
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0024275 A1

Grimsrud et al.

US 2017.0024275A1

(43) Pub. Date: Jan. 26, 2017

(54)

(71)

(72)

(73)

(21)

(22)

(63)

APPARATUS AND METHOD TO MANAGE
HIGH CAPACITY STORAGE DEVICES

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Knut Grimsrud, Forest Grove, OR
(US); Jawad Khan, Cornelius, OR
(US); Richard Mangold, Forest Grove,
OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Appl. No.: 15/076,377

Filed: Mar. 21, 2016

Related U.S. Application Data
Continuation of application No. 14/040,651, filed on
Sep. 28, 2013, now Pat. No. 9,292.379.

Publication Classification

(51) Int. Cl.
G06F II/It (2006.01)

(52) U.S. Cl.
CPC G06F II/I004 (2013.01); G06F II/1016

(2013.01)

(57) ABSTRACT

Apparatus, systems, and methods to manage high capacity
memory devices are described. In one example, a controller
comprises logic to receive a write operation comprising
payload data, a namespace identifier (ID) and a first
extended logical block address (LBA), compute a first
system cyclic redundancy check (CRC) using a payload
CRC, the namespace ID and the first extended LBA, store
the first system CRC in association with the first extended
LBA in a local memory, and write the payload data, the first
system CRC, and a truncated LBA derived from the first
extended LBA to a memory. Other examples are also dis
closed and claimed.

CPU(s)
IO

Controller
142

Memory 146

LOCAL MEMORY
130

CPUPACKAGEO

CONTROL HUB 120

MEMORY CONTROLLER
122

MEMORY INTERFACE

124

Memory 150

Memory Device(s) 140

Patent Application Publication Jan. 26, 2017. Sheet 1 of 9 US 2017/0024275 A1

CPU PACKAGE 100

LOCAL MEMORY

130

CONTROL HUB 12

MEMORY CONTROLLER
122 CPU(s)

1 10

MEMORY INTERFACE
124

160

Controller
142

Memory 150

Memory 146

Memory Device(s) 140

FIG. 1

IMPLEMENTERRORROUTINE
265

Patent Application Publication Jan. 26, 2017. Sheet 2 of 9

RECEIVE WRITE OPERATION
210

COMPUTE/STORE FIRST SYSTEM CRC
215

STORE PAYLOAD DATA AND EXTENDED LBA
IN LOCAL MEMORY

220

WRITE PAYLOAD DATA, FIRST SYSTEM CRC,
AND TRUNCATED LBA TO STORAGEMEDIA

225

FIG. 2A
RECEIVE READ OPERATION

240

RETRIEVE PAYLOAD DATA, FIRST SYSTEM
CRC, AND TRUNCATED LBA FROMMEDIA

245

DETERMINE SECOND EXTENDED LIBA
250

COMPUTE SECOND SYSTEMCRC
255

FIG. 2B

RETURN PAYLOAD DATA
270

US 2017/0024275 A1

Patent Application Publication Jan. 26, 2017. Sheet 3 of 9 US 2017/0024275 A1

310

-NAMESPACE ID 310
-PAYLOAD CRC 315 syst EXT

420 - LBA 34:3) 45
&- LDA 2:0

FIG. 3
410 y

415 420 425 430

A & A. A.
/ Y/ y s/

SYSTEM
CRC t PAD
31:0 a o

HAMMING
PAYLOAD DATA PARITY

SECTOR
(512B/52OB/528B)

435

SYSTEM TRUNCATED
CRC LBA ECC PARITY BITS
31:0 34:3

PAYLOAD DATA
SECTOR

(512B/520B/528B)
435

FIG. 4B

Patent Application Publication Jan. 26, 2017. Sheet 4 of 9 US 2017/0024275 A1

MEMORY 150

BLOCK 151 510

SECTOR O 5

SECTOR 1520

SECTOR 2520

SECTOR 3520

SECTOR 45

SECTOR 5 520

SECTOR 6520

SECTOR 7 520

530

BLOCKN 510

SECTOR O 520

SECTOR 1520

SECTOR 25

SECTOR 3520

SECTOR 4520

SECTOR 5 520

SECTOR 65

SECTOR 7 520

—H
520 O

5

22 O
FIG. 5

Patent Application Publication Jan. 26, 2017. Sheet 5 of 9 US 2017/0024275 A1

/ 600

PROCESSOR PROCESSOR

604

MEMORY MEMORY
CONTROLLER
60 612

DISPLAY
616.

