(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11)特許番号

特許第5875122号

(P5875122)

(45) 発行日 平成28年3月2日(2016.3.2)

(24) 登録日 平成28年1月29日 (2016.1.29)

 \mathbf{Z}

(51) Int. CL. FΙ B23K 26/38 B23K (2014, 01)26/38HO1L 21/304 (2006.01) HO1L 21/304601Z B23K 26/40 (2014.01) B23K 26/40

請求項の数 6 (全 19 頁)

 (21)出願番号 (86)(22)出願日 (86)国際出願番号 (87)国際公開番号 (87)国際公開日 審査請求日 	特願2012-556741 (P2012-556741) 平成23年2月10日 (2011.2.10) PCT/JP2011/052950 W02012/108055 平成24年8月16日 (2012.8.16) 平成26年2月6日 (2014.2.6)	(73)特許権者 (73)特許権者 (74)代理人 (72)発明者 (72)発明者	 ⁶ 000190116 信越ポリマー株式会社 東京都千代田区神田須田町一丁目9番地 504190548 国立大学法人埼玉大学 埼玉県さいたま市桜区下大久保255 100083806 弁理士 三好 秀和 国司 洋介 埼玉県さいたま市北区吉野町1-406-1 信越ポリマー株式会社内 鈴木 秀樹 埼玉県さいたま市北区吉野町1-406-1 信越ポリマー株式会社内
			最終頁に続く

(54) 【発明の名称】単結晶基板製造方法および内部改質層形成単結晶部材

(57)【特許請求の範囲】

【請求項1】

単結晶部材上に非接触にレーザ集光手段を配置する工程と、

前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材 内部に前記レーザ光を集光するとともに、前記レーザ集光手段と前記単結晶部材とを相対 的に移動させて、前記単結晶部材内部に、多結晶部で構成される2次元状の改質層を形成 する工程と、

前記単結晶部材側壁に前記改質層を露出させる工程と、

露出させた前記改質層をエッチングすることで前記改質層にエッチング溝を形成する工 程と、

10

前記エッチング溝に楔状圧入材を圧入することにより、前記改質層により分断されてな る単結晶層を前記改質層から剥離することで単結晶基板を形成する工程と

- を有することを特徴とする、単結晶基板製造方法。
- 【請求項2】

前記多結晶部が、前記レーザ光の照射軸と平行な棒状に形成されていることを特徴とす る請求項1に記載の単結晶基板製造方法。

【請求項3】

前記剥離によって形成された剥離面が粗面であることを特徴とする請求項2に記載の単 結晶基板製造方法。

【請求項4】

前記単結晶部材の屈折率に起因する収差の補正機能を前記レーザ集光手段に持たせて前 記集光を行うことを特徴とする請求項3に記載の単結晶基板製造方法。

【請求項5】

前記単結晶基板を形成する工程では、表面に酸化層を有する金属製基板を前記単結晶層の表面に接着して剥離することを特徴とする請求項4に記載の単結晶基板製造方法。

【請求項6】

前記単結晶基板を形成する工程では、前記改質層の両面側のうち前記レーザ光を照射す る側の界面から剥離することを特徴とする請求項1に記載の単結晶基板製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

10

20

本発明は、単結晶基板製造方法および内部改質層形成単結晶部材に関し、特に、単結晶 基板を薄く安定して切り出す単結晶基板製造方法および内部改質層形成単結晶部材に関す る。

【背景技術】

【0002】

従来、単結晶のシリコン(Si)ウェハに代表される半導体ウェハを製造する場合には 、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さ のブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化 されたインゴットをワイヤソーによりウェハ形にスライスして半導体ウェハを製造するよ うにしている。

[0003]

このようにして製造された半導体ウェハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片 化が図られることにより、厚さが約750µmから100µm以下、例えば75µmや5 0µm程度に調整される。

[0004]

従来における半導体ウェハは、以上のように製造され、インゴットがワイヤソーにより 切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0

.1mm以下の薄い半導体ウェハを製造することが非常に困難であり、製品率も向上しな 30 いという問題がある。

【 0 0 0 5 】

また近年、次世代の半導体として、硬度が大きく、熱伝導率も高いシリコンカーバイド (SiC)が注目されているが、SiCの場合には、Siよりも硬度が大きい関係上、イ ンゴットをワイヤソーにより容易にスライスすることができず、また、バックグラインド による基板の薄層化も容易ではない。

[0006]

一方、集光レンズでレーザ光の集光点をインゴットの内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改 質層を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離する基板製 40 造方法および基板製造装置が開示されている。

【 0 0 0 7 】

例えば特許文献1には、レーザ光の多光子吸収を利用し、シリコンインゴット内部に改 質層を形成しシリコンインゴットから静電チャックを利用してウェハを剥離する技術が開 示されている。

