
(12) United States Patent 
Pickreign et al. 

USOO6842790B2 

US 6,842,790 B2 
Jan. 11, 2005 

(10) Patent No.: 
(45) Date of Patent: 

(54) 

(75) 

(73) 

(*) 

(21) 
(22) 
(65) 

(63) 

(51) 
(52) 

(58) 

HOST COMPUTER VIRTUAL MEMORY 
WITHIN A NETWORK INTERFACE 
ADAPTER 

Inventors: Heidi R. Pickreign, Harvard, MA (US); 
Laxminarayan Krishnamurthy, Acton, 
MA (US); Robert Reissfelder, 
Westwood, MA (US) 

Assignee: 3Com Corporation, Santa Clara, CA 
(US) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

Appl. No.: 10/836,852 
Filed: Apr. 30, 2004 

Prior Publication Data 

US 2004/0205319 A1 Oct. 14, 2004 

Related U.S. Application Data 

Continuation of application No. 09/590,892, filed on Jun.9, 
2000, now Pat. No. 6,732.249. 

Int. Cl................................................. G06F 13/14 
U.S. Cl. ......................... 709/245; 711/202; 710/52; 

709/212 
Field of Search .......................... 711/202; 709/238, 

709/249, 212, 245, 236, 200; 710/64, 104, 
52; 370/392 

HostProcessor Host Memory 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,446,203 B1 * 9/2002 Aguilar et al. ................. 713/2 
6,539,338 B1 * 3/2003 Pickreign et al. ........... 702/185 

* cited by examiner 

Primary Examiner Pierre-Michel Bataille 
(74) Attorney, Agent, or Firm Weingarten, Schurgin, 
Gagnebin & Lebovici LLP 
(57) ABSTRACT 

A System and method of mapping a host computer address 
Space into a network interface adapter (NIA) address space. 
A network interface processor within the NIA requests a 
memory allocation from the host computer. The host com 
puter responds with an assigned base address in the host 
computer address Space, and a length defining the contigu 
ous addresses within the host computer address Space equal 
to the allocation requested by the NIA processor. Ahardware 
trap is Set Such that an interrupt to the NIA processor is 
generated when the host computer attempts to acceSS data at 
an address within the allocated address range of host com 
puter contiguous addresses. The network interface processor 
translates the received host address to a physical address 
within the NIA address Space, reads the data at the respective 
NIA physical address, and transfers the data to the host 
computer. 

16 Claims, 3 Drawing Sheets 

Network 
Adapter 

External 
RAM 

ARM 
Processor 

24 

NWAdapter Network Interface 
42 

To From Network 

  





U.S. Patent Jan. 11, 2005 Sheet 2 of 3 US 6,842,790 B2 

32 
202 ASCII String -- 

2 
Section dentifier 
Section Pointer 

Static Data 212 
Header Section Length 

214 
210 Load Address 

Static Data 216 Checksury 

Variable Data 220 
Header Section Length 222 

218 o Load Address 
Variable Data 224 

Checksum 

Variable Prime 228 
Data Header Section Length 230 

226 Variable Prime Load Address 232 
Data Checksum 

Boot image 236 
Header Section Length 238 

234 Boot image Load Address 240 
OO 9 Checksum 

Sleep image-1 244 
Header Section Length 

242 S made 1 Load Address 
eep 9 Checksum 

Next Section 250 
Sleep image-2 Pointer 

Header 254 
252 Sleep image 2 Section Length 256 

Load Address 
258 

Net Boot image Checksum 
Header Next Section 260 

262 Pointer 
NetBoot image 

w 264 
Section Length 
Load Address 
Checksum Fig. 2 

204 Section Headers 

  



U.S. Patent Jan. 11, 2005 

Request a memory 
allocation from a host 
computer in the host 

computer address space 
302 

Receive a base address 
and memory allocation 

from the host computer in 
the host computer 
address Space 

304 

Receive an address of 
desired data in the host 
Computer address Space 

306 

Determine 
ff the received address 
is Within the allocated 

memory 
308 

Sheet 3 of 3 

Yes 

Fig. 3 

US 6,842,790 B2 

Notify the NIA processor 
of the data request by the 

host computer 
310 

NA Processor reads the 
received address 

312 

Translate the received 
host address(es) into NIA 

physical address(es) 
314 

ACCeSS Contents of NA 
physical address(es) 