PERIPHERAL - 622
BRIDGE ^

624
AUDIO DISK NETWORK
DEVICE DRIVE INTERFACE
626 628 DEVICE

630

FIG 6 NETWORK
603

Patent Application Publication Jan. 26, 2017. Sheet 6 of 9 US 2017/0024275 A1

700

/ PROCESSOR702-1

INTERCONNECTION
704

SIIARED
ROUTER CONTROL X CACHE

710 UNIT 708
720

MEMORY
714

PROCESSOR 702-2

PROCESSOR702-N

PROCESSOR 702-3

FIG. 7

Patent Application Publication Jan. 26, 2017. Sheet 7 of 9 US 2017/0024275 A1

PROCESSOR CORE 706

FETCHUNIT
802 SCHEDULE

UNIT
806

REGISTER(S) L1 CACHE EXECUTION
UNIT T 16 816 808

- - - - - -
CONTROL RETIREMENT

UNIT
810

- - - - - -
CONTROL
UNIT
720

704/712 SHARED CACHE MEMORY
708 714

FIG. 8

Patent Application Publication Jan. 26, 2017. Sheet 8 of 9 US 2017/0024275 A1

SOC PACKAGE902

CPU CORE(s) GPUCORE(s)
920 930

MEMORY MEMORY
CONTROLLER

942 960

If()
INTERTACE

940

I/O DEVICE(s)
970

FIG. 9

Patent Application Publication Jan. 26, 2017. Sheet 9 of 9 US 2017/0024275 A1

1000

1006 — 1008
PROCESSOR 1004 ^

MEMORY CORE(S) 106 MEMORY
1010 1012

1026 —

1022

1030

1037 — 1032
GRAPHICS \

1034 \
\ 1040 8 1036 1041 /

1042 1043 1047 /
/

KEYBOARD DATA STORAGE 1048
MOUSE 1046
1045

w

1049 /

FIG. 10

US 2017/0024275 A1

APPARATUS AND METHOD TO MANAGE
HGH CAPACITY STORAGE DEVICES

PRIORITY INFORMATION

0001. This application is a continuation of U.S. patent
application Ser. No. 14/040,651, filed. Sep. 28, 2013, now
issued as U.S. Pat. No. 9,292.379, which is incorporated
herein by reference in its entirety.

FIELD

0002 The present disclosure generally relates to the field
of electronics. More particularly, aspects generally relate to
apparatus and methods to manage high capacity memory.

BACKGROUND

0003 Solid state drive (SSD) memory devices provide
high speed, nonvolatile memory capacity without the need
for moving parts. SSD memory devices commonly comprise
memory and a local controller, and may be coupled to a
memory system of an electronic device. SSD technology is
advancing rapidly, which will enable the introduction of
high capacity SSD memory devices. Accordingly, tech
niques to manage high capacity memory devices may find
utility, e.g., in memory systems for electronic devices.

BRIEF DESCRIPTION OF THE DRAWINGS

0004. The detailed description is provided with reference
to the accompanying figures. In the figures, the left-most
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same
reference numbers in different figures indicates similar or
identical items.
0005 FIG. 1 is a schematic, block diagram illustration of
components of an apparatus in which high capacity memory
devices may be implemented in accordance with various
examples discussed herein.
0006 FIGS. 2A-2B is a flowchart illustrating operations
in methods to manage high capacity memory devices in
accordance with various examples discussed herein.
0007 FIG. 3 is a schematic illustration of a cyclical
redundancy check (CRC) calculation in a methods to man
age high capacity memory devices in accordance with
various examples discussed herein.
0008 FIGS. 4A-4B and FIG. 5 are schematic illustrations
of data storage structured in Systems to manage high capac
ity memory devices in accordance with various examples
discussed herein.
0009 FIGS. 6-10 are schematic, block diagram illustra
tions of electronic devices which may be adapted to imple
ment methods to reduce power delivery noise for partial
writes in accordance with various examples discussed
herein.

DETAILED DESCRIPTION

0010. In the following description, numerous specific
details are set forth in order to provide a thorough under
standing of various examples. However, various examples
may be practiced without the specific details. In other
instances, well-known methods, procedures, components,
and circuits have not been described in detail so as not to
obscure the particular examples. Further, various aspects of
examples may be performed using various means, such as

