 53, further comprising sequencing the
plurality of polynucleotides to obtain the plurality of sequences.

79. A method of analyzing a sample comprising a plurality of polynucleotides, the
method comprising:
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80.

81.

model.

82.

reading at least one prior sequence of a polynucleotide associated with a tumor
genome;

fitting a generative model to the at least one prior sequence;

receiving a plurality of sequences of the plurality of polynucleotides;

applying the generative model to the plurality of sequences to determine a probability
that a first somatic clone is present in the plurality of sequences;

based on the probability, determining a label indicative of the presence of the first
somatic clone in the sample.

The method of claim 79, wherein the label has an associated probability.

The method of claim 79, wherein the generative model comprises a linear-Gaussian

The method of claim 79, wherein the generative model comprises a linear-negative

binomial model.

83.

model.

84.

model.

85.

86.

87.

The method of claim 79, wherein the generative model comprises a latent factor

The method of claim 79, wherein the generative model comprises a factor analysis

The method of claim 79, further comprising

inferring a phylogenetic tree from the at least one prior sequence.
The method of claim 79, further comprising:

updating the generative model based on the plurality of sequences.

The method of claim 86, wherein the at least one prior sequence comprises a second

somatic clone, the method further comprising:

based on the updated generative model, determining a probability that the sample
contains the second somatic clone.
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88. The method of claim 86, wherein the at least one prior sequence comprises a second
somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a descendent of the second somatic clone.
89. The method of claim 86, wherein the at least one prior sequence comprises a second
somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a third somatic clone related to the second somatic clone within the
phylogenetic tree.
90. The method of claim 86, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one somatic mutation with the at least one prior sequence.
91. The method of claim 86, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one clonal expansion with the at least one prior sequence.
92. The method of claim 79, further comprising:
based on the label, indicating whether a cancer clone is present in the sample.
93. The method of claim 79, further comprising:
based on the label, indicating whether a clonal expansion is present in the sample.
94, The method of claim 79, wherein the label has an associated probability.
95. The method of claim 79, wherein the plurality of sequences comprise a plurality of
somatic variants.
96. The method of claim 79, wherein the sample comprises blood.
97. The method of claim 79, wherein the sample comprises cerebrospinal fluid.
98. The method of claim 79, wherein the plurality of polynucleotides comprises DNA.
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99. The method of claim 79, wherein the plurality of polynucleotides comprises
methylated DNA.
100. The method of claim 79, wherein the plurality of polynucleotides comprises RNA.
101.  The method of claim 79, wherein the sequencing is at a depth of 100x or less.
102.  The method of claim 79, wherein the sequencing is at a depth of 85x or less.
103. The method of claim 79, wherein the sequencing is at a depth of about 20x to about
85x.
104. The method of claim 79, wherein the sequencing is at a depth of about 20x to about
100x.
105. The method of claim 79, further comprising sequencing the plurality of
polynucleotides to obtain the plurality of sequences.
106. A system comprising:
a computing node comprising a computer readable storage medium having program
instructions embodied therewith, the program instructions executable by a processor
of the computing node to cause the processor to perform a method comprising:
reading at least one prior sequence of a polynucleotide associated with a
tumor genome;
fitting a generative model to the at least one prior sequence;
receiving a plurality of sequences of the plurality of polynucleotides;
applying the generative model to the plurality of sequences to determine a
probability that a first somatic clone is present in the plurality of
sequences;
based on the probability, determining a label indicative of the presence of
the first somatic clone in the sample.
107.  The system of claim 106, wherein the label has an associated probability.
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108.  The system of claim 106, wherein the generative model comprises a linear-Gaussian
model.
109.  The system of claim 106, wherein the generative model comprises a linear-negative
binomial model.
110. The system of claim 106, wherein the generative model comprises a latent factor
model.
111.  The system of claim 106, wherein the generative model comprises a factor analysis
model.
112, The system of claim 106, the method further comprising
inferring a phylogenetic tree from the at least one prior sequence.
113.  The system of claim 106, the method further comprising:
updating the generative model based on the plurality of sequences.
114. The system of claim 113, wherein the at least one prior sequence comprises a second
somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains the second somatic clone.
115. The system of claim 113, wherein the at least one prior sequence comprises a second
somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a descendent of the second somatic clone.
116. The system of claim 113, wherein the at least one prior sequence comprises a second
somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a third somatic clone related to the second somatic clone within the
phylogenetic tree.
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117.  The system of claim 113, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one somatic mutation with the at least one prior sequence.
118.  The system of claim 113, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one clonal expansion with the at least one prior sequence.
119.  The system of claim 106, the method further comprising:
based on the label, indicating whether a cancer clone is present in the sample.
120. The system of claim 106, the method further comprising:
based on the label, indicating whether a clonal expansion is present in the sample.
121.  The system of claim 106, wherein the label has an associated probability.
122, The system of claim 106, wherein the plurality of sequences comprise a plurality of
somatic variants.
123, The system of claim 106, wherein the sample comprises blood.
124.  The system of claim 106, wherein the sample comprises cerebrospinal fluid.
125.  The system of claim 106, wherein the plurality of polynucleotides comprises DNA.
126.  The system of claim 106, wherein the plurality of polynucleotides comprises
methylated DNA.
127.  The system of claim 106, wherein the plurality of polynucleotides comprises RNA.
128.  The system of claim 106, wherein the sequencing is at a depth of 100x or less.
129.  The system of claim 106, wherein the sequencing is at a depth of 85x or less.
130. The system of claim 106, wherein the sequencing is at a depth of about 20x to about
85x.
131.  The system of claim 106, wherein the sequencing is at a depth of about 20x to about
100x.
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132, The system of claim 106, further comprising sequencing the plurality of
polynucleotides to obtain the plurality of sequences.
133. A computer program product for analyzing a sample comprising a plurality of
polynucleotides, the computer program product comprising a computer readable storage
medium having program instructions embodied therewith, the program instructions
executable by a processor to cause the processor to perform a method comprising:
reading at least one prior sequence of a polynucleotide associated with a tumor
genome;
fitting a generative model to the at least one prior sequence;
receiving a plurality of sequences of the plurality of polynucleotides;
applying the generative model to the plurality of sequences to determine a probability
that a first somatic clone is present in the plurality of sequences;
based on the probability, determining a label indicative of the presence of the first
somatic clone in the sample.
134.  The computer program product of claim 133, wherein the label has an associated
probability
135.  The computer program product of claim 133, wherein the generative model comprises
a linear-Gaussian model.
136.  The computer program product of claim 133, wherein the generative model comprises
a linear-negative binomial model.
137.  The computer program product of claim 133, wherein the generative model comprises
a latent factor model.
138.  The computer program product of claim 133, wherein the generative model comprises
a factor analysis model.
139.  The computer program product of claim 133, the method further comprising
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inferring a phylogenetic tree from the at least one prior sequence.
140.  The computer program product of claim 133, the method further comprising:
updating the generative model based on the plurality of sequences.
141.  The computer program product of claim 140, wherein the at least one prior sequence
comprises a second somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains the second somatic clone.
142.  The computer program product of claim 140, wherein the at least one prior sequence
comprises a second somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a descendent of the second somatic clone.
143.  The computer program product of claim 140, wherein the at least one prior sequence
comprises a second somatic clone, the method further comprising:
based on the updated generative model, determining a probability that the sample
contains a third somatic clone related to the second somatic clone within the
phylogenetic tree.
144,  The computer program product of claim 140, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one somatic mutation with the at least one prior sequence.
145.  The computer program product of claim 140, further comprising:
based on the updated generative model, determining a probability that the sample
shares at least one clonal expansion with the at least one prior sequence.
146.  The computer program product of claim 133, the method further comprising:
based on the label, indicating whether a cancer clone is present in the sample.
147.  The computer program product of claim 133, the method further comprising:

