»UK Patent ,GB 2575433 1D

(45)Date of B Publication 08.07.2020

(54) Title of the Invention: AUtomMatic client device registration

(51) INT CL: HO4L 29/06 (2006.01) HO4L 9/32 (2006.01) HO4L 12/24 (2006.01) HO4L 29/08 (2006.01)
HO4W 4/70 (2018.01) HO4W 12/06 (2009.01)

(21) Application No: 1810472.9 (72) Inventor(s):
Simo Sillankorva
(22) Date of Filing: 26.06.2018 Markku Lehto

Kalle Vayrynen

o Jaakko Kukkohovi
(43) Date of A Publication 15.01.2020 Szymon Sasin

Yongbeom Pak

(56) Documents Cited: (73) Proprlej(or.(s):
GB 2561822 A WO 2018/106985 A1 ARM Limited _ _
Internet Engineering Task Force (IETF), Request for (Incorporated in the United Kingdom)
Comments: 6347 (RFC 6347), January 2012, 110 Fulbourn Road, CAMBRIDGE, CB1 9NJ,
"Datagram Transport Layer Security version 1.2", United Kingdom
Rescorla E. See section 4.2
IP.com Technical Disclosure, 23 June 2018, "Update (74) Agent and/or Address for Service:
Keep-alive mechanism LWM2M client-server”, Gupta TLIP Ltd
R. and Awasthi A. 14 King Street, LEEDS, LS1 2HL, United Kingdom

Open Mobile Alliance, "Lightweight Machine to
Machine Technical Specification: Core", Candidate
version 1.1, 12 June 2018, OMA-TS-

LightweightM2M Core-V1 _1-20180612-C

(58) Field of Search:

As for published application 2575433 A viz:

INT CL GO6F, HO4L, H04W

Other: WPI, EPODOC, Patent Fulitext, INSPEC,
XP3GPP, XPIETF, XPI3E, XPIPCOM

updated as appropriate

Additional Fields
Other: None

d tehyls¢ 8O

1/5

100
Registration
I , . Directory HO
. Bootstrap T . |
- Server 106
= wm ; N“‘: .; .:::..l
7 T N
//,) Bk i !
o . Registration |
R . Directory 110
£
4

services 108

FIGURE |

>erver and Device Handshake

Client

Device 102 Server 104

+ +

5204 Reguest cert{(() .

5206 Venly
cert(S) :

5 - S210: Verify
5 - cert(C)

o received from
; - device

o
N
S—
v
b
o
o
.y
s
hod
0
-y
g

. message to device E
I E
: -
: K
i E
- S216: Exchange :
g &V, LA 2 A .
;encrypted messages ;

FIGURE 2

/5

7

=
-
o,hnu
s
-
~bood
s
Of
13
ad

Registration Process

Q

-
ponnn]
o
o
-
ow?
3
;@2
o gt
-~

N
-
ot
13
=
>
.
-

W

% 5|3

o =212

75 | -

s L

o -

oF o~ fand § pond

SR W

2 O 8 Q|

, * g ! et

A SIS

S = g

S = Rl K

~F o o o fr

< & Eh Xy

N = O T | o

@0 R T we

> yanr

__ 2805
¥
L’ &)
P 3
oot BN & 2.
G Al e %

cl N .

e ot 2 - B
s B S| 0 4 o
wn] - -
wly Vi = f 4§ ¢
b ol BTy o B
I > oA e
! IF -l ==
CH = O Y

R W O WN W N e :’l’l’i:!=!i!i!i’g=!a!illu!llEIIiul.!illE.Inl..IIEII!I'!’ls‘i‘!‘!‘I-’.!Il’:’!’l’i’i:’!’l’i!!’!i!l!i!i!!lnlulﬂl:n

FIGURE 3

473

Registration Upndate Process

oy
p—
na.!i_
0181_
a,hu.rf
e
,«.10 :::
oo -
N P
.ot €3 v b
Of) 42 Sl P
0D, fen Ll R
.ai .
- = v
L) i ool &
N e -
A Wi
=R @ SN
= & @ e |2
2 g EIS
s =
L. = W e
N ~raed TI/Q.V
o LR e
Gﬂm,.a Y <
T T S Sl R
22 5

FIGURE 4

~ 3 a2 B nnu
&% Y A

P 3 A
S @ T =
] W -
. s Mfm » n&w
% o Mot m

L’ ”
< O 2
Ny =

’I,I:I‘I’l’l’i:!:!i!i!i’g=!I'!illu!llEl.EI.!-IIIE.Inl..l.iul.!!'!"!-'.‘i‘!‘!‘I-’.!‘ll’:’!’l’i’i:‘!’l’i!!’!i!l!i!i!!l:!il:

N
-
ot
13
=
>
.
-

573

date Process

vl.ll

fmproved Registration U

-
na.!i_
D v
a,hu.rf
I
,«.10 :::
Tr -
AN o
Of) 42 =0
. t.}
SSR= =1
A e
rret WL e W
S 2.0 =19
—a O EIE
=2z -
iy G S = TN
RO - B
TAg =
e

message to device

’I,I:I‘I’l’l’i:!:!i!i!i’g=!I'!illu!llEl.EI.!-IIIE.Inl..l.iul.!!'!"!-'.‘i‘!‘!‘I-’.!‘ll’:’!’l’i’i:‘!’l’i!!’!i!l!i!i!!l:!il:

N
-
ot
13
=
>
.
-

IN

%

tellectual

Property
Office

Application No. GB1810472.9 RTM Date :30 November 2018

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

Wi-Fi
Zigbee
Thread

Bluetooth

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk /ipo

10

15

01 0219

25

30

35

Automatic Client Device Registration

The present techniques generally relate to methods, apparatuses and

systems for maintaining a client device registration with a server.

There are ever increasing numbers of devices within the home, other
buildings, vehicles and the outdoor environment, as well as personal devices,
which have the processing and communication capabilities to enable them to
communicate with other devices (e.g. end-point/client devices, servers, etc.)

within the same network or in a different network to access services as part of the
“Internet of Things” (IoT).

For example, a temperature device in the home may gather sensed data
and push the sensed data to a remote service (such as an application running in
‘the cloud’). The temperature device may then be controlled remotely by the
remote service via received command data. In other examples, a factory pollution
monitoring sensor may gather information from various chemical sensors and
arrange maintenance based on the gathered information; whilst a healthcare
provider may use wireless sensors, such as a heart rate monitor to track the health
of patients while they are at home. Such devices are used in a range of networks,
whereby the data is generally transmitted between devices and/or services using

machine-to-machine (M2M) communication techniques.

M2M communication techniques typically need to be secure, for example,
because sensitive data may be transmitted between devices to servers, and/or
because unsecure communication may enable malicious third parties to gain
access to the machines or to the data being transmitted between machines. M2M
communications may be secured using cryptographic protocols, such as the
Transport Layer Security (TLS) protocol or the Datagram Transport Layer Security
(DTLS) protocol, which are designed to prevent eavesdropping, tampering or
message/data forgery. The TLS/DTLS protocol requires machines that seek to
communicate with each other (e.g. end-point/client devices and servers) to
authenticate each other by exchanging and validating digital certificates in a

handshake process.

10

15

o)
—
QN
-
—
-

25

30

35

In many systems, end-point devices/client devices may connect to and
communicate with one or more servers. For example, a client device which
functions to monitor temperature of an environment may need to transmit
temperature data to a server regularly/periodically. A server may maintain a
client device registration directory to record the client devices that have registered
to connect to/communicate with the server. However, some client devices (such
as those used in an Internet of Things system) may be constrained resource
devices, i.e. they may be low-power, low-memory and/or low-processing power
devices. Such constrained resource devices may have intermittent connectivity
with a network in which they are operational, and in particular, with a server in
the network. Accordingly, some client devices may not be continuously connected
to the server with which they have registered. The client devices may need to
communicate with the server to maintain their registration so that they can

continue to connect to the server.