【 0 0 0 8 】

また、特許文献2では、NA0.8の対物レンズにガラス板を取り付けて、太陽電池用 のシリコンウェハに向けてレーザ光を照射することで、シリコンウェハ内部に改質層を形 成し、これをアクリル樹脂の板に瞬間接着剤で固定して剥離する技術が開示されている。 【0009】

(2)

また、特許文献3では、特に段落0003~0005、0057、00058に、シリコンウェハ内部にレーザ光を集光し多光子吸収を起こさせることで微小空洞を形成しダイシングを行う技術が開示されている。

[0010]

しかしながら、特許文献1の技術では、大面積の基板(シリコン基板)を均一に剥離す ることは容易でない。

【0011】

また、特許文献2の技術では、ウェハを剥離するには強力なシアノアクリレート系接着 剤でアクリル樹脂板にウェハを固定する必要があり、剥離したウェハとアクリル樹脂板と の分離が容易でない。さらに、NA0.5~0.8のレンズでシリコン内部に改質領域を 形成すると、改質層の厚みが100µ以上となって必要な厚みよりも大きくなるので、ロ スが大きい。ここで、レーザ光を集光する対物レンズのNA(開口数)を小さくすること で改質層の厚みを小さくすることが考えられるが、基板表面でのレーザ光のスポット径が 小さくなってしまう。このため、浅い深度に改質層を形成しようとすると、基板表面まで が加工されてしまうという別の問題が発生する。

【0012】

また、特許文献3の技術は、シリコンウェハを個片のチップに切り分けるダイシングに 関する技術であり、これをシリコンなどの単結晶インゴットから薄板状のウェハを製造す ることに応用するのは容易ではない。

【先行技術文献】

【特許文献】

[0013]

【特許文献1】特開2005 277136号公報

【特許文献 2 】 特開 2 0 1 0 1 8 8 3 8 5 号公報

【特許文献 3 】 特開 2 0 0 5 5 7 2 5 7 号公報

【発明の概要】

【発明が解決しようとする課題】

[0014]

本発明は、上記課題に鑑み、比較的大きくて薄い単結晶基板を容易に製造することがで きる単結晶基板製造方法および内部改質層形成単結晶部材を提供することを課題とする。 【課題を解決するための手段】

[0015]

上記課題を解決するための本発明の一態様によれば、単結晶部材上に非接触にレーザ集 光手段を配置する工程と、前記レーザ集光手段により、前記単結晶部材表面にレーザ光を 照射して前記単結晶部材内部に前記レーザ光を集光する工程と、前記レーザ集光手段と前 記単結晶部材とを相対的に移動させて、前記単結晶部材内部に、多結晶部で構成される2 次元状の改質層を形成する工程と、前記改質層により分断されてなる単結晶層を前記改質 層から剥離することで単結晶基板を形成する工程とを有する単結晶基板製造方法が提供れ る。

[0016]

40

10

20

30

本発明の他の態様によれば、単結晶部材の外部から照射され該単結晶部材の内部に集光 されたレーザ光によって、前記レーザ光の照射軸と平行な多結晶部の集合体で構成される 2次元状の改質層と、前記改質層に隣接する単結晶層とを備える内部改質層形成単結晶部 材が提供される。

【発明の効果】

【0017】

本発明によれば、比較的大きくて薄い単結晶基板を容易に製造することができる単結晶 基板製造方法および内部改質層形成単結晶部材を提供することができる。

【図面の簡単な説明】

【0018】

【図2】第1実施形態に係る単結晶基板製造方法を説明する模式的鳥瞰図。 【図3】第1実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材を説明 する模式的斜視断面図。 【図4】第1実施形態で、レーザ光の照射により単結晶部材内部に多結晶部が形成されて いることを示す模式的断面図。 【図5】第1実施形態で、内部改質層形成単結晶部材の側壁に改質層を露出させたことの 模式的斜視断面図。 【図6】第1実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて 改質層から単結晶層を剥離させることを説明する模式的断面図。 【図7】第1実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて 改質層から単結晶層を剥離させることを説明する模式的断面図。 【図8】第1実施形態の変形例を説明する模式的断面図。 【図9】第1実施形態の変形例を説明する模式的断面図。 【図10】第1実施形態の変形例を説明する模式的斜視断面図。 【図11】第1実施形態で、単結晶層の剥離面の例を示す光学顕微鏡写真。 【図12】試験例1の実施例1で、シリコンウェハのへき開面の光学顕微鏡写真。 【図13】試験例1の実施例2で、シリコンウェハのへき開面の光学顕微鏡写真。 【図14】試験例2で、単結晶基板の剥離面の凹凸寸法と表面粗さとの関係を示す図。 【図15】試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 【図16】試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 【図17】試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 【図18】試験例4で、X線回折(XRD)による測定結果を示す図。 【図19】試験例5で、内部改質層形成単結晶部材の断面の光学顕微鏡写真およびスペク トル図。 【図20】第2実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材を説 明する上で用いる単結晶部材内部加工装置の模式的鳥瞰図。 【発明を実施するための形態】 [0019]以下、添付図面を参照して、本発明の実施の形態について説明する。以下の図面の記載 において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模 式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異な ることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断す べきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含ま れていることはもちろんである。 [0020]また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法 を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置 等を下記のものに特定するものでない。この発明の実施の形態は、請求の範囲において、 種々の変更を加えることができる。