-9] -



WO 2019/200398 PCT/US2019/027525

based on the label, indicating whether a clonal expansion is present in the sample.
148.  The computer program product of claim 133, wherein the label has an associated
probability.
149.  The computer program product of claim 133, wherein the plurality of sequences
comprise a plurality of somatic variants.
150.  The computer program product of claim 133, wherein the sample comprises blood.
151.  The computer program product of claim 133, wherein the sample comprises
cerebrospinal fluid.
152.  The computer program product of claim 133, wherein the plurality of polynucleotides
comprises DNA.
153.  The computer program product of claim 133, wherein the plurality of polynucleotides
comprises methylated DNA.
154.  The computer program product of claim 133, wherein the plurality of polynucleotides
comprises RNA.
155.  The computer program product of claim 133, wherein the sequencing is at a depth of
100x or less.
156.  The computer program product of claim 133, wherein the sequencing is at a depth of
85x or less.
157.  The computer program product of claim 133, wherein the sequencing is at a depth of
about 20x to about 85x.
158.  The computer program product of claim 133, wherein the sequencing is at a depth of
about 20x to about 100x.
159.  The computer program product of claim 133, further comprising sequencing the

plurality of polynucleotides to obtain the plurality of sequences.
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160. A method of analyzing a sample comprising a plurality of polynucleotides, the

method comprising:

receiving a plurality of sequences of the plurality of polynucleotides;

identifying one or more inherited variant and one or more somatic variant among the

plurality of sequences;

providing the one or more inherited variant to a first trained classifier;

providing the one or more somatic variant to a second trained classifier;

determining by the first and second trained classifier the presence of aneuploidy in the

plurality of polynucleotides.

161. The method of claim 160, wherein the plurality of sequences comprise a plurality of

somatic variants.

162.  The method of claim 160, wherein the first or second trained classifier comprises an

artificial neural network.

163.  The method of claim 160, wherein the first or second trained classifier comprises a

regression model.

164. The method of claim 160, wherein the first or second trained classifier comprises a

random decision forest.

165. The method of claim 160, wherein the first or second trained classifier comprises an

SVM.

166. The method of claim 162, wherein the artificial neural network is a convolutional

neural network.