The present applicant has recognised the need for a technique for

maintaining client device registration with a server.

In a first aspect of present techniques, there is provided a method for
maintaining registration of a client device with a Lightweight Machine-to-Machine
(LWM2M) server, the method performed by the client device comprising:

establishing a secure communication session with the LwM2M server
comprising performing a Transport Layer Security (TLS) or Datagram Transport
Layer security (DTLS) handshake with the LwM2M server;

receiving a registration confirmation message from the LwM2M server
confirming that the client device has been added to a client registration directory,
the registration having a defined lifetime;

performing, before expiry of the lifetime, a further TLS or DTLS handshake
with the LWM2M server, wherein the further TLS or DTLS handshake comprising
client data is used to identify the client device so as to maintain registration of the

client device within the client registration directory.

In a second aspect of present techniques, there is provided a client device
comprising: communication circuitry for: establishing a secure communication

session with a Lightweight Machine-to-Machine (LwM2M) server, comprising

10

15

01 0219

25

30

35

performing a Transport Layer Security (TLS) or Datagram Transport Layer
Security (DTLS) handshake with the LwM2M server; receiving a registration
confirmation message from the LwM2M server confirming that the client device
has been added to a client registration directory, the registration having a defined
lifetime; and performing, before expiry of the lifetime, a further TLS or DTLS
handshake with the LwM2M server, wherein the further TLS of DTLS handshake
comprising client data is used to identify the client device within the client
registration directory and to maintain registration of the client device within the

client registration directory.

In a third aspect of present techniques, there is provided a method for
maintaining registration of a client device with a Lightweight Machine-to-Machine
(LWM2M) server, the method performed by the server comprising: establishing a
secure communication session with the client device comprising performing a
Transport Layer Security (TLS) or Datagram Transport Layer Security (DTLS)
handshake with the client device; receiving, following the establishment of the
secure communication session, a registration message from the client device,
transmitting a registration confirmation message to the client device confirming
that the client device has been added to the client registration directory, the
registration having a defined lifetime; performing, before expiry of the lifetime, a
further TLS or DTLS handshake with the LwM2M server, the further TLS or DTLS
handshake comprising client data, wherein the further TLS or DTLS handshake
comprising client data is used to identify the client device so as to maintain the

registration of the client device within the client registration directory.

In a fourth aspect of present techniques, there is provided a Lightweight
Machine-to-Machine (LwM2M) server comprising: at least one processor coupled
to communication circuitry for: establishing a secure communication session with
a client device comprising performing a Transport Layer Security (TLS) or
Datagram Transport Layer security (DTLS) handshake with the client device;
transmitting a registration confirmation message to the client device confirming
that the client device has been added to a client registration directory, the
registration having a defined lifetime; performing, before expiry of the lifetime, a
further TLS or DTLS handshake comprising client data, wherein the further TLS or

DTLS handshake comprising client data is used to identify the client device so as

10

15

25

30

to maintain the registration of the client device within the client registration

directory.

A related approach of the present techniques provides a system comprising
a plurality of client devices of the type described herein and at least one server of

the type described herein.

A further approach of the present techniques provides a non-transitory data
carrier carrying code which, when implemented on a processor, causes the

processor to carry out any of the methods described herein.

As will be appreciated by one skilled in the art, the present techniques may
be embodied as a system, method or computer program product. Accordingly,
present techniques may take the form of an entirely hardware embodiment, an
entirely software embodiment, or an embodiment combining software and

hardware aspects.

Furthermore, the present techniques may take the form of a computer
program product embodied in a computer readable medium having computer
readable program code embodied thereon. The computer readable medium may
be a computer readable signal medium or a computer readable storage medium.
A computer readable medium may be, for example, but is not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system,

apparatus, or device, or any suitable combination of the foregoing.

Computer program code for carrying out operations of the present
techniques may be written in any combination of one or more programming
languages, including object-oriented programming languages and conventional
procedural programming languages. Code components may be embodied as
procedures, methods or the like, and may comprise sub-components which may
take the form of instructions or sequences of instructions at any of the levels of
abstraction, from the direct machine instructions of a native instruction set to

high-level compiled or interpreted language constructs.

10

15

01 0219

25

30

35

The techniques are diagrammatically illustrated, by way of example, in the

accompanying drawings, in which:

Figure 1 shows a block diagram of a system comprising a client device and

a server;

Figure 2 shows a schematic diagram of steps to perform a handshake

between a client device and a server to establish a secure communication session;

Figure 3 shows a schematic diagram of steps to register a client device with

a server;

Figure 4 shows a schematic diagram of steps to maintain a client device

registration with a server; and

Figure 5 shows a schematic diagram of a technique to maintain a client

device registration with a server.

Broadly speaking, embodiments of the present technique provide methods,
apparatuses and systems for a more efficient technique for maintaining a client
device registration with a server, which reduces the number of messages that
need to be sent for the registration to be maintained. For client devices which are
constrained devices (e.g. low-power, low-memory and/or low-processing power
devices), the technique described herein may be useful because the technique
may reduce the amount of power consumed by the devices to send and receive

messages and may reduce how long the device is an ‘awake’ mode.

The term “client device” is used interchangeably herein with the terms
“Internet of Things device”, “IoT device”, “node device”, “node”, “endpoint

7 W 7 W

device”, “endpoint”, “client”, and “constrained resource device”.

As mentioned briefly above, machine to machine (M2M) communication
techniques typically need to be secure to reduce the risk that malicious third
parties gain access to the machines, or to limit the access of each machine to

particular data, machines or services. M2M communications may be secured using

10

15

01 0219

25

30

35

cryptographic protocols, such as the Transport Layer Security (TLS) protocol or
the Datagram Transport Layer Security (DTLS) protocol, which are designed to
prevent eavesdropping, tampering or message/data forgery. The TLS and DTLS
protocols require machines that seek to communicate with each other (e.g. client
devices and servers) to authenticate each other by exchanging and validating
digital certificates in a handshake process, Dbefore any other

communication/message exchange can begin.

The TLS/DTLS protocol may be used to secure communication between an
Internet of Things (IoT) device (i.e. a client device) and a remote or cloud-based
server, for example. In this case, during the handshake process, the client device
and server exchange their public key certificates (also known as, and referred to
herein, as digital certificates or identity certificates). Digital certificates are
electronic documents used to prove the ownership of a public key that is used as
part of an asymmetric key algorithm (i.e. which forms part of a public-private key
pair). A digital certificate typically comprises information about the public key,
information about the identity of its owner (e.g. the client device or server), and
the digital signature of an issuing entity that has verified the contents of the
certificate (e.g. a trusted third party such as a certificate authority). A digital
certificate can be large, particularly if it comprises a certificate chain, or if each
certificate is an RSA certificate (i.e. where a public key is based on two large prime
numbers). For example, a single RSA-based certificate containing a 2048-bit key
may be at least 1024 bytes in size. Similarly, at least the first time a TLS/DTLS
handshake is performed between a client device and a server, the client device
and server need to decide on which cryptographic algorithm(s) or ciphers or cipher
suites they will use to secure communication sessions. For example, the client
device may send a list of cipher suites that it supports, potentially in order of
preference. The server selects a cipher suite from the list and informs the client
device of this selection. The list of cipher suites may be large, which increases
the amount of information sent between machines during a TLS/DTLS handshake.
This means that every time a client device and a server perform a handshake
process to begin a secure communication session (i.e. a session during which the
client device and server exchange encrypted messages), large amounts of data

may need to be exchanged.

