
/
FORM 1 SPRUSON & FERGUSON

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

Canon Kabushiki Kaisha, incorporated in Japan, of 30-2, 3-chome, Shimomaruko,
Ohta-ku, Tokyo, JAPAN, hereby apply for the grant of a standard patent for an
invention entitled:

Data Processing Apparatus with Display Device

which is described in the accompanying complete specification.

Details of basic appl ication(-s-> :-

Basic Applic. No: Country: Application Date:

458,605 US l9 January 1990

The address for service is:-

Spruson & Ferguson
Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia

• ·
DATED this SEVENTEENTH day of JANUARY 1991

Canon Kabushiki Kaisha

Registered Patent Attorney

TO: THE COMMISSIONER OF PATENTS
OUR REF: 152567
S&F CODE: 59510

*

5845/2

Spruson & Ferguson: 4
COMMONWEALTH OF AUSTRALIA

THE PATENTS ACT 1952

DECLARATION IN SUPPORT OF A
CONVENTION APPLICATION FOR A PATENT

In support of the Convention Application made for a
patent for an invention entitled:

AUSTRALIA
CONVENTION
STANDARD
& PETTY PATENT
DECLARATION
 SH'4

CFO 6477 AU

Title of Invention Data Processing Apparatus with Display Device

• I/AVe Giichi Marushima
Full name(s) and

Deciarant(s) care of Canon Kabushiki Kaisha, 30 — 2, 3—choine, Shimomaruko,
" Ohta-ku, Tokyo, Japan

Full name(s) of
Applicants)

do solemnly and sincerely declare as follows:—

1. +am/Wa-flre-fce-appiican4:(&) for the patent·

(or, in the case of an application, by a body corporate)
1. I am/We-ape authorised by Canon Kabushiki Kaisha

i <·« (. < r

Saslc^ountryfles)

Pridity Date(s)

the applicant^) for the patent to make this declaration on
its/4heir behalf.

2. The basic application^) as defined by Section 141 of the
Act was/-w©fe made

in United States of America
on 19 January 1990

r 9
Bfcsfc Applicants)

' Λ C r
by Hiroshi Inoue

Full name(s) and
address(es) of
inventor(s)

3. 4-am/We-are-th&-aetu&l-invent-er(s)-of the invention referred
■ to in the basic application(-s-)

(or where a person other than the inventor is the applicant)
t V- ** -

’ 3. Hiroshi Inoue
Λ τ *

care of Canon Kabushiki Kaisha, 30-2, 3-chome, Shimoroaruko,
i"". Ohta-ku, Tokyo, Japan

·».»

SfJ, out how Applicants)
.derive title from actual
invcntor(s) e.g. The
Applicants) is/are the
zssignee(s) of the
invention from the
inventor(s)

(pespectwely.)
is/*fe the actual inventory) of the invention and the facts upon
which the applicant's) is/are-entitled to make the application are
as follows:

The said applicant is the assignee of the actual
inventor.

4. The basic application^ referred to in paragraph 2 of this
Declaration was/-w&re the first application^) made in a Convention
country in respect of the invention vs-) the subject of the application.

Sf:P4

Declared at Tokyo, this
Japan

To: The Commissioner of Patents

10th day of January 1991

Signature of Declarant(s)
GIICHI MARUSHIMA:Managing Director

11/81

(12) PATENT ABRIDGMENT (11) Document No. AU-B-69466/91
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 652549

AU9169466

(54) Title
DATA PROCESSING APPARATUS WITH DISPLAY DEVICE

(51)5
International Patent Classification(s)
G06F 009/30

(21) Application No.: 69466/91 (22) Application Date

(30) Priority Data

(31) Number (32) Date (33)
468605 19.01.90

Country
US UNITED STATES OF AMERICA

(43) Publication Date : 25.07.91

(44) Publication Date of Accepted Application : 01.09.94

(71) Applicant(s)
CANON KABUSHIKI KAISHA

(72) Inventor(s)
HIROSHI INOUE

(74) Attorney or Agent
SPRUSON & FERGUSON , GPO Box 3898, SYDNEY NSW 2001

(56) Prior Art Documents
US 4965551
US 4819189
EP 200172

(57) Claim

1. A data processing apparatus comprising:
a host processor including multitasking means for executing a plurality of

processes in a time sharing maimer or event drive manner, and scheduling means for
scheduling drawing requests from the plurality of processes and forming the drawing
requests into a single sequence; and

a graphics device for controlling a display device to draw a picture in
accordance with a set of drawing commands transferred from the single sequence in said
scheduling means;

wherein said scheduling means monitors an execution status of the set of
drawing commands at the graphics device, and reserves the scheduling of the drawing
request from each of the processes until the set of drawing command has been
substantially executed at the graphic device; and

said drawing requests from the plurality of processes include a drawing
request related to a hardware event and said scheduling means schedules the hardware
event-related drawing request with priority.

S & F Ref: 152567
FORM 10

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE:
Class Int Class

Complete Specification Lodged:
Accepted:

Publi shed:

Priori ty:

Related Art:

Name and Address
of Applicant: Canon Kabushiki Kaisha

30-2, 3-chome, Shimomaruko
Ohta-ku
Tokyo
JAPAN

Address for Service: Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Complete Specification for the invention entitled:

Data Processing Apparatus with Display Device

The following statement is a full description of this invention, including the
best method of performing it known to me/us

5845/3

- 1 -

1 ABSTRACT OF THE DISCLOSURE

On a data processing apparatus comprising a
host processor including a multitasking unit in a time
sharing manner, and a scheduling unit for scheduling

5 drawing requests to a graphics device from the plurality
of user processes and forming a single sequence of
commands each associated with each of the drawing
requests, a scheduling unit monitors the execution
status of drawing commands at the graphics device
processor, and reserves the scheduling of the drawing
request from the user process until the execution status
advances to a predetermined stage.

* X 15
» I ·
t « ·

I (t I

20
«

• 0

• '»• ·• · · «
• 3 » * » · • ·

25

4 L·

CFO 6477 -13#

- ΙΑ -

1 DATA PROCESSING APPARATUS WITH DISPLAY DEVICE

BACKGROUND OF THE INVENTION
Field of the Invention

5 The present invention relates to a data processing
apparatus with a display device, and more particularly
to a data processing apparatus for multitasking operation
and multi-windows used with a pointing device such
as a mouse.

10

. 1
1

Description of Related Background Art
In a multitask operation system such as UNIX

or OS/2 (UNIX is a registered trade mark of AT and T,
OS/2 is a registered trade mark of IBM Corp.), tasks
are executed by the data processing system concurrently

15

(
·■ »

and asynchronously. For example, one or more tasks
can be executed by the data processing system at the
same time that the system is engaged in controlling
its display. Also, in a group of several host computers

. » t J • < <• · · interconnected by a necwork, a task may be sent for
20• processing from the system where it originated to any

• <
other of the host computers. In a multi-window system,

• · information relating respectively to each task in
• ·• · t t>

•··»’*·<• ·
progress can be displayed simultaneously in a different
respective window of a single screen. X-window is

25 one of typical multi-window systems presently available
(X-window is a registered trade mark of Massachusetts
Institute of Technology).

2

1 Heretofore, as a computer terminal display
device, a refresh-scan-type CRT (cathode ray tube)
has been generally used, and a vector-scan-type CRT
having a memory characteristic is sometimes used as

5 a large, high-resolution display for CAD (computer-
aided design). On a vector-scan-type CRT, an image,
once displayed, is not refreshed because of its memory
characteristic until a subsequent screen refresh (that
is, a refresh of the entire screen) is performed.

