
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2017/0024275 A1 

Grimsrud et al. 

US 2017.0024275A1 

(43) Pub. Date: Jan. 26, 2017 

(54) 

(71) 

(72) 

(73) 

(21) 

(22) 

(63) 

APPARATUS AND METHOD TO MANAGE 
HIGH CAPACITY STORAGE DEVICES 

Applicant: Intel Corporation, Santa Clara, CA 
(US) 

Inventors: Knut Grimsrud, Forest Grove, OR 
(US); Jawad Khan, Cornelius, OR 
(US); Richard Mangold, Forest Grove, 
OR (US) 

Assignee: Intel Corporation, Santa Clara, CA 
(US) 

Appl. No.: 15/076,377 

Filed: Mar. 21, 2016 

Related U.S. Application Data 
Continuation of application No. 14/040,651, filed on 
Sep. 28, 2013, now Pat. No. 9,292.379. 

Publication Classification 

(51) Int. Cl. 
G06F II/It (2006.01) 

(52) U.S. Cl. 
CPC ....... G06F II/I004 (2013.01); G06F II/1016 

(2013.01) 

(57) ABSTRACT 

Apparatus, systems, and methods to manage high capacity 
memory devices are described. In one example, a controller 
comprises logic to receive a write operation comprising 
payload data, a namespace identifier (ID) and a first 
extended logical block address (LBA), compute a first 
system cyclic redundancy check (CRC) using a payload 
CRC, the namespace ID and the first extended LBA, store 
the first system CRC in association with the first extended 
LBA in a local memory, and write the payload data, the first 
system CRC, and a truncated LBA derived from the first 
extended LBA to a memory. Other examples are also dis 
closed and claimed. 
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APPARATUS AND METHOD TO MANAGE 
HGH CAPACITY STORAGE DEVICES 

PRIORITY INFORMATION 

0001. This application is a continuation of U.S. patent 
application Ser. No. 14/040,651, filed. Sep. 28, 2013, now 
issued as U.S. Pat. No. 9,292.379, which is incorporated 
herein by reference in its entirety. 

FIELD 

0002 The present disclosure generally relates to the field 
of electronics. More particularly, aspects generally relate to 
apparatus and methods to manage high capacity memory. 

BACKGROUND 

0003 Solid state drive (SSD) memory devices provide 
high speed, nonvolatile memory capacity without the need 
for moving parts. SSD memory devices commonly comprise 
memory and a local controller, and may be coupled to a 
memory system of an electronic device. SSD technology is 
advancing rapidly, which will enable the introduction of 
high capacity SSD memory devices. Accordingly, tech 
niques to manage high capacity memory devices may find 
utility, e.g., in memory systems for electronic devices. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0004. The detailed description is provided with reference 
to the accompanying figures. In the figures, the left-most 
digit(s) of a reference number identifies the figure in which 
the reference number first appears. The use of the same 
reference numbers in different figures indicates similar or 
identical items. 
0005 FIG. 1 is a schematic, block diagram illustration of 
components of an apparatus in which high capacity memory 
devices may be implemented in accordance with various 
examples discussed herein. 
0006 FIGS. 2A-2B is a flowchart illustrating operations 
in methods to manage high capacity memory devices in 
accordance with various examples discussed herein. 
0007 FIG. 3 is a schematic illustration of a cyclical 
redundancy check (CRC) calculation in a methods to man 
age high capacity memory devices in accordance with 
various examples discussed herein. 
0008 FIGS. 4A-4B and FIG. 5 are schematic illustrations 
of data storage structured in Systems to manage high capac 
ity memory devices in accordance with various examples 
discussed herein. 
0009 FIGS. 6-10 are schematic, block diagram illustra 
tions of electronic devices which may be adapted to imple 
ment methods to reduce power delivery noise for partial 
writes in accordance with various examples discussed 
herein. 