10

15

01 0219

25

30

35

The exchange of certificates in a handshake process may be problematic in
an Internet of Things environment in which client devices or end-user devices tend
to be low-power, low-memory, and/or low-processing power devices. Client
devices/end-user devices may have intermittent connectivity with a network in
which they are operational, or with an external network, or other devices within a
network. For example, client devices may not have good or continuous
connectivity with the other devices/machines or the Internet, because this may
consume resources of the client devices (e.g. power or memory). Some client
devices may switch into a sleep mode to conserve power when they do not need
to connect to or communicate with other devices/machines/servers in the
network. This means that each time a client device needs to communicate with a
server, the handshake process needs to be performed again to establish a secure
communication session. Performing a handshake process, and in particular,
exchanging certificates in a TLS/DTLS handshake process, may be problematic for
constrained resource devices, but this is unavoidable if secure communications

are required.

As mentioned above, in many systems, client devices may connect to and
communicate with one or more servers. A server may maintain a client device
registration directory to keep a record of the client devices that have registered
to connect to/communicate with the server. However, constrained resource
devices may have intermittent connectivity with a network in which they are
operational, and in particular, with a server in the network. Accordingly, some
client devices may not be continuously connected to the server with which they
have registered. The client devices may need to, from time to time, communicate
with the server to maintain their registration so that they can continue to connect

to the server whenever they need to send data to, or receive data from, the server.

Before expiry of the lifetime of the registration, present techniques provide
for a further TLS or DTLS handshake with the LwM2M server, the further TLS or
DTLS handshake comprising client data used to identify the client device so as to

maintain registration of the client device within the directory of the LWM2M server.

In embodiments, client data is data that can be used to identify the client

device at the LwM2M server. In such a way, the LwM2M server can infer

10

15

01 0219

25

30

35

information about the identify of the client device from the further TLS or DTLS
handshake.

In embodiments, the client data may be a client device identifier and
information about the client device may be contained within the handshake
message or within a client device certificate or an identifier extracted from the
certificate or extracted from a Client Hello message. Client data may also

comprise a Pre-Shared Key, or a Session ID or Session Ticket.

Accordingly, in techniques the further TLS or DTLS handshake process used

to identify the client device from client data may comprise one or more of the

following handshake example cases:

- A TLS or DTLS handshake where a certificate is sent in a certificate
message and the client certificate is used to identify which client device
registration to maintain.

- A TLS or DTLS handshake where a pre-shared key is sent in a Client
Hello message, the pre-shared key being used to identify which client
device registration to maintain.

- A TLS or DTLS handshake where using information in a Client Hello
message comprises using a client device identifier in a certificate to
locate a client device entry within a client registration directory.

- A TLS or DTLS handshake using session resumption with Session ID or
Session Ticket sent in a Client Hello message, where the Session ID or
Session Ticket is used to identify which client device registration to

maintain.

The Constrained Application Protocol (CoAP) is a communication protocol
specifically designed for use by constrained nodes and constrained networks (c.f.
Nitnsonisdetlorg/bimiinigidhd). It is typically used by IoT devices and IoT
networks, for machine-to-machine communications, because the protocol has low
overhead, is suitable for multicasting, and has a simplicity that makes it suitable
for constrained networks. The OMA Lightweight Machine to Machine (OMA
LwWM2M) protocol is an application layer communication protocol designed for

machine-to-machine and IoT device management. OMA LwMZ2M is used for

10

15

25

30

35

communication between client devices and servers, where the client devices may
be constrained resource devices, and may be used for bootstrapping, client device
registration with a server, device management and information reporting, for
example. OMA LwM2M is often used alongside CoAP and TLS/DTLS.

Typically, a client device is required to register with a server in order for
the server to know that the client device is in its network, and for the client device
to be able to communicate with the server. When a client device registers with a
server, it may also provide the server with information about the resources of the
client device and any information that will enable the client device to be identified
by the server (e.g. endpoint name). The client device may also provide the server
with information to maintain the registration, such as a registration lifetime. The
registration lifetime defines the duration of the registration with the server, and is
defined by the client device. The lifetime could be short (e.g. a few hours) or
could be longer (e.g. a day or several days), and may be defined by the client
device based on the device properties. For example, if a client device is a
constrained resource device that will be in a sleep mode to conserve resources for
long periods of time, then the lifetime may be long (e.g. a day or more). The
client device may be required to periodically update its registration information
with the or each server that it registered with. Typically, the client device may be
required to send an update message or perform an update operation within the
registration lifetime. The update message may contain new information about the
client device, such as a new lifetime or new information about its resources.
Alternatively, the update message may not contain any parameters - this is
typically used if the client device simply wishes to maintain its registration with
the server. If the server does not receive an update message from a client device
within the lifetime set by the client device, then the server removes the client

device from the client device registration directory.

However, each time the client device performs the update operation to
maintain its registration with the server, the client device may exchange several
messages with the server. If the client device disconnected from the server after
the initial registration process, then the client device and server first need to
establish a new secure communication session before the update operation can

begin. This may be the case if the client device is a constrained resource device

10

15

01 0219

25

30

35

because the client device will likely have entered a sleep mode or low power mode
to conserve resources when it did not need to communicate with the server, and
therefore, a previous secure communication session would have
ended/terminated. Therefore, the client device and server perform another
handshake process to establish a secure communication session (e.g. by
exchanging certificates in a TLS/DTLS handshake process). Once the secure
communication session has been established, the client device sends a CoAP
update message (e.g. a CoAP POST message) to the server. The CoAP message
contains information to identify the client device, so that the server with which the
client device is registered is able to locate the client device within the client device
registration directory. The CoAP message may contain client device parameters
that have changed and need to be updated within the registration directory, or
may not contain any parameters. If the server receives the CoAP message within
the original lifetime, then the server proceeds to perform an update of the
registration directory for the client device. If the CoAP message does not contain
any parameters, the server determines that the registration lifetime of the client
device is simply to be reset/restarted. Once the server has completed the update
process, the server sends a CoAP message back to the client device to confirm
that the update has been completed (e.g. the message contains 2.04 (changed)

response code).

The present applicant has identified that this process to maintain the
registration of a client device with a server contains redundant messages, and
consequently, results in communications that unnecessarily consume resources
(e.g. power, memory, processing power, etc.) of constrained resource client
devices. Therefore, the present techniques provide a simplified and more efficient

way to maintain registration of a client device with a server.

As described above, in the case where the client device simply wishes to
inform the server that it is still “alive” or operational, and still wishes to
communicate with the server, the CoAP message sent by the client device does
not contain any parameters. This causes the server to refresh the client device
registration within the registration directory, e.g. by restarting the registration
lifetime. However, at least two CoAP messages are exchanged between the client

device and server for this to occur. The present techniques remove the need to

10

10

15

o)
—
QN
-
—
-

25

30

35

exchange these CoAP messages for registration maintenance. Instead, the
present techniques use the fact that a new secure communication session is
established between the client device and server as a trigger to maintain the
registration. Thus, the present techniques reduce the number of messages that
are exchanged for the update operation. The present techniques may reduce the
amount of time a client device is in an "awake mode”, because the client device
may switch into a low power or “sleep mode” as soon as the secure communication
session is established, as no further messages need to be sent or received by the
client device. The amount of processing performed by the client device (and
therefore, the amount of memory and power used by the client device) may also
be reduced by reducing the number of messages that are exchanged for the
update operation. The optimised registration update process of the present

techniques is described in more detail below with reference to the Figures.