316 

Transfer the Contents of 
the NA physical 

address(es) to the host 
Computer 

3.18 

  

  

    

  

  

  

    

    

    

  

  

  

  

  



US 6,842,790 B2 
1 

HOST COMPUTER VIRTUAL MEMORY 
WITHIN A NETWORK INTERFACE 

ADAPTER 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 09/590,892 filed Jun. 9, 2000 entitled HOST 
COMPUTER VIRTUAL MEMORY WITHIN A NET 
WORK INTERFACE ADAPTER now U.S. Pat. No. 6,732, 
249 to issue May 4, 2004. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

N/A 

BACKGROUND OF THE INVENTION 

The present application relates generally to computer 
Software boot techniques, and more particularly to the 
execution of computer boot techniques within a network 
interface adapter. 

In a typical computer System interconnected to a network, 
a network interface adapter (NIA) acts as an interface 
between the host computer and a computer network. The 
NIA performs the necessary interface functions for trans 
mitting and receiving data over the computer network. The 
NIA includes a memory for Storing data or Software program 
code images that the host computer utilizes in communicat 
ing over the computer network. AS Such, the data and 
Software program code images must be accessible to the host 
computer in order to be accessed and utilized by the host 
computer. In order for these resources to be accessible to the 
host computer, they must be included in the host computer 
address Space. To be included within the host computer 
address Space, these resources need to have memory 
addresses assigned to them that are accessible by the host 
computer. 

Prior art Systems have Stored Such data and Software 
program code images in serial EEPROMs. However, a 
bottleneck may exist in the transfer of a data image or a code 
image from the NIA to the host computer due to the serial 
nature and speed of such EEPROMs. 

It would therefore be desirable to have an NIA that is 
capable of Storing data and Software program code images 
having a non-Static host address, and of transferring the data 
and Software program code images Stored at an NIA address, 
which is specifiable and is independent of the host computer 
address, to the host computer more efficiently. 

BRIEF SUMMARY OF THE INVENTION 

Consistent with the present invention, a System and 
method are disclosed for accessing a data image Stored 
within a network interface adapter (NIA) by a host com 
puter. Upon boot up, the NIA requests an allocation of 
memory Space from the host computer that may be accessed 
by the host computer. The host computer responds with an 
individual base address and memory allocation. Each of the 
base addresses Supplied is within the host computer address 
Space. When the host computer attempts to read data con 
tained within the address Space assigned to the NIA, the 
address is trapped on the NIA, and the NIA processor is 
notified. The NIA processor reads the address requested by 
the host computer, and translates the address in the host 
computer address Space into a physical address in the NIA 
address Space. Upon locating the data at the applicable 
physical address, the NIA processor transferS the data to the 
host computer. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
Other features, functions, and aspects of the invention will 

be evident from the Detailed Description of the Invention 
that follows. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWING 

The invention will be more fully understood from the 
following detailed description taken in conjunction with the 
accompanying drawings in which: 

FIG. 1 is a block diagram of a System that includes a 
network interface adapter operative to perform a virtual boot 
transfer of a Software program code image Stored in a 
memory within a network interface adapter to a host 
computer, in accordance with the presently disclosed inven 
tion; 

FIG. 2 is a graphical illustration of a memory map of an 
exemplary Flash RAM used to transfer a Software program 
code image Stored in a memory within a network interface 
adapter to a host computer; and 

FIG. 3 is a flow chart illustrating one embodiment of a 
method to transfer a Software program code image Stored in 
a memory within a network interface adapter to a host 
computer. 

DETAILED DESCRIPTION OF THE 
INVENTION 

U.S. patent application Ser. No. 09/590,892 filed Jun. 9, 
2OOO entitled HOST COMPUTER VIRTUAL MEMORY 
WITHINANETWORK INTERFACE ADAPTER is hereby 
incorporated herein by reference. 

Consistent with the present invention, a System and 
method of performing a virtual boot of data in a network 
interface adapter (NIA) is disclosed. The host computer 
reads a PCI configuration register that has been loaded with 
a predetermined request for the memory needed for the 
BIOS ROM. The host computer responds with an assigned 
base address in the host computer address Space, and an 
allocation of a range of contiguous addresses within the host 
computer address Space equal to the amount of memory 
requested by the NIA processor. A hardware trap within the 
NIA is set to occur on the base address and the range of 
contiguous addresses assigned to the NIA by the host 
computer Such that, when the host computer attempts to 
access an address within the range of contiguous addresses, 
the network interface processor is notified. In response to 
notification of the receipt of an address within the Specified 
range, the network interface processor translates the address 
within the host computer address Space to a physical address 
within the NIA address space. The network interface pro 
cessor then locates and transferS the contents of the 
address(es) to the host computer. AS used herein, “data” may 
include Software program code, or any other information 
used by a Software program during execution. 