40

50

10

20

30

【0021】

なお、第2実施形態では、すでに説明したものと同様の構成要素には同じ符号を付して その説明を省略する。

【0022】

[第1実施形態]

まず、第1実施形態について説明する。図1は、本実施形態で、レーザ集光手段により 空気中でレーザ光を集光したことを説明する模式的鳥瞰図であり、図2は、本実施形態で 、レーザ集光手段により単結晶部材内部にレーザ光を集光したことを説明する模式的鳥瞰 図である。図3は、本実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部 材11を説明する模式的断面構造である。図4は、レーザ光の照射により単結晶部材内部

(4)

【図1】第1実施形態に係る単結晶基板製造方法を説明する模式的鳥瞰図。

に多結晶部12pが形成されていることを示す模式的断面図である。図5は、内部改質層 形成単結晶部材11の側壁に、レーザ光の集光によって形成された改質層12を露出させ たことを示す模式的斜視断面図である。

【0023】

本実施形態に係る単結晶基板製造方法は、レーザ集光手段(レーザ集光部)として集光 レンズ15を単結晶部材10上に非接触に配置する工程と、集光レンズ15により、単結 晶部材10表面にレーザ光Bを照射して単結晶部材10内部にレーザ光Bを集光する工程 と、集光レンズ15と単結晶部材10とを相対的に移動させて、単結晶部材10内部に、 多結晶部で構成される2次元状の改質層12を形成する工程と、改質層12により分断さ れてなる単結晶層10uを改質層12から剥離することで、図7に示すような単結晶基板 10sを形成する工程と、を有する。ここで、図7は、改質層12から単結晶層10uを 剥離させたことを説明する模式的断面図である。なお、以下の説明では、単結晶層10u を改質層12との界面11uから剥離させることで説明するが、本発明は界面11uから 剥離させることに限られず、改質層12内で剥離が生じるようにしてもよい。 【0024】

集光レンズ15は、単結晶部材10の屈折率に起因する収差を補正する構成になってい る。具体的には、図1に示すように、本実施形態では、集光レンズ15は、空気中で集光 した際に、集光レンズ15の外周部Eに到達したレーザ光が集光レンズ15の中央部Mに 到達したレーザ光よりも集光レンズ側で集光するように補正する構成になっている。すな わち、集光した際、集光レンズ15の外周部Eに到達したレーザ光の集光点EPが、集光 レンズ15の中央部Mに到達したレーザ光の集光点MPに比べ、集光レンズ15に近い位 置となるように補正する構成になっている。

【0025】

詳細に説明すると、集光レンズ15は、空気中で集光する第1レンズ16と、この第1 レンズ16と単結晶部材10との間に配置される第2レンズ18と、で構成される。第1 レンズ16および第2レンズ18は、何れもレーザ光を円錐状に集光できるレンズとされ ている。そして、レーザ光Bが照射される側の単結晶部材10の表面10t(被照射側の 表面)から改質層12までの深さ(間隔)Dを、主に第1レンズ16とこの表面10tと の距離L1で調整する構成になっている。さらに、改質層12の厚みTを、主に第2レン ズ18とこの表面10tとの距離L2で調整する構成になっている。従って、主に第1レ ンズ16で空気中での収差補正を行い、主に第2レンズ18で単結晶部材10内での収差 補正を行うことになる。本実施形態では、表面10tから所定の深さDの位置に、厚みT が60µm未満の改質層12が形成されるように、第1レンズ16、第2レンズ18の焦 点距離、および、上記の距離L1、L2を設定しておく。

【0026】

第1レンズ16としては、球面または非球面の単レンズのほか、各種の収差補正や作動 距離を確保するために組レンズを用いることが可能であり、NAが0.3~0.7である ことが好ましい。第2レンズ18としては、第1レンズ16よりも小さなNAのレンズで 、例えば曲率半径が3~5mm程度の凸ガラスレンズが、簡便に使用する観点で好ましい。

【0027】

そして、レーザ光Bの照射によって単結晶部材10の表面10tにダメージを与えることなく単結晶部材10の内部に改質層12を形成する観点で、集光レンズ15の外周部E に到達したレーザ光とその集光点EPで定義される空気中の集光レンズ15のNAは、0 .3~0.85にすることが好ましく、0.5~0.85にすることがさらに好ましい。 【0028】