Figure 1 shows a block diagram of a system 100 comprising a client device
102 and a server 104 which may securely communicate with each other. The
system 100 may, in embodiments, comprise a bootstrap server 106. The system
100 may comprise multiple client devices and/or multiple servers, but only a single
client device and a single server is shown for the sake of simplicity. As mentioned
above, client device 102 may also be referred to herein as a “device”, “client”,
“node device”, "node”, “end-user device”, “user device”, “Internet of Things
device”, “"IoT device”, “endpoint device”, “"endpoint”, and “constrained resource
device”. The client device 102 may be a computer (e.g. a PC), a laptop, a tablet
computer, a mobile phone, a 'smart object’ or Internet of Things object. In
embodiments, the client device 102 may be a device which is able to turn
electronic objects into 'smart objects’ that may form part of the Internet of Things,
such as smart streetlights, electricity meters, temperature sensors, etc. It will be
appreciated that these are merely example smart objects provided for illustrative

purposes, and are non-limiting.

Each client device 102 may require access to one or more services 108 that
are accessed via server 104. Each client device 102 comprises a communication
module 102a, to enable the client device 102 to communicate with other
machines, such as bootstrap server 106 or server 104, or with other client devices.

Typically, the other machines are located remote to the client device 102. The

11

10

15

25

30

35

communication module 102a may be any suitable communication module,
comprising any suitable communication circuitry and using any suitable
communication protocols, to transmit and receive messages (or data or data
packets). The communication module 102a may use any suitable communication
protocol to communicate with other machines, such as, but not limited to, wireless
communication (e.g. WiFi, (RTM)), short range communication such as radio
frequency communication (RFID) or near-field communication (NFC), or by using
the communication protocols specified by ZigBee (RTM), Thread (RTM), Bluetooth
(RTM), Bluetooth LE (RTM), IPv6 over Low Power Wireless Standard (6LoWPAN),
Constrained Application Protocol (CoAP), or CoAP over TCP, TLS and WebSockets.
The communication module 102a may use a wireless mobile (cellular)
telecommunication protocol to communicate with remote machines, e.qg. 3G, 4G,
5G, etc. The client device 102 may communicate with remote machines using
wired communication techniques, such as via metal cables or fibre optic cables.
The client device 102 may use more than one communication technique to

communicate with remote machines.

The client device 102 comprises a processor or processing circuitry 102b.
Processor 102b controls various processing operations performed by client device
102, such as verifying a digital certificate and authenticating a machine which
attempts to communicate with client device 102. The processor 102b may
comprise processing logic to process data (e.g. data signals and data packets
received from other machines within system 100), and generate output data in

response to the processing. The processor 102b may comprise one or more of: a

microprocessor, a microcontroller, and an integrated circuit.

Client device 102 comprises storage 102c. Storage 102¢c may comprise a
volatile memory, such as random access memory (RAM), for use as temporary
memory, and/or non-volatile memory such as Flash, read-only memory (ROM), or
electrically erasable programmable ROM (EEPROM), for storing data, programs or
instructions. Storage 102c may store credentials that are provided during the
manufacturing process to fabricate client device 102, such as a digital certificate
for the client device 102 (which comprises information about the client device’s
public key), also referred to herein as Cert(C), and a private key of a public-private

key pair, also referred to herein as Priv(C). Storage 102c may be used to store

12

10

15

25

30

35

additional keys and digital certificates, as well as information used to
verify/authenticate server 104. Storage 102¢ may be used to store information
that can be used to identify the client device 102, such as an endpoint name or
security credentials that are unique to the client device 102. The endpoint name
may be specified by a manufacturer, or may be specified during a bootstrapping
process (such that a unique endpoint name is created and provided to the client
device 102 during a bootstrapping provisioning process, e.g. by the bootstrap
server 106), or may be specified during a handshake process (e.g. a TLS/DTLS
handshake process). The endpoint name may be globally unique to the client
device 102. Alternatively, the endpoint name may be locally unique, such that it
IS unique to a particular account or user associated with the client device. In this
case, the endpoint name and account/user may be required to identify the client
device 102.

Client device 102 may comprise one or more interfaces 102d that enable
the device 102 to receive inputs (e.g. sensed/measured data), and/or generate

outputs (e.g. audio and/or visual outputs, or control commands, etc.)

Client device 102 may communicate with server 104 using appropriate
communication standards/protocols. It will be understood that intermediary
devices (such as a gateway) may be located between device 102 and sever 104,

to facilitate communication between the machines.

Client device 102 may, in embodiments, be an Internet of Things (IoT)
device or a constrained resource device. Server 104 may be a lightweight
machine-to-machine server (LWM2M server), such that the server 104 and client
device 102 communicate using the Open Mobile Alliance (OMA) LWM2M protocol,
or other LWM2M protocol. Server 104 may be an OMA Device Management (DM)
server, such that the server 104 and client device 102 communicate using the
OMA DM communication protocol. Server 104 may be a TR-069 server (which is
a bidirectional SOAP/HTTP-based protocol), such that server 104 and client device
102 communicate using the CPE WAN Management protocol (CWMP) published by
the Broadband Forum. Server 104 may be a server which follows a
standard/protocol set by the Open Connectivity Foundation or Open Interconnect

Consortium.

13

10

15

o)
—
QN
-
—
-

25

30

35

Server 104 may communicate with services 108 which may, for example,
be part of a private cloud or public cloud environment on the internet, or which
may be hosted on server 104. The services 108 may provide different types of
services such as data storage, data analytics, data management, application
services, etc. It will be understood these listed services are merely examples and

are non-limiting.

System 100 comprises a registration directory 110. The registration
directory 110 may be located within server 104, or may be external to server 104,
as shown in Figure 1. In either case, the server 104 communicates with the
registration directory 110 to maintain a register of each client device 102 which
has registered with the server 104. The server 104 may be configured to receive
registrations from client devices that are, continuously or non-continuously,
operationally connected to the server 104. The client devices 102 and their
resources, along with other information, are registered with the registration
directory 110. Thus, the registration directory 110 may be considered a registry
of the resources below the server 104 in the machine-to-machine network. This
eliminates the need for management tools or otherwise to probe/query the
network to determine which resources/devices are present in the network. The
registration directory 110 may be provided by a processor and storage. The
registration directory 110 may be realised as a database application, for example.
Client devices 102 which are communicatively coupled to the server 104 send a
registration request to the server 104, and the server 104 creates an entry for the
client device 102 within the registration directory 110. The entry within the
registration directory 110 comprises information to enable the server 104 to
identify the client device 102, such that subsequent messages received from the

client device 102 can be readily attributed to the correct registered device.

Client device 102 and server 104 may communicate with bootstrap server
106. In embodiments, server 106 may be any type of server or remote machine,
and may not necessarily be a dedicated bootstrap server. Generally speaking the
bootstrap server 106 is any means (e.g. machine, hardware, technology, server,
software, etc.) which may be able to provide data to client device 102 and/or

server 104 (e.g. may be able to provide credentials). In embodiments, server

14

10

15

o)
—
QN
-
—
-

25

30

104 may be a bootstrap server. Bootstrap server 106 may be used to provision
client device 102 with the required information to enable client device 102 to
undertake a TLS/DTLS handshake process with server 104. Bootstrap server 106
may comprise a database of all machines which are registered with the bootstrap
server, together with information on the permissions/access any particular
machine should have, and which details a machine has, and may require, to
communicate with other machines. In embodiments, bootstrap server 106 may
not be required to provision client device 102 with any required credentials -
instead, these provisioning may occur during a manufacturing process or during a

handshake process.