10 However, the operation speed is relatively low so that,
it is not well suited as a display for a real-time
man-machine interfacial display, such as a moving cursor
display, a moving icon display, a pointing device such
as a mouse, or an editorial display. On the other

15 hand, a refresh-scan-type CRT requires a refresh cycle
with a frame frequency because it is not provided with
a memory characteristic. The display is provided with
a new picture at the frame frequency. The frame frequency
is expressed as the reciprocal of the product of the

20 number of scanning lines per frame and the horizontal
scanning time for each line. The frame frequency is
desired to be 60 Hz or more for the purpose of preventing
the display from flickering. A non-interlaced scanning
scheme is adopted for both types of CRT so that a moving

25 display of data on a screen, e.g., a moving display
of an icon, is easy for the user to observe and follow.

With both types of CRT, the higher the desired

3

1 display resolution becomes for the purpose of, for
example, clearly displaying multi-windows, the larger
the display becomes, resulting in higher power consump­
tion, a larger driver and a higher cost. Such a large,

5 high-power high-resolution CRT results in various
inconveniences. For this reason, flat panel type
displays have been recently developed.

At present,, there are various flat display
panels. One employs a highly multiplexed drive system .

10 using super twisted nematic liquid (STN) crystals.
A second is a modification thereof, used for a white-
and-black display. A third is a plasma display system.
All of these adopt the image data transfer scheme of
the CRT system and a nonrinterlaced scanning scheme

15 with a frame frequency of 60 Hz or higher for screen
refreshing, and therefore require a total number of
scanning lines on the order of 400 to 480 lines for
one full screen. A large flat display panel having,
e.g., 1000 or more scanning lines is not still in

20 practical use. This is because these display panels
require a refresh cycle with a frame frequency of 60
Hz or higher to prevent flicker. Also, this requirement
in turn leads to a single-line scanning time of 10
to 50 usee or shorter, which is too short to provide

25 good contrast.
With a CRT, an image formed on a fluorescent

screen persists for a certain time due to the fluorescence.

4

1 In a TN-type LCD (twisted nematic-type liquid crystal
device), an image is formed by utilizing transmittance
changes effected by an application of a sufficient
driving voltage. In both types of device, it is neces-

5 sary to use a high frame frequency 30 Hz or higher.
For example, for a CRT display or TN-type LCD

comprising 1920 scanning lines and 2560 pixels per
line, i.e., 4,915,200 pixels, the horizontal scanning
time is about 17.5 psec and the horizontal dot clock

10 frequency is about 147 MHz. In the case of a CRT,
a horizontal dot clock frequency of 147 MHz leads to
a very high beam scanning speed which far exceeds the
maximum electron beam modulation frequency of the beam
guns used in picture tubes available at present, so

15 that accurate image formation cannot be effected. In
the case of a TN-type LCD, driving a total of 1920
scanning lines corresponds to a duty factor of 1/1920,
which is much lower than the minimum usable duty factor
of about 1/400 now possible. On the other hand, if

20 driving at a practical horizontal scanning speed is
used, the frame frequency becomes lower than 30 Hz,
and flickering impairs the display quality. For these
reasons, enlargement and densification of the picture
obtainable with CRT's and TN-type LCD’s has been limited

25 because the number of scanning lines cannot be sufficient­

ly increased.
In recent years, Clark and Lagerwall (U.S.

5

1 Patent No. 4,367,924) have proposed a ferroelectric
liquid crystal device (FLCD) having both a high-speed
responsive characteristic and a memory characteristic
(bistability). The FLCD shows a smectic C phase (SmC*)

5 or H phase (SmH*) in a specific temperature range,
and has optical bistability. The FLCD shows quick
response to changes in the applied electric field and
is therefore expected to be widely used as a high speed
memory-type display device.

10 The FLCD is capable of being used in a large,
high-resolution display which surpasses the above­
described flat panel display device. In view of its
low frame-frequency drive, it is provided with a partial
rewriting scanning scheme utilizing a memory character-

10 istic in order to provide a man-machine interfacial
display device. In the partial rewriting scanning
scheme, only a region on a screen to be overwritten
is scanned to make a new picture. Such partial rewriting
scanning has been disclosed in U.S. Patent No. 4,655,561.

20 A flat panel display comprising of 1920 scanning lines
x 2560 pixels per line has been achieved using the
bistability effect of the FLCD.

In a line by line scanning scheme of the FLCD,
the frame refresh frequency decreases as the number

25 of scanning line increases. For example, the frame

frequency for the FLCD with the speed of 50 usec/line

is;

6

1 1920 (lines) x 50 (psec/line) = 96 (msec) = 10 (Hz).
On the other hand, it is a very important factor

for thu operability of computers that the speed for
the real time response and smoothness for the pointing

5 device movement and for the keyboard input are sufficient.
The pointing device symbol (e.g., mouse font) and character
are relatively small in terms of their display area
but requires the higher response rate for displaying
them. For example, a mouse font is written normally

10 at 60 Hz, and a character is written at 30 Hz. Therefore,
the frame frequency of 10 Hz is not sufficient for
such operation. The use of aforementioned "partial

' rewriting scanning technique" enables the display to
1 rewrite only the necessary portion of the display with
" 15 a new information, thereby largely reducing the time

' required for updating the displayed information. For

example, if the mouse font is defined by 32 x 32 bits
data, the speed for displaying the data is;< I I I I

,,,, 32 (lines) x 50 (psec/line) = 1.6 (msec) = 525 (Hz)·* it• ft ·
20 However, to actually use this "partial rewriting scanning

• · technique", it is necessary to recognize the "partial
rewriting requests" and to indicate the display device

« «; the number of lines to be rewritten. Moreover, the
*Σ’”ί actual frequency for the partial rewriting is on the

25 order of about 300 Hz because of some other factors.
However, in general, the use of the FLCD as a large
display device provides a greatly improved real time

Ί

1 display of a mouse font or the like.
However, for a display device for displaying

in real time a plurality of tasks on multi-windows,
there arises another problem. Referring to Fig. 8A,

5 three windows 1, 2, 3 are open in the screen of one
display device. In window 1 a first task displays
a clock with its hands moving from time to time. In
window 2 a second task displays a rotating line rotating
in the direction of the arrow. In window 3 a third

10 task like a text editor displays characters. Also,
in a base (root) window, a system task displays a mouse

I I I font of an arrow moving from one location to another.
Fig. 8B illustrates the time sequence of the generation

’1 ·' of drawing commands and ..the time sequence of the execu-
" ’ 15 tion of those commands.I I >« 1 I

As illustrated in Fig. 8B, it is assumed that
eight commands to draw a line are generated during

, the period between the generation of a first mouse• 'iiiI '
,,,, font display command and a second mouse font displayft ft ft• · ·

20 command. Even with a computer which executes multi­
* ‘ tasks, drawing commands from the multi-tasks are not

processed concurrently in parallel but processed one
• ft«’ command after another as a single sequence. Therefore,

*
*ϊ’**ί the second mouse font display command is executed only

25 after the previously generated eight commands to draw
a line are executed. If the execution time of a drawing
command, i.e., the actual drawing time by a graphics

8

1 device (depending mainly upon hardware attributes of
the device), takes longer than the speed of the generation
of commands, time delay occurs between the generation
and execution of a command. As a result, the second

5 mouse font display is delayed correspondingly.
In order to make such time delay small, it

is necessary to improve the hardware operation speed
of a graphics device and the software operation by
adopting such as aforementioned partial rewriting scan-

ΐθ ning technique. It is a main issue to be considered
here that a real time display of a hardware event is
considerably imparted by a drawing command generated
by another task (or in rare case, generated by its
own task). For this reason, there is a possibility

I5 of a problem, particularly with a multi-window system,
that a mouse font display on the screen becomes unable
to follow the actual mouse operation.

In computer operations,, inputs from a mouse
and keyboard are called hardware (H/W) events. The

20 real time processing of H/W events in a computer system
should be ensured as much as possible, because such
H/W events are directly associated with the operation
by an operator and the real time processing of H/W
events essentially means the operability of the system.

