| 3

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GOG6F 9/00, 15/00, 17/30 A2

(11) International Publication Number:

(43) International Publication Date:

WO 95/06280

2 March 1995 (02.03.95)

(21) International Application Number: PCT/US94/09604

(22) International Filing Date: 26 August 1994 (26.08.94)

(30) Priority Data:

08/112,113 26 August 1993 (26.08.93) Us

(71) Applicant: ELECTRONIC ARTS, INC. [US/US]; 1450 Fash-
ion Island Boulevard, San Mateo, CA 94404 (US).

(72) Inventors: FOWLER, Terry; 387 Foxborough, Mountain View,
CA 94041 (US). McGRATH, Kevin; 299 Lansing Way,
Hayward, CA 94541 (US). GOODE, Terry, Lee; 1390 Sage
Hen, Sunnyvale, CA 94087 (US). SCHNECKLOTH, Mark;
5018 Parkfield, San Jose, CA 95129 (US).

(74) Agents: TRUONG, Phong, K. et al.; Fenwick & West, Suite
500, Two Palo Alto Square, Palo Alto, CA 94306 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, I, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: DATA TRANSFER ACCELERATING APPARATUS AND METHOD

10

16
F—————— SR f”
I FROM CPU | [wstRUCTION
l ENABLE ~ ADDRESSES | | MEMORY
| rromcey s ! l
| Az:1] DECODER I X
| 60—~ %2 = |
18 | MOVEL N I—————i————
£ | #oaraL AR w|© 4= | 12
DATA SOURCE 1 | FOATAL CONTROL _ IDLE ‘ .
24 01
N pam | [\ (uPPER WoRD) rnv SAE ourfet— o
GENERATOR | L JOATALL 10 |
| |(LOWER WORD) INIT DoNE_| |)
26 1 oesTnaTION]
e i
GENERATOR || | | pATA h-20
l | | MEMoRY
| |
_J

| (57) Abstract

In a computing system, data is transferred from a data source (18) to a memory (20) by generating and sending an optimized
instruction sequence to a central processing unit (CPU 12). The CPU (12) executes the instruction sequence to carry out the data transfer
in an optimal manner. An apparatus for carrying out the above method comprises a determiner (50), an instruction generator (52), and a
coupling circuit (54). The determiner (50), in response to a determination that data transfer is desired, generates a run control signal. The
instruction generator (52) generates an optimized instruction sequence using data and address information received from the data source (18),
and provides this instruction sequence on its output. The coupling circuit (54), in response to the run control signal, relays the optimized
instruction sequence from the instruction generator (52) to the CPU (12) to allow the CPU (12) to execute the instruction set to transfer

data from the data source (18) to the memory (20).

applications under the PCT.

AT
AU
BB

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzeriand
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE
GN
GR

FRE RERSHEZ

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

lialy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Sencgal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-1-
DATA TRANSFER ACCELERATING APPARATUS AND METHOD

Field of the Invention

This invention relates generally to computing systems and more particularly to an
apparatus and method for accelerating the transfer of data in a computing system from a
data source to a memory coupled to a central processing unit.

Description of the Background Art

In many computing systems, large blocks of data are transferred from a data source,
such as a graphics card or a game cartridge, to a data memory on a fairly regular basis.
This transfer of data is preferably carried out as quickly as possible to optimize the speed
and efficiency of the system. Traditionally, two mechanisms have been employed to effect
data transfer. The first mechanism involves the use of a software routine executed by a
central processing unit (CPU) to transfer the data from the source to the memory.
According to this mechanism, the CPU executes a data transfer loop which moves the data
a word at a time from the data source, through the CPU, to the memory until all of the data
is transferred. A drawback of this method is that it requires the CPU to generate a source
and a destination address for each data word transferred, and to test and branch after each
transfer. These operations require several extra clock cycles per data word. For a large
number of data words, the generation of addresses and the testing and branching impose a
considerable burden on the system, which in turn, slows the system down significantly.
The use of a software routine is especially inefficient when data needs to be stored in the
memory in a non-sequential fashion. In such a case, the CPU is precluded from using its
sequential addressing mode to generate the addresses, which means that the CPU must
instead calculate the addresses. Address calculation requires even more extra cycles,
which in turn, slows down the data transfer process even more. Thus, even though a
software routine properly effects the transfer of data, it does so in an undesirably slow
manner.