In embodiments, the client device 102 may be a constrained resource
device which uses a lightweight machine-to-machine protocol (LWM2M) to
communicate with other machines. Server 104 may be an LWM2M server.
LWM2M protocols may utilise bootstrapping techniques to provision the client
device 102 with required information, e.g. credentials for TLS/DTLS handshakes.
The bootstrapping techniques may comprise a ‘factory bootstrap’, in which
information (e.g. credentials) is hardcoded into the client device 102 during
manufacture. The factory bootstrap may comprise adding one or more credentials
required by client device 102 to communicate with other devices (e.g. server 104),
or may comprise adding the information required for client device 102 to reach a
bootstrap server (which may provide any missing information required by the
client device 102 to communicate with other devices). It will be understood that
any suitable technique to provision the client device 102 with credentials may be

used instead of, or in addition to, the provisioning techniques mentioned herein.

Figure 2 shows a schematic diagram of steps to perform a handshake
between a client device and a server to establish a secure communication session.
The process begins at step S200 when client device 102 transmits a ‘client hello’
message (or similar) to server 104. The client device 102 may have been
provisioned with the server name indication (SNI) and IP address of the server
104 during a factory bootstrapping process, or by the bootstrap server 106. (It
will be understood that the server 104 could equally initiate the handshake by

sending the client device 102 the initial 'hello” message, and that the process in

15

10

15

01 0219

25

30

35

Figure 2 is merely exemplary.) The ‘client hello’ message may comprise a random

byte string that is used in subsequent computations in the handshake process.

At step 5202, the server 104 responds by transmitting a ‘server hello’
message to client device 102. The 'server hello” message may comprise a further
random byte string, and its own digital certificate, Cert(S). If the server 104
requires the client device’s digital certificate to authenticate the client device 102,
then the server 104 also transmits a message requesting Cert(C) (step 5204).
This request for Cert(C) may be included in the ‘server hello’ message at step
S5202.

At step S206, the client device 102 verifies Cert(S) received from server
104. If the verification is unsuccessful, the client device 102 may terminate the
process, or send a ‘fail’ message to the server 104 before terminating the
handshake process. If the verification is successful, the client device 102
transmits an encrypted random byte string to server 104 (not shown in Figure 2).
The random byte string is encrypted using the server’s public key, and the
encrypted random byte string enables both the client device and server to
compute the secret key to be used for encrypting subsequent messages

exchanged between the machines.

If the server 104 requested Cert(C), at step S208, the client device 102
transmits Cert(C) to server 104. The client device 102 may also transmit a

random byte string encrypted with the client device’s private key.

At step S210, the server 104 verifies Cert(C) received from client device
102. If the verification is unsuccessful, the server 104 may terminate the process,
or send a ‘fail’ message to the client device 102 before terminating the handshake

DrOCess.

At step S212, the client device 102 transmits a ‘finished’ message to server
104, which is encrypted with the secret key. This ‘finished’ message indicates that
the client device 102 part of the handshake process is complete. Similarly, at step
5214, the server 104 transmits a ‘finished’ message to client device 102, which is

encrypted with the secret key. This ‘finished’ message indicates that the server

16

10

15

25

30

35

104 part of the handshake process is complete. The secure communication
session has now been established, and the client device 102 and server 104 may
exchange messages during the session which are encrypted with the shared secret
key (step $216).

As shown in Figure 2, the handshake process (which may be a TLS/DTLS
handshake process or any other handshake process which involves the exchange
of security credentials) requires the client device 102 and server 104 to share their
digital certificates (see step S202 and S208), and for each machine to verify the
received digital certificates. The handshake process necessarily involves at least
the server 104 receiving sufficient information from the client device 102 to enable
the client device 102 to be identified by the server 104. For example, the
handshake messages sent by the client device 102 may comprise information to
identify the client device 102, such as a client device identifier. The client device
identifier may be contained within the client device certificate Cert(C) or may be
separately provided within the handshake messages. The present techniques
make use of this to provide a more efficient process for maintaining client device

registration with a server.

According to the current description of the LWM2M version 1.0 specification,
CoAP messages are used to perform client device registration with a server, for
maintaining a registration and performing an update of a registration. While CoAP
s a useful communication technique for constrained resource devices and
constrained networks, as it uses plain text messages, the combination of CoAP
messages and the LWM2M protocol requirement for client devices to maintain their
registration with a server results in many CoAP messages being sent every time
a client device performs the update operation. Furthermore, the LWM2M protocol
does not take into consideration the fact that much information is shared between
a client device and a server whenever a secure communication session is
established (e.g. using TLS/DTLS), such that the CoAP update messages may, in

certain scenarios, be redundant.

Figure 3 shows a schematic diagram of steps to register a client device with
a server. After a secure communication session has been established between

client device 102 and server 104 (i.e. following step S214 of Figure 2), client

17

10

15

25

30

35

device 102 sends a CoAP registration message to the server (step S300). The

COAP registration message may be of the form

POST / rd?ep=nodel1&b=UQ&It=6000...

which indicates that the client device name (i.e. endpoint name) is "nodel”, the
server must queue all requests to the client device, and that the lifetime of the
registration is 6000 seconds. Other parameters may be included in the CoAP
registration message, such as an indication of the resources of the client device

(e.qg. that it measures temperature).

At step S302, the server 104 extracts information/parameters from the
COoAP registration message to enable the client device 102 to be added to the
registration directory 110. The server 104 then instructs the registration directory
110 (which may be internal or external to the server 104, as shown in Figure 1)
to create an entry for the client device 102 in the client device registration
directory 110 (step S304). The client device entry within the registration directory
110 comprises information to enable the server 104 to identify the client device
102, such that subsequent messages received from the client device 102 can be
readily attributed to the correct registered device. The client device entry within
the registration directory 110 also comprises the lifetime of the registration, so
that the server 104 knows how long the current registration is to last, and when
to expect an update message from the client device 102 to maintain the

registration.

When this has been completed by the registration directory 110, the server
sends a CoAP registration confirmation message back to the client device (step
S306). The CoAP registration confirmation message may contain a 2.01 (created)

response code.

Once a client device 102 has been registered with a server 104, it is
necessary for the client device 102 to perform an update operation before expiry
of the registration lifetime, in order to maintain the registration with the server
104. Figure 4 shows a schematic diagram of steps to maintain a client device

registration with a server. After a secure communication session has been

18

10

15

01 0219

25

30

35

established between client device 102 and server 104 (i.e. following step S214 of
Figure 2), client device 102 sends a CoAP update message to the server (step

S400). The CoAP update message may be of the form

POST / rd/{location }?lt=7000...

The message contains sufficient information for the server 104 to identify which
client device the message has been received from, and to determine if the client
device has an entry within the registration directory 110. The message may
contain no parameters, if the only thing the client device 102 wishes to do is
maintain the registration, or may contain one or more parameters, if the client
device 102 wishes to change or update its entry within the registration directory
110. For example, in the above message the lifetime field in the message
indicates the lifetime is now 7000 seconds, and therefore the client device 102 is

seeking to update the lifetime within the registration directory 110.

The server 104 extracts information from the CoAP update message (step
S5402) in order to determine the identity of the client device that sent the message,
map the client device identity to an entry within the registration directory 110 (if
the client device is registered with the server 104), and update any aspect of the
entry within the registration directory 110. The server 104 transmits the extracted
information, together with instructions to update the client device entry, to the
registration directory 110 (step S404). If the CoAP update message contained no
parameters, then the instructions may simply cause the registration directory 110
to maintain the client device 102 entry and/or to restart the lifetime of the
registration. When the update process has been completed, the server 104
transmits a CoAP change message back to client device 102, where the CoAP

change message may contain a 2.04 (changed) response code.

However, as explained above, the process of Figure 4 to maintain a
registration requires a secure communication sesseion to be established and then
CoAP messages to be exchanged between a client device 102 and server 104. If
the client device 102 simply wishes to maintain its registration with the server 104
(i.e. does not wish to make any changes to its entry within the registration

directory 110), then the CoAP update message it sends at step S400 does not

19

10

15

25

30

35

contain any parameters. The present techniques provide a technique for
maintaining a client device registration (i.e. when no changes to the client device
registration are being made), which reduces the number of CoAP messages

transmitted between the client device 102 and server 104.

