»UK Patent .,GB

20064853

(13)B

(45)Date of B Publication 08.09.2021

(54) Title of the Invention: VECtOr interleaving in a data processing apparatus

(51) INT CL: GO6F 9/30 (2018.01)

(21) Application No: 1711707.8
(22) Date of Filing: 20.07.2017
(43) Date of A Publication 30.01.2019

(56) Documents Cited:
US 20160179522 A1
US 20090055455 A1
US 20030167460 A1
Sparpino M, "Crunching Numbers with AVX and
AVX2" in Codeproject.com (2016),

US 20130212360 A1
US 20080270768 A1

(58) Field of Search:
As for published application 2564853 A viz:
INT CL GO6F
Other: EPODOC, WPI, PatentFulltext
updated as appropriate

Additional Fields
Other: INTERNET

(72) Inventor(s):
Mbou Eyole
Nigel John Stephens

(73) Proprietor(s):
ARM Limited
(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

g €48¥949¢ 99

10
k.j
PROCESSING 12
CIRCUITRY
&
20
ey ¥ -
REGISTERS 5
% 18
.
{ CONTROL|] DECODE
&
22
ey ¥
reren 10
LOAD / STORE
fy &
DATA 14 INSTRUCTIONS
¥ L.,‘
MEMORY

FIG. 1

By o8 30
R 4 \/
SOURCE D

‘ \ 32
o J

SOURCE 1

mmmmmm i /3 4

DESTINATION

Ay i SOURCE(

By E B § B4 E By E SOURCE 1

AgaAy | B3aBy 1 AgaAg | BBy i DESTINATION

FIG. 2B

ot N \/40
d i d|did|did]|didg |SOURCED

£
(&)

A

o N ‘«/42
d it dldidldidld d |SOURCET

G q q q

3 2 1 0 DESTINATION

Ay 1 Ay 1 Ay 1 Ay i SOURCEQ

By, | B, ! By ! By | SOURCE!

 Ag+hy i ByxByiAqsAgi ByxBy i DESTINATION

FIG. 3B

4/11

/60

SOURCEQ

SOURCE 1 &
DESTINATION

FIG. 4A

Ay Ay 1 A i Ap i SOURCEQ

By B, | By | By i SOURCE1(PRE

Agahy | BsaBy | AqaAg | ByaBy | SOURCE1(POST)

FIG. 4B

80

SOURCE D

86

PREDICATE

L -82

SOURCE 1

Erﬁﬁ

PREDICATE

§r84

DESTINATION

A i Ag L A Ay Ay i Ay i Ay i Ap | SOURCED

B, | By i Bg | By | By | By i By | By |SOURCE!

0 o0 o1 b ot b oo b0 it i1 |preDioaE

DESTINATION
D; ¢ Dy i D5 ! D4 Dy ¢ Dp i Dy ¢ Dy {PRE’*

: E E : E DESTINATION
U7 1 Dg @ BeaBaiAsaAgl Dy 0 Ug 1 BiaBgt AisAg | mgen

6/11

f1 10
./
Ay Ay Ay Ay 'sourceo
112
va
SOURCE 1
114
D 4
3
(UNCHANGED) DESTINATION

7M1

(1 Xoh= ¥4, Yo} = HL128 {P1, PO.P1 101 1R}
/1128 {Q1 4 PO A Q0 » RO, QO},

250~B§T

where:
{P1, PO} = X1+ Y1

{Q1, Q0 = X0 YO
{R1, RO} = (X0 X1) * (YO Y1)

let vectors:
zX =00, XKL X0 and 2Y={.., Y1 YO}
\....,V,.._/' \.an
128-BIT 128-BIT

FIG. 7

8/11

64-bit 64-bit 64-bit 64-bit
4 A 4 A Y A ' A Y
X3 X2 X1 X0
Y3 Y2 Y1 M
PMULLB z1.q,2Yd, zX.d 128 128.bif
e A hd A A
X2*Y2 X0*Y0
PMULLT z2.q, zV.d, zX.d
X3*Y3 X1*Y1
EORBT zX.q, 2X.d, zX.d
X3 X2 4 X3 X1 X0 & X1
EORBT zY.q, zY.d, 2X.d
Y3 Y2.Y3 Y1 YOaY1
PMULLB 3.9, 2X.d, zY.d
(X2 aX3)* (Y24 Y3) (XO X1} * (YO Y1)
FOR z34d, 234 224
P3AR3 P2 ARZ P1aR1 PO AR0
EORz34d,234d z1.d
PIAQ3AR3I | P2AQ2ARZ | P1AQ1ART | POAQOARD
EORTB z1.g,21.d, 234
(3aP2.024R2 Q2 1aPOAQOARD Qo
EORBT z2.q,22.d, z3.d
P3 P2AP3AQ3ARS P1 POAPTAQTART

FIG. 8

zX

zY

z1={.Q3
Q2, 41, Q0

72={.P3,
P2, P1, PO}

X

7Y

23={.R3,
R2,R1, R()

73

71

72

9/11

%

y

2000 pECODE NEXT INSTRUCTION
7 VECTOR N\
202~ INTERLEAVING

PROCESS AS

| APPROPRIATE

206~ GETINPUT DATAITEMS FROM

FIRST SOURCE REGISTER

3

]

208-] GETINPUT DATAITEMS FROM

oECOND SOURCE REGISTER

3

1

PERFORM DATA PROCESSING

210~ OPERATION ON INPUT

DATAITEM PAIRS

k

i

212+

STORE RESULT DATAITEMS
INTO DESTINATION REGISTER
AT ALTERNATING POSITIONS

FIG. 9

10/11

¥
220~ DECODE NEXT INSTRUCTION
7 VECTOR N\
222 INTERLEAVING N __,| PROCESSAS
™\ INSTRUCTION .~ el
224
224 X
PARWISE " ANy DIAGONAL
226 232
o &
GET 15T PAIRS OF DATA ITEMS GET PAIRS OF DATA ITEMS
FROM FIRST SOURCE FROM DIAGONALLY ADJACENT
REGISTER AND 2ND PAIRS OF POSITIONS IN FIRST AND
DATA ITEMS FROM SECOND SECOND SOURCE REGISTERS
SOURCE REGISTER
234
228 L b
— ! SUBJECT PAIRS TO DATA
SUBJECT PAIRS TO DATA PROCESSING OPERATION
PROCESSING OPERATION
236
230 ¥ ey
= 1 STORE RESULTS OF DATA
STORE RESULTS OF 15T PAIRS PROCESSING OPERATION TO

TO ODD (EVEN) POSITIONS IN
DESTINATION REGISTER AND
RESULTS OF 2ND PAIRS TO
EVEN (ODD) POSITIONS

ODD (EVEN) POSITIONS IN
DESTINATION REGISTER
LEAVING EVEN (ODD)
POSITIONS UNCHANGED

FIG. 10

Simulator Implemeniation

Target code

700

2

¥

AP (Virtual)

Simulator

710

£720

Host Hardware

730

FIG. 11

220719

10

15

20

25

30

VECTOR INTERLEAVING IN A DATA PROCESSING APPARATUS

The present disclosure relates to a data processing apparatus. More particularly
it relates to vector processing operations which the data processing apparatus may

carry out.