なお、改質層12の厚みの調整が不要である場合、第1レンズ16および第2レンズ1 8に代えて、1枚のレンズのみを配置することも可能である。その場合には、単結晶部材 内での収差補正をできる構造にしておくことが好ましい。

[0029]

20

単結晶部材10のサイズは、特に限定されるものではないが、例えば 300mmの厚 いシリコンウェハからなり、レーザ光Bが照射される表面10tが予め平坦化されている ことが好ましい。

【 0 0 3 0 】

レーザ光Bは、単結晶部材10の周面ではなく、上記の表面10tに照射装置(図示省略)から集光レンズ15を介して照射される。このレーザ光Bは、単結晶部材10がシリコンの場合には、例えばパルス幅が1µS以下のパルスレーザ光からなり、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。

【0031】

集光レンズ15に上方からレーザ光を入光する形態については特にこだわらない。集光 レンズ15の上方にレーザ発振器を配置して集光レンズ15に向けて発光する形態として もよいし、集光レンズ15の上方に反射ミラーを配置しレーザ光をこの反射ミラーに向け て照射して反射ミラーで集光レンズ15に向けて反射する形態にしてもよい。

【0032】

このレーザ光Bは、単結晶部材10として厚み0.625mmの単結晶基板に照射した ときの光線透過率が1~80%の波長であることが望ましい。例えば、単結晶部材10と してシリコンの単結晶基板を用いた場合、波長が800nm以下のレーザ光では吸収が大 きいため、表面のみが加工され、内部の改質層12を形成することができないため、90 0nm以上の波長、好ましくは、1000nm以上の波長が選択される。また、波長10 .64µmのCO₂レーザでは、光線透過率が高すぎるため、単結晶基板の加工をするこ とが困難なため、YAG基本波のレーザなどが好適に使用される。

20

10

【0033】

レーザ光Bの波長が900nm以上が好ましい理由は、波長が900nm以上であれば、シリコンからなる単結晶基板に対するレーザ光Bの透過性を向上させ、単結晶基板内部 に改質層12を確実に形成することができるからである。レーザ光Bは、単結晶基板表面 の周縁部に照射され、あるいは単結晶基板の表面の中心部から周縁部方向に照射される。 【0034】

(改質層の形成工程)

集光レンズ15と単結晶部材10とを相対的に移動させて単結晶部材10内部に改質層 30 12を形成する工程としては、例えば、単結晶部材10をXYステージ(図示せず)上に 載置し、真空チャック、静電チャックなどでこの単結晶部材10を保持する。

【 0 0 3 5 】

そして、XYステージで単結晶部材10をX方向やY方向に移動させることで、集光レンズ15と単結晶部材10とを、単結晶部材10の集光レンズ15が配置されている側の 表面10tと平行な方向に相対的に移動させながらレーザ光Bを照射することで、単結晶 部材10の内部に集光したレーザ光Bによって、レーザ光Bの照射軸BCと平行な棒状の 多数の多結晶部12pが形成される。この多結晶部12pの集合体が上述の改質層12で ある。この改質層12が形成された結果、内部改質層形成単結晶部材11が製造される。 この内部改質層形成単結晶部材11は、単結晶部材内部に形成された改質層12と、改質 層12の上側(すなわちレーザ光Bの被照射側)に単結晶層10uと、改質層12の下側 に単結晶部10dと、を有する。単結晶層10uおよび単結晶部10dは、改質層12に よって単結晶部材10が分断されたことにより形成されたものである。

なお、ステージの移動速度を抑えるために、ガルバノミラーやポリゴンミラーなどのレ ーザービーム偏向手段を用い、集光レンズ15の照射エリア内でレーザ光をスキャンする ことを併用してもよい。また、このような内部照射を行って改質層12の形成の終了後、 単結晶部材10の被照射側の表面10t、すなわち単結晶層10uの表面10tにレーザ 光Bの焦点を合わせ、照射領域を示すマークを付け、その後、このマークを基準に単結晶 部材10を切断(割断)して、後述するように、改質層12の周縁部を露出させた上で単

(6)

結晶層10 uの剥離を行ってもよい。

【0037】

このような照射によって形成された改質層12では、レーザ光Bの照射軸BCに平行な 多数の多結晶部12pが形成されている。例えば、改質層12の断面をエッチングして顕 微鏡などで観察することによって、図4に示すように、レーザ光Bの照射軸BCに平行な 多結晶部12pが並んで形成されていることが容易に確認される。形成する多結晶部12 pの寸法、密度などは、改質層12から単結晶層10uを剥離し易くする観点で、単結晶 部材10の材質などを考慮して設定することが好ましい。

[0038]