25

SUMMARY OF THE INVENTION
It is an object of the present to provide a

- 9 -

data processing apparatus with an improved real time display of a hardware event.
In accordance with one aspect of the present invention there is disclosed a data

processing apparatus comprising:
a host processor including multitasking means for executing a plurality of

5 processes in a time sharing manner or event drive manner, and scheduling means for
scheduling drawing requests from the plurality of processes and forming the drawing
requests into a single sequence; and

a graphics device for controlling a display device to draw a picture in accordance
with a set of drawing commands transferred from the single sequence in said scheduling

10 means;
wherein said scheduling means monitors an execution status of the set of drawing

commands at the graphics device, and reserves the scheduling of the drawing request
from each of the processes until the set of drawing command has been substantially
executed at the graphic device; and

15 said drawing requests from the plurality of processes include a drawing
request related to a hardware event and said scheduling means schedules the hardware
event-related drawing request with priority.

In accordance with another aspect of the present invention there is disclosed a data
t (t processing apparatus comprising graphics device means for drawing a picture on a screen
''''1 20 in accordance with a drawing command, and a processor for running a process of

I I
! i ! generating the drawing command and transferring the generated drawing command to said
,,, graphics device means;

■11' wherein said processor monitors a drawing request from the running process, and
I I I I

: I sequentially registers the drawing command generated in response to the monitored
_ , ■1 25 drawing request in ,a first queue;
'1'11' wherein said processor monitors the execution status of the drawing command

transferred to said graphics device means, and controls, in accordance with the execution
status, the registration in said first queue; and

wherein said processor suspends the monitoring of the drawing request until the
.•’Γ30 execution of the drawing command transferred to said graphics device means has been• · ·

« substantially completed; and
,. ‘ ’ said drawing request from the running process includes a drawing request related

to a hardware event and said processor schedules the hardware event-related drawing
• request with priority.

r ’ *1 ‘35 Other aspects of the present invention are also disclosed.

<./

ini' Hbooinn2n7:|An

10

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram showing the hardware

5 arrangement of a computer system embodying the present
invention;

Fig. 2 is a block diagram showing the detail
of the graphics controller shown in Fig. 1;

Fig. 3 is a block diagram showing the detail
10 of the graphics card shown in Fig. 1;

Fig. 4 shows the arrangement of an X-window
system under the environment under which the embodiment
of this invention operates;

Fig. 5 shows the. module arrangement of the
15 X-window system;

Fig. 6 is a flow chart showing event scheduling;
Fig. 7 shows the structure of layers of the

server;III'
ι ι

t.

• · »

Fig. 8A illustrates how a picture is drawn
20 in X-windows of a multi-window system;

Fig. 8B illustrates a conventional time sequence
of drawing commands and their execution in a multi­
window system;

Fig. 9A illustrates how a picture is drawn
25 in X-windows of a multi-window system;

Fig. 9B illustrates a time sequence of drawing
commands and their execution in a multi-window system

11

1 according to an embodiment of this invention;
Fig. 10 is a block diagram showing a queue

system according to an embodiment of this invention;
Fig. 11 is a flow chart illustrating the QSpace

5 () in the WaitForSomet’ning () routine;
Fig. 12A is a flow chart showing a first example

of the WaitForSomething () routine;
Fig. 12B is a flow chart showing a second example

of the WaitForSomething () routine;
10 Fig. 13 shows signal waveforms in the graphics

card shown in Fig. 2;
Fig. 14 illustrates the concept of the layer

structure of scheduling according to this invention;
Fig. 15A illustrates the Heat, Tail and contiguous

15 free space of the graphics command buffer;
Fig. 15B shows examples of the Head addresses,

Tail addresses, and sizes of contiguous free spaces;
Fig. 16A is a flow chart illustrating the command

transfer at the host side;
20 Fig. 16B is a flow chart illustrating the first

half of the PutBlock () in the transfer flow shown
in Fig. 16A;

Fig. 16C is a flow chart illustrating the second
half of the PutBlock () of the transfer flow shown

25 in Fig. 16A;
Fig. 17A is a right half flow chart illustrating

the command reception and execution at the remote side;

12

1 Fig. 17B is a left half flow chart illustrating
the command reception and execution at the remote side;

Fig. 17C is a flow chart illustrating the
GetBlock () in the flow shown in Fig. 17A;

5 Fig. 18 is a flow chart illustrating the
ReadREquestsFromClient ();

Fig. 19 shows another structure of the graphics
command buffer the present invention is applicable
to;

10 Fig. 20 is a flow chart illustrating the QSpace
() using the buffer structure shown in Fig. 19; and

Fig. 21 is a flow chart illustrating the
WaitForSomething () using the QSpace () shown in Fig.
20.

15

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
(1) Structure of Hardware

As an embodiment of this invention, there is
provided a computer system with a ferroelectric liquid

20 crystal display FLCD. Fig. 1 is an illustration of
the outline of the hardware structure of the system.
The system is constructed of a section controlled by
a host processor and a section controlled by a graphics
device processor. The host and graphics device processors

25 operate independently from each other. The term "graphics
device" used herein collectively means a device inclusive
of a graphics card, a graphics controller and a FLCD

13

1 panel. The host processor is provided with OS for
executing processes in a time sharing manner. A drawing
command generated by each process is given via a bus
interface to the graphics card of the graphics device.

5 The graphics card has a function to develop the contents
of a drawing command into a video' VRAM and a function
to manage specific partial rewriting of the contents
of a drawing command on the FLCD panel. The contents
of VRAM are supplied in the form of digital signals

10 to the next stage, i.e., the graphics controller. In
accordance with the digital signals representative
of the contents of VRAM including partial rewriting
information, the graphics controller generates drive
signals for displaying graphics images on the FLCD

15 panel at proper addresses and sends them to a driver
IC.

A block diagram of the embodiment of the graphics
card is given in Fig. 3. The graphics card is constructed
of a graphics processor 20 and a memory controller

20 22 for the control of an interface 28 and a memory
34. The memory 34 is constructed of a RAM 34-1 for
storing commands, VRAMs 34-2 and 34-3 for storing video
outputs, and a ROM 34-4 for storing initial control
commands for the graphics processor 20. A graphics

25 command buffer for the graphics device to be described
later is logically realized by RAM 34-1. Some of these
memories may be realized on the main memory of the

z

- 14 -

1 host. Data is transferred between the processor 20
and the memory 34 by means of the memory controller
22. A video timing unit 32 provides a clock 30 to
the graphics processor 20 as its timing signal. The

5 outputs of VRAMs 34-1 and 34-2 are inputted to an output
interface 50. The data supplied to the output interface
50 passes through a multiplexer 36 and is given a proper
gray scale or a color signal level. The output from
the multiplexer is supplied to a digital interface

10 40. The digital interface 4.0 generates screen address
data, image data (signal lines PD0 to PD7), a signal

'■ , 11, AH/DL for discriminating between address data and image
data, and a timing signal CLK, all being supplied to

I * t I
; the next stage graphics .controller.

ί ! I

' ■.! 15 The graphics processor 20 may be for example
ί I I* » I1,11 a Texas Instruments GSP34010 processor, which can execute

both graphics commands and general-purpose commands,
and the interface may be an IBM "AT Bus", both of which

I ■
are familiar to those skilled in the art. The GSP34010

• · ·
* 20 processor is described in detail in the TMS34010 User's

*;***; Guide published by Texas Instruments Inc (publication
number SPVU007).

;·. Fig. 2 is a block diagram of the graphics control-ft · (·
·;···* ler for receiving drawing data from the graphics card

25 and driving the FLCD panel. The FLCD panel comprises
a matrix electrode structure composed of 1920 scan
electrodes and 2560 data electrodes, the former being

15

1 connected to a scan electrode driver 82 and the latter
to a data electrode driver 62. The data electrode
driver 62 includes a decoder 78, a line address memory
80, and an address detection circuit. The data electrode

5 driver 64 includes a shift register 72, a line memory
74 and a buffer 70.