Figure 5 shows a schematic diagram of a technique to maintain a client
device registration with a server. The process begins by establishing a secure
communication session between client device 102 and server 104 (i.e. following
step S214 of Figure 2). Once the secure communication session has been
established, the server 104 becomes aware that the client device 102 is still ‘alive’
and within the server’s network. If the client device 102 has no updates to make
to its entry within the registration directory 110, the client device 102 may return
to a low power mode or a sleep mode. In any case, the client device 102 does
not transmit any further message to the server 104. That is, the client device
does not send a CoAP update message to the server (c.f. step S400 in Figure 4).
The server 104 may wait for a certain amount of time for a CoAP update message
(or other CoAP message) to be sent from the client device 102 which established
the secure communication session (step S500). This time may be a few seconds,
to tens of seconds, or longer. The time may be defined per server or per network,
to take into account how messages are typically transmitted across the network
and how many client devices are present in the network. For example, in a multi-
hop network, multiple hops may be required for a message to travel from a source
to a destination, and therefore the time it takes for a message to be received by
server 104 may be longer than in single hop networks where a source may be able

to communicate directly with a destination.

In the present techniques, if no CoAP update message (or otherwise) is
received by the server 104 during this predetermined time period/duration, the
server 104 may conclude that the client device 102 is still ‘alive’ or operational
and wishes to maintain its registration, as otherwise the client device 102 would
not have sent the request to establish the secure communication session.
Accordingly, the server 104 transmits instructions to the registration directory 110
to maintain the client device 102 entry within the directory. The server 104 has
all the information it needs to identify the correct entry within the directory 110

from the handshake process used to establish the secure communication session.

20

10

15

25

30

35

This is because during the handshake process, the client device 102 provides the
server 104 with information such as client device name/endpoint name, security
credentials, etc. which the server 104 can use to identify the client device 102.
This information can be used to locate the client device 102 entry within the
registration directory 110. Thus, the present techniques reduce the need for the
client device 102 to transmit a CoAP update message (and receive a CoAP changed
message) to maintain its registration with server 104. The update process (or
process to maintain the registration of a client device with a server) removes some
or all redundant CoAP messages, and consequently, provides a simplified and
more efficient way to maintain registration of a client device with a server, which

may use less power, memory and/or processing power at the client device 102.

Thus, there is provided a method for maintaining registration of a client
device 102 with a server 104, the method performed by the client device 102
comprising: establishing a secure communication session with the server 104
comprising sending a client hello message to the server and providing a client
device certificate to the server, the client device certificate comprising at least a
client device identifier; transmitting, following the establishment of the secure
communication session, a Constrained Application Protocol (CoAP) registration
message to the server, the CoAP registration message comprising the client device
identifier and a lifetime of the registration; receiving a CoAP registration
confirmation message from the server confirming that the client device has been
added to a client registration directory; sending, before expiry of the lifetime, a
further client hello message to the server to maintain registration of the client

device within the directory.

The client device 102 may comprise: storage 102c for storing one or both
of a client device certificate or a hash of the client device certificate, the client
device certificate comprising at least a client device identifier; and communication
circuitry 102a for: establishing a secure communication session with a server,
comprising sending a client hello message to the server and providing the client
device certificate to the server; transmitting, to the server, a Constrained
Application Protocol (CoAP) registration message comprising the client device
identifier and a lifetime of the registration; receiving a CoAP registration

confirmation message from the server confirming that the client device has been

21

10

15

o)
—
QN
-
—
-

25

30

35

added to a client registration directory; and sending, before expiry of the lifetime,
a further client hello message to the server to maintain registration of the client

device within the directory.

The client device 102 may comprise processing circuitry 102b for switching
the device 102 into a sleep mode or a low power mode after receiving the CoAP
registration confirmation message from the server 104. This may enable the client
device 102 to reduce power consumption, memory usage or processing power.
Thus, the method to maintain a registration may comprise entering a sleep mode
after receiving the COAP registration confirmation message. The processing
circuitry 102b of the client device 102 may switch the device 102 into an awake
mode prior to expiry of the registration lifetime, so that the client device 102 can
request the establishment of a secure communication session with server 104
before expiry of the lifetime, to maintain its registration with the server 104. Thus,
the method to maintain a registration may comprise: entering an awake mode
prior to expiry of the lifetime; and re-establishing a secure communication session

with the server 104 when sending the further client hello message.

The step of establishing a secure communication session with the server
104 may comprise using a TLS/DTLS handshake sequence, or using any key
exchange and handshake process that uses Constrained Application Protocol

(COAP) messages.

Providing a client device certificate may comprise providing a hash of the
client digital certificate to the server 104. The hash of the client digital certificate
may be generated by applying a cryptographic hash function to the client digital
certificate. The cryptographic hash function may be any suitable cryptographic
hash function, such as one of: an MD5 hash function; a Secure Hash Algorithm
(SHA) hash function; a SHA-2 hash function; a SHA-3 hash function; or a SHA-
256 hash function.

The client device 102 and the server 104 may communicate using any
suitable communication protocol, such as one of: a lightweight machine-to-
machine (LWM2M) protocol, an OMA lightweight machine-to-machine (OMA

LWM2M) protocol, an OMA DM specification, an Open Interconnect Consortium

22

10

15

25

30

35

(OIC) protocol, a CoAP over TCP standard, a CoAP over TLS standard, or a TR-069

protocol.

The client device 102 may be an Internet of Things (IoT) device.

The server may be any one of: a LWM2M server, an OMA LWM2M server, a

TR-069 server, an OIC server, or an OMA DM server.

There is also provided a method for maintaining registration of a client
device 102 with a server 104, the method performed by the server 104
comprising: establishing a secure communication session with the client device
102 comprising receiving a client hello message from the client device 102 and a
client device certificate, the client device certificate comprising at least a client
device identifier; extracting, from the client hello message and client device
certificate, information for identifying the client device 102; receiving, following
the establishment of the secure communication session, a Constrained Application
Protocol (CoAP) registration message from the client device 102, the CoAP
registration message comprising the client identifier for the client device 102 and
a lifetime of the registration; creating an entry in a client registration directory
110 for the client device 102 using at least the extracted information for identifying
the client device and the lifetime of the registration; transmitting a CoAP
registration message to the client device 102 confirming that the client device has
been added to the client registration directory 110; receiving, before expiry of the
lifetime, a further client hello message from the client device 102; using
information in the further client hello message to locate the client device entry
within the client registration directory 110; and if no subsequent CoAP message
IS received from the client device 102, using the further client hello message to
maintain the registration of the client device within the client registration directory
110.

The server 104 may comprise: at least one processor coupled to
communication circuitry for: establishing a secure communication session with a
client device 102 comprising receiving a client hello message from the client device
and a client device certificate, the client device certificate comprising at least a

client device identifier; extracting, from the client hello message and client device

23

10

15

o)
—
QN
-
—
-

25

30

35

certificate, information for identifying the client device; receiving, following the
establishment of the secure communication session, a Constrained Application
Protocol (CoAP) registration message from the client device, the CoAP registration
message comprising the client identifier for the client device and a lifetime of the
registration; creating an entry in a client registration directory 110 for the client
device using at least the extracted information for identifying the client device and
the lifetime of the registration; transmitting a CoAP registration message to the
client device confirming that the client device has been added to a client
registration directory; receiving, before expiry of the lifetime, a further client hello
message from the client device; using information in the further client hello
message to locate the client device entry within the client registration directory;
and if no subsequent CoAP message is received from the client device, using the
further client hello message to maintain the registration of the client device within

the client registration directory.