Jan. 26, 2017

integrated semiconductor circuits (“hardware'), computer
readable instructions organized into one or more programs
(“software'), or some combination of hardware and soft
ware. For the purposes of this disclosure reference to “logic'
shall mean either hardware, Software, or some combination
thereof.
0011 FIG. 1 is a schematic, block diagram illustration of
components of an apparatus in which high capacity memory
devices may be implemented in accordance with various
examples discussed herein. Referring to FIG. 1, in some
examples a central processing unit (CPU) package 100
which may comprise one or more CPUs 110 coupled to a
control hub 120 and a local memory 130. Control hub 120
comprises a memory controller 122 and a memory interface
124. In some examples the control hub 120 may be inte
grated with the processor(s) 110.
0012 Memory interface 124 is coupled to one or more
remote memory devices 140 by a communication bus 160.
Memory device 140 may comprise a controller 142 which
may comprise local memory 146 and memory 150. In
various examples, at least some of the memory 150 may be
implemented using a Solid state drive (SSD) comprising
nonvolatile memory, e.g., phase change memory, NAND
(flash) memory, ferroelectric random-access memory (Fe
TRAM), nanowire-based non-volatile memory, memory that
incorporates memristor technology, a static random access
memory (SRAM), three dimensional (3D) cross point
memory Such as phase change memory (PCM), spin-transfer
torque memory (STT-RAM) or NAND memory. The spe
cific configuration of the memory 150 in the memory
device(s) 140 is not critical. In such embodiments the
memory interface may comprise a Serial ATA interface, a
PCI Express (PCIE) to 100 interface, or the like.
0013 As described above, in some examples logic in the
memory controller 122 manages write operations to memory
device(s) 140 on behalf of applications which consume
memory 150. More particularly, in some examples logic in
the memory controller 122 receives memory access requests
from applications executing on CPU(s) 110 and implements
memory operations directed to memory devices 140.
0014. In some examples described herein, the memory
controller 142 comprising logic which allows the controller
142 to extend a 32-bit memory mapping scheme, ordinarily
capable of mapping up to two terabytes (2TB) of data stored
in sectors that measure between 512 and 528 bytes, to map
up to 8 terabytes (8 TB) of data, which requires a 35-bit
mapping scheme. By cross-referencing a Logical Block
Adress (LBA) of a sector referenced in a memory operation
with a block address in an indirection table maintained by
the controller 142, the controller 142 can reconstruct a 35-bit
LBA from a 32-bit LBA. This allows the controller 142 to
store a 32-bit LBA in the memory 150, thereby saving
memory space for error correction control (ECC) bits or the
like.
00.15 Operations implemented by controller 142 will be
described with reference to FIGS. 2A-2B and 3-5. Referring
first to FIG. 2A, at operation 210 the memory controller 142
receives data in a write operation. By way of example, in
operation 210 memory controller 122 receives a request
from a host, e.g., from an application executing on CPU 110
or another processor coupled to control hub 120, to write
data to memory device(s) 140. The write request from
memory controller 122 may identify a namespace and a
logical block address (LBA) for the write operation and may

US 2017/0024275 A1

include data, sometimes referred to as a payload, to be
written to the memory device(s) 140. Memory controller
122 may comprise one or more mapping tables which
translate logical block address (LBA) associated with the
write operation received from the controller 122 to a physi
cal address in the memory device(s) 140.
0016. At operation 215 the controller 142 computes a first
system cyclic redundancy check (CRC) 415 for the data
received in the write operation. Referring to FIG. 3, in one
example the first system CRC 415 is computed by applying
an XOR operation to the namespace ID 310, the payload
CRC 315, and the logical block address 420 received with
the write operation. In some examples described herein the
LBA may be a 35-bit LBA, which may be referred to herein
as an extended LBA.

0017 Referring to FIGS. 2A and 4A, at operation 220 the
controller 142 stores the first system CRC 415, the extended
LBA 420, and the payload data 435 in local memory 146.
Controller 142 may also store a hamming parity code 430
with the data to local memory. Any remaining space may be
padded, e.g., with Zeros or ones.
0018 Referring now to FIGS. 2A and 4B, at operation
225 the controller 142 writes the first system CRC 415 and
the payload data 435 to the memory 150 in memory device
(s) 140. The controller 142 writes a truncated LBA 460 to the
memory 150. In some examples, the controller 142 gener
ates the truncated LBA 460 by dropping the three least
significant bits (i.e., bits 2:0) from the extended LBA 420
stored on local memory 146. This provides three extra bits
which may be filled with ECC parity bits 465 to enhance
ECC capabilities, in the storage media.
0019 FIG. 2B presents operations implemented by the
controller 142 in response to a read operation from memory
controller 122. Referring to FIG. 2B, at operation 240 the
controller 122 receives a read operation from memory
controller 122. The read operation comprises an extended
LBA 420 which identifies the logical block in which the
requested data resides on the memory 150.
0020. At operation 245 the controller 122 retrieves the
payload data 435, the system CRC 415, and the truncated
LBA 460 from the memory 150.
0021. At operation 250 the controller 122 determines an
extended LBA from the truncated LBA 460 retrieved from
the memory 150. In one example the controller 122 deter
mines the least three significant bits of the extended LBA by
cross-referencing an indirection table maintained by the
controller 122. FIG. 5 is a schematic illustration of a
mapping of storage media an indirection table maintained by
controller 122.

0022. By way of an example, referring to FIG. 5, memory
150 may be mapped into logical blocks 510, each of which
is dimensioned to hold eight (8) sectors and associated
overhead data, as illustrated in FIG. 4B. The indirection
table includes a pointer to the memory location of the
beginning of each block 510. The controller 122 can use the
LBA received with a read request to cross reference the
indirection table to obtain the memory location of the
beginning of the block 510 which includes the sector
requested in the read operation. Then can count down the
sectors to determine where the sector falls in the block and
append the binary number corresponding to the number of
the sector to the truncated LBA to form a second extended
LBA.