As an alternative, the direct memory access (DMA) mechanism has been used. In
the DMA scheme, when the data source has a large block of data to transfer, the DMA
hardware signals the CPU, and in response to this signal, the CPU relinquishes control of
the system bus to the DMA hardware. Thereafter, the DMA hardware transfers the block
of data directly from the data source to the memory without passing through the CPU.
While DMA is faster than the software loop, DMA does have its disadvantages. One
major disadvantage is that, in order to implement DMA, special hardware must be
provided in each computing system in which a specific data source may be installed, and
this hardware adds cost to the system. In the case where the computing system has already
been sold, adding DMA hardware to the system may be practically infeasible. A second

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-2.

disadvantage of the DMA scheme is that it requires the CPU to relinquish control of the
system bus while data transfer is taking place. This means that during data transfer, the
CPU cannot service interrupts or perform any substantive processing. In effect, the CPU is
rendered practically useless during that time. If data transfer takes up a significant
percentage of the system run time, the CPU will be rendered ineffective for an inordinate
amount of time. For many systems, such an implementation is impracticable. For the
reasons discussed above, neither prior art data transfer mechanism provides satisfactory
results.

Summary of the Invention

The present invention provides an improved method and apparatus which transfers
data faster than a conventional software loop but which does not suffer from the
drawbacks of DMA. In accordance with the method of the present invention, data transfer
is effected by first monitoring control and address signals from the CPU to determine
whether data transfer between the data source and the memory is desired. If data transfer
is desired, then an optimized instruction set is generated for each of the data words to be
transferred from the data source to the memory. Preferably, each optimized instruction set
is generated by receiving from the data source the data to be transferred and a destination
address, and by merging the data and the address with an instruction for causing the CPU
to move data into a destination address of the memory. Thereafter, each instruction set is
sent to the CPU for execution thereby to transfer the data from the data source to the
memory. Because the data and destination address are hard coded into each instruction
set, the need for the CPU to fetch the data and to generate the destination address is
obviated. Also, because a loop is not used, no testing and branching operation needs to be
performed. Hence, data transfer is achieved in fewer CPU clock cycles than with the
traditional software loop. This improved speed performance is attained without having to
force the CPU to relinquish control of the system bus. Since it is the CPU which actually
effects the data transfer, the CPU need not and cannot be arbitrated off the bus during data
transfer. This means that the CPU remains free to service interrupts even during data
transfer. Thus, the method of the present invention improves data transfer rate without
incurring the drawbacks of DMA.

An apparatus for carrying out the method of the present invention comprises a
determiner, an instruction generator, and a coupling circuit. The determiner, which
preferably takes the form of a decoder, receives control and address signals from the CPU
and decodes these signals to determine whether data transfer is desired. If data transfer is
desired, the decoder generates a run control signal; otherwise, an idle control signal is
generated. If data transfer is desired, the instruction generator generates an optimized
instruction set for each data word to be transferred. The instruction generator preferably

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-3-

comprises a register having a plurality of storage sections, and an output. In one of the
storage sections is stored an instruction for causing the CPU to move data into a
destination address in the memory, and in a plurality of additional storage sections are
stored the data to be transferred and the destination address in the memory to which the
data is to be transferred. The data and destination address are received from the data
source. Together, the contents of the register make up the optimized instruction set. The
coupling circuit is coupled to the output of the generator to receive the optimized
instruction set and, in response to the run control signal, the coupling circuit sends the
instruction set to the CPU for execution thereby to effect the transfer of data from the data
source to the memory. '

Brief Description of the Drawings

Fig. 1 is a block diagram of a computing system in which the apparatus 16 of the
present invention may be implemented.

Fig. 2 is a flow diagram of the method of the present invention.

Fig. 3 is a more detailed block diagram of the system of Fig. 1 to more clearly
illustrate the various elements of the apparatus 16 of the present invention.

Fig. 4 is a flow diagram illustrating the sequence of operation of the state switch
54.

Fig. 5 is a block diagram of a computing system in which an alternative
embodiment of the apparatus of the present invention may be implemented.

Detailed Description of the Preferred Embodiments

Before proceeding with a detailed description of the prcseht invention, a brief
discussion of the theory underlying the invention will be provided to facilitate a complete
understanding of the invention. As previously mentioned, a traditional method for
transferring data from a data source to a data memory involves the use of a software loop.
The software loop is executed by a CPU to move data, a word at a time, from the data
source, through the CPU, to the memory. An example of such a loop, written in assembly
code for the Motorola 68000 microprocessor, is shown below:

Loop: MOVE.L (A0), (A1)+ ;move data word from data source to memory

DBRA DO, Loop :decrement, test, and branch.