Scan electrode address data (AO, Al, A2, ...,
A15) for addressing the scan electrodes 84 designating
the drawing position on the panel screen and image

10 data (DO, DI, D2, ..., D2559) are transferred through
the same signal lines PDO to PD7. Thus, the signal
AH/DL is sent to the processor 89 at the same time
for identifying if the transferred data is the address
data or the image data. The control circuit 68 causes

15 the signal on PDO to PD7 to be received by the address
detection circuit 88, if the AH/DL signal is high level
indicating that the signal is the scan electrode address
data. If the AH/DL signal is low level indicating
that the signal is the image data, the signal is received• · ·

« · ·
20 by the line buffer 70. The AH/DL signal also serves

• · « I · *♦ · as a transfer start signal for transferring data.
The image data received by the line buffer

ί*'.., 10 is temporarily stored therein, and sent via the

•J”"I shift register 72 and line buffer 74 to the data electrode
25 driver 76 during the horizontal scan period. The address

data detected by the address detection circuit 88 is
decoded into a scan electrode drive signal by the decoder

16

1 78, and sent via the line address memory 80 to the
scan electrode driver 82.

In this embodiment, driving the display panel
60 is not synchronous with the generation of the scan

5 electrode address data AO to A15 and image data DO
to D2559 by the processor of the graphics card, so
that it is necessary to synchronize the control circuit
68 and the graphics processor when data is transferred.
For this purpose, the control circuit generates a synchro

10 signal Hsync for each horizontal scan. This Hsync
signal is related in time to the signal AH/DL. The
graphics processor 20 monitors the Hsync signal and
stands by for data transfer when the Hsync signal changes
from high level to low level. Thereafter, the graphics

15 processor 20 changes the AH/DL signal from low level
to high level to transfer the scan electrode address
data, and again changes the AH/DL signal from high
level to low level to transfer the image data. The

, detailed signal waveforms thereof are shown in Fig.
ft eft
” * 20 13.

ft
••««ft'• · According to the present invention, real time

processing for an H/W event of the graphics device
shown in Fig. 1 is improved. The characteristic feature

ft
*i”*i of this invention resides in a logical interface structure

25 between the host and the graphics device.

17

1 (2) Structure of Software (Logics)
Summary

In the logical structure of this invention,
there is used an X-window graphics user interface (GUI)

5 running on an UNIX operation system (OS) and implemented
on the hardware shown in Fig. 1. The essential portion
of the UNIX operation system is called a kernel. A
user program interacts with the kernel in response
to a system call such as open (), read () and the like.

10 UNIX functions such as file systems, multitask mechanism
(time sharing), inter-process communication, and the

■;'> like are supplied from the kernel. OS is a system
< .
1 : ,' software constructed of a plurality of modules supplied
i. from a vendor to a user... A device driver, which is
' ' 15 one of modules of OS, directly controls an input/output

1 ‘ hardware device and provides an interface to the kernel
specific to UNIX, independent from a hardware device.
This device driver controls the display device, and a

(I »
ί (user program instructs the device driver to draw a picture

• · A
« J A 20 on the display device. The device driver is programmed

ft
using following I/O system calls while considering
the function of the kernel and the hardware attributes

2’· of the device.ft « ·
ft*J· *: #include <temio.h>

25 int ioctl (fd, cmd, tbuf) /* terminal device control */
int fd; /* open file descriptor */
int cmd; /* command for designating operation to be

18

1 executed */ struct termio * tbuf; /* pointer to structure
for terminal information */

For example, a command TCGETA is a command
to fill a. termio structure with terminal' information.

5 referred by fd. Although the device driver is linked
to the kernel to become a new kernel image, it is not
inherent to the UNIX kernel.

The X-window is a software system for providing
a user with multi-window programming environments as

10 a GUI configured on the UNIX kernel including the graphics
device driver function. The outline of the system

« - arrangement of the X-window system is shown in Fig.

, 4. The x-window system is a GUI for generating multi­
- windows on a screen, and.is expressed by a server/client

15 model. A server program is the essence of the X-window
1' (base window system) and interacts with a work station

generally equipped with a screen, a keyboard, and a
mouse, to generate and display windows on the screen

I 1

J and form graphics images on the windows, or to detect
A · ·• I B 20 and process a hardware H/W event from the keyboard

Γ

or mouse. A client program means a user program, X
library, and window manager. Namely, a client or user

*** process can rely graphics processing on the server.
·’; In this case, a client can describe a multi-window

25 function vithout considering the hardware attributes
of the graphics device. The hardware attributes are
absorbed by the server.

19

1 Data transfer between the client and the server
relies on an X-protocol. The server executes operations
dependent on the vender such as OS and hardware, so
that the client can describe programs not considering

5 hardware if a partner system understands the X-protocol.
The client at host 1 communicates with the server at
host 0 via a network using the X-protocol to control
the work station at host 0. In other words, the X-
window system is network-transparent. The server process

10 at host 0 (remote) selves as an agent for the client
process at host 1 (locaj). If an object client is
at host 0, communication is conducted via its server
without using the network. An application does not
handle the X-protocol directly, but it calls a library

15 function Xlib which in turn provides the X-protocol.
The server at host 0 can provide multitask services
to two processes at host 0 and host 1.

Fig. 5 illustrates the modular structure of
the X-w inflow system. The following is an example of

20a user application program using Xlib functions by
which a client displays a 500 x 300 window w on the
screen.
#include <XII/Xlib.h>
#include <XII/Xutil.h>

25main ()

ί

Display *d;

20

1 Window w;
Unsigned long black, white;
d = XOpenDisplay (NULL)
w = XCreateSimpleWindow (d, RootWindow (d, 0), 100, 500,

5 300, 2, BlackPixel (d, 0),
WhitePixel (d, 0));

XMapWindow (d, w);

}
The XOpenDisplay () is an Xlib function to

10 establish a connection between the user process and
the designated server within the network system, the

' *’. XCreateSimpleWindow () is an Xlib function to generate
’ .,, a 500 x 300 window v on the screen under control of

. / the server, and the XMapWindow () is an Xlib function
I ι ■

15 to generate the X-protocol for displaying the generated« ' 1 I
1'' window on the screen and supply the X-protocol to the

X server.
Structure of Server

«I t <
' The main task of the server is to establish111¼

e « «0 1 · -­20 a connection to a client, to process requests from
a plurality of clients in a balanced manner, and to
distribute an event from hardware such as a display,
mouse and keyboard to a plurality of clients. As shown

•o'rt»2 in Fig. 7, the server is constructed of four layers
25 including a DIX (Device Independent X), DDX (Device

Dependent X), OS, and Extension function (EXT: Extension)
It is important for the description of this invention

21

1 to understand these layers.
DIX layer: all operations by the server is

executed by first calling a function at another layer
from DIX. In accordance with the called function,

5 client requests are processed, input events are read,
and distributed to clients. DIX is not dependent on
the machine, devices and OS, but communicates with
a client by the X-protocol. A routine Dispatch ()

, ,, for scheduling event processes belongs to the DIX layer.
. i . t

• ·< 10 DDX layer: this layer includes all functions
·;■* to directly control input/output devices, and is described

.'fi’. considering the devices and OS. This layer consists
j,’1 of an input section and an output section. The input

section is used for controlling an input device, such
15 as reading an event from hardware, adjusting the mouse

motion sensitivity, generating mapping information
til'
’ ·' ' of key codes. The output section is used for controlling

,,,,,1 an output device, such as generating/changing a graphic
context (GC). These functions for each device are

., 20 called from DIX with the data structure being accompanied.• ·• · · r
· OS layer: this layer performs a read/write

• <
function for the client connection, network connection
and the communication therebetween and a function for
notifying the client of any input event (this function

25 is sometimes performed with DDX). This layer also

performs a function for smoothly controlling the time
sharing among clients, an interface access function

22

1 for accessing a font file, and a low level memory

management function.
EXT layer: This layer is used for extending

the server function and X-protocol. This layer is
5 not required for an ordinary server, and is used for

a display device having a particular function.
As described above, the X-window system is

an operating system configured on the UNIX kernel for
providing a user with a network-transparent multi-

1θ window environment. A user can access the multi-window

function via the X-protocol as well as the aforementioned
functions specific to UNIX. The X-window system is
provided in the host computer of the embodiment shown
in Fig. 1, and the hardware attributes of the graphics

15 device FLCD are described in DDX and OS layers.