DETAILED DESCRIPTION 

0010. In the following description, numerous specific 
details are set forth in order to provide a thorough under 
standing of various examples. However, various examples 
may be practiced without the specific details. In other 
instances, well-known methods, procedures, components, 
and circuits have not been described in detail so as not to 
obscure the particular examples. Further, various aspects of 
examples may be performed using various means, such as 
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integrated semiconductor circuits (“hardware'), computer 
readable instructions organized into one or more programs 
(“software'), or some combination of hardware and soft 
ware. For the purposes of this disclosure reference to “logic' 
shall mean either hardware, Software, or some combination 
thereof. 
0011 FIG. 1 is a schematic, block diagram illustration of 
components of an apparatus in which high capacity memory 
devices may be implemented in accordance with various 
examples discussed herein. Referring to FIG. 1, in some 
examples a central processing unit (CPU) package 100 
which may comprise one or more CPUs 110 coupled to a 
control hub 120 and a local memory 130. Control hub 120 
comprises a memory controller 122 and a memory interface 
124. In some examples the control hub 120 may be inte 
grated with the processor(s) 110. 
0012 Memory interface 124 is coupled to one or more 
remote memory devices 140 by a communication bus 160. 
Memory device 140 may comprise a controller 142 which 
may comprise local memory 146 and memory 150. In 
various examples, at least some of the memory 150 may be 
implemented using a Solid state drive (SSD) comprising 
nonvolatile memory, e.g., phase change memory, NAND 
(flash) memory, ferroelectric random-access memory (Fe 
TRAM), nanowire-based non-volatile memory, memory that 
incorporates memristor technology, a static random access 
memory (SRAM), three dimensional (3D) cross point 
memory Such as phase change memory (PCM), spin-transfer 
torque memory (STT-RAM) or NAND memory. The spe 
cific configuration of the memory 150 in the memory 
device(s) 140 is not critical. In such embodiments the 
memory interface may comprise a Serial ATA interface, a 
PCI Express (PCIE) to 100 interface, or the like. 
0013 As described above, in some examples logic in the 
memory controller 122 manages write operations to memory 
device(s) 140 on behalf of applications which consume 
memory 150. More particularly, in some examples logic in 
the memory controller 122 receives memory access requests 
from applications executing on CPU(s) 110 and implements 
memory operations directed to memory devices 140. 
0014. In some examples described herein, the memory 
controller 142 comprising logic which allows the controller 
142 to extend a 32-bit memory mapping scheme, ordinarily 
capable of mapping up to two terabytes (2TB) of data stored 
in sectors that measure between 512 and 528 bytes, to map 
up to 8 terabytes (8 TB) of data, which requires a 35-bit 
mapping scheme. By cross-referencing a Logical Block 
Adress (LBA) of a sector referenced in a memory operation 
with a block address in an indirection table maintained by 
the controller 142, the controller 142 can reconstruct a 35-bit 
LBA from a 32-bit LBA. This allows the controller 142 to 
store a 32-bit LBA in the memory 150, thereby saving 
memory space for error correction control (ECC) bits or the 
like. 
00.15 Operations implemented by controller 142 will be 
described with reference to FIGS. 2A-2B and 3-5. Referring 
first to FIG. 2A, at operation 210 the memory controller 142 
receives data in a write operation. By way of example, in 
operation 210 memory controller 122 receives a request 
from a host, e.g., from an application executing on CPU 110 
or another processor coupled to control hub 120, to write 
data to memory device(s) 140. The write request from 
memory controller 122 may identify a namespace and a 
logical block address (LBA) for the write operation and may 
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include data, sometimes referred to as a payload, to be 
written to the memory device(s) 140. Memory controller 
122 may comprise one or more mapping tables which 
translate logical block address (LBA) associated with the 
write operation received from the controller 122 to a physi 
cal address in the memory device(s) 140. 
0016. At operation 215 the controller 142 computes a first 
system cyclic redundancy check (CRC) 415 for the data 
received in the write operation. Referring to FIG. 3, in one 
example the first system CRC 415 is computed by applying 
an XOR operation to the namespace ID 310, the payload 
CRC 315, and the logical block address 420 received with 
the write operation. In some examples described herein the 
LBA may be a 35-bit LBA, which may be referred to herein 
as an extended LBA. 

0017 Referring to FIGS. 2A and 4A, at operation 220 the 
controller 142 stores the first system CRC 415, the extended 
LBA 420, and the payload data 435 in local memory 146. 
Controller 142 may also store a hamming parity code 430 
with the data to local memory. Any remaining space may be 
padded, e.g., with Zeros or ones. 
0018 Referring now to FIGS. 2A and 4B, at operation 
225 the controller 142 writes the first system CRC 415 and 
the payload data 435 to the memory 150 in memory device 
(s) 140. The controller 142 writes a truncated LBA 460 to the 
memory 150. In some examples, the controller 142 gener 
ates the truncated LBA 460 by dropping the three least 
significant bits (i.e., bits 2:0) from the extended LBA 420 
stored on local memory 146. This provides three extra bits 
which may be filled with ECC parity bits 465 to enhance 
ECC capabilities, in the storage media. 
0019 FIG. 2B presents operations implemented by the 
controller 142 in response to a read operation from memory 
controller 122. Referring to FIG. 2B, at operation 240 the 
controller 122 receives a read operation from memory 
controller 122. The read operation comprises an extended 
LBA 420 which identifies the logical block in which the 
requested data resides on the memory 150. 
0020. At operation 245 the controller 122 retrieves the 
payload data 435, the system CRC 415, and the truncated 
LBA 460 from the memory 150. 
0021. At operation 250 the controller 122 determines an 
extended LBA from the truncated LBA 460 retrieved from 
the memory 150. In one example the controller 122 deter 
mines the least three significant bits of the extended LBA by 
cross-referencing an indirection table maintained by the 
controller 122. FIG. 5 is a schematic illustration of a 
mapping of storage media an indirection table maintained by 
controller 122. 