The server 104 may comprise the client registration directory 110.
Alternatively, the server 104 may be communicatively coupled to an external
client registration directory 110, and the step of creating an entry in a client
registration directory 110 comprises sending instructions to the (external) client

registration directory 110 to create an entry for the client device 102.

The step of creating an entry in a client registration directory 110 may
comprise storing, in the client registration directory 110, at least one of: the client
device identifier, a security credential associated with the client device, a hash of
the security credential, and a cryptographic hash function used to generate the
hash.

The further client hello message may comprise the client device certificate.
In this case, the step of using information in the further client hello message may
comprise using the client device identifier in the client device certificate to locate

the client device entry within the client registration directory 110.

The step of using information in the further client hello message may
comprise using a security credential in the further client hello message to locate

the client device entry within the client registration directory 110.

24

10

15

o)
—
QN
-
—
-

25

30

35

The further client hello message may comprise a hash of the security
credential. In this case, the step of using information in the further client hello
message may comprise: retrieving a security credential and cryptographic hash
function pair from the client registration directory; applying the cryptographic
hash function to the security credential to generate a hash of the security
credential; comparing the generated hash with the received hash (in the further
client help message or other message sent by client device 102 during the
handshake process); and identifying, if the generated hash matches the received
hash, the client device entry within the client registration directory 110. This
process may be repeated until a match between the generated hash and the

received hash is found.

The security credential may be the client device certificate and/or a TLS

credential.

The server 104 may delete the client device entry from the client
registration directory 110 if the further client hello message is not received before

expiry of the lifetime.

Embodiments of the present techniques also provide a non-transitory data
carrier carrying code which, when implemented on a processor, causes the

processor to carry out the methods described herein.

The techniques further provide processor control code to implement the
above-described methods, for example on a general purpose computer system or
on a digital signal processor (DSP). The techniques also provide a carrier carrying
processor control code to, when running, implement any of the above methods,
in particular on a non-transitory data carrier or on a non-transitory computer-
readable medium such as a disk, microprocessor, CD- or DVD-ROM, programmed
memory such as read-only memory (firmware), or on a data carrier such as an
optical or electrical signal carrier. The code may be provided on a (non-transitory)
carrier such as a disk, a microprocessor, CD- or DVD-ROM, programmed memory
such as non-volatile memory (e.g. Flash) or read-only memory (firmware). Code

(and/or data) to implement embodiments of the techniques may comprise source,

25

10

15

01 0219

25

30

object or executable code in a conventional programming language (interpreted
or compiled) such as C, or assembly code, code for setting up or controlling an
ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate
Array), or code for a hardware description language such as Verilog™ or VHDL
(Very high speed integrated circuit Hardware Description Language). As the skilled
person will appreciate, such code and/or data may be distributed between a
plurality of coupled components in communication with one another. The
techniques may comprise a controller which includes a microprocessor, working
memory and program memory coupled to one or more of the components of the

system.

Computer program code for carrying out operations for the above-described
techniques may be written in any combination of one or more programming
languages, including object oriented programming languages and conventional
procedural programming languages. Code components may be embodied as
procedures, methods or the like, and may comprise sub-components which may
take the form of instructions or sequences of instructions at any of the levels of
abstraction, from the direct machine instructions of a native instruction set to

high-level compiled or interpreted language constructs.

It will also be clear to one of skill in the art that all or part of a logical
method according to the preferred embodiments of the present techniques may
suitably be embodied in a logic apparatus comprising logic elements to perform
the steps of the above-described methods, and that such logic elements may
comprise components such as logic gates in, for example a programmable logic
array or application-specific integrated circuit. Such a logic arrangement may
further be embodied in enabling elements for temporarily or permanently
establishing logic structures in such an array or circuit using, for example, a virtual
hardware descriptor language, which may be stored and transmitted using fixed

or transmittable carrier media.
In an embodiment, the present techniques may be realised in the form of

a data carrier having functional data thereon, said functional data comprising

functional computer data structures to, when loaded into a computer system or

26

10

15

01 0219

25

30

35

network and operated upon thereby, enable said computer system to perform all

the steps of the above-described method.

Particular approaches of the present techniques may be embodied and

follows:

A first approach of the present techniques provides a method for
maintaining registration of a client device with a server, the method performed by
the client device comprising: establishing a secure communication session with
the server comprising sending a client hello message to the server and providing
a client device certificate to the server, the client device certificate comprising at
least a client device identifier; transmitting, following the establishment of the
secure communication session, a Constrained Application Protocol (CoAP)
registration message to the server, the CoAP registration message comprising the
client device identifier and a lifetime of the registration; receiving a CoAP
registration confirmation message from the server confirming that the client
device has been added to a client registration directory; sending, before expiry of
the lifetime, a further client hello message to the server to maintain registration

of the client device within the directory.

A second approach of the present techniques provides a client device
comprising: storage for storing one or both of a client device certificate or a hash
of the client device certificate, the client device certificate comprising at least a
client device identifier; and communication circuitry for: establishing a secure
communication session with a server, comprising sending a client hello message
to the server and providing the client device certificate to the server; transmitting,
to the server, a Constrained Application Protocol (CoAP) registration message
comprising the client device identifier and a lifetime of the registration; receiving
a CoOAP registration confirmation message from the server confirming that the
client device has been added to a client registration directory; and sending, before
expiry of the lifetime, a further client hello message to the server to maintain

registration of the client device within the directory.

A third approach of the present techniques provides a method for

maintaining registration of a client device with a server, the method performed by

27

10

15

25

30

35

the server comprising: establishing a secure communication session with the client
device comprising receiving a client hello message from the client device and a
client device certificate, the client device certificate comprising at least a client
device identifier; extracting, from the client hello message and client device
certificate, information for identifying the client device; receiving, following the
establishment of the secure communication session, a Constrained Application
Protocol (CoAP) registration message from the client device, the CoAP registration
message comprising the client identifier for the client device and a lifetime of the
registration; creating an entry in a client registration directory for the client device
using at least the extracted information for identifying the client device and the
lifetime of the registration; transmitting a CoAP registration message to the client
device confirming that the client device has been added to the client registration
directory; receiving, before expiry of the lifetime, a further client hello message
from the client device; using information in the further client hello message to
locate the client device entry within the client registration directory; and if no
subsequent CoAP message is received from the client device, using the further
client hello message to maintain the registration of the client device within the

client registration directory.

A fourth approach of the present techniques provides a server comprising:
at least one processor coupled to communication circuitry for: establishing a
secure communication session with a client device comprising receiving a client
hello message from the client device and a client device certificate, the client
device certificate comprising at least a client device identifier; extracting, from the
client hello message and client device certificate, information for identifying the
client device; receiving, following the establishment of the secure communication
session, a Constrained Application Protocol (CoAP) registration message from the
client device, the CoAP registration message comprising the client identifier for
the client device and a lifetime of the registration; creating an entry in a client
registration directory for the client device using at least the extracted information
for identifying the client device and the lifetime of the registration; transmitting a
COAP registration message to the client device confirming that the client device
has been added to a client registration directory; receiving, before expiry of the
lifetime, a further client hello message from the client device; using information

in the further client hello message to locate the client device entry within the client

28

10

registration directory; and if no subsequent CoAP message is received from the
client device, using the further client hello message to maintain the registration of

the client device within the client registration directory.