Jan. 26, 2017

0023 For example, the indirection system may be con
figured with blocks 510 that are approximately 4K bytes in
length such that each block 510 can hold eight sectors
configured as depicted in FIG. 4B. If the controller 122
receives a read operation directed to the LBA identified by
reference numeral 530, then the controller 122 can cross
reference the indirection table to obtain the location of the
block 510, then can determine the sector number. In this
example the LBA references sector 5 in the block 510 so the
controller 122 will append a binary 5 (101) to the truncated
LBA 460 retrieved from the memory 150 to form a second
extended LBA.
(0024. Referring back to FIG. 2B, at operation 255 the
controller 122 computes a second system cyclic redundancy
check (CRC) value using a payload data 435, the namespace
ID 315 and the second extended LBA determined in opera
tion 250. For example, the second system CRC may be
determined using the CRC function illustrated in FIG. 3A.
(0025. At operation 260 it is determined whether the
second system CRC computed in operation 255 matches the
first system CRC 415 retrieved with the data. If the second
system CRC computed in operation 255 does not match the
first system CRC 415 then control passes to operation 265
and the controller 122 implements an error routine. By way
of example, controller 122 may return an error to memory
controller 142. By contrast, if the second system CRC
computed in operation 255 matches the first system CRC
415 then control passes to operation 270 and the controller
122 returns the payload data 435 read from the storage
media.
0026. Thus, the structure and operations described herein
enable a controller 122 to manage a high capacity memory
device. More particularly, the structure and operations
described herein enable controller 122 to store a truncated
LBA 460 in storage media and leverage information in an
indirection table to convert the truncated LBA to an
extended LBA which can be used in a CRC calculation.

0027. As described above, in some examples the elec
tronic device may be embodied as a computer system. FIG.
6 illustrates a block diagram of a computing system 600 in
accordance with an example. The computing system 600
may include one or more central processing unit(s) (CPUs)
602 or processors that communicate via an interconnection
network (or bus) 604. The processors 602 may include a
general purpose processor, a network processor (that pro
cesses data communicated over a computer network 603), or
other types of a processor (including a reduced instruction
set computer (RISC) processor or a complex instruction set
computer (CISC)). Moreover, the processors 602 may have
a single or multiple core design. The processors 602 with a
multiple core design may integrate different types of pro
cessor cores on the same integrated circuit (IC) die. Also, the
processors 602 with a multiple core design may be imple
mented as symmetrical or asymmetrical multiprocessors. In
an example, one or more of the processors 602 may be the
same or similar to the processors 102 of FIG. 1. For
example, one or more of the processors 602 may include the
control unit 120 discussed with reference to FIGS. 1-3. Also,
the operations discussed with reference to FIGS. 3-5 may be
performed by one or more components of the system 600.
0028. A chipset 606 may also communicate with the
interconnection network 604. The chipset 606 may include
a memory control hub (MCH) 608. The MCH 608 may
include a memory controller 610 that communicates with a

US 2017/0024275 A1

memory 612 (which may be the same or similar to the
memory 130 of FIG. 1). The memory 412 may store data,
including sequences of instructions, that may be executed by
the CPU 602, or any other device included in the computing
system 600. In one example, the memory 612 may include
one or more volatile storage (or memory) devices Such as
random access memory (RAM), dynamic RAM (DRAM),
synchronous DRAM (SDRAM), static RAM (SRAM), or
other types of storage devices. Nonvolatile memory may
also be utilized such as a hard disk. Additional devices may
communicate via the interconnection network 604. Such as
multiple CPUs and/or multiple system memories.
0029. The MCH 608 may also include a graphics inter
face 614 that communicates with a display device 616. In
one example, the graphics interface 614 may communicate
with the display device 616 via an accelerated graphics port
(AGP). In an example, the display 616 (such as a flat panel
display) may communicate with the graphics interface 614
through, for example, a signal converter that translates a
digital representation of an image stored in a storage device
Such as video memory or system memory into display
signals that are interpreted and displayed by the display 616.
The display signals produced by the display device may pass
through various control devices before being interpreted by
and Subsequently displayed on the display 616.
0030. A hub interface 618 may allow the MCH 608 and
an input/output control hub (ICH) 620 to communicate. The
ICH 620 may provide an interface to I/O device(s) that
communicate with the computing system 600. The ICH 620
may communicate with a bus 622 through a peripheral
bridge (or controller) 624. Such as a peripheral component
interconnect (PCI) bridge, a universal serial bus (USB)
controller, or other types of peripheral bridges or controllers.
The bridge 624 may provide a data path between the CPU
602 and peripheral devices. Other types of topologies may
be utilized. Also, multiple buses may communicate with the
ICH 620, e.g., through multiple bridges or controllers.
Moreover, other peripherals in communication with the ICH
620 may include, in various examples, integrated drive
electronics (IDE) or small computer system interface (SCSI)
hard drive(s), USB port(s), a keyboard, a mouse, parallel
port(s), serial port(s), floppy disk drive(s), digital output
Support (e.g., digital video interface (DVI)), or other
devices.