To help understand the system operation, a
client user program for a server is illustratively
given below for displaying a character X on the screen
at a click point of the mouse.

20 #include <XII/Xlib.h>

#include <XII/Xutil.h>
main ()
{

Display *d;
? 5 Window w;

Font f;
GC gc;

23

1 XEvent e;

XSelectlnput (d, w, ButtonPressMask);

5 XNext Event (d, $e)
XDrawString (d, w, gc, e.xbutton.x, e.xbutton.y,

"x",l);
}

This program asks the server to inform of a
10 mouse click event by setting XSelectlnput (). An

XNextEvent () reads an H/W event, and the mouse position
coordinate information at the time of the click is
described in the x and y members of XButtonEvent
structural member e. An.XDrawString () instructs the

15 server to draw a character X in the window at the screen
position designated by x and y members. The server
performs a detection of an H/W event and a notice thereof
to the client. The client receives a drawing command
generated in response to the H/W event, and controls

20 the graphics device to draw the character. As above,
the client user program is described independent from
a hardware device, and the server interfaces with the
hardware device to provide services to the client.
Scheduling

25 The server is a single process provided in
correspondence with a single work station (terminal:
screen, keyboard, mouse) for the control of the work

24

1 station. The server nevertheless provides services
to a plurality of precesses, i.e., a plurality of clients.
The term "process" herein used means an environment
under which a program runs. A process is constructed ’

5 of three segments including a command segment, a user
data segment, and a system data segment. A program
is used for initializing a command and user data. A
program can be executed by a plurality of processes
in parallel with each other with respect to time. A

. ., 10 multitasking system executes a plurality of processes
in parallel in a time sharing manner. This time sharing

I I I i

. ‘ :' of a plurality of processes is executed by the UNIX
■ kernel. The scheduling by the server defines the order

of processing a generated drawing request and a service
. 15 request such as processing an H/W event. A queue system

according to an embodiment of this invention is shown
in Fig. 10, the queue system making services of a plurality

. of clients. Drawing commands generated by clients
are stored in client queues 101 to 103 provided for

., 20 each client, in the order of generation.ft ·
♦ · · r

. The stored command is transferred from an entry
• · a < ba

« <

point 104 to a server queue 105. Specifically, commands
from a plurality of clients are formed in a single
sequence and inputted to the server queue 1C 5 for

25 sequential processing like a single task. A certain
group of commands in the server queue 105 of the host
processor is passed to a graphics command buffer 106

25

1 I I < I

• ·
* · · t

1 of the graphics device processor. After passing the
command group to the graphics device processor, the
host processor executes another process^

eac-e.c.'j.’ts'c,
ky=uuafcEttg- the graphics device processor/execute the

5 passed command group. The command group is developed
into commands for the graphics device processor in
the graphics command buffer 106 and stored in the area
between Tail to Head - 1 as shown in Fig. 10. The
graphics device processor sequentially executes the

10 commands starting from Tail to Head. Tail comes near
Head as the commands are executed one after another.
When it becomes Tail = Head, it means that the passed
command group has been executed. Then, the next command

105
group is passed from the. server gueue^£&6 to the graphics

15 command buffer 106. This next command group is stored
at the address higher than the former Head. Namely,
Tail of the commands developed from the next command
group becomes the former Head. '■ The graphics command
buffer 106 is shown schematically as a ring shape in
Fig. 10. It is to be noted that Head > Tail at (a)
in Fig. 10, and Tail Τ’ Head at (d) in Fig. 10.

As shown in Figs. 8A and 8B, the reason why
a graphics image cannot be formed in real time upon
occurrence of an H/W event such as a mouse event, is
that the process speed at the graphics device is not
so fast as the occurrence of drawing commands so that
many commands not-yet-executed remain in the server

<>/VT

20

25

26

1 queue 105 at the time when an event occurs. Although
the server system detects an H/W event with priority
over other processes and informs the client of the
occnrreice of the event, the drawing command generated

5 by the <lient for the H/W event is executed after the
commands remaining in the server queue 105 at that
time have been executed, because the server queue 105
sequentially executes commands merely in a single task
manner.

Events to be serviced by the server are generated
asynchronously from a plurality of client processes
or hardware devices. The routine Dispatch () in the
DIX layer of the server schedules the events and controls
the process flow thereof.. Specifically, generated

15 events are scheduled by the Dispatch () routine of

the DIX layer. The command associated with the event
is transferred from the client queue to the server
queue in order to execute it at the graphics device
under control of the server in accordance with the

2θ routine called from the DIX layer. If both a drawing

request from the client and an H/W event conflicts
each other, the Dispatch () routine selects the H/W
event with priority over the drawing request, to thereby

realize real time processing.
25 Fig. 6 is a flow chart illustrating the scheduling

by the Dispatch () routine.
Step 1: It is checked if there is an H/W event

27

1 (operation of keyboard, mouse). Head and tail pointers
to the event queue are checked. If two pointers are
different, the stored event is read from the event
queue.

5 Step 2: If the H/W event check is YES, there is executed
a process of character display or mouse cursor display
for that event. Data transfer between the server and
the client is performed by the WriteToClient () called

, ,, from the OS layer. The detected H/W event is informed
I i i

« · t t

.., 10 to the client, and the drawing command generated by
tilt
·;*' the client for that event is stored in the server queue,

. ‘ ‘. to thereafter terminate the process and returns to
ί I i

step 1.
Step 3: If the H/W event check is NO, the WaitForSome-

15 thing () is called from the OS layer. The detail of
the WaitForSomething () is illustrated in Fig. 12.

< i i 1
i This function, as explicitly described, waits for and

monitors an event. An event to be waited for includes;I
* an event from a hardware, user,

.. 20 * a request from a client already connected• ·ft ft ft ft
«. to the server (drawing command) , andft Φ » ft ft (ft ft

* request for connection of an unconnected
client to a designated server.

Upon occurrence of such an event, necessary
25 information such as the type of event is set and sent

back to the Dispatch () of the DIX layer.
Step 4: If a generated event is a request from a

28

1 connected client, the ReadRequest-Client () is called
from the OS layer to read for example a drawing command
in the client queue and store it in the server queue
to thereafter return to step 1.

5 Step 5: If a generated event is a connection request
of a client to a server, data for connection establishment
is written iu the client by the WriteTo-Client () of
the OS layer, to thereafter return to step 1.

The Dispatch () of the DIX layer is a function
10 for the scheduling of service requests to the server.

With this function, the flow branches to a routine
process necessary for the service type to execute a
drawing process at the branched routine process. This
scheduling takes the H/W.. event with priority over other

15 processes. Namely, if there is a stored event in the
event queue, it is executed with priority to realize
real time processing.

As discussed previously, use of only the Dispatch
() scheduling for scheduling a stored event in the

20 event queue with priority poses a problem of inability
of real time processing of an H/W event, because there
may be present between two H/W events of a client a
not-executed drawing command of another client which
is required to be executed first at the graphics device.