In a data processing apparatus which performs data processing operations on a
set of input data items, greater processing efficiency and throughput is gained if the
input data items can be processed in a vectorised manner, in which groups of data
items across the width of the vector are subjected to the same data processing in
parallel, rather than for example taking a sequential processing approach in which
these would be processed one after the other. Nevertheless a vectorised approach to
applying data processing to input data items from source registers and storing the
results in a destination register can impose certain limitations on the kinds of data
processing that can be performed and the combinations of input data items forming the
operands of those data processing operations if a practicable data processing apparatus
is to be provided without undue complexity, which could render the advantages of the

vectorised approach to be not worthwhile.

In one example embodiment there is an apparatus comprising instruction
decoder circuitry to decode instructions; and data processing circuitry to selectively
apply vector processing operations specified by the instructions to input data vectors
comprising a plurality of input data items at respective positions in the input data
vectors, wherein the instruction decoder circuitry is responsive to a vector interleaving
instruction specifying a first source register, a second source register, and a destination
register to generate control signals to control the data processing circuitry to carry out
a vector interleaving process to: retrieve a first set of input data items from the first
source register; retrieve a second set of input data items from the second source
register; perform a data processing operation on at least selected input data item pairs
taken from the first and second set of input data items to generate a set of result data
items; and store the set of result data items as a result data vector in the destination

register, wherein first source register dependent result data items are stored in a first

19 05 21

10

15

20

25

30

set of alternating positions in the destination data vector, and wherein second source
register dependent result data items are stored in a second set of alternating positions
in the destination data vector, wherein the selected input data item pairs taken from the
first and second set of input data items comprise diagonal input data item pairs formed
of alternating input data items in the first source register paired with alternating input
data items in the second source register, wherein the first source register dependent
result data items and the second source register dependent result data items are a same
set of result data items, and the first set of alternating positions and the second set of
alternating positions are a same set of alternating positions in the destination data
vector, wherein the first set of alternating positions and the second set of alternating
positions alternate with a further set of positions at which a set of prior data items
remain in the destination data vector, wherein the set of prior data items are present in
the further set of positions in the destination data vector before the data processing
circuitry begins the vector interleaving process, wherein the destination register
specified in the vector interleaving instruction is one of the first source register and the
second source register, and wherein the diagonal input data item pairs alternate with a
set of further diagonal input data pairs formed of further alternating input data items in
the first source register paired with further alternating input data items in the second
source register, and the result data items are independent of the set of further diagonal

input data pairs.

In another example embodiment there is a method of operating a data
processing apparatus comprising the steps of: decoding instructions; selectively
applying vector processing operations specified by the instructions to input data
vectors comprising a plurality of input data items at respective positions in the input
data vectors; generating control signals in response to a vector interleaving instruction
specifying a first source register, a second source register, and a destination register of
the apparatus to control data processing circuitry of the apparatus to carry out a vector
interleaving process comprising: retrieving a first set of input data items from the first
source register; retrieving a second set of input data items from the second source
register; performing a data processing operation on at least selected input data item

pairs taken from the first and second set of input data items to generate a set of result

19 05 21

10

15

20

25

30

data items; and storing the set of result data items as a result data vector in the
destination register, wherein first source register dependent result data items are stored
in a first set of alternating positions in the destination data vector, and wherein second
source register dependent result data items are stored in a second set of alternating
positions in the destination data vector, wherein the selected input data item pairs
taken from the first and second set of input data items comprise diagonal input data
item pairs formed of alternating input data items in the first source register paired with
alternating input data items in the second source register, wherein the first source
register dependent result data items and the second source register dependent result
data items are a same set of result data items, and the first set of alternating positions
and the second set of alternating positions are a same set of alternating positions in the
destination data vector, wherein the first set of alternating positions and the second set
of alternating positions alternate with a further set of positions at which a set of prior
data items remain in the destination data vector, wherein the set of prior data items are
present in the further set of positions in the destination data vector before the data
processing circuitry begins the vector interleaving process, wherein the destination
register specified in the vector interleaving instruction is one of the first source register
and the second source register, and wherein the diagonal input data item pairs alternate
with a set of further diagonal input data pairs formed of further alternating input data
items in the first source register paired with further alternating input data items in the
second source register, and the result data items are independent of the set of further

diagonal input data pairs.

In another example embodiment there is a computer program for controlling a
host data processing apparatus to provide an instructions execution environment
comprising: instruction decoding program logic to decode instructions; and data
processing program logic to selectively apply vector processing operations specified
by the instructions to input data vector structures comprising a plurality of input data
items at respective positions in the input data vector structures, wherein the instruction
decoding program logic is responsive to a vector interleaving instruction specifying a
first source data structure, a second source data structure, and a destination data

structure to generate control signals to control the data processing program logic to

19 05 21

10

15

20

25

30

carry out a vector interleaving process to: retrieve a first set of input data items from
the first source data structure; retrieve a second set of input data items from the second
source data structure; perform a data processing operation on at least selected input
data item pairs taken from the first and second set of input data items to generate a set
of result data items; and store the set of result data items as a result data vector
structure in the destination data structure, wherein first source data structure dependent
result data items are stored in a first set of alternating positions in the destination data
vector structure, and wherein second source data structure dependent result data items
are stored in a second set of alternating positions in the destination data vector
structure, wherein the selected input data item pairs taken from the first and second set
of input data items comprise diagonal input data item pairs formed of alternating input
data items in the first source register paired with alternating input data items in the
second source register, wherein the first source register dependent result data items and
the second source register dependent result data items are a same set of result data
items, and the first set of alternating positions and the second set of alternating
positions are a same set of alternating positions in the destination data vector, wherein
the first set of alternating positions and the second set of alternating positions alternate
with a further set of positions at which a set of prior data items remain in the
destination data vector, wherein the set of prior data items are present in the further set
of positions in the destination data vector before the data processing circuitry begins
the vector interleaving process, wherein the destination register specified in the vector
interleaving instruction is one of the first source register and the second source
register, and wherein the diagonal input data item pairs alternate with a set of further
diagonal input data pairs formed of further alternating input data items in the first
source register paired with further alternating input data items in the second source
register, and the result data items are independent of the set of further diagonal input

data pairs.