For the sake of illustration, all computer code provided herein will be written in assembly
code for the 68000 microprocessor. The transfer loop shown above is an example of a
general transfer loop because the same general instruction is used to move each data word.
Such a general instruction requires that the CPU generate a source address for each data
word, retrieve the data word, and generate a destination address for the data word in order
to transfer the data. The CPU must also test and branch after transferring the data word.

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-4-

These operations require several extra CPU clock cycles. For the general loop shown
above, thirty CPU clock cycles are required to move four bytes of data.

It is generally known in the programming art that "in-line" code requires fewer
clock cycles to execute than general code. In-line computer code is a set of instructions
which has incorporated therein the data to be transferred and the destination address in the
memory to which the data is to be moved. An example of a set of in-line code for moving
four bytes of data is given below:

MOVELL #<data>, (xxx).W

Upper word of data

Lower word of data

Destination address.
Due to the fact that the data and the destination address are already hard-coded into the in-
line code, there is no need for the CPU to retrieve the data or to generate the destination
address. Also, since no loop is used, the test and branch instruction is eliminated. Thus,
the data is moved in fewer clock cycles. Using the in-line code given above, four bytes of
data are moved in twenty-four clock cycles instead of thirty, which represents a 20%
improvement in efficiency.

While in-line code is much more efficient than general code, in-line code is not
typically used to transfer data because a programmer generally lacks the information
necessary to write in-line code. To elaborate, a programmer generally does not know what
actual data will be transferred since this data is being generated by the data source on the
fly. Also, the programmer normally does not know the destination address for the data
since the destination address is affected by the length of the data and the starting address.
In light of these limitations, a software engineer has no choice but to write general code for
effecting data transfer.

However, while the software engineer may not have access to the information
needed to construct in-line code, the data source does. The data source has access to the
data to be transferred because it is actually generating the data. Furthermore, the data
source can generate the destination address for the data because it is the data source which
defines the format in which the data is to be stored in the memory. Thus, the data source
can provide all of the information necessary to construct in-line code. The present
invention provides a method and apparatus for receiving this information from the data
source, and utilizing the information to generate a set of in-line code which is executed by
the CPU to move data from the data source to the memory more efficiently.

With reference to Fig. 1, there is shown a computing system 10 in which the
apparatus 16 of the present invention may be implemented. The system 10 first comprises
a CPU 12 for controlling the overall function of the system 10. For illustrative purposes,
CPU 12 will be assumed herein to be a Motorola 68000 microprocessor, but it should be

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-5-

stressed that CPU 12 may be any of a number of commercially available microprocessors.
Data memory 20, which is used to store data as the data is being processed, is coupled to
CPU 12. Itis data memory 20 which receives the data transferred from the data source 18.
Also coupled to CPU 12 is the data transfer accelerator 16 of the present invention.
Accelerator 16 receives data and address information from data source 18 and uses this
information to generate an optimized instruction set. After generating the optimized
instruction set, accelerator 16 sends the instruction set to CPU 12 to allow the CPU 12 to
execute the instructions to transfer data to the data memory 20.

The instruction memory 14, which contains instructions executable by CPU 12, is
coupled to accelerator 16. When accelerator 16 is not sending optimized instruction sets
to CPU 12, it is the instructions stored within instruction memory 14 which are executed
by CPU 12. Also coupled to accelerator 16 is the data source 18. Data source 18
preferably comprises a data generator 24 for generating the data to be transferred to data
memory 20, and a destination address generator 26 for providing a destination address in
data memory 20 to which the data is to be transferred. Data source 18 may be a number of
different devices such as a graphics card or a game cartridge. The system 10 of Fig. 1
differs from a typical computing system in that accelerator 16 is disposed between data
source 18 and CPU 12, and between instruction memory 14 and CPU 12. Such a
configuration allows the accelerator 16 to generate optimized instruction sets using
information from data source 18, and to selectively feed these optimized instructions to the
CPU 12 for execution thereby.

With reference to the flow diagram provided in Fig. 2, the method of the present
invention, carried out by accelerator 16, will now be described. Accelerator 16 begins
operation by monitoring 30 control and address signals from CPU 12 to determine 32
whether data transfer from data source 18 is desired. In normal operation, CPU 12 sends
out control and address signals to access the data and instructions stored within memories
14 and 20. In order to differentiate attempts to access memories 14, 20 from attempts to
transfer data, system 10 is preferably set up such that an arbitrary predetermined address
region (an overlay region) is reserved for the data source 18. Any attempt to access an
address in this overlay region will signal to accelerator 16 that data transfer may be
desired. In addition to sending an address within the overlay region, CPU 12 preferably
also sends an enable control signal to confirm that data transfer is indeed desired. This
enable control signal allows the accelerator 16 to differentiate between an attempt to
access an address in the overlay region in one of the memories 14, 20, and an attempt to
transfer data from data source 18. To determine 32 whether data transfer is desired,

~ accelerator 16 preferably decodes the address and the enable signal received from CPU 12,

and only if the enable signal is asserted and the address is within the overlay region will it
be determined that data transfer is desired.