FIG. 1 depicts a system 10 including a NIA 14 that is 
capable of performing a virtual boot of a data image or a 
Software program code image under the control of a NIA 
processor 24 within the NIA 14, according to the present 
invention. The processor may comprise an Advanced 
Reduced Instruction Set Computer (RISC) Machine (ARM) 
processor integrated on an application Specific integrated 
circuit (ASIC) 44 with other components, as discussed later 
in greater detail. The NIA14 includes a PCI interface 40 that 
couples the network interface processor 24 to a PCI bus 13 
via a plurality of registers. These registers can include PCI 
configuration registers 36, address registers 38, data transfer 



US 6,842,790 B2 
3 

registers 37, and status registers 39. In the presently dis 
closed embodiment, the PCI configuration registers 36 com 
prise a plurality of registers that are used to pass configu 
ration requests from the NIA 14 to the host computer 12, 
configuration responses from a host computer 12 to the NIA 
14, and configuration data between both the NIA14 and the 
host computer 12. The address registers 38 comprise a 
plurality of registers, and are used to pass an address or 
addresses to the NIA containing data or Software program 
code required by the host computer. The addresses passed to 
the NIA from the host computer will be located within the 
host computer address Space. The data transfer registers 37 
are employed in the transmission of data, Software program 
code, or other information between the NIA14 and the host 
computer 12. The status registers 39 may be used to provide 
a status indicator of whether the host computer is reading or 
Writing data to a memory location in the NIA memory. 
AROM 26, External RAM 34, Instruction RAM 28, Data 

RAM 30, and Flash RAM 32 are coupled to the NIA 
processor 24 to enable the processor 24 to read and write 
instructions and data from and to the respective memories, 
as applicable. A cryptographic processor 34, may be coupled 
to the NIA processor 24. The cryptographic processor 34 is 
employed to accelerate cryptographic functions within the 
NIA 14. The NIA processor 24 is also coupled to a NIA 
network interface 42, which is coupled to a network to 
permit reception and transmission of information over the 
network. A hardware logic or State machine 35 is coupled to 
the PCI Bus Interface 40 and to the ARM processor 24. The 
hardware logic or State machine 35 traps on an address on 
the PCI bus interface 40 that is within a predetermined 
address range, and notifies the ARM processor 24 thereof. 

In the presently disclosed embodiment, the NIA is 
coupled to the host computer 12 via a host PCI interface 20. 
The host computer 12 includes a host processor 16, a host 
memory 18, and control logic 19. The host processor 16 is 
communicably coupled to the host memory 18 and the host 
PCI interface 20. 

The NIA 14 may be fabricated integrally on a mother 
board with host computer electronicS or alternatively as a 
Separate network interface adapter card. 
AS indicated above, the NIA processor 24 may comprise 

an ARM processor. The ARM processor may be integrated 
on the ASIC 44 along with the ROM 26, IRAM 28, DRAM 
30, the PCI configuration registers 36, the address registers 
38, the data transfer registers 37, and the hardware logic or 
state machine 35. 
More specifically, the NIA 14 provides a request for 

configuration data from the host computer 12 via the PCI 
configuration data registers 36, the PCI bus interface 40, the 
PCI bus 13, and the host PCI interface 20. Such configura 
tion data can include a request for address assignments 
within the host computer address Space from the host 
computer for resources within the NIA. Such a request can 
be made, for example, for address assignments associated 
with the input/output (I/O) of the NIA14, the RAM or ROM 
memory contained within the NIA14, and BIOS ROM used 
by the NIA 14. Memory addresses for data images and 
Software program code images are contained within the 
Flash RAM 32. In a preferred embodiment, the NIA 14 
requests a BIOS ROM address for netboot code contained 
within the Flash RAM. 32. 