25 Such a case results from the fact that the host server
generating a command and the graphics device processing
the command operate asynchronously. The above

29

1 asynchronous operation problem is solved by the present
invention in such a manner that the server monitors
the process status of the graphics device through the
WaitForSomething () to control the event processing

5 scheduling.
WaitForSomething()

Prior to describing the WaitForSomething ()
routine, the concepts of the Head, Tail and contiguous
free space of the graphics command buffer 106 will

10 be described with reference to Figs. 15A and 15B. Figs.
15A and 15B show various structures of command data
developed within the graphics command buffer. The
data transferred from the server queue 105 is sequentially
written into the graphics command buffer starting from

15 the Tail address to the Head address, and is executed
by the graphics processor from the Tail address to
the Head address. The Head address is updated each
time data is written in the graphics command buffer
106, and the Tail address is updated as data is executed

20 by the graphics processor. The structures indicated
at (a) and (c) in Fig. 15A are for the case where the
Head address is greater than the Tail address. The
structures indicated at (b) and (d) in Fig. 15A are
for the case where the Head address equals the Tail

25 address. The structure indicated at (e) in Fig. 15A
is for the case where the Tail address is greater than
the Head address. Fig. 15B illustrates examples of

30

1 the Head addresses, Tail addresses and sizes of
contiguous free spaces using the Qspace () routine
of this invention to be described later.

According to this invention, the WaitForSomething
5 () routine of the DIX layer shown in Fig. 12A first

calls the XQSpace function () which is obtained by
developing the QSpace () function shown in Fig. 11
into the X-window. The QSpace () is used for monitoring
the graphics command buffer 106 and receiving the Tail

10 and Head addresses to calculate the contiguous free
space. In order to monitor the buffer state of the
graphics device, there is opened a channel through
which a device access permission is requested to the
OS layer. Immediately after monitoring, the channel

15 is closed. The channel open/close before and after
calculation ensures the multitasking efficiency. When
the device access is permitted, the physical memory
space occupied by the device is locked in order for
the OS layer not to assign it to another program. This

20 results in the state that a virtual storage system
of multitasking is occupied by one process similar
to the single task system. Since this "lock" state
depends on the result of monitoring the device processing
capability, a new request is intercepted to be processed

25 until the lock state is released even if the graphics
processor is busy. In this manner, the QSpace () sub­
stantially synchronizes the operations of the graphics

31

1 processor and OS in accordance with the processing
capability. Such a lock state is to be avoided as
much as possible in the UNIX system, and its multitasking
state is to be resumed as soon as possible. In view

5 of this, the QSpace () is called and the channel is
opened immediately before calculation, the memory is
locked, and after the execution the channel is closed
to release the memory.

When a channel is opened by the QSpace (),
10 the Head and Tail addresses of the graphics command

buffer are received. If Head > Tail, the contiguous
free space is calculated from (CMDBUFSIZE) - Head,
whereas if Head < Tail, it is calculated from Tail -
Head. The received and ..calculated data by the QSpace

15 is sent back to the WaitForSomething ().
At step S2 shown in Fig. 12A, it is checked

if Head / Tail (i.e., not-executed command is present
within the graphics command buffer) and if the contiguous
free space is smaller than a predetermined value PART-QUE

20 (i.e., free space within the graphics command buffer
for storing the next command group from the server
queue is insufficient). If YES, it means that the
next command group is not prepared to be received and
executed. Thus, at step S3 the QSpace () is again

25 called to access the graphics command queue and receive
the Tail and Head addresses. As the command execution
processes proceed from the previous QSpace () and there

32

1 is no command not executed, then the check at step
S4 indicates that Head = Tail to thereby advance to
step S5. However, if there is a command not executed
and the check at step S4 is NO, then the flow loops

5 to return to step S3 until a command not executed becomes
not present, i.e., Head = Tail. If the check at step
S2 is NO, i.e., if the data obtained by the QSpace
at step SI indicates that Head = Tail or Head / Tail,

, ■ and if there is a sufficient contiguous free space
Ί I

; , 10 for storing the next command group, then the flow
' < ‘ ‘ advances to step S5.

· At step S5, monitored is an occurrence of a
1 ί
1 ,service request event (H/W event, drawing request from

a connected client, connection request of an unconnected
15 client to a server) at the H/W event queue and the

1' client queue. If there is an event in the queue, the
t I -
‘1 1 information including the event type is sent to the

';<<< Dispatch () of the DIX layer to advance to step S4 in
the flow chart shown in Fig. 6.

·· 20 As described above, with the WaitForSomething
«4 9 β

() of this invention, monitoring a service request
• J.

event at step S5 is not allowed to start until the graphics
device processor becomes able to execute the next drawing
process. Thus, a drawing request from the client is

25 suspended if the operation status of the drawing process

by the graphics device is not proper, without immediately
and executing the request and storing the drawing command

33

1 in the server queue. In the H/W event priority

scheduling, if an H/W event is stored in the H/W event
queue, it is executed with priority over a drawing

. request from the client. On the. other hand, if there
5 is not stored an H/W event in the H/W event queue,

the client request is sequentially executed and stored
in the server queue irrespective of the operation state
of the drawing process by the graphics processor. The

, ,, characteristic feature of this invention is that without((I‘‘'‘in . .« ., ±υ immediately executing a drawing request from the client« 1 «
<;" even if there is no event in the H/W event queue and« J (

so there is no need of the priority processing of an‘ 4 I
H/W event, the operation state of the graphics device
processor is monitored, and in accordance with the

•*•5 monitor results a client request is processed. According

';1' 1 ly, a number of commands will not be stored in the
I J I 1

',,' I server queue which otherwise delay the real time proces-
,,,,,; sing of an H/W event, thereby improving the real timeI

processing of an H/W event.
t0 20 Fig. 12B shows another embodiment of the
• 0
• «00r WaitForSomething (). At step SI, using the QSpace
0 > · « I t

0 0

(), the Head and Tail addresses are received from the
graphics command buffer. At step S2, it is checked
if Head / Tail. If Head Tail, the service request

25 is immediately executed at step S5. If Head = Tail,

the flow loops until it becomes Head = Tail, and
thereafter enters step S5.

.34

1 Fig. 14 shows the concept of the layer structure
of scheduling according to the present invention. The
Dispatch is present in the DIX layer which is the outer­
most shell of the server, and directly communicates

5 with the client and H/W device for the scheduling which
is independent from the H/W device and OS. The
WaitForSomething () is present in the OS layer and
called from the Dispatch () for the processing of a
service request dependent on OS. The QSpace () is

10 present in the innermost shell and called from the
WaitForSomething (), and directly accesses the graphics
device to monitor it.
Command Data Transfer from Server Queue to Graphics
Command Queue .,

15 The command data in the server queue 105 is
developed into a basic graphics function by a Host
Dispatcher at the server side (host side), and transferred
to the graphics command buffer 106 at the graphics
device side (remote side) by a BeginCommand (). The

20 command developed in the graphics command buffer 106
is read by a GetCommand () at the remote side and
developed into a graphics processor function corresponding
to the Host dispatcher by a Remote Dispatcher to execute
a predetermined drawing process for VRAM.

25 Figs. 16A to 16C give an outline of the Begin­
Command () at the host side, and Figs. 17A to 17C give
an outline of the GetCommand () at the remote side,

35

1 with communication and management of the graphics command
buffer 106 being mainly illustrated. Variable X and
Y shown in Fig. 16 and variables Z and Y shown in Fig.
17 take optional values, and Head and Tail represent

5 the head and tail addresses of a command data storage
area of the graphics command buffer 106. The BeginCommand
() corresponds to the transfer flow of a graphics command
sent from the host side server queue, 105, and the

, ,, GetCommand () corresponds to the command reception1 1 I’ « i »
< ., 10 and execution flow at the remote side. Both the trans-(I («til
•mission and reception sides are synchronized at thetill

start and end times of transmission/reception. This• I I
synchronization is carried out because the remote side
is a single processor and a plurality of independent

15 scans (refresh) cannot be performed at a time for the
display device. In accordance with a graphics command

I 1 » t

to be sent from the host side server queue 105, the
Host Dispatcher sends a certain unit of basic graphicsI I

function group to a PutWords () function. The detail
,. 20 of a PutBlock () function is given in Figs. 16B and• ·• ft ft ft

. 16C.• a · · · t• ·
The PutBlock () reads the current Head and

Tail values of the command buffer 106, stores them
in variables X and Y, and calculates the contiguous

25 free space. After the graphics command buffer 106
is subjected to a specific process, the data is transfer­
red thereto. In order to check the transfer end timing,

36

1 the WaitCommand () function waits for a reception end
acknowledgement from the remote side. Thereafter,
the new Head position of the graphics command buffer
106 is set to then wait for the next data transfer.

5 After transferring all data, the PutBlock () is terminated,
and the PutWords () and BeginCommand () are also
terminated.

With the GetCommand () at the remote side,
the capture of a data area in the buffer is processed

10 in a different manner as the type of command changes
as shown in Fig. 17A (monolithic command (a single
and simple command without parameter) or chunked command
(command with a plurality cf parameters)). In both
the cases, the GetBlock () shown in Fig. 17C stores

15 (receives) a command data from the host side in the
command buffer 106. Thereafter, as shown in Fig, 17B,
using the Head and Tail values of the command queue
105, the command data is read and executed. The internal
operation of the GetBlock () is shown in Fig. 17C.

20 It is first checked if the values of Head and Tail
are different. If all commands trom the remote side
have been executed, then Head = Tail. If the host
side transfers a new command thereafter, the Head value
is updated as shown in Fig. 16C so that it becomes

25 Head = Tail. Checking the Head and Tail values is

performed from another reason that the host side and
remote side enter an independent and asynchronous

37

1 operation except during the data communication so that
it is necessary to check the state of the host side
at the time of data reception.

The data size is calculated basing upon the
5 read Head and Tail values, a wrap process is performed

to receive the data from the host side, and the Tail
is updated and such effect is informed to the Host
side. This information is used for the discrimination
of a busy state of the remote side when the host side

10 transfers a command data to the remote side. When
a response from the remote side is received, it is
discriminated that the remote side is in an idle state
and then the transfer starts.

In the above manner, "Head" is updated by the
15 host side BeginCommand, and "Tail" is updated by the

remote side GetCommand such that the host and remote
sides basically perform asynchronous execution and
they are synchronized when data is transferred there­
between.

20 Figs. 9A and 9B show an example of a display• ·
• eno ,, status according to the embodiment of this invention,
• ♦ < e ·• ·

Fig. 9A shows three windows similar to those shown
in Fig. 8A. The left side of Fig. 9B shows a sequence
of graphics commands generated at the host side, and

25 the right side shows a sequence of executions of the
generated commands. It is to be noted that a command
for drawing a mouse cursor font is executed not in

38

1 the order of command generation. Although the commands
with oblique lines are already present in the client
queue before the drawing command for the second mouse
cursor font, according to this invention they are not

5 sent to the server queue before the occurrence of the
second mouse event without executing the scheduling
for the commands by the WaitForSomething () routine
including the QSpace (). The mouse event as an H/W
event is executed and scheduled with priority over

10 other requests stored in the client queue, and the
drawing command for the mouse event is sent to the
server queue and executed.
Another Embodiment

In the above embodiment, there has been described
15 an example of client scheduling with respect to the

server queue while mainly paying attention to the H/W
event. It is apparent that the client queue itself
may be scheduled in accordance with the QSpace (),
i.e., in accordance with the execution status at the

20 graphics side. For example, the flow at step S2 shown
in Fig. 6 may be changed by calling the QSpace () before
or after the process by the WriteToClient event function
to monitor the execution status of the buffer at the
remote side. Such a change may be executed at another

25 step in Fig. 6. At what step the QSpace () is called
and what process is to 1? executed, depend on the system
concerned.

39

1 Furthermore, the present invention is not limited
to the structure of the graphics command buffer 106
and the management method thereof at the remote side.
But, the invention is applicable to the arrangement

5 only if it can obtain the information by which the
execution status of the graphics device side can be
monitored. For example, there will be given another
method wherein each command is provided with an optional
length buffer instead of the fixed size buffer, a number

10 is allocated to each command without managing it by
the Head and Tail, and in accordance with this number
the execution status is managed. Fig. 18 shows a buffer
having four pointers to storage areas of commands.
Pointers rooms #1 to #4 store three different commands

15 (opcodes) and data necessary for executing them, the
storage area and sizes thereof being stored in rooms
#1 to #3. It is assumed that as the execution progresses,
the command in room #1 has been executed already and
the command in room #2 is now being executed. In this

20 case, the QSpace () monitors the number # and size
as illustrated in Fig. 20. The WaitForSomething ()
function using the QSpace () function (for X-window,
XQSpace ()) is illustrated in Fig. 21. The EXIT condition
from the loop of the QSpace () function depends on

25 the number # and size instead of the Head and Tail
values. The fundamental algorithm and effects are
the same as the first-described embodiment.

-40-

The claims defining the invention are as follows:
1. A data processing apparatus comprising:

a host processor including multitasking means for executing a plurality of
processes in a time sharing manner or event drive manner, and scheduling means for

5 scheduling drawing requests from the plurality of processes and forming the drawing
requests into a single sequence; and

a graphics device for controlling a display device to draw a picture in
accordance with a set of drawing commands transferred from the single sequence in said
scheduling means;

10 wherein said scheduling means monitors an execution status of the set of
drawing commands at the graphics device, and reserves the scheduling of the drawing
request from each of the processes until the set of drawing command has been
substantially executed at the graphic device; and

said drawing requests from the plurality of processes include a drawing
15 request related to a hardware event and said scheduling means schedules the hardware

event-related drawing request with priority.
2. A data processing apparatus according to claim 1, wherein the hardware

event is generated in response to an operation of a device selected from the group
(11 ■ _ consisting of a keyboard, a mouse, a light pen, a touch screen and a track ball.
‘ " '20 3. A data processing apparatus according to claim 1, wherein said plurality of

I I
processes provide multi-windows on a single screen of said graphics device.

4. A data processing apparatus according to claim 1, wherein said display
device comprises a ferroelectric liquid crystal display panel.

I I 5. A data processing apparatus comprising graphics device means for drawing a
t t., 25 picture on a screen in accordance with a drawing command, and a processor for running a

process of generating the drawing command and transferring the generated drawing
command to said graphics device means;

wherein said processor monitors a drawing request from the running process,
and sequentially registers the drawing command generated in response to the monitored

. · ·; · 30 drawing request in a first queue;• · ·
. wherein said processor monitors the execution status of the drawing

command transferred to said graphics device means, and controls, in accordance with the
execution status, the registration in said first queue; and

. wherein said processor suspends the monitoring of the drawing request until
• , ;35 the execution of the drawing command transferred to said graphics device means has been

substantially completed; and• I
said drawing request from the running process includes a drawing request

related to a hardware event and said processor schedules the hardware event-related
drawing request with priority.

ϊ

(n:\libool00202slAD

- 41 -

5

10

15

I I
I I

• . '20
I I

t
I< I I :
I I (I I I

, 25I
t .

I I I I

• · · ·
• · ·
••r.3o• · ·

• C · ·c
« < ·

1
1((((
t <

•Α ι ~ *·
u"· 'ή

. /
ΐ)/γ Οχ

6. A data processing apparatus according to claim 5, wherein said processor
provides a plurality of processes run in a time sharing manner, registers the generated
drawing command in a second queue provided for each drawing generation process Hy
said processors, controls the registered drawing commands in said second queue as a
single sequence, and stores the registered drawing commands in said firstO queue.

7. A data processing apparatus according to claim 5, wherein the hardware
event is generated in response to an operation of a device selected from the group
consisting of a keyboard, a mouse, a light pen, a touch screen and a track ball.

8. A data processing apparatus according to claim 5, wherein said graphics
device means comprises a ferroelectric liquid crystal display panel device.
—.... 9. —A data-preees5ing-app t̂us-foF=prouussing-plut'-ai-tasks-eoneurrentiy-ami

asynchronously and for outputting data from each of the plural tasks, said data processing
apparatus comprising: //

an input means for inputting data; /
memory means for storing data output from each of die plural/asks and data

input via said input means; /

display means, comprising a display memory mean/ for storing data
transferred by said memory means; //

wherein said display means displays data stored/in said display memory
means; and //

control means for monitoring the data transferred to said display means from
said memory means and for controlling, in accordance with the monitoring, transferring
of data output by the plural tasks and of data inpuvvia said input means to said display
memory means; //

wherein said control means obtains starting and ending addresses of the data
stored in said display memory means; /

wherein said control mearts determines if data has been input via said input
means; //

wherein, when the^farting address is equal to the ending address and said
control means determines thakkiata has been input via said input means, the data input via
said input means is transferred to said memory means prior to storage in said memory
means of any other dat/processed by the plural tasks but not yet stored in said memory
means; and //

whej&in, when the starting address is not equal to the ending address, and

said control means determines data has been input via said input means, (1) said control
means mojiuors the starting address and the ending address until the starting address
equals ws. ending address, (2) and the data input via said input means is stored in said
memory means prior to storage in said second memory means of any other data processed

bwanv of-the-plural tasvs hl1t not y^ ctorM in mnir>i?ry r.'.". .."

[n:\!iboo]00202:IAD

- 42 -

• · · ·
• · · <

·«■-<■ 30
« ο • <

asynchronously and for outputting data from each of the plural tasks, said data procesj
apparatus comprising:

an input means for inputting data;
5 memory means, for storing data output from each of the plural tg^ks and data

input via said input means;
display means, comprising a d. splay memory means/for storing data

transferred by said memory means, wherein said display means displays data stored in
said display memory means; and

10 control means for monitoring the data transferred// said display means from
said memory means and for controlling, in accordance witmthe monitoring, transferring
of data output by the plural tasks and data output by s#ra input means to said memory
means;

wherein said control means obtains starting aftd ending addresses of the data stored
15 in said display memory means, said control megns determines an amount of data therein;

and
said control means determines if the data has been input via said input

means;
wherein, when (1) either the starting address is equal to the ending address

20 or the amount of memory havin&mo data stored therein is greater than a predetermined
number and (2) said control rneans determines that data has been input via said input
means, the data input via s^id input means is transferred to said memory means prior to
storage in said memory «leans of any other data processed by the plural tasks but not yet

; stored into said memofy means; and
25 wherein, when the starting address is not equal to the ending address and the

amount of memory having no data stored therein is less than the predetermined number,
and said control means determines that data has been input via said input means, (1) said
control mrans monitors the starting address and the ending address until the starting
addres^equals the ending actress, and (2) the data input via said input means is stored in

sai^memory means prior to storage in said second memory means of any other data
sd-in-said-memory^means. ~ -

“' CJ, A data processing apparatus substantially as described herein with reference
to Figs. 1 to 7 or Figs. 9A to 21 of the drawings.

Dated this Eleventh Day of April 1994
*35 Canon Kabushiki Kaisha

Patent Attorneys for the Applicant
SPRUSON AND FERGUSON

ln:\liboo|OOZOZ:IAD

69466/91

• · I
• · t

• « « I

• I <
• · I

• · « (

« « (I
«

• •11

• · « (
• a t

• · I

• « i
• « «
««at

• « a a
• «a

69466/91

• f
t·

• « *
>• ft · ft ·

F I G.4

F I G. 5

«
• «at

« a a a
• a a

« « a
a ι ι

a ι (1
ι ι t• a i
• a a ι ii

NETWORK

F I G.6

4

t I .· 1
I

I ·

• I >
4 I -

« I (

• 0
4 < (

C
LIEN

T
SER

VE
R

FIG.7

APPLICATION

X 1 i b

■11«8···

’ D I X DispatchO

DDX 0 S WaitForSonething()

F i G. 8A

« · a• · « I
fl I• I

a · ι «
β ι

• · <

• a

• « · ·
• fl <

• · «

a

• ·• ·• · · ·
• a

• « I
• · I

• ■II
-3
t—<

5
V « I

• « < <

I I

• « « I« « I
• · «

I
ι

• ι
• « · <• · « • · «

(
I I Μ I |

• I

FIG.8B

COMMAND GENERATION

DRAW A

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A 1¾.

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A LINE

COMMAND EXECUTION

■>· _
‘ DRAW A

FIG.9A

COMMAND GENERATION COMMAND EXECUTION

»—I
5

» t 1
* 4 I

• 4 ‘ I

• < t
* 4 t

4 I (I

4 11(
»»<44

«44«
• 4 ί

I « i

* 4 I
• 4 I

• I I (

t
« (

■ I I t
a 4 1

• 4 I

t
• ■ I I t t

» t

« «* ·
♦ · · ·

• >

DRAff A

DRAW A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAff A LINE

DRAW A

DRAW A LINE

—

DRAW A LINE

DRAW A LINE

DRAW A LINE

DRAW A

DRAW A LINE

DRAW A LINE

V

9* e

F ! G 10 CHDBUFSIZE ? 1 2

104
(a)

CLI ENT 1 1UEU E

^-101

CLI ENT 2 iUEU E

^102

CLI ENT 3 }UEU E

103

Z\ -6
105

A LOR
TAIL

FLCD
CONTROLLER
* (b)
HEAD

--106

\z

NETR03K

t
HIGH

(c)

CLIENT SERVER
GRAPHICS CARD

11 /R I YEN' • QU •UE

•Tail

Head Head-1

0

Head

Head=Tai1

Tail

(d)

F I G.1 1

FIG.12A -.
WaitForSomething

ϊ

XQSpace (&Head&Tail&ContiguousSpace)

1

YES

l

XQSpace (&Head&Tail&ConiguousSpace) · --S3

F I G.12B
WaitForSomething

a V« 1 I I .
f 1
< II I (

(I

a (i ■
I t• I(I

a
a ι. ι ·

f ι I
< t I

t t« I

a ι v t

• ·• <*
ς

4 4 5» · v «
■Λ ·

FIG. 13

START SIGNAL
FOR DRIVING

SEGMENT DATA

SHIFT REGISTER INPUT

LINE MEMORY OUTPUT

DECODER

_ _ _ _/Θ(

ΧΕΧ

X

/ΞΖνΧϊΞλ

MEMORY

X Ma /< Na ;< °· !>(Pa 1C Qa

X κ° : < Ma /)(Na X Oa X Pa

F I G. 14

F I G. 15A

(d)

CMDBUFSIZE = 6144
Part - Que = 4096

I<
i t I It t .

Head J*g· Tail UPPER CONTIGUOUS FREE SPACE

586 = 586 5558 (CMDBUFSIZE - Head)
5124 > 4515 1020 (CMDBUFSIZE - Head)
5758 > 5149 386 (CMDBUFSIZE - Head)

198 < 5783 5585 (Tail - Head)
1024 > 407 5120 (CMDBUFSIZE - Head)
2992 > 2421 3152 (CMDBUFSIZE - Head)

202 < 5737 5535 (Tail - Head)

• ·• ·
• · « (»

»····©

F I G.16A

BeginCommand

II · II< I
I I. < t< I .(I t(I

< ι : ι
« I I(I

• ·• ·• « · ·
f
<1

FIG. 165

FIG.16C

e «
»> τ * I

• «· ’ β ·
9 C

Β

F I G.17A
GetComnand

FIG. 17B

» I ·
t

t
I

I

« I I
ft

< © ·

• · · · 4

F I G. 17C

• ·ft ·
ft ft c ·

R
EC

EP
TI

O
N

 OF
 DA

TA
 FR

O
M

C
O

M
M

AN
D
 BU

F
FE

R

FIG.18

F I G. 19

FIG. 20

• · ·

<

I

I

I

I

I t

»4

« * · a

t.
14*4»t• 4

F I G. 21

WaitForSomething

XQSpace(&room#C3,&sizeCH,&used roomC],&unused room[3) |