なお、多結晶部12pを確認するには、レーザ光Bによる加工領域すなわち改質層12 を横断するように内部改質層形成単結晶部材11をへき開し、へき開面(例えば図3、図 5の14a~d)をエッチングして走査電子顕微鏡もしくは共焦点顕微鏡で観察すること で確認してもよいが、同一の材質の単結晶部材(例えばシリコンウェハ)に対し、同一の 照射条件で、例えばYステージの送りを6~50µm間隔で部材内部に線状の加工を行い 、これを横断する形でへき開し、へき開面をエッチングして観察することで、容易に確認 してもよい。

【0039】

(剥離工程)

この後、改質層12と単結晶層10uとの剥離を行う。本実施形態では、まず、内部改 質層形成単結晶部材11の側壁に改質層12を露出させる。露出させるには、例えば、単 結晶部10d、単結晶層10uの所定の結晶面に沿ってへき開する。この結果、図5に示 すように、単結晶層10uと単結晶部10dとによって改質層12が挟まれた構造のもの が得られる。なお、単結晶層10uの表面10tはレーザ光Bの被照射側の面である。 【0040】

改質層12が既に露出している場合や、改質層12の周縁と内部改質層形成単結晶部材 11の側壁との距離が十分に短い場合には、この露出をさせる作業を省略することが可能 である。

【0041】

その後、図6に示すように、内部改質層形成単結晶部材11の上下面に、それぞれ、金属製基板28u、28dを接着する。すなわち、単結晶層10uの表面10tに金属製基30板28uを接着剤34uで接着し、単結晶部10dの表面10bに金属製基板28dを接着剤34dで接着する。金属製基板28u、28dには、それぞれ、表面に酸化層29u、29dが形成されている。本実施形態では、酸化層29uを表面10tに、酸化層29dを表面10bに接着する。金属製基板28u、28dとしては、例えば、SUS製の剥離用補助板を用いる。接着剤としては、通常の半導体製造プロセスで使用される接着剤であって、市販のシリコンインゴット固定用の所謂ワックスとして使用される接着剤を用いる。この接着剤で接着させたものを水に浸けると接着剤の接着力が低下するので、接着剤と被接着物(単結晶層10u)とを容易に分離させることができる。

[0042]

この接着では、まず、金属製基板 2 8 u を単結晶層 1 0 u の表面 1 0 t に仮固定用接着 40 剤で貼り付け、金属製基板 2 8 u を裏打ちし力を加えることで剥離する。

【0043】

仮固定用接着剤の接着強度は、改質層12と単結晶層10uとの界面11uで剥離するのに必要な力よりも強ければよい。仮固定用接着剤の接着強度に応じ、形成する多結晶部 12pの寸法、密度を調整してもよい。

[0044]

仮固定用接着剤としては、例えば、金属イオンを反応開始剤として硬化するアクリル系 2液モノマー成分からなる接着剤を用いる。この場合、未硬化モノマーおよび硬化反応物 が非水溶性であると、水中で剥離した際に露出した単結晶層10uの剥離面10f(例え ばシリコンウェハの剥離面)が汚染されることを防止できる。

[0045]

仮固定用接着剤の塗布厚みは、硬化前で0.1~1mmが好ましく、0.15~0.3 5mmがより好ましい。仮固定用接着剤の塗布厚みが過度に大きい場合、完全硬化となる までに長時間を必要とする上、単結晶部材(シリコンウェハ)の割断時に仮固定用接着剤 の凝集破壊が起こりやすくなる。また、塗布厚みが過度に小さい場合、割断した単結晶部 材の水中剥離に長時間を必要とする。

(8)

【0046】

仮固定用接着剤の塗布厚みの制御は、接着する金属製基板28u、28dを任意の高さ に固定する方法を用いることで行ってもよいが、簡易的にはシムプレートを用いて行うこ とができる。

【0047】

接着した際に金属製基板28uと金属製基板28dとの平行度が十分に得られない場合には、1枚以上の補助板を使用して必要な平行度を得てもよい。

【0048】

また、金属製基板28u、28dを仮固定用接着剤で内部改質層形成単結晶部材11の 上下面に接着する際、片面ずつ接着してもよいし、両面同時に接着してもよい。

【0049】

厳密に塗布厚みを制御したい場合には、一方の片面に金属製基板を接着させて接着剤が 硬化した後、もう一方の片面に金属製基板を接着することが好ましい。このように片面ず つ接着する場合、仮固定用接着剤を塗布する面が内部改質層形成単結晶部材11の上面で あっても下面であってもよい。その際、単結晶部材10の非接着面に接着剤が付着して硬 化することを抑制するために、金属イオンを含まない樹脂フィルムをカバーレイヤーとし て用いてもよい。

【0050】

金属製基板としては、平行度および平坦度が得られるのであれば、装置固定用の抜き穴 等の機械加工を行っていても構わない。接着する金属製基板は水中での剥離工程を経るた め、シリコンウェハのコンタミ抑制目的では不動態層を形成するものであることが好まし く、水中剥離のタクトタイム短縮目的では形成する酸化層(酸化皮膜層)が薄い方が好ま しい。

【0051】

内部加工シリコンウェハ割断後に水中剥離を行うため、接着前の金属製基板については、通常行われる金属の脱脂処理を行うことが好ましい。

【0052】

仮固定用接着剤と金属製基板との接着力を高めるには、機械的または化学的方法で金属 表面の酸化層を落として活性な金属面を出すとともに、アンカー効果を得やすい表面構造 にするのが好ましい。上記の化学的方法とは、具体的には薬品を用いた酸洗浄や脱脂処理 などがある。上記の機械的方法とは、具体的にはサンドブラスト、ショットブラストなど が挙げられるが、サンドペーパーで金属製基板の表面を傷つける方法が最も簡便であり、 その粒度は#80~2000が好ましく、金属製基板の表面ダメージを考慮すると#15 0~800がより好ましい。

[0053]

金属製基板の接着後、図6に示したように、金属製基板28uに上方向の力Fuを、金属製基板28dに下方向の力Fdをそれぞれ加える。ここで、改質層12と単結晶部10dとの界面11dよりも、改質層12と単結晶層10uとの界面11uのほうが剥離しやすい。このため、力Fu、Fdによって、図7に示すように、改質層12と単結晶層10uとの界面11uで剥離する。この剥離によって、単結晶層10uを改質層12から剥離してなる薄い単結晶基板10sを得る。

[0054]

カ F u 、 F d を加える手法は特に限定しない。例えば、図 8 に示すように、内部改質層 形成単結晶部材 1 1 の側壁をエッチングして改質層 1 2 に溝 3 6 を形成し、図 9 に示すよ

10

30

20

うに、この溝36に楔状圧入材30(例えばカッター刃)を圧入することで力Fu、Fd を発生させてもよい。また、図10に示すように、内部改質層形成単結晶部材11に角方 向から力Fを加えて、上方向の力成分Fuと下方向の力成分Fdとを発生させてもよい。 【0055】

このようにして得られた単結晶基板10sの剥離面10fは、例えば図11に示すよう に、粗面である。ここで図11は、単結晶基板10sの剥離面10fの光学顕微鏡写真で ある。なお、図11では、写真画像を判りやすくするために、結晶方位面でへき開した面 10Hも一部に生じさせて写している。

[0056]

以上説明したように、本実施形態により、大きなNAの集光レンズ15で、単結晶部材 10 10内の薄い厚み部分にレーザ光Bによるエネルギーを集中させることができる。従って 、単結晶部材10内に、厚みT(レーザ光Bの照射軸BCに沿った長さ)が小さい改質層 (加工領域)12を形成した内部改質層形成単結晶部材11を製造することができる。そ して、改質層12から単結晶層10uを剥離することで薄い単結晶基板10sを製造する ことが容易である。また、このような薄い単結晶基板10sを比較的短時間で容易に製造 することができる。しかも、改質層12の厚みを抑えることで単結晶部材10から多数枚 の単結晶基板10sが得られるので、製品率を向上させることができる。

【0057】

また、改質層12として、レーザ光Bの照射軸BCと平行な多結晶部12pの集合体を 形成している。これにより、改質層12と単結晶層10との剥離が容易である。

【0058】

さらに、改質層12から剥離させる際、界面11u、11dのうち、レーザ光の被照射 側の界面11uから剥離させて剥離面10fを粗面としている。このような粗面化された 剥離面10fを太陽光の被照射面として使用することで、太陽電池に適用する場合の太陽 光の集光効率を高めることができる。

【0059】

また、単結晶基板10sを形成する工程では、表面に酸化層29uを有する金属製基板28uを単結晶層10uの表面に接着して剥離させることで単結晶基板10sを得ている。従って、金属製基板との接着に、通常の半導体製造プロセスで使用される接着剤を用いることができ、アクリル板を接着させる際に用いる強力な接着力を有するシアノアクリレート系接着剤を用いなくて済む。しかも、剥離した後、水に浸けることで接着剤の接着力が大きく低減して剥がれ易くなるので、金属製基板28uから単結晶基板10sを容易に分離させることができる。

【 0 0 6 0 】

なお、本実施形態では、金属製基板28u、28dを内部改質層形成単結晶部材11の 上下面にそれぞれ貼り付けて、金属製基板28u、28dに力を加えて剥離することで単 結晶基板10sを形成することで説明したが、エッチングにより改質層12を除去するこ とで剥離してもよい。

[0061]

また、単結晶部材10はシリコンウェハに限定されるものではなく、シリコンウェハの 40 インゴット、単結晶のサファイア、SiCなどのインゴットやこれから切り出したウェハ 、あるいはこの表面に他の結晶(GaN、GaAs、InPなど)を成長させたエピタキ シャルウェハなどを適用可能である。また、単結晶部材10の面方位は(100)に限ら ず、他の面方位とすることも可能である。

[0062]

<試験例1>

本発明者は、単結晶部材10として鏡面研磨した単結晶のシリコンウェハ10(厚み625µm)を準備した。そして、実施例1として、このシリコンウェハ10をXYステージに載置し、シリコンウェハ10のレーザ光の被照射側の表面10tからの0.34mmの距離に、第2レンズ18として第2平凸レンズ18を配置した。この第2平凸レンズ1

50

8は、曲率半径7.8mm、厚み3.8mm、屈折率1.58のレンズである。また、第 1 レンズ16としてNAが0.55の第1平凸レンズ16を配置した。 [0063]

そして、波長1064nm、繰り返し周波数100kHz、パルス幅60秒、出力1W のレーザ光Bを照射し、第1平凸レンズ16、第2平凸レンズ18を通過させてシリコン ウェハ10内部に改質層12を形成した。シリコンウェハ表面10tから加工領域までの 深さD、つまり改質層12までの深さDは、第1平凸レンズ16とシリコンウェハ表面1 0 t との相互位置を調整することで制御した。改質層12の厚みTは第2平凸レンズ18 とシリコンウェハ表面10tとの相互位置を調整することで制御した。

[0064]

改質層12を形成する際には、Xステージで等速で15mm移動させながらレーザ光B を照射し、次いでYステージで1um送った後これを繰り返すことで15mmx15mm のエリアにレーザ光の内部照射を行うことで改質層12を形成した。この結果、改質層1 2の上側(すなわちレーザ光Bの被照射側)に単結晶層10uと、改質層12の下側に単 結晶部10dとを有する内部改質層形成単結晶部材11が製造された。本実施形態では、 単結晶層10u、単結晶部10dは、改質層12によってシリコンウェハ10が分断され たことにより形成されたものである。

[0065]

この後、改質層12を横断するようにシリコンウェハ10をへき開してへき開面をエッ チングし、光学顕微鏡(走査電子顕微鏡)で観察した。観察されたへき開面の光学顕微鏡 20 「写真を図12に示す。改質層12には1µm弱の幅の多結晶部12pが並んでいることが 確認された。

[0066]

また、実施例 2 として、上記実施条件のうち、 Υ ステージで 1 μ m ではなく 1 0 μ m で 送ることのみ条件を変えて改質層12を形成した。そして、同様にして、改質層12を横 断するようにシリコンウェハ10をへき開してエッチングし、へき開面を光学顕微鏡(走 査電子顕微鏡)で観察した。観察されたへき開面の光学顕微鏡写真を図13に示す。改質 層12には10µm弱の幅の多結晶部12pが並んでいることが確認された。 [0067]

30 また、実施例3として、実施例2のようにレーザ光を照射した後、Χステージで10μ m送った後にYステージで等速で移動させながらレーザ光を照射することを繰り返した。 すなわち、格子状にレーザ光を照射した。そして同様にして、改質層12を横断するよう にシリコンウェハ10をへき開してエッチングし、へき開面を光学顕微鏡(走査電子顕微 鏡)で観察した。改質層12には10µm弱の幅の多結晶部12pが並んでいることが、 実施例2よりもさらにはっきりと確認された。

[0068]

<試験例2>

また、本発明者は、試験例1で用いたシリコンウェハ10と同様のシリコンウェハを用 い、実施例1の実施条件で改質層12を形成してなる内部改質層形成単結晶部材11を製 造した。そして、金属製基板28u、28dを用いて単結晶層10uを剥離し、単結晶基 板10sを得た。この単結晶基板10sの剥離面10fをレーザ共焦点顕微鏡で観察した ところ、図14に示す計測図が得られ、粒径50~100pmの凹凸が剥離面10fに形 成されていることが確認された。ここで、図14では、横軸が凹凸寸法(μm表示)であ り、縦軸が表面粗さ(%表示)である。

[0069]

<試験例3>

本発明者は、改質層12を単結晶層10uから剥離させた後、改質層12の状態を、深 さ方向位置を順次変えて赤外線顕微鏡による透過光観察により測定した。測定で得られた 赤外線顕微鏡写真を図15~図17に示す。図15は改質層12の単結晶層10u側の剥 離面の多結晶粒の状態を示し、図16はそれよりもやや深い位置での多結晶粒の状態を示

[0070]

図15~図17から判るように、レーザ光の被照射側から深さ方向にいくに従い、粒径 が粗くなっていた。

[0071]

< 試験例4>

本発明者は、単結晶のシリコンウェハにレーザ光を照射して上記の改質層12をシリコ ンウェハ内部に形成した。そして、この改質層12について、X線回折(XRD)による 測定を行って結晶性評価を行った。測定で得られた図を図18に示す。図18から判るよ 10 うに、単結晶シリコンが多結晶化していることが確認された。従って、レーザ光の照射に よって溶融、固化のプロセスが生じていることが判明した。