Additionally, the host computer 12 can request to read 
data assigned within in its own memory Space that is 
physically located within the NIA 14 by providing an 
address to the NIA processor via the address registers 38. As 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
will be explained in more detail below, the physical memory 
contained within the NIA14 has a different physical address 
than that assigned by the host computer 12 in the configu 
ration response. Accordingly, when the NIA processor 24 is 
notified that the host computer 12 is requesting to read data 
from an address within the host computer address Space 
assigned to the NIA14, the NIA processor 24 translates that 
address to a physical address contained within the NIA 
address Space. AS discussed in more detail below, in one 
embodiment, in which the data being retrieved by the host 
computer 12 resides within the Flash RAM 32, the NIA 
processor locates the physical address of data being 
retrieved within the Flash RAM. 32. As will be discussed 
below, the Flash RAM 32 includes a section containing 
Section headers that include a pointer to the beginning of 
each Section. Using the address from the host computer, the 
NIA processor computes an offset from the assigned base 
address, and uses this offset to locate the physical address of 
the data within the particular section of the Flash RAM. 32. 
The NIA processor 24 then transfers the data associated with 
the address to the host computer. Thus, the operation of 
translating from a virtual boot memory address to a physical 
address is completely transparent to the host computer 12. 
A technique for translating between the host address Space 

and the NIA address Space to facilitate reading from and 
writing to the NIA address space is described below. In the 
case of a read operation, the NIA processor translates the 
host address as described herein, retrieves the data from an 
NIA memory such as the Flash RAM at the location(s) 
Specified by the translated address(es), and writes the data 
into the data transfer registers for transmittal to the host 
computer. In the case of a write operation, the NIA processor 
translates the host address as described herein, retrieves the 
data from the data transfer registers 37, and writes the data 
into the desired physical memory location in the NIA 
memory. 
The hardware logic or state machine 35 is responsible for 

monitoring the PCI bus interface 40 and notifying the NIA 
processor 24 when one or more predetermined conditions 
occur. The hardware logic or state machine 35 may be either 
a combinatorial logic or a State machine that is operative to 
monitor certain bus, address, or data lines for an occurrence 
of these certain conditions. These predetermined conditions 
may include particular addresses that are being accessed by 
the host computer 12, predetermined data, or commands. 
More Specifically, the hardware logic or State machine 
determines whether the respective host operation is a read or 
a write operation, and Sets the appropriate Status bit in the 
Status register to identify the operation, as applicable. The 
hardware logic or state machine 35 also monitors the PCI 
bus interface 40 for an address within the host computer 
address space that has been assigned to the NIA 14. The 
hardware logic or state machine 35 is further operative to 
notify the NIA processor 24 upon the occurrence of one of 
the predetermined conditions. This notification may be in the 
form of an interrupt to the NIA processor 24 or via a status 
bit accessible to the NIA processor 24. 
The organization of the Flash RAM 32 in the presently 

disclosed system is illustrated in FIG. 2. In a preferred 
embodiment, the Flash RAM 32 comprises a serial device 
that is organized as a paginated memory and contains 512 
pages. The Flash Ram contains 264 bytes per page. 
The first entry in the Flash RAM 32 is a unique ASCII 

string 202 that may be verified by the processor to indicate 
that the Flash RAM 32 has been loaded with the appropriate 
code image. The next entries in the Flash RAM 32 include 
section headers 204. The section headers may include two 



US 6,842,790 B2 
S 

entries. The first entry is a section identifier 206 that 
identifiers the code within the respective Section. The Second 
entry in the section headers 204 is a section pointer 208 that 
provides a Software pointer to the address of the first location 
within the Section corresponding to the Section identifier. In 
a preferred embodiment, there are a maximum of 16 Sections 
Stored within the Flash RAM. 32. 

A Static data Section 210 may contain Static configuration 
data Such as the PCI device identifier, MAC address, and 
Serial numbers and other manufacturing parameters of the 
NIA. In one embodiment, the NIA includes a PCI device ID 
that Signifies the type of cryptographic processor expected to 
be populated on the NIA. The static data section 210 also 
includes a header portion located at the beginning of the 
Section. The header portion contains a Section length param 
eter 212, a load address 214, and a checksum 216 derived 
from the data stored within static section 210. Although the 
header portion associated with the Static data Section 210 
contains a load address, it is not used in the presently 
illustrated embodiment. 

Variable data section 218 may contain variable configu 
ration data, which is typically the configuration data for the 
NIA. This variable data may include the factory default 
configuration data and in one embodiment, may be modified 
by a user. The variable data section 218 also includes a 
header portion located at the beginning of the variable data 
Section 218 containing a Section length parameter 220 that 
defines the length of the respective Section, a load address 
222 that specifies the memory location in NIA memory at 
which to store the variable data and a checksum 224 derived 
from the data stored within the variable section 218. 
Although the Section header associated with the variable 
data Section 218 contains a load address, this load address is 
not used. 

Variable prime data Section 226 may contain factory 
default configuration Settings for the NIA that are used as a 
data backup for the variable data Stored in variable data 
Section 218. In one embodiment, to ensure the integrity of 
the data Stored in this page, the user is unable to over-write 
that data Stored in this Section. The variable prime data 
stored in variable prime data section 226 of the Flash RAM 
32 may be used by the host processor to rewrite certain 
invalid data values Stored in other pages and Sections within 
the Flash RAM32. Variable prime data section 226 includes 
a header portion located at the beginning of the Section 
containing a Section length parameter 228 defining the 
length of the respective section, a load address 230 that 
Specifies the NIA memory address, and a checkSum 232 
derived from the data stored within variable prime section 
226. Although the header portion contains a load address, 
this load address is not used. 

A boot image section 234 contains the boot software for 
the NIA. This boot software code includes self diagnostic 
Software code herein discussed. Preferably the boot image 
code is Stored in contiguous pages of memory within the 
boot image Section 234 or may be Stored in contiguously 
linked pages. The boot image Section 234 also includes a 
header portion located at the beginning of the boot image 
Section 234. The header portion contains a Section length 
parameter 236 that defines the length of the boot image 
section 234, a load address 238 that provides the address 
where the boot Software code is to be loaded in NIA 
memory, and a checksum 240 derived from the data stored 
within the boot image section 234. 

The Sleep image code may be divided into a number of 
Sections, depending on the System requirements. The Sleep 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
code may be divided into a plurality of Sections, each being 
loaded into a different RAM module in the NIA. The Sleep 
image-1. Section 242 contains the first Section of the Sleep 
Software code. The Sleep image-1. Section 242 includes a 
header portion located at the beginning of the Section. The 
header portion contains a Section length parameter 244 
defining the length of the Sleep image Section, a load address 
246 that defines the memory and address where the first 
Section of the Sleep Software code is to be loaded, a 
checksum 248 derived from the Software code stored within 
the Sleep image-1. Section 242, and a next-section-pointer 
250. The next section pointer 250 provides a software 
pointer link to the location in the Flash RAM 32 where the 
Subsequent Section of Sleep Software code is Stored. 

In the embodiment illustrated in FIG. 2, a second sleep 
image Section, i.e., sleep image-2 Section 252, is provided. 
Sleep image-2 Section 252 provides a Second Section of 
sleep software code that will be loaded into a different RAM 
module than the Sleep image-1 Software code. A header 
portion is located at the beginning of the Section. The header 
portion contains a Section length parameter 254 that defines 
the length of the Sleep image-2 Section, a load address 256 
identifying the memory and address into which the Sleep 
image-2 section is to be loaded, a checksum 258 derived 
from the Software code Stored within the Sleep image-1 
Section 242, and a next-section-pointer 260. The next Section 
pointer 260 provides a software pointer link to the location 
in the Flash RAM 32 where the Subsequent section of sleep 
Software code is Stored, if a Sequential Section is present. It 
should be understood that there may be as many Sections of 
Sleep Software code as needed for a given System. 
The netboot image section 262 contains the Net boot 

Software code and contains the code for establishing the 
communication parameters between the NIA and the net 
work. The Net boot image Section includes a header portion 
located at the beginning of the Section. The header portion 
includes a Section length parameter 264, a load address 266 
providing an address where the Net boot software code 
could be loaded, and a checksum 268 derived from the data 
stored within the Net boot image section 262. Although the 
header portion associated with the netboot image Section 
262 contains a load address, it is not used in the presently 
illustrated embodiment. 

During the boot up process, the NIA14 requests memory 
allocations from the host processor 24, for a certain amount 
of memory Sufficient to accommodate information to be 
transferred from the NIA to the host. The host processor 
assigns for each Such allocation a base address within the 
host address Space, and a length defining contiguous 
memory addresses within the host address Space. This 
allocation establishes a range of addresses within the host 
computer address Space that will accommodate the infor 
mation to be transferred from the NIA 14. This allows the 
host processor to access the NIA memory by reading data 
contained at a memory address within the host address 
Space. Hardware logic or State machine 35 monitors the 
interface between the NIA14 and the host computer 12 and 
traps on an address that is within the range of memory 
addresses assigned by the host computer to the NIA. The 
NIA processor 24 is notified (preferably by an interrupt) 
when the host computer is attempting to access one or more 
addresses within the range of addresses assigned to the NIA 
14. The NIAprocessor 24 reads the address(es) written to the 
address registers 38 by the host computer and translates the 
host computer address(es) into a physical address contained 
within the NIA address space. The NIA processor 24 then 
transferS the requested data from the respective physical 
NIA memory address to the host computer using the data 
registers 37. 



US 6,842,790 B2 
7 

The method of translating from a host address Space to an 
NIA address space is further described in the flow diagram 
of FIG. 3. The NIA processor 24 requests a memory allo 
cation within the address Space of the host computer 12, as 
depicted in step 302. The NIA processor 24 may request 
memory allocations for various functions Such as the I/O of 
the NIA14, the memory space contained within the NIA14, 
and the ROM BIOS of the NIA 14. The host computer 12 
responds to the NIA with a base address within the host 
address Space for each memory allocation requested by the 
NIA 14, and a length that defines the allocated size of the 
contiguous address Space within the host computer 12, as 
depicted in step 304. Each function therefore receives a base 
address and a contiguous range of memory addresses 
extending from the assigned host computer base address. 
Each NIA memory allocation request, however, does not 
have to be contiguous in the host computer address Space or 
with any other host computer allocation. 

The host computer requests data contained within an NIA 
memory, and provides to the NIA a host computer address 
within the range of memory addresses assigned by the host 
computer to the NIA, as depicted in step 306. The host 
address is checked to verify that it is within the address 
Space assigned by the host computer 12 to the NIA 14, as 
depicted in Step 308. A high Speed processor, combinatorial 
logic, or a State machine may be used to trap the incoming 
address within the Specified range. If the address received 
from the host computer is within the range of host computer 
addresses allocated to the NIA14, then the NIA processor 24 
is notified that the host computer 12 is requesting data from 
the NIA14, as depicted in step 310. The NIA processor 24 
reads the address or addresses in the address register 38, as 
depicted in step 312. 

The NIA processor 24 translates the received host address 
into a physical address contained within the NIA address 
space, as depicted in step 314. For example, if the NIA 14 
requested a memory allocation for the BIOS ROM to be 
assigned to the netboot code, then as described above, the 
netboot code would receive a particular base address and a 
contiguous range of memory addresses within the host 
computer address Space having a length equal to the netboot 
code length. Accordingly, for the host computer to access a 
memory address that is within the Bios ROM address range, 
the NIA processor will locate the netboot code section 
within the NIA address space. The data may be contained 
within the Flash RAM 32, and the NIA processor 24 can 
utilize the section header section 204 of the Flash RAM 32 
to locate the particular Section within it. 

The NIA processor 24 accesses the contents of the physi 
cal address within the NIA address Space that corresponds to 
the host computer address, as depicted in step 316. The NIA 
processor may determine the offset of the host computer 
address from the host computer assigned base address. 
Using this offset, the NIA processor locates the desired data 
within the physical memory of the NIA address space by 
accessing the contents that are offset from the beginning 
address of the physical memory section within the NIA 
address Space in which the data resides. In one embodiment, 
in which the Flash RAM 32 contains the data, the NIA 
processor 24 locates the address of the desired data as the 
offset distance from the beginning of the above-identified 
Section. 

The NIA processor 24 transfers the desired data to the host 
computer 12, as depicted in step 318. The NIA processor 
reads the desired data, and transferS the desired data to the 
host computer via the data transfer registers 37, the PCI bus 
interface 40, the PCI bus, and the host PCI interface 20. 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
Those of ordinary skill in the art should further appreciate 

that variations to and modifications of the above-described 
method and System may be made without departing from the 
inventive concept disclosed herein. Accordingly, the inven 
tion should be viewed as limited solely by the scope and 
Spirit of the appended claims. 
What is claimed is: 
1. A computerized device adapted to load a netboot code 

image into at least one respective computerized device 
communicably coupleable thereto, comprising: 

a proceSSOr, 
a first memory communicably coupled to the processor, 
a first register containing a predetermined code size value 

of the netboot code image; and 
at least one buffer readable by at least one Second com 

puterized device communicably coupled thereto, the 
Second computerized device having an associated Sec 
ond memory, 

wherein the processor is operative 
to receive a read address corresponding to the netboot 

code image from the Second computerized device, 
to determine whether the read address is within an address 

range between a first base address associated with the 
Second memory and the first base address plus the 
predetermined code Size value, the first base address 
being mapped to a base physical address identifying a 
physical address location within the first memory, and 

in the event the read address is within the address range, 
to determine an offset between the read address and the 

first base address, 
to locate within the first memory a target address Specified 
by the base physical address plus the offset to identify 
a target memory location at which the netboot code 
image is Stored, and 

to transfer the netboot code image Stored at the target 
memory location to the buffer readable by the second 
computerized device. 

2. The computerized device of claim 1 wherein the 
netboot code image comprises a boot code image for pre 
determined network operating System Software. 

3. The computerized device of claim 1 further including 
a PCI configuration register, and wherein the processor is 
further operative to provide to the Second computerized 
device the code size value by outputting the code Size value 
from the PCI configuration register, in response to a PCI 
configuration register read request issued by the Second 
computerized device. 

4. The computerized device of claim 1 further including 
a PCI address register readable by the processor, and 
wherein the processor is operative to receive the read 
address in the PCI address register. 

5. The computerized device of claim 1 further including 
a cryptographic processor operative to encrypt the netboot 
code image. 

6. The computerized device of claim 1 wherein the 
processor, the first memory, the first register, and the at least 
one buffer are fabricated on at least a portion of at least one 
printed circuit board associated with the Second computer 
ized device. 

7. A method of loading a netboot code image into a 
computerized device having an associated memory, com 
prising the Steps of 

receiving a read address corresponding to a netboot code 
image from a first computerized device by a Second 
computerized device, the first computerized device 



US 6,842,790 B2 
9 

having an associated first memory, the Second comput 
erized device having an associated Second memory; 

determining whether the read address is within an address 
range between a first base address associated with the 
first memory and the first base address plus a prede 
termined code size value by the Second computerized 
device, the first base address being mapped to a base 
physical address identifying a physical address location 
within the Second memory; and 

in the event the read address is within the address range, 
determining an offset between the read address and the 

first base address by the Second computerized device, 
locating within the Second memory a target address Speci 

fied by the base physical address plus the offset to 
identify a target memory location at which the netboot 
code image is Stored by the Second computerized 
device, 

transferring the netboot code image Stored at the target 
memory location to a buffer readable by the first 
computerized device, the netboot code image being 
transferred by the Second computerized device, and 

reading the buffer by the first computerized device to load 
the netboot code image into the first memory. 

8. The method of claim 7 wherein the netboot code image 
comprises a boot code image for predetermined network 
operating System Software. 

9. The method of claim 7 wherein the first determining 
Step includes, in the event the read address is within the 
address range, providing an indication to a processor within 
the Second computerized device. 

10. The method of claim 7 further including the step of 
providing to the first computerized device the code size 
value by the Second computerized device by outputting the 
code size value from a PCI configuration register within the 
Second computerized device, in response to a PCI configu 
ration register read request issued by the first computerized 
device. 

15 

25 

35 

10 
11. The method of claim 7 further including the steps of: 
determining an offset between the read address and the 

first base address by a processor, 
locating within the Second memory a target address Speci 

fied by the base physical address plus the offset to 
identify a target memory location at which the netboot 
code image is Stored by the processor, 

reading the netboot code image Stored at the target loca 
tion by the processor; and 

Storing the netboot code image in a buffer readable by the 
first computerized device, the netboot code image 
being Stored by the processor. 

12. The method of claim 7 wherein the step of receiving 
the read address from the first computerized device com 
priseS receiving the read address in a PCI address register 
readable by a processor within the Second computerized 
device. 

13. The method of claim 7 wherein the second comput 
erized device includes a cryptographic processor, and further 
including the Step of encrypting the netboot code image by 
the cryptographic processor before the netboot code image 
is loaded into the first memory. 

14. The method of claim 7 wherein the first computerized 
device and the Second computerized device comprise 
respective computerized devices. 

15. The method of claim 7 wherein the first computerized 
device comprises at least one first printed circuit board, and 
the Second computerized device is fabricated on at least a 
portion of the first printed circuit board of the first comput 
erized device. 

16. The method of claim 7 wherein the second comput 
erized device comprises a network adapter, and the first 
computerized device comprises a host computer communi 
cably coupleable to the network adapter. 

k k k k k 