0031. The bus 622 may communicate with an audio
device 626, one or more disk drive(s) 628, and a network
interface device 630 (which is in communication with the
computer network 603). Other devices may communicate
via the bus 622. Also, various components (such as the
network interface device 630) may communicate with the
MCH 608 in some examples. In addition, the processor 602
and one or more other components discussed herein may be
combined to form a single chip (e.g., to provide a System on
Chip (SOC)). Furthermore, the graphics accelerator 616 may
be included within the MCH 608 in other examples.
0032. Furthermore, the computing system 600 may
include Volatile and/or nonvolatile memory (or storage). For
example, nonvolatile memory may include one or more of
the following: read-only memory (ROM), programmable
ROM (PROM), erasable PROM (EPROM), electrically
EPROM (EEPROM), a disk drive (e.g., 628), a floppy disk,
a compact disk ROM (CD-ROM), a digital versatile disk
(DVD), flash memory, a magneto-optical disk, or other types

Jan. 26, 2017

of nonvolatile machine-readable media that are capable of
storing electronic data (e.g., including instructions).
0033 FIG. 7 illustrates a block diagram of a computing
system 700, according to an example. The system 700 may
include one or more processors 702-1 through 702-N (gen
erally referred to herein as “processors 702 or “processor
702). The processors 702 may communicate via an inter
connection network or bus 704. Each processor may include
various components some of which are only discussed with
reference to processor 702-1 for clarity. Accordingly, each of
the remaining processors 702-2 through 702-N may include
the same or similar components discussed with reference to
the processor 702-1.
0034. In an example, the processor 702-1 may include
one or more processor cores 706-1 through 706-M (referred
to herein as “cores 706 or more generally as “core 706’),
a shared cache 708, a router 710, and/or a processor control
logic or unit 720. The processor cores 706 may be imple
mented on a single integrated circuit (IC) chip. Moreover,
the chip may include one or more shared and/or private
caches (such as cache 708), buses or interconnections (such
as a bus or interconnection network 712), memory control
lers, or other components.
0035. In one example, the router 710 may be used to
communicate between various components of the processor
702-1 and/or system 700. Moreover, the processor 702-1
may include more than one router 710. Furthermore, the
multitude of routers 710 may be in communication to enable
data routing between various components inside or outside
of the processor 702-1.
0036. The shared cache 708 may store data (e.g., includ
ing instructions) that are utilized by one or more components
of the processor 702-1, such as the cores 706. For example,
the shared cache 708 may locally cache data stored in a
memory 714 for faster access by components of the proces
sor 702. In an example, the cache 708 may include a
mid-level cache (such as a level 2 (L2), a level 3 (L3), a level
4 (L4), or other levels of cache), a last level cache (LLC),
and/or combinations thereof Moreover, various components
of the processor 702-1 may communicate with the shared
cache 708 directly, through a bus (e.g., the bus 712), and/or
a memory controller or hub. As shown in FIG. 7, in some
examples, one or more of the cores 706 may include a level
1 (L1) cache 716-1 (generally referred to herein as “L1
cache 716'). In one example, the control unit 720 may
include logic to implement the operations described above
with reference to the memory controller 122 in FIG. 2.
0037 FIG. 8 illustrates a block diagram of portions of a
processor core 706 and other components of a computing
system, according to an example. In one example, the arrows
shown in FIG. 8 illustrate the flow direction of instructions
through the core 706. One or more processor cores (such as
the processor core 706) may be implemented on a single
integrated circuit chip (or die) Such as discussed with
reference to FIG. 7. Moreover, the chip may include one or
more shared and/or private caches (e.g., cache 708 of FIG.
7), interconnections (e.g., interconnections 704 and/or 112
of FIG. 7), control units, memory controllers, or other
components.
0038. As illustrated in FIG. 8, the processor core 706 may
include a fetch unit 802 to fetch instructions (including
instructions with conditional branches) for execution by the
core 706. The instructions may be fetched from any storage
devices such as the memory 714. The core 706 may also

US 2017/0024275 A1

include a decode unit 804 to decode the fetched instruction.
For instance, the decode unit 804 may decode the fetched
instruction into a plurality of uops (micro-operations).
0039. Additionally, the core 706 may include a schedule
unit 806. The schedule unit 806 may perform various
operations associated with storing decoded instructions
(e.g., received from the decode unit 804) until the instruc
tions are ready for dispatch, e.g., until all source values of a
decoded instruction become available. In one example, the
schedule unit 806 may schedule and/or issue (or dispatch)
decoded instructions to an execution unit 808 for execution.
The execution unit 808 may execute the dispatched instruc
tions after they are decoded (e.g., by the decode unit 804)
and dispatched (e.g., by the schedule unit 806). In an
example, the execution unit 808 may include more than one
execution unit. The execution unit 808 may also perform
various arithmetic operations such as addition, Subtraction,
multiplication, and/or division, and may include one or more
an arithmetic logic units (ALUs). In an example, a co
processor (not shown) may perform various arithmetic
operations in conjunction with the execution unit 808.
0040. Further, the execution unit 808 may execute
instructions out-of-order. Hence, the processor core 706 may
be an out-of-order processor core in one example. The core
706 may also include a retirement unit 810. The retirement
unit 810 may retire executed instructions after they are
committed. In an example, retirement of the executed
instructions may result in processor State being committed
from the execution of the instructions, physical registers
used by the instructions being de-allocated, etc.
0041. The core 706 may also include a bus unit 714 to
enable communication between components of the proces
Sor core 706 and other components (such as the components
discussed with reference to FIG. 8) via one or more buses
(e.g., buses 804 and/or 812). The core 706 may also include
one or more registers 816 to store data accessed by various
components of the core 706 (such as values related to power
consumption state settings).
0042. Furthermore, even though FIG. 7 illustrates the
control unit 720 to be coupled to the core 706 via intercon
nect 812, in various examples the control unit 720 may be
located elsewhere such as inside the core 706, coupled to the
core via bus 704, etc.
0043. In some examples, one or more of the components
discussed herein can be embodied as a System On Chip
(SOC) device. FIG. 9 illustrates a block diagram of an SOC
package in accordance with an example. As illustrated in
FIG. 9, SOC 902 includes one or more Central Processing
Unit (CPU) cores 920, one or more Graphics Processor Unit
(GPU) cores 930, an Input/Output (I/O) interface 940, and a
memory controller 942. Various components of the SOC
package 902 may be coupled to an interconnect or bus Such
as discussed herein with reference to the other figures. Also,
the SOC package 902 may include more or less components,
such as those discussed herein with reference to the other
figures. Further, each component of the SOC package 902
may include one or more other components, e.g., as dis
cussed with reference to the other figures herein. In one
example, SOC package 902 (and its components) is pro
vided on one or more Integrated Circuit (IC) die, e.g., which
are packaged into a single semiconductor device.
0044 As illustrated in FIG. 9, SOC package 902 is
coupled to a memory 960 (which may be similar to or the
same as memory discussed herein with reference to the other

Jan. 26, 2017

figures) via the memory controller 942. In an example, the
memory 960 (or a portion of it) can be integrated on the SOC
package 902.
0045. The I/O interface 94.0 may be coupled to one or
more I/O devices 970, e.g., via an interconnect and/or bus
such as discussed herein with reference to other figures. I/O
device(s) 970 may include one or more of a keyboard, a
mouse, a touchpad, a display, an image/video capture device
(such as a camera or camcorder/video recorder), a touch
screen, a speaker, or the like.
0046 FIG. 10 illustrates a computing system 1000 that is
arranged in a point-to-point (PtP) configuration, according
to an example. In particular, FIG. 10 shows a system where
processors, memory, and input/output devices are intercon
nected by a number of point-to-point interfaces. The opera
tions discussed with reference to FIG. 2 may be performed
by one or more components of the system 1000.
0047. As illustrated in FIG. 10, the system 1000 may
include several processors, of which only two, processors
1002 and 1004 are shown for clarity. The processors 1002
and 1004 may each include a local memory controller hub
(MCH) 1006 and 1008 to enable communication with
memories 1010 and 1012. MCH 1006 and 1008 may include
the memory controller 120 and/or logic of FIG. 1 in some
examples.
0048. In an example, the processors 1002 and 1004 may
be one of the processors 702 discussed with reference to
FIG. 7. The processors 1002 and 1004 may exchange data
via a point-to-point (PtP) interface 1014 using PtP interface
circuits 1016 and 1018, respectively. Also, the processors
1002 and 1004 may each exchange data with a chipset 1020
via individual PtP interfaces 1022 and 1024 using point-to
point interface circuits 1026, 1028, 1030, and 1032. The
chipset 1020 may further exchange data with a high-perfor
mance graphics circuit 1034 via a high-performance graph
ics interface 1036, e.g., using a PtP interface circuit 1037.
0049. As shown in FIG. 10, one or more of the cores 106
and/or cache 108 of FIG. 1 may be located within the
processors 1002 and 1004. Other examples, however, may
exist in other circuits, logic units, or devices within the
system 1000 of FIG. 10. Furthermore, other examples may
be distributed throughout several circuits, logic units, or
devices illustrated in FIG. 10.
0050. The chipset 1020 may communicate with a bus
1040 using a point-to-point PtP interface circuit 1041. The
bus 1040 may have one or more devices that communicate
with it, such as a bus bridge 1042 and I/O devices 1043. Via
a bus 1044, the bus bridge 1043 may communicate with
other devices such as a keyboard/mouse 1045, communica
tion devices 1046 (such as modems, network interface
devices, or other communication devices that may commu
nicate with the computer network 803), audio I/O device,
and/or a data storage device 1048. The data storage device
1048 (which may be a hard disk drive or a NAND flash
based solid state drive) may store code 1049 that may be
executed by the processors 1002 and/or 1004.
0051. The following examples pertain to further
examples.
0.052 Example 1 is a controller comprising logic to
receive a write operation comprising payload data, a
namespace identifier (ID) and a first extended logical block
address (LBA), compute a first system cyclic redundancy
check (CRC) using a payload CRC, the namespace ID and
the first extended LBA, store the first system CRC in

US 2017/0024275 A1

association with the first extended LBA in a local memory,
and write the payload data, the first system CRC, and a
truncated LBA derived from the first extended LBA to a
memory.
0053. In Example 2, the subject matter of Example 1 can
optionally include an arrangement in which the first
extended LBA maps to a data sector on the memory, the
memory is mapped into blocks which contain eight data
sectors, and the truncated LBA written to the memory omits
the three least significant bits of the first extended LBA.
0054. In Example 3, the subject matter of any one of
Examples 1-2 can optionally include an arrangement in
which
0055. In Example 4, the subject matter of any one of
Examples 1-3 can optionally include logic to receive a read
operation comprising the first extended LBA, retrieve the
payload data, the first system CRC, and the truncated LBA
from the memory, and determine a second extended LBA
from the truncated LBA.
0056. In Example 5, the subject matter of any one of
Examples 1-4 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
the payload data, the namespace ID and the second extended
LBA and implement an error routine when the second
system CRC does not match the first system CRC.
0057. In Example 6, the subject matter of any one of
Examples 1-5 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
a payload data, the namespace ID and the second extended
LBA and return the payload data when the second system
CRC matches the first system CRC.
0058 Example 7 is an apparatus, comprising a non
Volatile memory, and a controller coupled to the memory
and comprising logic to receive a write operation comprising
payload data, a namespace identifier (ID) and a first
extended logical block address (LBA), compute a first
system cyclic redundancy check (CRC) using a payload
CRC, the namespace ID and the first extended LBA, store
the first system CRC in association with the first extended
LBA in a local memory, and write the payload data, the first
system CRC, and a truncated LBA derived from the first
extended LBA to a memory.
0059. In Example 8, the subject matter of Example 7 can
optionally include an arrangement in which the first
extended LBA maps to a data sector on the memory, the
memory is mapped into blocks which contain eight data
sectors, and the truncated LBA written to the memory omits
the three least significant bits of the first extended LBA.
0060. In Example 9, the subject matter of any one of
Examples 7-8 can optionally include an arrangement in
which

0061. In Example 10, the subject matter of any one of
Examples 7-9 can optionally include logic to receive a read
operation comprising the first extended LBA, retrieve the
payload data, the first system CRC, and the truncated LBA
from the memory, and determine a second extended LBA
from the truncated LBA.

0062. In Example 11, the subject matter of any one of
Examples 7-10 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
the payload data, the namespace ID and the second extended
LBA and implement an error routine when the second
system CRC does not match the first system CRC.

Jan. 26, 2017

0063. In Example 12, the subject matter of any one of
Examples 7-11 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
a payload data, the namespace ID and the second extended
LBA and return the payload data when the second system
CRC matches the first system CRC.
0064. Example 13 is an electronic device, comprising at
least one processor, and at least one memory device com
prising a memory, and a controller coupled to the memory
and comprising logic to receive a write operation comprising
payload data, a namespace identifier (ID) and a first
extended logical block address (LBA). compute a first
system cyclic redundancy check (CRC) using a payload
CRC, the namespace ID and the first extended LBA, store
the first system CRC in association with the first extended
LBA in a local memory, and write the payload data, the first
system CRC, and a truncated LBA derived from the first
extended LBA to a memory.
0065. In Example 14, the subject matter of Example 13
can optionally include an arrangement in which the first
extended LBA maps to a data sector on the memory, the
memory is mapped into blocks which contain eight data
sectors, and the truncated LBA written to the memory omits
the three least significant bits of the first extended LBA.
0066. In Example 15, the subject matter of any one of
Examples 13-14 can optionally include an arrangement in
which

0067. In Example 16, the subject matter of any one of
Examples 13-15 can optionally include logic to receive a
read operation comprising the first extended LBA, retrieve
the payload data, the first system CRC, and the truncated
LBA from the memory, and determine a second extended
LBA from the truncated LBA.

0068. In Example 17, the subject matter of any one of
Examples 13-16 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
the payload data, the namespace ID and the second extended
LBA and implement an error routine when the second
system CRC does not match the first system CRC.
0069. In Example 18, the subject matter of any one of
Examples 13-17 can optionally include logic to compute a
second system cyclic redundancy check (CRC) value using
a payload data, the namespace ID and the second extended
LBA and return the payload data when the second system
CRC matches the first system CRC.
0070. In various examples, the operations discussed
herein, e.g., with reference to FIGS. 1-10, may be imple
mented as hardware (e.g., circuitry), software, firmware,
microcode, or combinations thereof, which may be provided
as a computer program product, e.g., including a tangible
(e.g., non-transitory) machine-readable or computer-read
able medium having stored thereon instructions (or software
procedures) used to program a computer to perform a
process discussed herein. Also, the term “logic' may
include, by way of example, Software, hardware, or combi
nations of software and hardware. The machine-readable
medium may include a storage device such as those dis
cussed herein.

0071 Reference in the specification to “one example' or
“an example” means that a particular feature, structure, or
characteristic described in connection with the example may
be included in at least an implementation. The appearances

US 2017/0024275 A1

of the phrase “in one example' in various places in the
specification may or may not be all referring to the same
example.
0072 Also, in the description and claims, the terms
“coupled and “connected, along with their derivatives,
may be used. In some examples, "connected may be used
to indicate that two or more elements are in direct physical
or electrical contact with each other. “Coupled may mean
that two or more elements are in direct physical or electrical
contact. However, “coupled may also mean that two or
more elements may not be in direct contact with each other,
but may still cooperate or interact with each other.
0073. Thus, although examples have been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that claimed Subject matter
may not be limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as sample
forms of implementing the claimed Subject matter.

1. A controller comprising logic to:
receive a write operation comprising payload data, a

namespace identifier (ID) and a first extended logical
block address (LBA);

compute a first system cyclic redundancy check (CRC)
using a payload CRC, the namespace ID and the first
extended LBA;

store the first system CRC in association with the first
extended LBA in a local memory; and

write the payload data, the first system CRC, and a
truncated LBA derived from the first extended LBA to
a memory.

2. The controller of claim 1, wherein:
the first extended LBA maps to a data sector on the
memory;

the memory is mapped into blocks which contain eight
data sectors; and

the truncated LBA written to the memory omits the three
least significant bits of the first extended LBA.

3. The controller of claim 2, wherein:
the first extended LBA maps to a data sector that measures

between 512 bytes and 528 bytes; and
the memory is mapped into blocks that measure approxi

mately 4 kilobytes.
4. The controller of claim 1, further comprising logic to
receive a read operation comprising the first extended
LBA:

retrieve the payload data, the first system CRC, and the
truncated LBA from the memory; and

determine a second extended LBA from the truncated
LBA.

5. The controller of claim 4, further comprising logic to:
compute a second system cyclic redundancy check (CRC)

value using the payload data, the namespace ID and the
second extended LBA; and

implement an error routine when the second system CRC
does not match the first system CRC.

6. The controller of claim 4, further comprising logic to:
compute a second system cyclic redundancy check (CRC)

value using a payload data, the namespace ID and the
second extended LBA; and

return the payload data when the second system CRC
matches the first system CRC.

Jan. 26, 2017

7. An apparatus, comprising:
a non-volatile memory; and
a controller coupled to the memory and comprising logic

tO:
receive a write operation comprising payload data, a

namespace identifier (ID) and a first extended logical
block address (LBA);

compute a first system cyclic redundancy check (CRC)
using a payload CRC, the namespace ID and the first
extended LBA;

store the first system CRC in association with the first
extended LBA in a local memory; and

write the payload data, the first system CRC, and a
truncated LBA derived from the first extended LBA
to a memory.

8. The apparatus of claim 7, wherein:
the first extended LBA maps to a data sector on the

memory;
the memory is mapped into blocks which contain eight

data sectors; and
the truncated LBA written to the memory omits the three

least significant bits of the first extended LBA.
9. The apparatus of claim 8, wherein:
the first extended LBA maps to a data sector that measures

between 512 bytes and 528 bytes; and
the memory is mapped into blocks that measure approxi

mately 4 kilobytes.
10. The apparatus of claim 7, further comprising logic to
receive a read operation comprising the first extended
LBA:

retrieve the payload data, the first system CRC, and the
truncated LBA from the memory; and

determine a second extended LBA from the truncated
LBA.

11. The apparatus of claim 10, further comprising logic to:
compute a second system cyclic redundancy check (CRC)

value using the payload data, the namespace ID and the
second extended LBA; and

implement an error routine when the second system CRC
does not match the first system CRC.

12. The apparatus of claim 10, further comprising logic to:
compute a second system cyclic redundancy check (CRC)

value using a payload data, the namespace ID and the
second extended LBA; and

return the payload data when the second system CRC
matches the first system CRC.

13. An electronic device, comprising:
at least one processor; and
at least one memory device comprising a memory; and
a controller coupled to the memory and comprising logic

tO:
receive a write operation comprising payload data, a

namespace identifier (ID) and a first extended logical
block address (LBA);

compute a first system cyclic redundancy check (CRC)
using a payload CRC, the namespace ID and the first
extended LBA;

store the first system CRC in association with the first
extended LBA in a local memory; and

write the payload data, the first system CRC, and a
truncated LBA derived from the first extended LBA
to a memory.

14. The electronic device of claim 13, wherein:
the first extended LBA maps to a data sector on the

memory;

US 2017/0024275 A1

the memory is mapped into blocks which contain eight
data sectors; and

the truncated LBA written to the memory omits the three
least significant bits of the first extended LBA.

15. The electronic device of claim 14, wherein:
the first extended LBA maps to a data sector that measures

between 512 bytes and 528 bytes; and
the memory is mapped into blocks that measure approxi

mately 4 kilobytes.
16. The electronic device of claim 13, further comprising

logic to
receive a read operation comprising the first extended
LBA:

retrieve the payload data, the first system CRC, and the
truncated LBA from the memory; and

determine a second extended LBA from the truncated
LBA.

17. The electronic device of claim 16, further comprising
logic to:

compute a second system cyclic redundancy check (CRC)
value using the payload data, the namespace ID and the
second extended LBA; and

implement an error routine when the second system CRC
does not match the first system CRC.

18. The electronic device of claim 16, further comprising
logic to:

compute a second system cyclic redundancy check (CRC)
value using a payload data, the namespace ID and the
second extended LBA; and

return the payload data when the second system CRC
matches the first system CRC.

k k k k k

Jan. 26, 2017