[0072]

<試験例5>

本発明者は、単結晶部材10として両面を鏡面研磨した単結晶のシリコンウェハ10(厚み625μm)を準備した。そして、実施例4として、このシリコンウェハ10をXY ステージに載置し、波長1064nmのパルスレーザ光を照射し、一辺が5mmの平面視 正方形状の改質層12を形成した。そして、このシリコンウェハ(内部改質層形成単結晶 部材)をへき開することで改質層12の断面を露出させ、この断面を走査型電子顕微鏡で 観察した。改質層12の厚みは30µmであった。

[0073]

次いで、この断面のラマン分光スペクトルを測定した。測定で得られたスペクトル図を 図19に示す。改質層12に相当する部分でスペクトルの半値幅が大きく変動しており、 多結晶となっていることが確認された。

[0074]

[第2実施形態]

次に、第2実施形態について説明する。図20は、本実施形態に係る単結晶基板製造方 法および内部改質層形成単結晶部材を説明する上で用いる単結晶部材内部加工装置の模式 的鳥瞰図である。

[0075]

30 本実施形態で用いる単結晶部材内部加工装置69は、上面側に載置された単結晶部材1 0を保持する回転ステージ70と、回転ステージ70の回転数を制御する回転ステージ制 御手段72とを有する基板回転手段74を備えている。そして、単結晶部材内部加工装置 69は、レーザ光源76と、集光レンズ15と、集光レンズ15から回転ステージ70ま での距離を調整する焦点位置調整具(図示せず)とを有する照射装置80を備えている。 さらに、単結晶部材内部加工装置1は、回転ステージ70の回転軸70cと回転ステージ 70の外周との間で、回転ステージ70と集光レンズ15とを相対的に移動させるX方向 移動ステージ84およびY方向移動ステージ86を備えている。

[0076]

本実施形態では、この単結晶部材内部加工装置69を用い、回転ステージ70に単結晶 部材10を載置し、回転ステージ70で単結晶部材10を等速で回転させつつ、第1実施 形態と同様にしてレーザ光Bを照射し、次いでX方向移動ステージ84やY方向移動ステ ージ86で回転ステージ70を移動させて、レーザ光Bの照射位置を回転ステージ70の 半径方向に所定間隔(1µm、5µm、10µmなど)で送った後、照射を繰り返すこと で、単結晶部材10の内部に2次元状の改質層を形成することができる。

[0077]

本実施形態では、レーザ光Bの集光点の移動方向が円状となるので、レーザ光の集光に よって発生する多結晶部がこの円上に位置している。そして、レーザ光Bの照射位置を回 転ステージ70の半径方向に所定間隔で送った後、照射を繰り返すことで、多結晶部を同 心円状に位置させることができる。そして、このような内部改質層形成単結晶部材を製造 し、第1実施形態と同様にして剥離により単結晶基板を製造することができる。

【0078】

なお、例えば正方形状の単結晶部材を、回転ステージ70上に、回転軸70cに対して 対称に、間隔を置いて複数配置してもよい。これにより、レーザ光Bの集光による多結晶 部を、円を部分的に構成する円弧上に配置することができる。

【産業上の利用可能性】

【0079】

本発明により薄い単結晶基板を効率良く形成することができることから、薄く切り出さ れた単結晶基板は、Si基板であれば、太陽電池に応用可能であり、また、GaN系半導 体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなど に応用可能であり、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり 、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野 において適用可能である。 【符号の説明】 【0080】

- 10 単結晶部材、シリコンウェハ
- 10u 単結晶層
- 10d 単結晶部
- 10s 単結晶基板
- 10t 表面
- 10b 表面
- 10f 剥離面
- 11 内部改質層形成単結晶部材
- 11u 界面
- 12 改質層
- 12p 多結晶部
- 15 集光レンズ (レーザ集光手段)
- 28u 金属製基板
- 2.9 u 酸化層
- B レーザ光
- BC 照射軸

20

(12)

【図3】

(13)

【図2】

【図5】

【図6】

【図7】

【図8】

12

10d

【図12】

【図15】

【図16】

【図17】

【図18】

フロントページの続き

- (72)発明者 松尾 利香埼玉県さいたま市北区吉野町1-406-1 信越ポリマー株式会社内
- (72)発明者 池野 順一埼玉県さいたま市桜区下大久保255 国立大学法人埼玉大学内

審査官 岩瀬 昌治

(56)参考文献 特開平09-331077(JP,A) 特開2011-003624(JP,A) 特開2007-142000(JP,A) 国際公開第2010/064997(WO,A1)

(58)調査した分野(Int.Cl., DB名)

B 2 3 K 2 6 / 3 8 B 2 3 K 2 6 / 4 0 H 0 1 L 2 1 / 3 0 4