In another example embodiment there is a computer-readable storage medium

storing in a non-transient fashion the above-mentioned computer program.

19 05 21

10

15

20

25

30

4a

The present techniques will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, in
which:

Figure 1 schematically illustrates a data processing apparatus which may
embody various examples of the present techniques;

Figure 2A schematically illustrates data processing circuitry to perform data
processing on pairs of elements taken from each of two source registers and to write
these in an interleaved manner into a destination register;

Figure 2B shows example content for the elements of the registers in the
example of Figure 2A,;

Figure 3A schematically illustrates data processing circuitry to perform data
processing operations on pairs of data elements taken from a first and second source
register and to write the result from each source register in an interleaved manner into
the destination register, wherein the data size of the elements written into the
destination register can be specified;

Figure 3B shows example content of elements in the example of Figure 3A;
Figure 4A schematically illustrates data processing circuitry in an example in which
one of the source registers also provides the destination register;

Figure 4B shows example content in the example of Figure 4A;

Figure 5A shows data processing circuitry and registers in one example in
which the instruction specifies a predicate value used to selectively enable/disable
certain processing;

Figure 5B gives example content of the elements of the registers and the
corresponding predicate values in the example of Figure SA;

Figure 6 schematically illustrates data processing circuitry in one example in
which pairs of input data items to be subjected to the data processing operation are
taken from diagonally adjacent elements of a first and second source register;

Figure 7 shows some definitions used for an example data processing context
of polynomial multiplication in which some instructions of the present techniques are

used;

10

15

20

25

30

Figure 8 shows step-by-step register content of the polynomial multiplication
example of Figure 7 with an example sequence of instructions provided by the present
techniques to carry out this polynomial multiplication;

Figure 9 is a sequence of steps in the method of one embodiment;

Figure 10 is a sequence of steps taken in the method of one embodiment; and

Figure 11 schematically illustrates the components of a system which provides

a simulator implementation in one embodiment.

At least some embodiments provide an apparatus comprising instruction
decoder circuitry to decode instructions, and data processing circuitry to selectively
apply vector processing operations specified by the instructions to input data vectors
comprising a plurality of input data items at respective positions in the input data
vectors, wherein the instruction decoder circuitry is responsive to a vector interleaving
instruction specifying a first source register, a second source register, and a destination
register to generate control signals to control the data processing circuitry to carry out
a vector interleaving process to retrieve a first set of input data items from the first
source register; retrieve a second set of input data items from the second source
register; perform a data processing operation on at least selected input data item pairs
taken from the first and second set of input data items to generate a set of result data
items; and store the set of result data items as a result data vector in the destination
register, wherein first source register dependent result data items which have a first
source register content dependency are stored in a first set of alternating positions in
the destination data vector, and wherein second source register dependent result data
items which have a second source register content dependency are stored in a second

set of alternating positions in the destination data vector.

The present techniques recognise that efficiency of processing and less
complexity in the necessary hardware are gained in a vector processing approach
where there is co-location of the processed input data items and the generated result
data items. For example such co-location is achieved in implementations in which
processing lanes (within which independent data processing takes place) are well

defined and well constrained. In other words this means that the complexity of the

220719

10

15

20

25

30

hardware required to bring together the required operands of the data processing
operation and to transfer the resulting data item to the required position in the
destination register are limited. In this context the present techniques have found that
it is useful to provide a vector interleaving instruction, which on the one hand causes
selected input data item pairs to be taken from the first and second sets of input data
items retrieved from the first and second source registers, and which on the other hand
causes the result data items to be stored in the destination register in dependence on
their source register dependency or dependencies, such that first source register
dependent result data items are stored in alternating positions in the destination register
and also second source register dependent result data items are stored in alternating
positions in the destination register. This configuration enables a useful degree of
flexibility in the particular pairings of input data items which are defined and in terms
of the alternating positions in the destination register to which the result data items are
written. Indeed the present techniques are not limited to a strict pair of input data
items, in that the data processing operation may have one or more additional operands
beyond the core pair. Nevertheless this approach still provides the above mentioned
co-location of related elements involved in the vectorised data processing, avoiding
excessive complexity in the supporting hardware which much be provided, but still
enabling useful data processing to be carried out for which further associated data
processing operations (for example to permute or shuffle content) are not required.
Useful efficiency and throughput of the implemented vectorised data processing is thus

supported.

As mentioned above the selected data item pairs may be defined in a variety of
useful ways, but in some embodiments the selected input data item pairs taken from
the first and second set of input data items comprise: a first set of input data item pairs
formed of adjacent pairs of input data items in the first source register; and a second
set of input data item pairs formed of adjacent pairs of input data items in the second
source register. Accordingly, pairs of adjacent elements (input data items) are taken
from both the first and second source register, meaning that these input data item
operands of the data processing are usefully collocated, but further where the result

data items which are generated from them are interleaved with other items in the

10

15

20

25

30

destination register, thus maximising the destination register utilisation (in that it is
fully “packed”) further supporting the efficiency and throughput of the vectorised data

processing being carried out.

One way of ensuring this full utilisation of the destination register is to
interleave result data items derived from the first source register content with result
data items derived from the second source register content and thus in some
embodiments the first set of alternating positions in the destination data vector
alternates with the second set of alternating positions in the destination data vector. In
some embodiments the first set of alternating positions is an even numbered set of
positions in the destination data vector and the second set of alternating positions is an
odd numbered set of positions in the destination data vector. Alternatively in other
embodiments the first set of alternating positions is an odd numbered set of positions
in the destination data vector and the second set of alternating positions is an even

numbered set of positions in the destination data vector.

The selected input data pairs may however be differently defined in other
embodiments and in some embodiments the selected input data item pairs taken from
the first and second set of input data items comprise diagonal input data item pairs
formed of alternating input data items in the first source register paired with alternating
input data items in the second source register. In other words, in such embodiments
the input data item pairs span the first and second source registers in that one input
data item of the pair comes from the first source register, whilst the other input data
item of the pair comes from the second source register. Moreover, this pairing is
“diagonal” in the sense that the input data items taken from the first source register are
at offset positions in that source register with respect to the input data items taken from
the second source register, this offset being one data item position. Hence alternating
input data items from the first source register are paired with alternating input data
items in the second source register taken from an adjacent data item location. Various
data processing contexts may benefit from this “diagonal input data item pairs”
approach as will become more clear with respect to some examples thereof which

follow.

10

15

20

25

30

In some embodiments therefore, in which all result data items are dependent on
both the first source register and the second source register, the sets defined by first
source register dependent result data items and second source register dependent result
data items are the same, and thus in some embodiments the first source register
dependent result data items and the second source register dependent result data items
are a same set of result data items, and the first set of alternating positions and the
second set of alternating positions are a same set of alternating positions in the
destination data vector. Hence, in terms of the positions in the destination data vector
at which the result data items are stored, in such embodiments this therefore means
that the above mentioned first set of alternating positions and second set of alternating

positions are the same set of alternating positions in the destination data vector.