167. The method of claim 162, wherein the artificial neural network is a recurrent neural

network.

168.  The method of claim 160, wherein the sample comprises blood.

169.  The method of claim 160, wherein the sample comprises cerebrospinal fluid.
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170. The method of claim 160, wherein the plurality of polynucleotides comprises DNA.
171.  The method of claim 160, wherein the plurality of polynucleotides comprises
methylated DNA.
172.  The method of claim 160, wherein the plurality of polynucleotides comprises RNA.
173.  The method of claim 160, wherein the sequencing is at a depth of 100x or less.
174.  The method of claim 160, wherein the sequencing is at a depth of 85x or less.
175. The method of claim 160, wherein the sequencing is at a depth of about 20x to about
85x.
176. The method of claim 160, wherein the sequencing is at a depth of about 20x to about
100x.
177.  The method of claim 160, further comprising sequencing the plurality of
polynucleotides to obtain the plurality of sequences.
178. A system comprising:
a computing node comprising a computer readable storage medium having program
instructions embodied therewith, the program instructions executable by a processor
of the computing node to cause the processor to perform a method comprising:
receiving a plurality of sequences of the plurality of polynucleotides;
identifying one or more inherited variant and one or more somatic variant
among the plurality of sequences;
providing the one or more inherited variant to a first trained classifier;
providing the one or more somatic variant to a second trained classifier;
determining by the first and second trained classifier the presence of
aneuploidy in the plurality of polynucleotides.
179.  The system of claim 178, wherein the plurality of sequences comprise a plurality of
somatic variants.

-04 -



WO 2019/200398

PCT/US2019/027525

180. The system of claim 178, wherein the first or second trained classifier comprises an

artificial neural network.

181. The system of claim 178, wherein the first or second trained classifier comprises a

regression model.

182.  The system of claim 178, wherein the first or second trained classifier comprises a

random decision forest.

183.  The system of claim 178, wherein the first or second trained classifier comprises an

SVM.

184.  The system of claim 180, wherein the artificial neural network is a convolutional

neural network.

185.  The system of claim 180, wherein the artificial neural network is a recurrent neural

network.

186. The system of claim 178, wherein the sample comprises blood.

187.  The system of claim 178, wherein the sample comprises cerebrospinal fluid.

188.  The system of claim 178, wherein the plurality of polynucleotides comprises DNA.

189.  The system of claim 178, wherein the plurality of polynucleotides comprises

methylated DNA.

190. The system of claim 178, wherein the plurality of polynucleotides comprises RNA.

191.  The system of claim 178, wherein the sequencing is at a depth of 100x or less.

192.  The system of claim 178, wherein the sequencing is at a depth of 85x or less.

193.  The system of claim 178, wherein the sequencing is at a depth of about 20x to about

85x.

194, The system of claim 178, wherein the sequencing is at a depth of about 20x to about

100x.
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195.  The system of claim 178, further comprising sequencing the plurality of
polynucleotides to obtain the plurality of sequences.
196. A computer program product for analyzing a sample comprising a plurality of
polynucleotides, the computer program product comprising a computer readable storage
medium having program instructions embodied therewith, the program instructions
executable by a processor to cause the processor to perform a method comprising:
receiving a plurality of sequences of the plurality of polynucleotides;
identifying one or more inherited variant and one or more somatic variant among the
plurality of sequences;
providing the one or more inherited variant to a first trained classifier;
providing the one or more somatic variant to a second trained classifier;
determining by the first and second trained classifier the presence of aneuploidy in the
plurality of polynucleotides.
197.  The computer program product of claim 196, wherein the plurality of sequences
comprise a plurality of somatic variants.
198.  The computer program product of claim 196, wherein the trained classifier comprises
an artificial neural network.
199.  The computer program product of claim 196, wherein the trained classifier comprises
a regression model.
200. The computer program product of claim 196, wherein the trained classifier comprises
a random decision forest.
201. The computer program product of claim 196, wherein the trained classifier comprises
an SVM.
202. The computer program product of claim 198, wherein the artificial neural network is a
convolutional neural network.
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203. The computer program product of claim 198, wherein the artificial neural network is a
recurrent neural network.

204. The computer program product of claim 196, wherein the sample comprises blood.
205. The computer program product of claim 196, wherein the sample comprises
cerebrospinal fluid.

206. The computer program product of claim 196, wherein the plurality of polynucleotides
comprises DNA.

207. The computer program product of claim 196, wherein the plurality of polynucleotides
comprises methylated DNA.

208. The computer program product of claim 196, wherein the plurality of polynucleotides
comprises RNA.

209. The computer program product of claim 196, wherein the sequencing is at a depth of
100x or less.

210.  The computer program product of claim 196, wherein the sequencing is at a depth of
85x or less.

211. The computer program product of claim 196, wherein the sequencing is at a depth of
about 20x to about 85x.

212.  The computer program product of claim 196, wherein the sequencing is at a depth of
about 20x to about 100x.

213.  The computer program product of claim 196, further comprising sequencing the

plurality of polynucleotides to obtain the plurality of sequences.
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