0022. By way of an example, referring to FIG. 5, memory 
150 may be mapped into logical blocks 510, each of which 
is dimensioned to hold eight (8) sectors and associated 
overhead data, as illustrated in FIG. 4B. The indirection 
table includes a pointer to the memory location of the 
beginning of each block 510. The controller 122 can use the 
LBA received with a read request to cross reference the 
indirection table to obtain the memory location of the 
beginning of the block 510 which includes the sector 
requested in the read operation. Then can count down the 
sectors to determine where the sector falls in the block and 
append the binary number corresponding to the number of 
the sector to the truncated LBA to form a second extended 
LBA. 
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0023 For example, the indirection system may be con 
figured with blocks 510 that are approximately 4K bytes in 
length such that each block 510 can hold eight sectors 
configured as depicted in FIG. 4B. If the controller 122 
receives a read operation directed to the LBA identified by 
reference numeral 530, then the controller 122 can cross 
reference the indirection table to obtain the location of the 
block 510, then can determine the sector number. In this 
example the LBA references sector 5 in the block 510 so the 
controller 122 will append a binary 5 (101) to the truncated 
LBA 460 retrieved from the memory 150 to form a second 
extended LBA. 
(0024. Referring back to FIG. 2B, at operation 255 the 
controller 122 computes a second system cyclic redundancy 
check (CRC) value using a payload data 435, the namespace 
ID 315 and the second extended LBA determined in opera 
tion 250. For example, the second system CRC may be 
determined using the CRC function illustrated in FIG. 3A. 
(0025. At operation 260 it is determined whether the 
second system CRC computed in operation 255 matches the 
first system CRC 415 retrieved with the data. If the second 
system CRC computed in operation 255 does not match the 
first system CRC 415 then control passes to operation 265 
and the controller 122 implements an error routine. By way 
of example, controller 122 may return an error to memory 
controller 142. By contrast, if the second system CRC 
computed in operation 255 matches the first system CRC 
415 then control passes to operation 270 and the controller 
122 returns the payload data 435 read from the storage 
media. 
0026. Thus, the structure and operations described herein 
enable a controller 122 to manage a high capacity memory 
device. More particularly, the structure and operations 
described herein enable controller 122 to store a truncated 
LBA 460 in storage media and leverage information in an 
indirection table to convert the truncated LBA to an 
extended LBA which can be used in a CRC calculation. 

0027. As described above, in some examples the elec 
tronic device may be embodied as a computer system. FIG. 
6 illustrates a block diagram of a computing system 600 in 
accordance with an example. The computing system 600 
may include one or more central processing unit(s) (CPUs) 
602 or processors that communicate via an interconnection 
network (or bus) 604. The processors 602 may include a 
general purpose processor, a network processor (that pro 
cesses data communicated over a computer network 603), or 
other types of a processor (including a reduced instruction 
set computer (RISC) processor or a complex instruction set 
computer (CISC)). Moreover, the processors 602 may have 
a single or multiple core design. The processors 602 with a 
multiple core design may integrate different types of pro 
cessor cores on the same integrated circuit (IC) die. Also, the 
processors 602 with a multiple core design may be imple 
mented as symmetrical or asymmetrical multiprocessors. In 
an example, one or more of the processors 602 may be the 
same or similar to the processors 102 of FIG. 1. For 
example, one or more of the processors 602 may include the 
control unit 120 discussed with reference to FIGS. 1-3. Also, 
the operations discussed with reference to FIGS. 3-5 may be 
performed by one or more components of the system 600. 
0028. A chipset 606 may also communicate with the 
interconnection network 604. The chipset 606 may include 
a memory control hub (MCH) 608. The MCH 608 may 
include a memory controller 610 that communicates with a 
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memory 612 (which may be the same or similar to the 
memory 130 of FIG. 1). The memory 412 may store data, 
including sequences of instructions, that may be executed by 
the CPU 602, or any other device included in the computing 
system 600. In one example, the memory 612 may include 
one or more volatile storage (or memory) devices Such as 
random access memory (RAM), dynamic RAM (DRAM), 
synchronous DRAM (SDRAM), static RAM (SRAM), or 
other types of storage devices. Nonvolatile memory may 
also be utilized such as a hard disk. Additional devices may 
communicate via the interconnection network 604. Such as 
multiple CPUs and/or multiple system memories. 
0029. The MCH 608 may also include a graphics inter 
face 614 that communicates with a display device 616. In 
one example, the graphics interface 614 may communicate 
with the display device 616 via an accelerated graphics port 
(AGP). In an example, the display 616 (such as a flat panel 
display) may communicate with the graphics interface 614 
through, for example, a signal converter that translates a 
digital representation of an image stored in a storage device 
Such as video memory or system memory into display 
signals that are interpreted and displayed by the display 616. 
The display signals produced by the display device may pass 
through various control devices before being interpreted by 
and Subsequently displayed on the display 616. 
0030. A hub interface 618 may allow the MCH 608 and 
an input/output control hub (ICH) 620 to communicate. The 
ICH 620 may provide an interface to I/O device(s) that 
communicate with the computing system 600. The ICH 620 
may communicate with a bus 622 through a peripheral 
bridge (or controller) 624. Such as a peripheral component 
interconnect (PCI) bridge, a universal serial bus (USB) 
controller, or other types of peripheral bridges or controllers. 
The bridge 624 may provide a data path between the CPU 
602 and peripheral devices. Other types of topologies may 
be utilized. Also, multiple buses may communicate with the 
ICH 620, e.g., through multiple bridges or controllers. 
Moreover, other peripherals in communication with the ICH 
620 may include, in various examples, integrated drive 
electronics (IDE) or small computer system interface (SCSI) 
hard drive(s), USB port(s), a keyboard, a mouse, parallel 
port(s), serial port(s), floppy disk drive(s), digital output 
Support (e.g., digital video interface (DVI)), or other 
devices. 

0031. The bus 622 may communicate with an audio 
device 626, one or more disk drive(s) 628, and a network 
interface device 630 (which is in communication with the 
computer network 603). Other devices may communicate 
via the bus 622. Also, various components (such as the 
network interface device 630) may communicate with the 
MCH 608 in some examples. In addition, the processor 602 
and one or more other components discussed herein may be 
combined to form a single chip (e.g., to provide a System on 
Chip (SOC)). Furthermore, the graphics accelerator 616 may 
be included within the MCH 608 in other examples. 
0032. Furthermore, the computing system 600 may 
include Volatile and/or nonvolatile memory (or storage). For 
example, nonvolatile memory may include one or more of 
the following: read-only memory (ROM), programmable 
ROM (PROM), erasable PROM (EPROM), electrically 
EPROM (EEPROM), a disk drive (e.g., 628), a floppy disk, 
a compact disk ROM (CD-ROM), a digital versatile disk 
(DVD), flash memory, a magneto-optical disk, or other types 
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of nonvolatile machine-readable media that are capable of 
storing electronic data (e.g., including instructions). 
0033 FIG. 7 illustrates a block diagram of a computing 
system 700, according to an example. The system 700 may 
include one or more processors 702-1 through 702-N (gen 
erally referred to herein as “processors 702 or “processor 
702). The processors 702 may communicate via an inter 
connection network or bus 704. Each processor may include 
various components some of which are only discussed with 
reference to processor 702-1 for clarity. Accordingly, each of 
the remaining processors 702-2 through 702-N may include 
the same or similar components discussed with reference to 
the processor 702-1. 
0034. In an example, the processor 702-1 may include 
one or more processor cores 706-1 through 706-M (referred 
to herein as “cores 706 or more generally as “core 706’), 
a shared cache 708, a router 710, and/or a processor control 
logic or unit 720. The processor cores 706 may be imple 
mented on a single integrated circuit (IC) chip. Moreover, 
the chip may include one or more shared and/or private 
caches (such as cache 708), buses or interconnections (such 
as a bus or interconnection network 712), memory control 
lers, or other components. 
0035. In one example, the router 710 may be used to 
communicate between various components of the processor 
702-1 and/or system 700. Moreover, the processor 702-1 
may include more than one router 710. Furthermore, the 
multitude of routers 710 may be in communication to enable 
data routing between various components inside or outside 
of the processor 702-1. 
0036. The shared cache 708 may store data (e.g., includ 
ing instructions) that are utilized by one or more components 
of the processor 702-1, such as the cores 706. For example, 
the shared cache 708 may locally cache data stored in a 
memory 714 for faster access by components of the proces 
sor 702. In an example, the cache 708 may include a 
mid-level cache (such as a level 2 (L2), a level 3 (L3), a level 
4 (L4), or other levels of cache), a last level cache (LLC), 
and/or combinations thereof Moreover, various components 
of the processor 702-1 may communicate with the shared 
cache 708 directly, through a bus (e.g., the bus 712), and/or 
a memory controller or hub. As shown in FIG. 7, in some 
examples, one or more of the cores 706 may include a level 
1 (L1) cache 716-1 (generally referred to herein as “L1 
cache 716'). In one example, the control unit 720 may 
include logic to implement the operations described above 
with reference to the memory controller 122 in FIG. 2. 
0037 FIG. 8 illustrates a block diagram of portions of a 
processor core 706 and other components of a computing 
system, according to an example. In one example, the arrows 
shown in FIG. 8 illustrate the flow direction of instructions 
through the core 706. One or more processor cores (such as 
the processor core 706) may be implemented on a single 
integrated circuit chip (or die) Such as discussed with 
reference to FIG. 7. Moreover, the chip may include one or 
more shared and/or private caches (e.g., cache 708 of FIG. 
7), interconnections (e.g., interconnections 704 and/or 112 
of FIG. 7), control units, memory controllers, or other 
components. 
0038. As illustrated in FIG. 8, the processor core 706 may 
include a fetch unit 802 to fetch instructions (including 
instructions with conditional branches) for execution by the 
core 706. The instructions may be fetched from any storage 
devices such as the memory 714. The core 706 may also 
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include a decode unit 804 to decode the fetched instruction. 
For instance, the decode unit 804 may decode the fetched 
instruction into a plurality of uops (micro-operations). 
0039. Additionally, the core 706 may include a schedule 
unit 806. The schedule unit 806 may perform various 
operations associated with storing decoded instructions 
(e.g., received from the decode unit 804) until the instruc 
tions are ready for dispatch, e.g., until all source values of a 
decoded instruction become available. In one example, the 
schedule unit 806 may schedule and/or issue (or dispatch) 
decoded instructions to an execution unit 808 for execution. 
The execution unit 808 may execute the dispatched instruc 
tions after they are decoded (e.g., by the decode unit 804) 
and dispatched (e.g., by the schedule unit 806). In an 
example, the execution unit 808 may include more than one 
execution unit. The execution unit 808 may also perform 
various arithmetic operations such as addition, Subtraction, 
multiplication, and/or division, and may include one or more 
an arithmetic logic units (ALUs). In an example, a co 
processor (not shown) may perform various arithmetic 
operations in conjunction with the execution unit 808. 
0040. Further, the execution unit 808 may execute 
instructions out-of-order. Hence, the processor core 706 may 
be an out-of-order processor core in one example. The core 
706 may also include a retirement unit 810. The retirement 
unit 810 may retire executed instructions after they are 
committed. In an example, retirement of the executed 
instructions may result in processor State being committed 
from the execution of the instructions, physical registers 
used by the instructions being de-allocated, etc. 
0041. The core 706 may also include a bus unit 714 to 
enable communication between components of the proces 
Sor core 706 and other components (such as the components 
discussed with reference to FIG. 8) via one or more buses 
(e.g., buses 804 and/or 812). The core 706 may also include 
one or more registers 816 to store data accessed by various 
components of the core 706 (such as values related to power 
consumption state settings). 
0042. Furthermore, even though FIG. 7 illustrates the 
control unit 720 to be coupled to the core 706 via intercon 
nect 812, in various examples the control unit 720 may be 
located elsewhere such as inside the core 706, coupled to the 
core via bus 704, etc. 
0043. In some examples, one or more of the components 
discussed herein can be embodied as a System On Chip 
(SOC) device. FIG. 9 illustrates a block diagram of an SOC 
package in accordance with an example. As illustrated in 
FIG. 9, SOC 902 includes one or more Central Processing 
Unit (CPU) cores 920, one or more Graphics Processor Unit 
(GPU) cores 930, an Input/Output (I/O) interface 940, and a 
memory controller 942. Various components of the SOC 
package 902 may be coupled to an interconnect or bus Such 
as discussed herein with reference to the other figures. Also, 
the SOC package 902 may include more or less components, 
such as those discussed herein with reference to the other 
figures. Further, each component of the SOC package 902 
may include one or more other components, e.g., as dis 
cussed with reference to the other figures herein. In one 
example, SOC package 902 (and its components) is pro 
vided on one or more Integrated Circuit (IC) die, e.g., which 
are packaged into a single semiconductor device. 
0044 As illustrated in FIG. 9, SOC package 902 is 
coupled to a memory 960 (which may be similar to or the 
same as memory discussed herein with reference to the other 
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figures) via the memory controller 942. In an example, the 
memory 960 (or a portion of it) can be integrated on the SOC 
package 902. 
0045. The I/O interface 94.0 may be coupled to one or 
more I/O devices 970, e.g., via an interconnect and/or bus 
such as discussed herein with reference to other figures. I/O 
device(s) 970 may include one or more of a keyboard, a 
mouse, a touchpad, a display, an image/video capture device 
(such as a camera or camcorder/video recorder), a touch 
screen, a speaker, or the like. 
0046 FIG. 10 illustrates a computing system 1000 that is 
arranged in a point-to-point (PtP) configuration, according 
to an example. In particular, FIG. 10 shows a system where 
processors, memory, and input/output devices are intercon 
nected by a number of point-to-point interfaces. The opera 
tions discussed with reference to FIG. 2 may be performed 
by one or more components of the system 1000. 
0047. As illustrated in FIG. 10, the system 1000 may 
include several processors, of which only two, processors 
1002 and 1004 are shown for clarity. The processors 1002 
and 1004 may each include a local memory controller hub 
(MCH) 1006 and 1008 to enable communication with 
memories 1010 and 1012. MCH 1006 and 1008 may include 
the memory controller 120 and/or logic of FIG. 1 in some 
examples. 
0048. In an example, the processors 1002 and 1004 may 
be one of the processors 702 discussed with reference to 
FIG. 7. The processors 1002 and 1004 may exchange data 
via a point-to-point (PtP) interface 1014 using PtP interface 
circuits 1016 and 1018, respectively. Also, the processors 
1002 and 1004 may each exchange data with a chipset 1020 
via individual PtP interfaces 1022 and 1024 using point-to 
point interface circuits 1026, 1028, 1030, and 1032. The 
chipset 1020 may further exchange data with a high-perfor 
mance graphics circuit 1034 via a high-performance graph 
ics interface 1036, e.g., using a PtP interface circuit 1037. 
0049. As shown in FIG. 10, one or more of the cores 106 
and/or cache 108 of FIG. 1 may be located within the 
processors 1002 and 1004. Other examples, however, may 
exist in other circuits, logic units, or devices within the 
system 1000 of FIG. 10. Furthermore, other examples may 
be distributed throughout several circuits, logic units, or 
devices illustrated in FIG. 10. 
0050. The chipset 1020 may communicate with a bus 
1040 using a point-to-point PtP interface circuit 1041. The 
bus 1040 may have one or more devices that communicate 
with it, such as a bus bridge 1042 and I/O devices 1043. Via 
a bus 1044, the bus bridge 1043 may communicate with 
other devices such as a keyboard/mouse 1045, communica 
tion devices 1046 (such as modems, network interface 
devices, or other communication devices that may commu 
nicate with the computer network 803), audio I/O device, 
and/or a data storage device 1048. The data storage device 
1048 (which may be a hard disk drive or a NAND flash 
based solid state drive) may store code 1049 that may be 
executed by the processors 1002 and/or 1004. 
0051. The following examples pertain to further 
examples. 
0.052 Example 1 is a controller comprising logic to 
receive a write operation comprising payload data, a 
namespace identifier (ID) and a first extended logical block 
address (LBA), compute a first system cyclic redundancy 
check (CRC) using a payload CRC, the namespace ID and 
the first extended LBA, store the first system CRC in 
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association with the first extended LBA in a local memory, 
and write the payload data, the first system CRC, and a 
truncated LBA derived from the first extended LBA to a 
memory. 
0053. In Example 2, the subject matter of Example 1 can 
optionally include an arrangement in which the first 
extended LBA maps to a data sector on the memory, the 
memory is mapped into blocks which contain eight data 
sectors, and the truncated LBA written to the memory omits 
the three least significant bits of the first extended LBA. 
0054. In Example 3, the subject matter of any one of 
Examples 1-2 can optionally include an arrangement in 
which 
0055. In Example 4, the subject matter of any one of 
Examples 1-3 can optionally include logic to receive a read 
operation comprising the first extended LBA, retrieve the 
payload data, the first system CRC, and the truncated LBA 
from the memory, and determine a second extended LBA 
from the truncated LBA. 
0056. In Example 5, the subject matter of any one of 
Examples 1-4 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
the payload data, the namespace ID and the second extended 
LBA and implement an error routine when the second 
system CRC does not match the first system CRC. 
0057. In Example 6, the subject matter of any one of 
Examples 1-5 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
a payload data, the namespace ID and the second extended 
LBA and return the payload data when the second system 
CRC matches the first system CRC. 
0058 Example 7 is an apparatus, comprising a non 
Volatile memory, and a controller coupled to the memory 
and comprising logic to receive a write operation comprising 
payload data, a namespace identifier (ID) and a first 
extended logical block address (LBA), compute a first 
system cyclic redundancy check (CRC) using a payload 
CRC, the namespace ID and the first extended LBA, store 
the first system CRC in association with the first extended 
LBA in a local memory, and write the payload data, the first 
system CRC, and a truncated LBA derived from the first 
extended LBA to a memory. 
0059. In Example 8, the subject matter of Example 7 can 
optionally include an arrangement in which the first 
extended LBA maps to a data sector on the memory, the 
memory is mapped into blocks which contain eight data 
sectors, and the truncated LBA written to the memory omits 
the three least significant bits of the first extended LBA. 
0060. In Example 9, the subject matter of any one of 
Examples 7-8 can optionally include an arrangement in 
which 

0061. In Example 10, the subject matter of any one of 
Examples 7-9 can optionally include logic to receive a read 
operation comprising the first extended LBA, retrieve the 
payload data, the first system CRC, and the truncated LBA 
from the memory, and determine a second extended LBA 
from the truncated LBA. 

0062. In Example 11, the subject matter of any one of 
Examples 7-10 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
the payload data, the namespace ID and the second extended 
LBA and implement an error routine when the second 
system CRC does not match the first system CRC. 
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0063. In Example 12, the subject matter of any one of 
Examples 7-11 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
a payload data, the namespace ID and the second extended 
LBA and return the payload data when the second system 
CRC matches the first system CRC. 
0064. Example 13 is an electronic device, comprising at 
least one processor, and at least one memory device com 
prising a memory, and a controller coupled to the memory 
and comprising logic to receive a write operation comprising 
payload data, a namespace identifier (ID) and a first 
extended logical block address (LBA). compute a first 
system cyclic redundancy check (CRC) using a payload 
CRC, the namespace ID and the first extended LBA, store 
the first system CRC in association with the first extended 
LBA in a local memory, and write the payload data, the first 
system CRC, and a truncated LBA derived from the first 
extended LBA to a memory. 
0065. In Example 14, the subject matter of Example 13 
can optionally include an arrangement in which the first 
extended LBA maps to a data sector on the memory, the 
memory is mapped into blocks which contain eight data 
sectors, and the truncated LBA written to the memory omits 
the three least significant bits of the first extended LBA. 
0066. In Example 15, the subject matter of any one of 
Examples 13-14 can optionally include an arrangement in 
which 

0067. In Example 16, the subject matter of any one of 
Examples 13-15 can optionally include logic to receive a 
read operation comprising the first extended LBA, retrieve 
the payload data, the first system CRC, and the truncated 
LBA from the memory, and determine a second extended 
LBA from the truncated LBA. 

0068. In Example 17, the subject matter of any one of 
Examples 13-16 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
the payload data, the namespace ID and the second extended 
LBA and implement an error routine when the second 
system CRC does not match the first system CRC. 
0069. In Example 18, the subject matter of any one of 
Examples 13-17 can optionally include logic to compute a 
second system cyclic redundancy check (CRC) value using 
a payload data, the namespace ID and the second extended 
LBA and return the payload data when the second system 
CRC matches the first system CRC. 
0070. In various examples, the operations discussed 
herein, e.g., with reference to FIGS. 1-10, may be imple 
mented as hardware (e.g., circuitry), software, firmware, 
microcode, or combinations thereof, which may be provided 
as a computer program product, e.g., including a tangible 
(e.g., non-transitory) machine-readable or computer-read 
able medium having stored thereon instructions (or software 
procedures) used to program a computer to perform a 
process discussed herein. Also, the term “logic' may 
include, by way of example, Software, hardware, or combi 
nations of software and hardware. The machine-readable 
medium may include a storage device such as those dis 
cussed herein. 

0071 Reference in the specification to “one example' or 
“an example” means that a particular feature, structure, or 
characteristic described in connection with the example may 
be included in at least an implementation. The appearances 



US 2017/0024275 A1 

of the phrase “in one example' in various places in the 
specification may or may not be all referring to the same 
example. 
0072 Also, in the description and claims, the terms 
“coupled and “connected, along with their derivatives, 
may be used. In some examples, "connected may be used 
to indicate that two or more elements are in direct physical 
or electrical contact with each other. “Coupled may mean 
that two or more elements are in direct physical or electrical 
contact. However, “coupled may also mean that two or 
more elements may not be in direct contact with each other, 
but may still cooperate or interact with each other. 
0073. Thus, although examples have been described in 
language specific to structural features and/or methodologi 
cal acts, it is to be understood that claimed Subject matter 
may not be limited to the specific features or acts described. 
Rather, the specific features and acts are disclosed as sample 
forms of implementing the claimed Subject matter. 

1. A controller comprising logic to: 
receive a write operation comprising payload data, a 

namespace identifier (ID) and a first extended logical 
block address (LBA); 

compute a first system cyclic redundancy check (CRC) 
using a payload CRC, the namespace ID and the first 
extended LBA; 

store the first system CRC in association with the first 
extended LBA in a local memory; and 

write the payload data, the first system CRC, and a 
truncated LBA derived from the first extended LBA to 
a memory. 

2. The controller of claim 1, wherein: 
the first extended LBA maps to a data sector on the 
memory; 

the memory is mapped into blocks which contain eight 
data sectors; and 

the truncated LBA written to the memory omits the three 
least significant bits of the first extended LBA. 

3. The controller of claim 2, wherein: 
the first extended LBA maps to a data sector that measures 

between 512 bytes and 528 bytes; and 
the memory is mapped into blocks that measure approxi 

mately 4 kilobytes. 
4. The controller of claim 1, further comprising logic to 
receive a read operation comprising the first extended 
LBA: 

retrieve the payload data, the first system CRC, and the 
truncated LBA from the memory; and 

determine a second extended LBA from the truncated 
LBA. 

5. The controller of claim 4, further comprising logic to: 
compute a second system cyclic redundancy check (CRC) 

value using the payload data, the namespace ID and the 
second extended LBA; and 

implement an error routine when the second system CRC 
does not match the first system CRC. 

6. The controller of claim 4, further comprising logic to: 
compute a second system cyclic redundancy check (CRC) 

value using a payload data, the namespace ID and the 
second extended LBA; and 

return the payload data when the second system CRC 
matches the first system CRC. 
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7. An apparatus, comprising: 
a non-volatile memory; and 
a controller coupled to the memory and comprising logic 

tO: 
receive a write operation comprising payload data, a 

namespace identifier (ID) and a first extended logical 
block address (LBA); 

compute a first system cyclic redundancy check (CRC) 
using a payload CRC, the namespace ID and the first 
extended LBA; 

store the first system CRC in association with the first 
extended LBA in a local memory; and 

write the payload data, the first system CRC, and a 
truncated LBA derived from the first extended LBA 
to a memory. 

8. The apparatus of claim 7, wherein: 
the first extended LBA maps to a data sector on the 

memory; 
the memory is mapped into blocks which contain eight 

data sectors; and 
the truncated LBA written to the memory omits the three 

least significant bits of the first extended LBA. 
9. The apparatus of claim 8, wherein: 
the first extended LBA maps to a data sector that measures 

between 512 bytes and 528 bytes; and 
the memory is mapped into blocks that measure approxi 

mately 4 kilobytes. 
10. The apparatus of claim 7, further comprising logic to 
receive a read operation comprising the first extended 
LBA: 

retrieve the payload data, the first system CRC, and the 
truncated LBA from the memory; and 

determine a second extended LBA from the truncated 
LBA. 

11. The apparatus of claim 10, further comprising logic to: 
compute a second system cyclic redundancy check (CRC) 

value using the payload data, the namespace ID and the 
second extended LBA; and 

implement an error routine when the second system CRC 
does not match the first system CRC. 

12. The apparatus of claim 10, further comprising logic to: 
compute a second system cyclic redundancy check (CRC) 

value using a payload data, the namespace ID and the 
second extended LBA; and 

return the payload data when the second system CRC 
matches the first system CRC. 

13. An electronic device, comprising: 
at least one processor; and 
at least one memory device comprising a memory; and 
a controller coupled to the memory and comprising logic 

tO: 
receive a write operation comprising payload data, a 

namespace identifier (ID) and a first extended logical 
block address (LBA); 

compute a first system cyclic redundancy check (CRC) 
using a payload CRC, the namespace ID and the first 
extended LBA; 

store the first system CRC in association with the first 
extended LBA in a local memory; and 

write the payload data, the first system CRC, and a 
truncated LBA derived from the first extended LBA 
to a memory. 

14. The electronic device of claim 13, wherein: 
the first extended LBA maps to a data sector on the 

memory; 
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the memory is mapped into blocks which contain eight 
data sectors; and 

the truncated LBA written to the memory omits the three 
least significant bits of the first extended LBA. 

15. The electronic device of claim 14, wherein: 
the first extended LBA maps to a data sector that measures 

between 512 bytes and 528 bytes; and 
the memory is mapped into blocks that measure approxi 

mately 4 kilobytes. 
16. The electronic device of claim 13, further comprising 

logic to 
receive a read operation comprising the first extended 
LBA: 

retrieve the payload data, the first system CRC, and the 
truncated LBA from the memory; and 

determine a second extended LBA from the truncated 
LBA. 

17. The electronic device of claim 16, further comprising 
logic to: 

compute a second system cyclic redundancy check (CRC) 
value using the payload data, the namespace ID and the 
second extended LBA; and 

implement an error routine when the second system CRC 
does not match the first system CRC. 

18. The electronic device of claim 16, further comprising 
logic to: 

compute a second system cyclic redundancy check (CRC) 
value using a payload data, the namespace ID and the 
second extended LBA; and 

return the payload data when the second system CRC 
matches the first system CRC. 

k k k k k 
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