Accordingly therefore in such embodiments this means that a further set of
alternating positions (i.e. those into which result data items are not stored) are
available to be populated by other data items. These may be selected in various ways
in dependence on what is of benefit to the particular vectorised data processing being
performed, but in some embodiments the first set of alternating positions and the
second set of alternating positions alternate with a further set of positions at which a
set of prior data items remain in the destination data vector, wherein the set of prior
data items are present in the further set of positions in the destination data vector
before the data processing circuitry begins the vector interleaving process. In other
words there is a set of prior data items in the destination data vector which are

unchanged (left unamended) by the vector interleaving process.

It will be recognised that depending on requirements the first and second set of
positions in the destination data vector could be chosen in some embodiments such
that the first set of positions are an even numbered set of positions in the destination
data vector and the further set of positions are an odd numbered set of in the
destination data vector. Alternatively in other embodiments the first set of positions
are an odd numbered set of positions in the destination data vector and the further set

of positions are an even numbered set of positions in the destination data vector.

10

15

20

25

30

Equally it will also be recognised that the alternating input data items retrieved
from the first and second source registers have an equivalent choice associated with
them and thus in some embodiments the alternating input data items in the first source
register are retrieved from an even numbered set of positions in the first source register
and the alternating input data items in the second source register are retrieved from an
odd numbered set of positions in the second source register. Alternatively in other
embodiments the alternating input data items in the first source register are retrieved
from an odd numbered set of positions in the first source register and the alternating
input data items in the second source register are retrieved from an even numbered set

of positions in the second source register.

The particular data processing operation performed on the input data items may
take a variety of forms, but in various embodiments the data processing operation is an
arithmetic operation, a logical operation, or a shift operation. Any such operation,
suitably configured to respect the constraints of the vectorised “lanes” of the

vectorised data processing to be carried out, may be chosen.

In some embodiments the destination register specified in the vector
interleaving instruction is a distinct register from the first and second source registers,
but in some embodiments the destination register specified in the vector interleaving
instruction is one of the first source register and the second source register. This thus
provides an at least partially “destructive” approach can be taken in which at least
some of the data items of that source register are overwritten by the storing of the set

of result data items into this register.

The present techniques provide a further aspect of configurability to the
vectorised data processing which is carried out in response to the vector interleaving
instruction in that in some embodiments the vector interleaving instruction further
specifies a predication value comprising predication bits corresponding to the
respective positions in the input data vectors, and the data processing circuitry is

further responsive to an unset predication bit in the predication value to suppress

10

15

20

25

30

10

involvement of input data item of the first set of input data items and the second set of
input data items in the vector interleaving process which correspond to the unset
predication bit. Thus further specific control can thus be applied to the processing by
the efficient mechanism of setting or unsetting certain predication bits in the
predication value. This predication value could be specified in a number of ways in
the vector interleaving instruction, either as an immediate value within the interleaving
instruction itself, or by means of the vector interleaving instruction indicating a storage

location, for example a further register, in which the predication value is to be found.

Another degree of flexibility to the present techniques is provided in
embodiments in which the vector interleaving instruction further specifies a first data
item size of the first set of input data items, a second data item size of the second set of
input data items, and a result data item size of the set of result data items. This
approach is not only generally useful in order to be able to control the specific input
data items which are retrieved from the first and second source registers, and to control
the specific format of the result data items which are stored into the destination
register, but can find particular applicability in the context of seeking to maintain
processing within the vectorised lanes by specifying data sizes which will respect

those lanes appropriately.

This may for example comprise narrowing the result data items, but conversely
can also comprise allowing a widening of the result data items (with respect to the
input data items), thus for example enabling “carry-less” multiplication to be carried
out which does not lose precision, i.e. it preserves all information in the calculation,

which can be important in certain contexts, for example in cryptography.

Accordingly, in some embodiments the first data item size and the second data
item size of the second set of input data items is smaller than the result data item size
of the set of result data items. Alternatively in other embodiments the first data item
size and the second data item size of the second set of input data items is larger than

the result data item size of the set of result data items.

10

15

20

25

30

11

At least some embodiments provide a method of operating a data processing
apparatus comprising the steps of: decoding instructions; selectively applying vector
processing operations specified by the instructions to input data vectors comprising a
plurality of input data items at respective positions in the input data vectors; generating
control signals in response to a vector interleaving instruction specifying a first source
register, a second source register, and a destination register of the apparatus to control
data processing circuitry of the apparatus to carry out a vector interleaving process
comprising: retrieving a first set of input data items from the first source register;
retrieving a second set of input data items from the second source register; performing
a data processing operation on at least selected input data item pairs taken from the
first and second set of input data items to generate a set of result data items; and
storing the set of result data items as a result data vector in the destination register,
wherein first source register dependent result data items which have a first source
register content dependency are stored in a first set of alternating positions in the
destination data vector, and wherein second source register dependent result data items
which have a second source register content dependency are stored in a second set of

alternating positions in the destination data vector.

At least some embodiments provide an apparatus comprising: means for
decoding instructions, means for selectively applying vector processing operations
specified by the instructions to input data vectors comprising a plurality of input data
items at respective positions in the input data vectors, means for generating control
signals in response to a vector interleaving instruction specifying a first source register,
a second source register, and a destination register of the apparatus to control data
processing circuitry of the apparatus to carry out a vector interleaving process
comprising: means for retrieving a first set of input data items from the first source
register, means for retrieving a second set of input data items from the second source
register; means for performing a data processing operation on at least selected input
data item pairs taken from the first and second set of input data items to generate a set
of result data items; and means for storing the set of result data items as a result data
vector in the destination register, wherein first source register dependent result data

items which have a first source register content dependency are stored in a first set of

10

15

20

25

30

12

alternating positions in the destination data vector, and wherein second source register
dependent result data items which have a second source register content dependency

are stored in a second set of alternating positions in the destination data vector.

At least some embodiments provide a computer program for controlling a host
data processing apparatus to provide an instructions execution environment
comprising: instruction decoding program logic to decode instructions, and data
processing program logic to selectively apply vector processing operations specified
by the instructions to input data vector structures comprising a plurality of input data
items at respective positions in the input data vector structures, wherein the instruction
decoding program logic is responsive to a vector interleaving instruction specifying a
first source data structure, a second source data structure, and a destination data
structure to generate control signals to control the data processing program logic to
carry out a vector interleaving process to: retrieve a first set of input data items from
the first source data structure; retrieve a second set of input data items from the second
source data structure;, perform a data processing operation on at least selected input
data item pairs taken from the first and second set of input data items to generate a set
of result data items; and store the set of result data items as a result data vector
structure in the destination data structure, wherein first source data structure dependent
result data items which have a first source data structure content dependency are stored
in a first set of alternating positions in the destination data vector structure, and
wherein second source data structure dependent result data items which have a second
source data structure content dependency are stored in a second set of alternating

positions in the destination data vector structure.

At least some embodiments provide a computer-readable storage medium

storing in a non-transient fashion the above-mentioned computer program.

Some particular embodiments are now described with reference to the figures.

Figure 1 schematically illustrates a data processing apparatus 10 which may

embody various examples of the present techniques. The apparatus comprises data

10

15

20

25

30

13

processing circuitry 12 which performs data processing operations on data items in
response to a sequence of instructions which it executes. These instructions are
retrieved from the memory 14 to which the data processing apparatus has access and,
in a manner with which one of ordinary skill in the art will be familiar, fetch circuitry
16 is provided for this purpose. Furthermore, instructions retrieved by the fetch
circuitry 16 are passed to the instruction decoder circuitry 18, which generates control
signals which are arranged to control various aspects of the configuration and
operation of the processing circuitry 12, as well as of a set of registers 20 and a
load/store unit 22. Generally, the data processing circuitry 12 may be arranged in a
pipelined fashion, yet the specifics thereof are not relevant to the present techniques.
One of ordinary skill in the art will be familiar with the general configuration which
Figure 1 represents and further detail description thereof is dispensed herewith merely
for the purposes of brevity. The registers 20, as can be seen in Figure 1, each comprise
storage for multiple data elements, such that the processing circuitry can apply data
processing operations either to a specified data element within a specified register, or
can apply data processing operations to a specified group of data elements (a “vector”)
within a specified register. In particular the illustrated data processing apparatus is
concerned with the performance of vectorised data processing operations, and
specifically to the execution of vector interleaving instructions, with respect to data
elements held in the registers 20, further explanation of which will follow in more
detail below with reference to some specific embodiments. Data values required by
the data processing circuitry 12 in the execution of the instructions, and data values
generated as a result of those data processing instructions, are written to and read from
the memory 14 by means of the load/store unit 22. Note also that generally the
memory 14 in Figure 1 can be seen as an example of a computer-readable storage
medium on which the instructions of the present techniques can be stored, typically as
part of a predefined sequence of instructions (a “program”), which the processing
circuitry then executes. The processing circuitry may however access such a program
from a variety of different sources, such in RAM, in ROM, via a network interface,
and so on. The present disclosure describes various novel instructions which the

processing circuitry 12 can execute and the figures which follow provide further

04 12 20

1

b
W

e

L

0

14

explanation of the nature of these iustructions, variations in the data processing

circuitry in order to support the execution of those instructions, and so on.

Figure 2A schematically iHustrates registers and data processing circuitry in
one example. In this example a source register 30 (source 0} and a source register 32
{source 1} are shown, as well as a destination register 34. This set of three registers are
specified in the vector mnterleaving instruction which causes the illustrated processing
{by enabling of the appropriate connections between the components) to be carried out.
As shown, pairs of input data elements are retrieved from adjacent positions in the first
and second source registers, these providing the operands to the data processing
operations carried out on each in the respective “operation” {(OP) circuitry 36, 38, 40,
and 42. The particular operation carried out by these items of data processing circuitry
may take a variety of forms but as shown in Figure 2B by the example content of the
data items in the respective positions of the three registers corresponding to the
processing shown in Figure ZA, in this example the operation is an exclusive-OR.
However, in other examples the operation could be any kind of arithmetic operation
{e.g. addition, multiplication, etc.), logical operation {e.g. AND, OR, etc) or a shift
operation (left or right and by any suitable number of bit positions). As shown by the
result data paths leading from the data operation circuitry to the destination register 34,
the result data items generated by this processing are stored in alternating positions in
the destination register in dependence on the source register from which the input data
pair came. Thus, in the example shown the result data items from source register 30
are stored in the odd numbered positions 1 and 3, whilst the result data items resulting
from source register 32 are stored in the even numbered posttions 0 and 2. 1t should be
appreciated that this could be provided differently in response to a differently
configured vector interleaving instruction such that these odd and even positions are
inverted. Finally note that each of the registers in Figure 2ZA and 2B are illustrated
showing two pairs of data input values being taken from each source register and four
result data items being written into the destination register, but the extensions of the
lines towards the left hand side of the figure illustrate that in this vectorised data
processing context further iterations of the ilustrated processing may be provided

across the width of the vector processing capability of the apparatus provided.

04 12 20

1

b
W

e

L

0

15

Figure 3A schematically illustrates data processing circuitry and registers in a
similar example to that shown 1o Figures 2ZA and 2B. A first source register 40 and a
second source register 42 (source registers 0 and 1) and a destination register 44 are
shown. Data processing circuitry to carry out the required data processing operation
{(“OP”) 406, 48, 50, and 52 s also shown. In this example, as illustrated by the example
contentt given in Figure 3B, the operation is a multiplication. As betore, this operation
could be any chosen arithmetic, logical, or shift operation as required. Ihifferentiating
Figures 3A and 2A is the fact that Figure 3A illustrates the performance of a
“widening” operation in which the size of each data item retrieved from each source
register 1s half of the size of each resulting result data value stored in the destination
register. Here the example is given of the input data iterus being doubles (d) and the
result data items being quadruples {q). This being binary floating point format, the
double input data items are each 64-bit values, whilst the quadruple values are each
128-bit values. This enables the example data processing shown, referring also to the
example content of Figure 3B, to be carried out where the operation in this example 15
a multiphication, and therefore this approach enables a widening, carry-less
multiplication to be carried out which does not lose information. Note that also in the
specific example of Figure 3A the doubles are taken from the lower half of each 128-
bit data item in the source registers, this being specifiable in the vector interleaving
instruction which triggers this data processing. The converse example may also be
provided in which the top half of the data iteny would be taken. In one example the
instruction is provided in two form to support this, a “T7 form (which will cause top-
balf content to be used) and a “B” form (which will cause bottom-half content to be
used). Indeed, the present techniques provide vector interleaving instructions in which
the size of the data items is specifiable across a wide range in such formats e.g. 8-bit
byte, 16-bit halves, 32-bit singles, 64-bit doubles, and 128-bit quadruples. Further
extensions as the capacity of such source registers and data processing circuitry
increases are of course possible. Note also that where the example of Figure 3A and
3B gives a widening data processing operation the converse capability is also
provided, wherein for a suitable data processing operation a narrower result data item

is generated from wider source register input data items.