Those skilled in the art will appreciate that while the foregoing has described
what is considered to be the best mode and where appropriate other modes of
performing present techniques, the present techniques should not be limited to
the specific configurations and methods disclosed in this description of the
preferred embodiment. Those skilled in the art will recognise that present
techniques have a broad range of applications, and that the embodiments may
take a wide range of modifications without departing from the any inventive

concept as defined

29

10

15

01 0219

25

30

35

CLAIMS:

1. A method for maintaining registration of a client device with a Lightweight
Machine-to-Machine (LwM2M) server, the method performed by the client device
comprising:

establishing a secure communication session with the LwM2M server
comprising performing a Transport Layer Security (TLS) or Datagram Transport
Layer security (DTLS) handshake with the LwM2M server;

receiving a registration confirmation message from the LwM2M server
confirming that the client device has been added to a client registration directory,
the registration having a defined lifetime;

performing, before expiry of the lifetime, a further TLS or DTLS handshake
with the LWM2M server, wherein the further TLS or DTLS handshake comprising
client data is used to identify the client device so as to maintain registration of the

client device within the client registration directory.

2. The method as claimed in claim 1 further comprising:
entering a sleep mode after receiving the registration confirmation

message.

3. The method as claimed in claim 2 further comprising:
entering an awake mode prior to expiry of the lifetime; and
re-establishing a secure communication session with the server when
sending the further TLS or DTLS handshake.

4. The method as claimed in any one of claims 1 to 3, where the step of
establishing a secure communication session with the LwM2M server comprises
using a key exchange and handshake process that uses Constrained Application

Protocol (CoAP) messages.

5. The method as claimed in any preceding claim wherein the step of
establishing a secure communication session with the LwM2M server includes
providing a client device certificate to the LwM2M server and optionally also

comprises providing a hash of the digital certificate to the server.

30

10

15

01 0219

25

30

35

6. The method as claimed in claim 5, where the hash of the digital certificate

IS generated by applying a cryptographic hash function to the digital certificate.

/. The method as claimed in claim 6, where the cryptographic hash function
IS any one of: an MD5 hash function; a Secure Hash Algorithm (SHA) hash
function; a SHA-2 hash function; a SHA-3 hash function; or a SHA-256 hash

function.

3. The method of any one of the preceding claims where client data comprises
a client device identifier and information about the device is contained within a
handshake message or an identifier extracted from a certificate or an identifier

extracted from a client hello message.

Q. The method of any one of claims 1 to 7, wherein the client data comprises

any of a Pre-Shared Key, a Session ID or Session Ticket.

10. The method of any one of claims 1 to 7, including the further TLS or DTLS
handshake including sending a certificate message comprising a client certificate

and using the client certificate for identifying which client registration to maintain.

11. The method of any one of claims 1 to 7, including the further TLS or DTLS
handshake including sending a pre-shared key in a client hello message, the pre-

shared key being used for identifying which client device registration to maintain.

12. The method of any one of claims 1 to 7, including the further TLS or DTLS
handshake including using information in a client hello message comprising a

client identifier in a certificate for locating a client device entry within the client

registration directory.

13. The method of any one of claims 1 to 7, including using a session
resumption with a Session ID or a Session Ticket sent in a client hello message,
where the Session ID or Session Ticket is used to identify which client device

registration to maintain.

31

10

15

Od
D I
QN
-
D I
-

25

30

35

14. A client device comprising:

communication circuitry for:

establishing a secure communication session with a Lightweight
Machine-to-Machine (LwM2M) server, comprising performing a Transport
Layer Security (TLS) or Datagram Transport Layer Security (DTLS)
handshake with the LWM2M server;

receiving a registration confirmation message from the LwM2M
server confirming that the client device has been added to a client
registration directory, the registration having a defined lifetime; and

performing, before expiry of the lifetime, a further TLS or DTLS
handshake with the LwM2M server, wherein the further TLS or DTLS
handshake comprising client data is used to identify the client device within
the client registration directory and to maintain registration of the client

device within the client registration directory.

15. The client device as claimed in claim 14 further comprising:

processing circuitry for switching the device into a sleep mode after

receiving the registration confirmation message.

16. The client device as claimed in claim 15, where the processing circuitry

switches the device into an awake mode prior to expiry of the lifetime.

17. A non-transitory data carrier carrying code which, when implemented on a

processor, causes the processor to carry out the method of any of claims 1 to 13.

18. A method for maintaining registration of a client device with a Lightweight
Machine-to-Machine (LwM2M) server, the method performed by the server
comprising:

establishing a secure communication session with the client device
comprising performing a Transport Layer Security (TLS) or Datagram Transport

Layer Security (DTLS) handshake with the client device;

receiving, following the establishment of the secure communication session,

a registration message from the client device,

32

10

15

o)
—
QN
-
—
-

25

30

35

transmitting a registration confirmation message to the client device
confirming that the client device has been added to the client registration
directory, the registration having a defined lifetime;

performing, before expiry of the lifetime, a further TLS or DTLS handshake
with the LwM2M server, the further TLS or DTLS handshake comprising client data,
wherein the further TLS or DTLS handshake comprising client data is used to
identify the client device so as to maintain the registration of the client device

within the client registration directory.

19. The method as claimed in claim 18 including a step of creating an entry in
a client registration directory comprises storing, in the directory of the LwM2M
server, at least one of: the client device identifier, a security credential associated
with the client device, a hash of the security credential, and a cryptographic hash

function used to generate the hash.

20. The method as claimed in claim 18 or 19 wherein the further TLS or DTLS
handshake message comprises a client device certificate, and where the step of
using information in the further TLS or DTLS message comprises using a client
device identifier in the client device certificate to locate a client device entry within

the client registration directory.

21. The method as claimed in claim 19 or 20 where the further TLS or DTLS
handshake message comprises a hash of the security credential, and the step of
using information in the further TLS or DTLS message comprises:

retrieving a security credential and cryptographic hash function pair from
the registration directory of the LWM2M server;

applying the cryptographic hash function to the security credential to
generate a hash of the security credential;

comparing the generated hash with the received hash; and

identifying, if the generated hash matches the received hash, within the

client registration directory.

22. The method as claimed in claim 21 wherein the security credential is a client

device certificate.

33

10

15

o)
—
QN
-
—
-

25

30

23. The method as claimed in any one of claims 19 to 22 where the
cryptographic hash function is any one of: an MD5 hash function; a Secure Hash
Algorithm (SHA) hash function; a SHA-2 hash function; a SHA-3 hash function; or
a SHA-256 hash function.

24. The method as claimed in any one of claims 18 to 23, where the step of
establishing a secure communication session with the LwM2M server comprises
using a key exchange and handshake process that uses Constrained Application

Protocol (CoAP) messages.

25. The method as claimed in any one of claims 18 to 24 further comprising:
deleting the client device entry from the client registration directory if the

further TLS or DTLS message is not received before expiry of the lifetime.

26. A Lightweight Machine-to-Machine (LWM2M) server comprising:

at least one processor coupled to communication circuitry for:

establishing a secure communication session with a client device
comprising performing a Transport Layer Security (TLS) or Datagram
Transport Layer security (DTLS) handshake with the client device;

transmitting a registration confirmation message to the client device
confirming that the client device has been added to a client registration
directory, the registration having a defined lifetime;

performing, before expiry of the lifetime, a further TLS or DTLS
handshake comprising client data, wherein the further TLS or DTLS
handshake comprising client data is used to identify the client device so as
to maintain the registration of the client device within the client registration

directory.

27. The LwM2M server as claimed in claim 26 further comprising the client

registration directory.
28. The LwM2M server as claimed in claim 27, where the server is

communicatively coupled to an external client registration directory, and where

the step of creating an entry in a client registration directory comprises sending

34

instructions to the client registration directory to create an entry for the client

device.

29. A non-transitory data carrier carrying code which, when implemented on a
5 processor, causes the processor to carry out the method of any of claims 18 to
25.

35

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS