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-6-

If data transfer is not desired, accelerator 16 simply couples 34 CPU 12 to
instruction memory 14 to allow memory 14 to be accessed. If, on the other hand, data
transfer is desired, accelerator 16 generates 36 an optimized instruction set for each data
word to be transferred. Each optimized instruction set is preferably generated by first
providing an instruction which is executable by CPU 12 for moving a data word from data
source 18 to memory 20. Then, accelerator 16 receives the data to be transferred from data
generator 24, and the destination address from destination address generator 26, and
merges these two pieces of information with the move instruction to derive a set of in-line
code, i.e. an optimized instruction set. In most instances, the data source 18 generates the
data and the destination address before they are requested by the CPU 12. Hence, it is
possible for accelerator 16 to pregenerate the optimized instruction set and to store it
within an internal memory to await the request by CPU 12. Such an implementation
requires an internal memory, however, which adds cost and complexity to the accelerator.
More preferab'ly, the optimized instruction set is generated as it is needed, that is, in real
time.

After the instruction set is generated, accelerator 16 sends 38 the instruction set to
the CPU 12. Before sending the instruction set, however, accelerator 16 checks the enable
and the address signals from the CPU 12 to determine whether the address is still within
the overlay region and whether the enable signal is still asserted. It is possible that, during
the generation of the instruction set, the CPU 12 received an interrupt request and is now
servicing that request. If so, accelerator 16 should not send the instruction set until CPU
12 has finished servicing the interrupt. Thus, the optimized instruction set is sent only if
the enable and address signals have the proper values.

After the optimized instruction set is sent, the instruction set is executed 40 by
CPU 12 to transfer a data word into a destination address in data memory 20. Since the
optimized instruction set contains within it the data and the destination address, the need
for the CPU 12 to fetch the data and to generate the destination address is obviated. And
since no loop is used, no test and branch operations need be performed. Hence, the data is
transferred in a minimum number of clock cycles. After the instruction set is executed,
accelerator 16 determines 42 whether the data source 18 has more data words to transfer.
If so, steps 36-42 are repeated to generate another optimized instruction set to move
another data word. Otherwise, accelerator 16 sends 44 an instruction to the CPU 12 to
inform the CPU 12 that data transfer is complete. Thereafter, accelerator 16 loops back to
step 30 to monitor the address and enable signals for another data transfer request.

With reference to Fig. 3, the accelerator 16 of the present invention will now be
described in greater detail. As shown in Fig. 3, accelerator 16 preferably comprises a
determiner 50, an instruction generator 52, and a coupling circuit 54. The determiner 50,
which preferably takes the form of a decoder 50, receives an enable control signal and

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-7-

address signals from the CPU 12. Decoder 50 decodes the address signals to determine
whether the address falls within the overlay region, and tests the enable signal to determine
whether it is asserted. If the address is within the overlay region and the enable signal is
asserted, then decoder 50 generates a run control signal on its output line 56 to indicate
that data transfer is desired. Otherwise, decoder 50 generates an idle control signal on line
56. |

The instruction generator 52 responsible for generating the optimized instruction
set preferably takes the form of a scratch pad register 52 having four storage sections. In
storage section 00, there is stored a MOVE.L instruction, which is a Motorola 68000
microprocessor instruction for transferring a long data word (four bytes) to a specified
destination address. In storage locations 01, 10, and 11 are stored the data to be
transferred and the destination address, respectively. Register 52 receives the data from

~ the data generator 24 and the destination address from the address generator 26 of the data

source 18. Together, the information in storage sections 00, 01, 10, 11 form a single
optimized instruction set. Since the MOVE.L instruction is perpetually stored within
section 00, register 52 generates an bptimized instruction set by simply storing within
section 01, 10, and 11 the data and the destination address received from the data source
18. To output the optimized instruction set, each storage section is preferably sequentially
accessed to cause the contents of the accessed section to be transmitted on output lines 58.
The accessing of the storage sections 00, 01, 10, 11 is controlled by the input select
signals received on input lines 60. For synchronization purposes, the input select signals
are preferably address bits A[2:1] from the CPU 12. To elaborate, in order for the
instructions from register 52 to be executed properly by CPU 12, it is important that the
output of instructions from register 52 be synchronized with the operational cycles of the
CPU 12. This is best achieved by monitoring the current state of the CPU 12. It has been
found that synchronization and proper accessing are best attained by monitoring the
address bits A[2:1]. Hence, bits A[2:1] are preferably used as the input select signals.
Accelerator 16 further comprises a coupling circuit 54 for selectively sending the
generated instruction set to CPU 12 to accelerate data transfer. Coupling circuit 54
preferably takes the form of a state switch 54 having a control input port CONTROL, a
plurality of other input ports RUN, IDLE, INIT, DONE, and an output port OUT. Switch
54 serves to couple one of the input ports to the output port based on the status of the
control signal on line 56 and the state of the switch 54. State switch 54 may be
implemented in a variety of ways but in the preferred embodiment, switch 54 is
implemented using combinational logic. The control input port CONTROL is coupled to
line 56 to receive the output control signal from decoder 50. This control signal provides
state switch 54 with an indication of whether data transfer is desired. Coupled to the
output lines 58 of register 52 is the RUN port. RUN port serves to receive the various

10

15

20

25

30

35

WO 95/06280 _ PCT/US94/09604

-8-

lines of the generated instruction set to send on to the CPU 12. The IDLE port is coupled
to the instruction memory 14, which contains instructions executable by the CPU 12. The
INIT port is coupled to an NOP register 62 and the DONE port is coupled to an RTS
register 64. The NOP register 62 contains an NOP (no operation) instruction for causing
the CPU 12 to wait and do nothing, and the RTS register 64 contains an RTS (return from
subroutine) instruction for causing the CPU 12 to execute a return from subroutine. |

To further describe the state switch 54, reference is made to Fig. 4, wherein a flow
diagram is provided to illustrate the operational sequence of switch 54. Switch 54
operates by first checking 70 the CONTROL port for a run control signal from decoder 50.
If a run control signal is not present, but instead, an idle control signal is present, then it
means that data transfer is not desired. Thus, switch 54 couples 72 the IDLE port to the
OUT port to allow CPU 12 to access instruction memory 14. If a run control signal is
present, switch 54 determines 74 whether data source 18 is ready to generate data. If not,
the INIT port is coupled 76 to the OUT port to send an NOP instruction to the CPU 12,
which causes the CPU 12 to simply wait. Step 76 is repeated until the data source 18 is
ready.

Thereafter, switch 54 again checks 78 for a run control signal at the CONTROL
port. Itis possible that, between steps 70 and 78, the CPU 12 was called upon to service
an interrupt. If so, switch 54 couples 80 the IDLE port to the OUT port so that no
instructions from register 52 are sent to CPU 12 during the interrupt servicing period.
When the CPU 12 returns from servicing the interrupt, the run control signal will again
appear at the CONTROL port. In response, switch 54 couples 82 the RUN port to the
OUT port to now send the optimized instruction set from register 52 to CPU 12.
Thereafter, switch 54 determines 84 whether data transfer is complete. If not, switch 54
loops back to step 78 to send more instructions to the CPU 12. However, if data transfer is
complete, switch 54 couples 86 the DONE port to the OUT port to send an RTS
instruction to the CPU 12 to inform the CPU 12 that data transfer is complete. After the
RTS instruction is sent out, switch 54 again couples 88 the IDLE port to the OUT port and
loops back to step 70 to check for another run control signal.

Referring again to Fig. 3, the operation of the overall system 10 will now be
described. In normal operation, CPU 12 generates address signals which are outside the
overlay region. Hence, the IDLE port is usually coupled to the OUT port to allow the CPU
12 to access the instructions stored within memory 14. When data transfer is desired,
however, CPU 12 executes the following instruction:

JSR Start_Address ;jump to subroutine at the start address;
where the Start_Address is an address within the overlay region. The JSR instruction is a
standard instruction used for branching to a subroutine. Thus, CPU 12 treats a data
transfer encounter with the data source 18 as a call to a subroutine. Preferably, execution

10

15

20

25

30

35

WO 95/06280 ’ PCT/US94/09604
-9.-

of the JSR instruction generates an enable control signal. This enable control signal, along
with the Start_Address, is received by decoder 50. Because the enable signal is asserted
and because the Start_Address is within the overlay region, decoder generates a run
control signal on line 56, indicating that data transfer is desired. In response, switch 54
checks the data source 18 to determine whether source 18 is ready to generate data. If not,
switch 54 couples the INIT port to the OUT port to send a series of NOP instructions to
the CPU 12. These instructions cause the CPU 12 to wait. When data source 18 is ready
to generate data, register 52 receives the data and the destination address from the data
source 18, and stores this information in sections 01, 10, and 11 to provide a complete
optimized instruction set which is ready to be sent.

Before sending the instruction set to CPU 12, however, switch 54 checks the
CONTROL port for a run control signal. If the run control signal is not present, then it
probably means that the CPU 12 is currently servicing an interrupt. In such a case, switch
54 couples the IDLE port to the OUT port and waits until CPU 12 is finished servicing the
interrupt. When CPU 12 returns from the interrupt, a run control signal will again appear
on the CONTROL port and, in response, switch 54 couples the RUN port to the OUT port
to send the optimized instruction set to CPU 12. The instruction set is preferably sent to
the CPU 12 by sequentially outputting the contents of each of the storage sections onto
output lines 58. As mentioned previously, the accessing of the storage sections of register
52 is controlled by the address bits A[2:1]. Thus, to sequentially access each of the storage
sections, CPU 12 preferably sends a series of addresses which fall within the overlay
region and which have the address bits A[2:1] cycling from 00 to 11.

As each line of the instruction set is sent, each line is executed by CPU 12 and,
when all lines of the optimized instruction set have been executed, a data word is
transferred into a destination address in memory 20. Thus, data transfer is achieved.
Thereafter, switch 54 determines whether more data words need to be moved from data
source 18 to memory 20. If so, another instruction set is generated and sent to CPU 12 to
transfer another data word. This process is repeated until all data words have been
transferred. When data transfer is complete, switch 54 couples the DONE port to the OUT
port to send an RTS instruction to the CPU 12. The RTS instruction is a general return
instruction which is executed at the end of each subroutine call. By sending this
instruction to CPU 12, accelerator 16 is causing the CPU 12 to end the subroutine call and
to resume executing its regular program instructions. To allow this to take place, switch
54 couples the IDLE port to the OUT port to once again couple the CPU 12 to the
instruction memory 14.

As thus far described, accelerator 16 achieves data transfer by writing over data
already existing in the memory 20. There may be instances, however, in which it is
desirable not to write over the data, but instead to merge the data from the data source 18

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-10-

with data already in the memory 20. If the merging of data is desired, then an alternative
embodiment of the apparatus of the present invention may be used. Referring to Fig. 5,
there is a shown a system 90 in which this alternative embodiment 92 may be
implemented. System 90 is substantially similar to system 10 and to indicate this
similarity, identical elements in systems 10 and 90 are labeled with identical numbers.
System 90 differs from system 10 in four respects: (1) the instruction generating register
94 of system 90 has eight storage sections instead of four; (2) register 94 receives address
bits A[3:1] instead of A[2:1] as input select signals; (3) system 90 further comprises an
existing data register 120 coupled to CPU 12; and (4) the data source 98 of system 90
further comprises a data modifier 122 coupled to both the data generator 24 and register
120. The two systems are identical in all other respects.

Since accelerator 92 is designed to merge two data words instead of overwriting
one data word with another, the optimized instruction set generated by accelerator 92
needs to have several additional instructions incorporated therein. Thus, register 94 has
eight storage sections instead of four. Register 94 preferably has stored within section 000
a TST.L Adr.W instruction followed by a destination address stored within section 001.
The destination address is received from generator 26 in data source 98. These two
instruction lines, when executed by CPU 12, cause the CPU 12 to read the data word
currently stored within data memory 20 at the specified destination address, and to write
this data to the existing data register 120. Thereafter, data modifier 122 merges this
existing data with data from the data generator 24 to produce a set of modified data.

The following two storage sections 010, 011 of register 94 preferably store two
successive NOP instructions. These NOP instructions serve to pad the instruction stream
so that the TST.L and the MOVE.L instructions fall on address 00 boundaries. In the next
storage section 100, there is stored a MOVE.L instruction for transferring a data word to a
destination address in memory 20. This is the same instruction as that used in system 10
for transferring data. However, note that storage locations 101 and 110 receive the
modified data from data modifier 122 instead of the data from generator 24. This means
that the data being transferred by the MOVE.L instruction is the merged data. Hence,
accelerator 92 overwrites the existing data with data which represents the product of the
merging of the existing data with the data from the data generator 24. Storage section 111
contains the destination address in memory 20 to which this merged data is to be written.

As with register 52 of accelerator 16 (Fig. 3), it is important that the output of the
instruction lines from register 94 be synchronized with the operational cycles of CPU 12.
This is best achieved by monitoring the current state of the address bits A[3:1]. Hence,
address bits A[3:1] are used as the input select signals for accessing the storage sections of

register 94.

10

WO 95/06280 PCT/US94/09604

-11 -

The operation of system 90 is quite similar to that for system 10. The decoder 50
determines whether data transfer is desired and, if so, decoder 50 generates a run control
signal. In response to a determination that data transfer is desired, an optimized
instruction set is generated by the generation register 94. State switch 54 receives the
output from register 94 and selectively couples the RUN port to the OUT port to send the ?
instructions to CPU 12 to effect data transfer. Because system 90 functions in much the
same manner as system 10, the operation of system 90 will not be described in detail in
order to avoid repetition.

Thus far, the apparatus of the present invention has been described as being
separate from the data source, but it should be noted that the invention may be
incorporated into the data source to form a single apparatus. Such an implementation is
probably preferred if the data source is a game cartridge.

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604
-12-

What is claimed is:

1. A method for accelerating the transfer of data from a data source to a
memory coupled to a central processing unit (CPU), comprising the steps of:

monitoring signals from said CPU to determine whether data transfer from said
data source to said memory is desired;

generating an optimized instruction set for execution by said CPU for effecting
data transfer from said data source to said memory; and

sending said optimized instruction set to said CPU in response to a determination
that data transfer is desired.

2. The method of claim 1, further comprising the step of:
executing said optimized instruction set to optimally transfer data from said data
source to said memory.

3. The method of claim 1, wherein said optimized instruction set is generated
" inreal time.
4. The method of claim 1, wherein the step of generating comprises the steps

of:

providing an instruction for causing said CPU to move data from said data source
to a destination address in said memory;

receiving data and said destination address from said data source; and

merging said data and said address with said instruction to produce said optimized .
instruction set.

5. The method of claim 1, wherein the step of sending comprises the steps of:

receiving address signals from said CPU;

decoding said address signals to determine whether the address is within a selected
range; and

sending said optimized instruction set only if said address is within said selected
range.

6. The method of claim 1, wherein the step of generating comprises the steps
of: ‘

providing a register having a first storage section having stored therein an
instruction for causing said CPU to transfer data to a destination address in said memory;

receiving data and said destination address from said data source; and

storing said data and said address in additional storage sections in said register.

10

15

20

25

30

35

WO 95/06280 PCT/US94/09604

-13-

7. The method of claim 6, wherein the step of sending comprises the steps of:
accessing each of said storage sections in said register; and
outputting the contents of each of said storage sections to said CPU.

8. The method of claim 1, wherein the step of monitoring comprises the steps
of: "

receiving control and address signals from said CPU; and

processing said signals to determine whether data transfer from said data source to
said memory is desired.

9. The method of claim 8, wherein the step of processing includes the step of:

decoding said address signals to determine whether the address is within a selected
range.

10. An apparatus for accelerating the transfer of data from a data source to a
memory coupled to a central processing unit (CPU), comprising:

a determiner for receiving and processing signals from said CPU to determine
whether data transfer from said data source to said memory is desired, said determiner
generating a run control signal in response to a determination that data transfer is desired;

an instruction generator, having an output, for generating an optimized instruction
set for execution by said CPU for effecting data transfer from said data source to said
memory; and

a coupling circuit coupled to the output of said instruction generator responsive to
said run control signal to send said optimized instruction set to said CPU to enable said
CPU to execute said instructions to transfer data from said data source to said memory.

11. The apparatus of claim 10, wherein said instruction generator generates said
optimized instruction set in real time.

12. The apparatus of claim 10, wherein said determiner comprises:
a decoder for receiving address signals from said CPU and decoding said address
signals to determine whether the address is within a selected range, said decoder

generating said run control signal in response to a determination that said address is within
said selected range.

13. The apparatus of claim 10, wherein said instruction generator has inputs for
receiving data and a destination address from said data source, and wherein said generator
incorporates said data and destination address into said optimized instruction set.

10

15

20

25

30

WO 95/06280 PCT/US94/09604

-14 -

14. The apparatus of claim 10, wherein said instruction generator comprises:

a register having a first storage section for storing an instruction for causing said
CPU to transfer data to a destination address in said memory, and a plurality of additional
storage sections, said register receiving data and said destination address from said data
source and storing said data and destination address into said additional storage sections.

15. The apparatus of claim 14, wherein said register receives address signals
from said CPU and responds by selectively outputting the contents of each of said storage
sections to said coupling circuit.

16. The apparatus of claim 10, wherein said determiner generates an idle
control signal in response to a determination that data transfer is not desired, and wherein

said coupling circuit responds to said idle control signal by terminating the sending of said
optimized instruction set to said CPU.

17. The apparatus of claim 16, wherein said coupling circuit comprises:

a state switch having an idle port coupled to an instruction memory, and an output
port coupled to said CPU, said state switch coupling said idle port to said output port in
response to said idle control signal.

18. The apparatus of claim 10, wherein said coupling circuit comprises:

a state switch having a run port coupled to the output of said instruction generator,
and an output port coupled to said CPU, said state switch coupling said run port to said
output port in response to said run control signal to send said optimized instruction set to

-said CPU for execution thereby.

19. The apparatus of claim 18, wherein said state switch has a done port, and
wherein said apparatus further comprises an RTS register coupled to said done port for
storing an instruction for causing said CPU to terminate the transfer of data into said
memory, said state switch coupling said done port to said output port when the transfer of
data from said data source to said memory is complete.

PCT/US94/09604

WO 95/06280

1/5

0¢ —

L "Old4

HOLVHINIO
Ss3¥aay
NOLLWNILS3d

I

AHONIN

viva

y /

HOLYHTTIIOY
Nndo 7 HIISNVYL
viva
—
cl 9l 4
J /
AHONIN
NOULIONYLSNI — b1

HOLVHINID
viva =

J424N0S ViIvd

gl

—7

WO 95/06280 PCT/US94/09604

30 ‘

MONITOR
CPU SIGNALS

DATA
TRANSFER
DESIRED?

A

34— | COUPLE
| YES INSTRUCTION
MEMORY TO CPU
56—~ GENERATE 1
INSTRUCTION
SET
1
38— SEND
INSTRUCTIONS
TO CPU
1
40~ EXECUTE
INSTRUCTIONS
42

DATA TO
SEND?

44— INFORM CPU
DATA TRANSFER
IS COMPLETE

FlG. 2

PCT/US94/09604

WO 95/06280

e D
ol Al el T TTTT]
| R R\ 85— |
ASOWIN “ S1d dON 1NdLNO _
oz~ wva YOLVMINTO
| } } (1| SS3daav i SS3yaay —
“ INOd 1IN 0l (axom Eﬁod .._ _
Tviva HOLVHINTO
- HOLIMS
1162 “ 710 T3wms M [ceom Ew%» L__ va__ i,
T'vLva,
| e ool Eay Tvivaf v
| N gc TINON | 81
| zc”” 09 |
A | 4300030 A4 _
[
| _, a 0s Nndo Wo4 _
Adoman | | syssayaay F78WN3 |
NOLLONALSNI | | > WOMd _
WN\“ _lllllllllllkll IIIIII ||._

WO 95/06280

PCT/US94/09604

76

COUPLE INIT
PORT TO
OUT PORT

RUN
controL \, MO -
SIGNAL? s
COUPLE IDLE
PORT TO
OUT PORT
'
CONTROL -
SIGNAL? s
COUPLE IDLE
PORT TO
COUPLE RUN OUT PORT
PORT TO r
OUT PORT

NO

TRANSFER

COMPLETE?

86 —

COUPLE DONE
PORT TO
OouUT PORT

!

88 —|

COUPLE IDLE
PORT TO
our PORT

y

FIG. 4

PCT/US94/09604

WO 95/06280

S Old HILSI97Y

IIIIIIIIIIIIIIIIII vIva
r a0 _] INILSIXT | - pz)
<N 29 — =
| L 44| ssayaav _
Adonan | | | 1Y JON q N%E\Emm Q» |
oz~ wiva aHOM MIMOT,
SR D JR M 7 P
L o -
1 (GHOM ¥3cdin) AH gt
" INOa 1IN/ 101 TYIvas "
Ndo ino HOLIMS Nnyle Myay TVIVaF YOLVSINTO
_ VIS 00! / _
7 INON iva M
“ 7 | J7a1 TO4INOD _ vz
N2 | T,o | 110 dON _
_ - | || ¥0LveInNGo
, | 95 010 JON | ss3daav
/ | | NOLLYNLLISTa |}s—9¢C
ASONIN L NOLLYNILSTa _ (1va
NOLLONHLSNI “ ¥ ¥ 05 | mum:mww 2
. . 86
p1 - | sissiwaay F18WNT 000 Meav 111 |
_ ndo o4 o6 ~ 1 _
| [15]y _
L ndo wWodd |
S 7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