04 12 20

1

b
W

98]

L

0

16

Figure 4A shows another example in which only two registers are used, a first
source register 60 and a second source register 62 which is also the destination
register. In other words the result data values generated by the data processing of the
operation circuitry 64, 66, 68, and 70 are stored back into the source register 62.
Accordingly, this example can be said to be “destructive” in that the content of the
second source register 62 is lost once the result data items have overwritten it
Example content for this set up is given in Figure 4B, showing the content of source 0,
and showing the content of source | both before and after the data processing. In this
example the data processing is an XOR operation, but as in the other examples
described above this could be any variety of arithmetic, logical, or shift operation as

required.

Figure SA schematically illustrates a further example. In this example source
registers 80 and 82 are shown as well as destination register 84, In addition in this
example a predicate value 86 is also shown. This predicate value can be specified as
an immediate value 1n the instruction or else can be specified by means of s storage
location in the data processing apparatus, for example in another register. The effect
of the predicate value on the data processing can be seen in Figure 5A in that there 1s a
correspondence between the bit positions of the predicate value and the lanes of data
processing. Thus, where two bits of the predicate value are set (1) and two bits are
unset (0) this effectively switches on or off as appropriate the processing performed by
the data processing circuitry items 88, 90, 92, 94, 96, 98, 100 and 102. Specifically, in
the example shown, no processing is performed by ttems 90, 94, 98, and 102, whilst
88, 92, 96, and 100 operate as described above with reference to Figures 2A, 3A, and
4A. In the example shown in Figure 5A, as illustrated in Figure 5B, the processing is
an XOR operation, but as before any arithmetic, logical, or shift operation could
equavalently be performed. In effect therefore the content of the destination register is
only modified in those positions which receive result data items from active data
processing circuity {OP units), in Figure SA the unamended positions in the destination

register being hatched. Figure 5B shows the content of the destination register both

04 12 20

1

b
W

98]

L

0

17

betore and after the data processing, demonstrating that the content of certain positions

does not change.

Figure 6 schematically illustrates a further example configuration in which a
different approach to the pairings of input data items is taken. Source registers 110,
and 112 are shown as well as a destination register 114, In this example the pairs span
two source registers, 1.€. one input operand data item is taken from the first source
register whilst another input operand data item is taken from the other source register.
Thus in the example of Figure 6 data items A0 and A2 are taken from the first source
register and respectively paired with data item Bl and B3 from the second source
register. These provide the inputs to the data processing circuitry 114 and 116, which
as labelled can be seen to perform a XOR operation (as in the previous examples, this
operation may be variously defined). The result data items generated by these two
iterns of data processing circuitry are stored in two positions in the destination register
114 which are interleaved with a second set of positions in the destination register 114
which remain unchanged by the data processing which is carried out. With respect to
the example in Figure 6 it should be appreciated that the choice of even numbered
positions providing the input data items from the first source register and odd
nurubered positions providing the input data items in the second source register can be
inverted, 1.e. with odd numbered items coming from the first source register and even
numbered items coming from the second source register. Sumilarly the choice of even
numbered positions into which to write the result data items could instead be chosen to
be the set of odd numbered positions with the unchanged data items in the destination
register then of course occupying the even numbered positions. Instructions
supporting all these permutations either by means of suitable flags in a given

instruction or by separately defined instructions for each version can be provided.

Figures 7 and 8 now illustrate and describe one example of the present
techniques when used in the context of polynomial multiplication. Here the present
techniques provide in particular a vector interleaving instruction which specifies an

exclusive OR operation and moreover this exclusive OR operation is

10

15

20

25

30

18

provided in two formats, referred to in the example of Figure 8 as EORBT and
EORTB, where the last two letters B and T refer to “bottom” and “top”, namely the
lower and upper halves of a given data item indicating the manner in which these
should be handled, as will be explained in more detail below. These particular
instructions are beneficial to accelerate polynomial multiplication (in the Galois field).
Moreover, this example is one of carry-less multiplication. Thus, beginning with some

definitions shown in Figure 7, the Karatsuba approach is taken such that:

(X1, X0} * {Y1, YO} = H 128{P1, PO~ P1 Q1 "R1},
L 128{Q1 ~ PO~ Q0 ~ RO, QO0}

where:

{P1,P0} = X1 * Y1

{Q1, Q0} = X0 * YO

{R1, RO} = (X0~ X1) * (YO~ Y1)
Further, let vectors zX and zY be defined:

zX={...X1,X0}and zY = {....Y1, YO}

The following instruction sequence (using the above mentioned EORTB and

EORBT instructions) can then be used to carry out the required calculation.

PMULLB zl.q, zY.d, zX.d //z1 = {..... Ql, QO0}
PMULLT z2.q, zY.d, zX.d //22 = {..... P1, PO}
EORBT zX.q, zX.d, zX.d
EORBT zY.q, zY.d, zY.d
PMULLB z3.q, zX.d, zY.d //z3 = {..... R1, RO}

EOR z3.d, z3.d, z2.d

Il
—

FOR z3.d, z3.d, zl.d //23

10

15

20

25

30

19

EORTB zl.q, zl.d, z3.d
EORBT z2.q, z2.d, z3.d

Note therefore that the 256-bit result of each 128-bit wide multiplication is split
between the registers z1 and z2, with z1 containing the bottom 128-bits and z2
containing the top 128-bits. This may for example work efficiently in an
implementation in which the minimum vector length is 128-bits and therefore this
example sequence of instruction (code) can work for any given vector length within
such a system. Figure 8 shows the content of the respective data items of the registers
zX, zY, z1, z2 and z3 as these instructions are carried out to generate these respective
bottom 128-bits (which finally result in register z1) and the top 128-bits (which finally

result in the register z2).

Figure 9 shows a sequence of steps which are taken in the method of one
embodiment when a vector interleaving instruction of the present techniques is
encountered by the apparatus. The flow can be considered to begin at step 200 where
the next instruction in the sequence of instructions received by the instruction decoder
circuitry is decoded. It is then determined at step 202 if this is a vector interleaving
instruction. If it is not then the flow proceeds via step 204 where this other variety of
instruction is processed as appropriate (the present description not being concerned
with other types of instructions). If however at step 202 this is found to be a vector
interleaving instruction then the flow proceeds to step 206 where input data items are
retrieved from the first source register and to step 208 where input data items are
retrieved from the second source register. It will be appreciated having read the
description of the preceding figures that steps 206 and 208 need not be carried out in
sequence, and indeed will typically be carried out in parallel, but are merely illustrated
in this sequential fashion in Figure 9 for simplicity. At step 210 the data processing
operation defined by this vector interleaving instruction is carried out using pairs of
input data items as defined by the vector interleaving instruction and at step 212 the
result data items are stored into alternating positions in the destination register as
appropriate to the particular type of vector interleaving instruction encountered. The

flow then returns to step 200.

10

15

20

25

30

20

Figure 10 shows a sequence of steps which are taken in the method of another
embodiment, giving further detail of an embodiment in which different types of vector
interleaving instruction may be encountered. The flow begins at step 220 where the
next instruction received by the instruction decoder circuitry is decoded. If this is not
found (at step 222) to be a vector interleaving instruction then the flow proceeds via
step 224 where this other type of instruction is processed as appropriate (again, this not
being the concern of the present disclosure). When this is a vector interleaving
instruction the flow proceeds to step 224, where it is determined if this is a “pairwise”
or a “diagonal” style of vector interleaving instruction. In the case where this is a
pairwise vector interleaving instruction then the flow proceeds to step 226, where a
first set of pairs of data items are retrieved from the first source register and a second
set of pairs of data items are retrieved from the second source register (as specified in
the instruction). Then at step 228 these pairs are subjected to the required data
processing operation specified by the instruction. Then at step 230 the results of the
first pairs of data items are stored to odd positions in the destination register, whilst the
results from the second set of pairs of data items are stored to even positions in the
destination register. As shown in brackets in step 230 this choice of odd and even
could be inverted (e.g. by two variants of the pairwise instruction). The flow then
returns to step 220. Returning to consider step 224, if this is instead a diagonal vector
interleaving instruction then the flow proceeds from step 224 to step 232, where pairs
of input data items from diagonally adjacent positions in the first and second source
registers are retrieved and at step 234 these are subjected to the data processing
operation defined by the vector interleaving instruction. Then at step 236 the results of
the data processing operations are stored to odd positions in the destination register
leaving even positions unamended (unchanged). The bracketed words “even” and
“odd” in step 236 of Figure 10 indicate that this choice of odd and even could be
inverted (e.g. by two variants of the diagonal instruction). The flow then returns to

step 220.

Figure 11 illustrates a simulator implementation that may be used. Whilst the

earlier described embodiments implement the present invention in terms of apparatus

10

15

20

25

30

21

and methods for operating specific processing hardware supporting the techniques
concerned, it is also possible to provide an instruction execution environment in
accordance with the embodiments described herein which is implemented through the
use of a computer program. Such computer programs are often referred to as
simulators, insofar as they provide a software based implementation of a hardware
architecture. Varieties of simulator computer programs include emulators, virtual
machines, models, and binary translators, including dynamic binary translators.
Typically, a simulator implementation may run on a host processor 730, optionally
running a host operating system 720, supporting the simulator program 710. In some
arrangements, there may be multiple layers of simulation between the hardware and
the provided instruction execution environment, and/or multiple distinct instruction
execution environments provided on the same host processor. Historically, powerful
processors have been required to provide simulator implementations which execute at
a reasonable speed, but such an approach may be justified in certain circumstances,
such as when there is a desire to run code native to another processor for compatibility
or re-use reasons. For example, the simulator implementation may provide an
instruction execution environment with additional functionality which is not supported
by the host processor hardware, or provide an instruction execution environment
typically associated with a different hardware architecture. An overview of simulation
is given in “Some Efficient Architecture Simulation Techniques”, Robert Bedichek,

Winter 1990 USENIX Conference, Pages 53 - 63.

To the extent that embodiments have previously been described with reference
to particular hardware constructs or features, in a simulated embodiment, equivalent
functionality may be provided by suitable software constructs or features. For
example, particular circuitry may be implemented in a simulated embodiment as
computer program logic. Similarly, memory hardware, such as a register or cache,
may be implemented in a simulated embodiment as a software data structure. In
arrangements where one or more of the hardware elements referenced in the
previously described embodiments are present on the host hardware (for example, host
processor 730), some simulated embodiments may make use of the host hardware,

where suitable.

10

15

20

25

30

22

The simulator program 710 may be stored on a computer-readable storage
medium (which may be a non-transitory medium), and provides a program interface
(instruction execution environment) to the target code 700 (which may include
applications, operating systems and a hypervisor) which is the same as the application
program interface of the hardware architecture being modelled by the simulator
program 710. Thus, the program instructions of the target code 700, including the
vector interleaving instructions described above, may be executed from within the
instruction execution environment using the simulator program 710, so that a host
computer 730 which does not actually have the hardware features of the apparatus 2

discussed above can emulate these features.

In brief overall summary vector interleaving techniques in a data processing
apparatus are disclosed, comprising apparatuses, instructions, methods of operating the
apparatuses, and virtual machine implementations. A vector interleaving instruction
specifies a first source register, second source register, and destination register. A first
set of input data items is retrieved from the first source register and a second set of
input data items from the second source register. A data processing operation is
performed on selected input data item pairs taken from the first and second set of input
data items to generate a set of result data items, which are stored as a result data vector
in the destination register. First source register dependent result data items are stored
in a first set of alternating positions in the destination data vector and second source
register dependent result data items are stored in a second set of alternating positions

in the destination data vector.

In the present application, the words “configured to...” are used to mean that
an element of an apparatus has a configuration able to carry out the defined operation.
In this context, a “configuration” means an arrangement or manner of interconnection
of hardware or software. For example, the apparatus may have dedicated hardware
which provides the defined operation, or a processor or other processing device may
be programmed to perform the function. “Configured to” does not imply that the
apparatus element needs to be changed in any way in order to provide the defined

operation.

10

23

Although illustrative embodiments have been described in detail herein with
reference to the accompanying drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various changes, additions and
modifications can be effected therein by one skilled in the art without departing from
the scope and spirit of the invention as defined by the appended claims. For example,
various combinations of the features of the dependent claims could be made with the
features of the independent claims without departing from the scope of the present

invention.

19 05 21

10

15

20

25

30

25

CLAIMS

1. An apparatus comprising:

instruction decoder circuitry to decode instructions; and

data processing circuitry to selectively apply vector processing operations
specified by the instructions to input data vectors comprising a plurality of input data
items at respective positions in the input data vectors,

wherein the instruction decoder circuitry is responsive to a vector interleaving
instruction specifying a first source register, a second source register, and a destination
register to generate control signals to control the data processing circuitry to carry out
a vector interleaving process to:

retrieve a first set of input data items from the first source register;

retrieve a second set of input data items from the second source register;

perform a data processing operation on at least selected input data item pairs
taken from the first and second set of input data items to generate a set of result data
items; and

store the set of result data items as a result data vector in the destination
register, wherein first source register dependent result data items are stored in a first
set of alternating positions in the destination data vector, and wherein second source
register dependent result data items are stored in a second set of alternating positions
in the destination data vector,

wherein the selected input data item pairs taken from the first and second set of
input data items comprise diagonal input data item pairs formed of alternating input
data items in the first source register paired with alternating input data items in the
second source register,

wherein the first source register dependent result data items and the second
source register dependent result data items are a same set of result data items, and the
first set of alternating positions and the second set of alternating positions are a same
set of alternating positions in the destination data vector,

wherein the first set of alternating positions and the second set of alternating
positions alternate with a further set of positions at which a set of prior data items

remain in the destination data vector, wherein the set of prior data items are present in

19 05 21

10

15

20

25

30

26

the further set of positions in the destination data vector before the data processing
circuitry begins the vector interleaving process,

wherein the destination register specified in the vector interleaving instruction
is one of the first source register and the second source register, and

wherein the diagonal input data item pairs alternate with a set of further
diagonal input data pairs formed of further alternating input data items in the first
source register paired with further alternating input data items in the second source
register, and the result data items are independent of the set of further diagonal input

data pairs.

2. The apparatus as claimed in claim 1, wherein the first set of positions are an
even numbered set of positions in the destination data vector and the further set of

positions are an odd numbered set of positions in the destination data vector.

3. The apparatus as claimed in claim 1, wherein the first set of positions are an
odd numbered set of positions in the destination data vector and the further set of

positions are an even numbered set of positions in the destination data vector.

4. The apparatus as claimed in any of claims 1-3, wherein the alternating input
data items in the first source register are retrieved from an even numbered set of
positions in the first source register and the alternating input data items in the second
source register are retrieved from an odd numbered set of positions in the second

source register.

5. The apparatus as claimed in any of claims 1-3, wherein the alternating input
data items in the first source register are retrieved from an odd numbered set of
positions in the first source register and the alternating input data items in the second
source register are retrieved from an even numbered set of positions in the second

source register.

6. The apparatus as claimed in any preceding claim, wherein the data processing

operation is an arithmetic operation, a logical operation, or a shift operation.

19 05 21

10

15

20

25

30

27

7. The apparatus as claimed in any preceding claim, wherein the vector
interleaving instruction further specifies a predication value comprising predication
bits corresponding to the respective positions in the input data vectors, and the data
processing circuitry is further responsive to an unset predication bit in the predication
value to suppress involvement of input data item of the first set of input data items and
the second set of input data items in the vector interleaving process which correspond

to the unset predication bit.

8. The apparatus as claimed in any preceding claim, wherein the vector
interleaving instruction further specifies a first data item size of the first set of input
data items, a second data item size of the second set of input data items, and a result

data item size of the set of result data items.

9. The apparatus as claimed in claim 8, wherein the first data item size of the first
set of input data items and the second data item size of the second set of input data

items is smaller than the result data item size of the set of result data items.

10. The apparatus as claimed in claim 8, wherein the first data item size of the first
set of input data items and the second data item size of the second set of input data

items is larger than the result data item size of the set of result data items.

11. A method of operating a data processing apparatus comprising the steps of’

decoding instructions;

selectively applying vector processing operations specified by the instructions
to input data vectors comprising a plurality of input data items at respective positions
in the input data vectors;

generating control signals in response to a vector interleaving instruction
specifying a first source register, a second source register, and a destination register of
the apparatus to control data processing circuitry of the apparatus to carry out a vector

interleaving process comprising:

19 05 21

10

15

20

25

30

28

retrieving a first set of input data items from the first source register;

retrieving a second set of input data items from the second source register;

performing a data processing operation on at least selected input data item pairs
taken from the first and second set of input data items to generate a set of result data
items; and

storing the set of result data items as a result data vector in the destination
register, wherein first source register dependent result data items are stored in a first
set of alternating positions in the destination data vector, and wherein second source
register dependent result data items are stored in a second set of alternating positions
in the destination data vector,

wherein the selected input data item pairs taken from the first and second set of
input data items comprise diagonal input data item pairs formed of alternating input
data items in the first source register paired with alternating input data items in the
second source register,

wherein the first source register dependent result data items and the second
source register dependent result data items are a same set of result data items, and the
first set of alternating positions and the second set of alternating positions are a same
set of alternating positions in the destination data vector,

wherein the first set of alternating positions and the second set of alternating
positions alternate with a further set of positions at which a set of prior data items
remain in the destination data vector, wherein the set of prior data items are present in
the further set of positions in the destination data vector before the data processing
circuitry begins the vector interleaving process,

wherein the destination register specified in the vector interleaving instruction
is one of the first source register and the second source register, and

wherein the diagonal input data item pairs alternate with a set of further
diagonal input data pairs formed of further alternating input data items in the first
source register paired with further alternating input data items in the second source
register, and the result data items are independent of the set of further diagonal input

data pairs.

19 05 21

10

15

20

25

30

29

12. A computer program for controlling a host data processing apparatus to provide
an instructions execution environment comprising:

instruction decoding program logic to decode instructions; and

data processing program logic to selectively apply vector processing operations
specified by the instructions to input data vector structures comprising a plurality of
input data items at respective positions in the input data vector structures,

wherein the instruction decoding program logic is responsive to a vector
interleaving instruction specifying a first source data structure, a second source data
structure, and a destination data structure to generate control signals to control the data
processing program logic to carry out a vector interleaving process to:

retrieve a first set of input data items from the first source data structure;

retrieve a second set of input data items from the second source data structure;

perform a data processing operation on at least selected input data item pairs
taken from the first and second set of input data items to generate a set of result data
items; and

store the set of result data items as a result data vector structure in the
destination data structure, wherein first source data structure dependent result data
items are stored in a first set of alternating positions in the destination data vector
structure, and wherein second source data structure dependent result data items are
stored in a second set of alternating positions in the destination data vector structure,

wherein the selected input data item pairs taken from the first and second set of
input data items comprise diagonal input data item pairs formed of alternating input
data items in the first source register paired with alternating input data items in the
second source register,

wherein the first source register dependent result data items and the second
source register dependent result data items are a same set of result data items, and the
first set of alternating positions and the second set of alternating positions are a same
set of alternating positions in the destination data vector,

wherein the first set of alternating positions and the second set of alternating
positions alternate with a further set of positions at which a set of prior data items

remain in the destination data vector, wherein the set of prior data items are present in

19 05 21

10

30

the further set of positions in the destination data vector before the data processing
circuitry begins the vector interleaving process,

wherein the destination register specified in the vector interleaving instruction
is one of the first source register and the second source register, and

wherein the diagonal input data item pairs alternate with a set of further
diagonal input data pairs formed of further alternating input data items in the first
source register paired with further alternating input data items in the second source
register, and the result data items are independent of the set of further diagonal input

data pairs.

13. A computer-readable storage medium storing in a non-transient fashion the

computer program according to claim 12.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS

