
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2009225336 B2

(54) Title
Method of compositing variable alpha fills supporting group opacity

(51) International Patent Classification(s)
G06T 11/60 (2006.01)

(21) Application No: 2009225336 (22) Date of Filing: 2009.10.13

(43)
(43)
(44)

Publication Date: 2011.04.28
Publication Journal Date: 2011.04.28
Accepted Journal Date: 2011.08.04

(71) Applicant(s)
Canon Kabushiki Kaisha

(72) Inventor(s)
Bradley, Scott;Liao, Bin;Edwards, Cameron Murray;Chang, Albert

(74) Agent / Attorney
Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000

(56) Related Art
US 2006/0103671 A1
US 2005/0035976 A1
US 2005/0017986 A1

20
09

22
53

36

13
 O

ct
 2

00
9

ABSTRACT

METHOD OF COMPOSITING VARIABLE ALPHA FILLS

SUPPORTING GROUP OPACITY

5

A method of compositing a plurality of graphic objects with a compositing

buffer, is disclosed. The plurality of graphic objects forming a group is attenuated by

group opacity and is composited from a top object to a bottom object. Based on a first

mask and the group opacity, a second mask is generated. The first mask stores a

10 remaining possible contribution for further graphic objects below and including the

plurality of graphic objects. The plurality of graphic objects in a top down order is

processed. In particular, for each graphic object of the plurality of graphic objects: (a) a

contribution value for the graphic object using the second mask is determined, the

contribution value representing a contribution of the graphic object to the compositing

15 buffer; (b) a colour value of the graphic object is composited with the compositing buffer

using the contribution value; and (c) the second mask is updated using the contribution

value. The first mask is then updated using the second mask and the group opacity. The

updated first mask is configured for further compositing of objects below the plurality of

graphic objects.

20

2334034v1 (892016_Final)

3/19

20
09

22
53

36

13
 O

ct
 2

00
9

220

Fig. 2

892016_figs_04 (2333768v1)

S&FRef: 892016

20
09

22
53

36

13
 O

ct
 2

00
9 AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

Name and Address
of Applicant:

Canon Kabushiki Kaisha, of 30-2, Shimomaruko 3-
chome, Ohta-ku, Tokyo, 146, Japan

Actual Inventor(s): Albert Chang
Bin Liao
Cameron Murray Edwards
Scott Bradley

Address for Service: Spruson & Ferguson
St Martins Tower Level 35
31 Market Street
Sydney NSW 2000
(CCN 3710000177)

Invention Title: Method of compositing variable alpha fills supporting
group opacity

The following statement is a full description of this invention, including the best method of
performing it known to me/us:

5845c(2336784_1)

20
09

22
53

36

13
 O

ct
 2

00
9' - 1 -

METHOD OF COMPOSITING VARIABLE ALPHA FILLS

SUPPORTING GROUP OPACITY

TECHNICAL FIELD OF INVENTION

The current invention relates to the field of computer graphics and compositing

of two-dimensional (2D) graphic objects and, in particular, to the application of group

opacity to one or more graphic objects in a rendering system. The current invention is

particularly advantageous for use with those rendering systems in which processing

5 resources are limited. The current invention also relates to a method and apparatus for

compositing a graphic object with a compositing buffer, and to a computer program

product including a computer readable medium having recorded thereon a computer

program for a graphic object with a compositing buffer.

DESCRIPTION OF BACKGROUND ART

10 The problem of compositing graphic objects using limited processing resources is

known within the field of computer graphics. Performing complex compositing

operations on an embedded device (such as a mobile phone, portable media player or

digital camera) requires expensive central processing unit (CPU) and memory hardware

resources. Equipping embedded devices with such hardware increases overall device

15 cost. Furthermore, performing complex compositing operations reduces battery life in

portable devices. In the past, these difficulties have prohibited the use of complex

compositing operations on embedded devices. Consequently, embedded device

graphical user-interfaces tend to be unappealing in nature and generally lacking complex

compositing. By contrast, performing complex compositing operations on computer

2334034v1 (892016_Final)

-2-

20
09

22
53

36

13
 O

ct
 2

00
9

devices with comparatively unlimited resources (eg. notebook and desktop computers) is

commonplace.

As embedded devices become more feature rich, there is a clear need for higher

quality graphical user interfaces. Improving aesthetic quality and responsiveness of a

5 graphical user interface improves the overall usability and user experience that such a

device offers.

Applying a single opacity to a group of graphic objects is a compositing feature

that user interface (UI) designers desire for use in an embedded device user interface.

This feature has long been possible in desktop personal computer (PC) user interfaces.

10 However, when using existing methods, providing this feature in embedded devices is

cost prohibitive.

One conventional method of applying group opacity involves recursively

compositing grouped graphic objects. Such a method composites each group of graphic

objects into a separate compositing buffer. Essentially, this method “flattens” grouped

15 graphic objects so that each group can be processed as if the group were a single graphic

object. The disadvantage of this method is that an extra compositing buffer is required

for each group of graphic objects. Furthermore, using this method requires extra

processing, because the result of each flattened group must be composited with other

graphic objects.

20 Another conventional method of applying group opacity involves determining

intersection regions of overlapping graphic objects, and decomposing the graphic objects

into fragment graphic objects such that an opacity value can be applied to each fragment

graphic object to produce a correct result. This method requires much pre-processing of

2334034v1 (892016_Final)

-3-

20
09

22
53

36

13
 O

ct
 2

00
9

graphic object data to determine intersection regions. Furthermore, this method does not

support graphic objects having a variable opacity.

Still another conventional method of applying group opacity relies on removal of

background graphic objects from a partial compositing result. After background objects

5 have been removed, group opacity may be applied. Following application of the group

opacity, the result is re-combined with background graphic objects. Such a method

requires allocation of additional buffers and much copying between buffers.

SUMMARY OF THE INVENTION

It is an object of the present invention to substantially overcome, or at least

10 ameliorate, one or more disadvantages of existing arrangements.

According to one aspect of the present invention there is provided a method of

compositing a plurality of graphic objects with a compositing buffer, said plurality of

graphic objects forming a group being attenuated by group opacity and being composited

from a top object to a bottom object, the method comprising the steps of:

15 generating, based on a first mask and the group opacity, a second mask, the first

mask storing a remaining possible contribution for further graphic objects below and

including said plurality of graphic objects;

processing said plurality of graphic objects in a top down order, the processing

comprising the sub-steps of, for each graphic object of the plurality of graphic objects:

20 (a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

(b) compositing a colour value of the graphic object with the compositing

buffer using said contribution value; and

2334034v1 (892016_Final)

-4-

20
09

22
53

36

13
 O

ct
 2

00
9

(c) updating the second mask using said contribution value; and
updating the first mask using said second mask and the group opacity, wherein

said updated first mask is configured for further compositing of objects below said

plurality of graphic objects.

5 According to another aspect of the present invention there is provided an

apparatus for compositing a plurality of graphic objects with a compositing buffer, said

plurality of graphic objects forming a group being attenuated by group opacity and being

composited from a top object to a bottom object, the apparatus comprising:

means for generating, based on a first mask and the group opacity, a second

10 mask, the first mask storing a remaining possible contribution for further graphic objects

below and including said plurality of graphic objects;

means for processing said plurality of graphic objects in a top down order, the

processing comprising the steps of, for each graphic object of the plurality of graphic

objects:

15 (a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

(b) compositing a colour value of the graphic object with the compositing

buffer using said contribution value; and

20 (c) updating the second mask using said contribution value; and
means for updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects below

said plurality of graphic objects.

According to still another aspect of the present invention there is provided a

25 system for compositing a plurality of graphic objects with a compositing buffer, said

2334034v1 (892016_Final)

-5-

20
09

22
53

36

13
 O

ct
 2

00
9

plurality of graphic objects forming a group being attenuated by group opacity and being

composited from a top object to a bottom object, the system comprising:

a memory for storing data and a computer program; and

a processor coupled to said memory for executing said computer program, said

5 computer program comprising instructions for:

generating, based on a first mask and the group opacity, a second mask,

the first mask storing a remaining possible contribution for further graphic

objects below and including said plurality of graphic objects;

processing said plurality of graphic objects in a top down order, the

10 processing comprising the sub-steps of, for each graphic object of the plurality of

graphic objects:

(a) determining a contribution value for the graphic object using

the second mask, the contribution value representing a contribution of the graphic

object to the compositing buffer;

15 (b) compositing a colour value of the graphic object with the

compositing buffer using said contribution value; and

(c) updating the second mask using said contribution value; and
updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects

20 below said plurality of graphic objects.

According to still another aspect of the present invention there is provided a

computer readable medium having recorded thereon a computer program for

compositing a plurality of graphic objects with a compositing buffer, said plurality of

graphic objects forming a group being attenuated by group opacity and being composited

25 from a top object to a bottom object, the program comprising:

2334034v1 (892016_Final)

-6-

20
09

22
53

36

13
 O

ct
 2

00
9

code for generating, based on a first mask and the group opacity, a second mask,

the first mask storing a remaining possible contribution for further graphic objects below

and including said plurality of graphic objects;

code for processing said plurality of graphic objects in a top down order, the

5 processing comprising the steps of, for each graphic object of the plurality of graphic

objects:

(a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

10 (b) compositing a colour value of the graphic object with the compositing

buffer using said contribution value; and

(c) updating the second mask using said contribution value; and
code for updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects below

15 said plurality of graphic objects.

Other aspects of the invention are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

At least one embodiment of the present invention will now be described with

reference to the following drawings, in which:

20 Figs. 1A and 1B collectively form a schematic block diagram representation of an

electronic device upon which described arrangements can be practised;

Fig. 2 shows the relationship between rendering order and priority;

Fig. 3 is a flow diagram showing a method of adding bitmap images into a frame;

Fig. 4 is a flow diagram showing a method of adding a bitmap image into a frame

25 description;

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -7-

Fig. 5 is a flow diagram showing a method of discarding and clipping an image;

Fig. 6 is a flow diagram showing a method of clipping a bitmap image;

Fig. 7 is a diagram showing the fields of a bitmap data structure;

Fig. 8 is a flow diagram showing a method of updating and sorting a bitmap data

5 structure;

Fig. 9 is a flow diagram showing a method of rendering a scan-line;

Fig. 10 is a flow diagram showing a method of rendering to the right screen edge;

Fig. 11 is a flow diagram showing a method of processing a current bitmap data

structure;

10 Fig. 12 is a diagram showing the fields of a group data structure;

Fig. 13 is a flow diagram showing a method of adding a group data structure to a

groups list;

Fig. 14 is a flow diagram showing a method of compositing variable opacity

objects;

15 Fig. 15 is a flow diagram showing a method of processing grouped graphic

objects as used in the method of Fig. 14;

Fig. 16 is a flow diagram showing a method of compositing variable opacity

objects;

Fig. 17 is a flow diagram showing a method of processing a current graphic

20 object as used in the method of Fig. 14, Fig. 15 and Fig. 16; and

Fig. 18 is a flow diagram showing a method of filling a bitmap image with a

linear gradient fill.

2334034v1 (892016_Final)

-8-

20
09

22
53

36

13
 O

ct
 2

00
9

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

A method 1400 of compositing filled graphic objects including graphic objects

filled using a variable opacity fill, will be described below with reference to Fig. 14. The

method 1400 may be referred to as a “compositing process'". One or more of the graphic

5 objects are attenuated by group opacity. As described below, the contribution of a

graphic object is determined by multiplying RGB (red, green, blue) values of the graphic

object’s fill by corresponding alpha values and by a mask (i.e., a set of values including

one value for each pixel). The mask incorporates the remaining possible contribution for

graphic objects below and the effect of any group opacity including the group opacity

10 that is nested. The remaining contribution represents a contribution of red, green, blue

and alpha channels when used in an RGB colour space. The mask is updated as graphic

objects are processed down a list of active graphic objects.

Figs. 1A and IB collectively form a schematic block diagram of a general

purpose electronic device 101 comprising embedded components, upon which the

15 compositing methods to be described are desirably practiced. The electronic device 101

may be, for example, a mobile phone, a portable media player or a digital camera, in

which processing resources are limited. Nevertheless, the methods to be described may

also be performed on higher-level devices such as desktop computers, server computers,

and other such devices with significantly larger processing resources. As seen in

20 Fig. 1A, the electronic device 101 comprises an embedded controller 102. Accordingly,

the electronic device 101 may be referred to as an “embedded device.” In the present

example, the controller 102 comprises a processing unit (or processor) 105 which is bi­

directionally coupled to an internal storage module 109. The storage module 109 may be

formed from non-volatile semiconductor read only memory (ROM) 160 and

2334034v1 (892016_Final)

-9-

20
09

22
53

36

13
 O

ct
 2

00
9

semiconductor random access memory (RAM) 170, as seen in Fig. IB. The RAM 170

may be volatile, non-volatile or a combination of volatile and non-volatile memory.

The electronic device 101 comprises a display controller 107, which is connected

to a video display 114, such as a liquid crystal display (LCD) panel or the like. The

5 display controller 107 is configured for displaying graphical images on the video display

114 in accordance with instructions received from the processor 105.

The electronic device 101 also comprises user input devices 113 which are

typically formed by keys, a keypad or like controls. In some implementations, the user

input devices 113 may include a touch sensitive panel physically associated with the

10 display 114 to collectively form a touch-screen. Such a touch-screen may thus operate as

one form of graphical user interface (GUI) as opposed to a prompt or menu driven GUI

typically used with keypad-display combinations. Other forms of user input devices may

also be used, such as a microphone (not illustrated) for voice commands or a

joystick/thumb wheel (not illustrated) for ease of navigation about menus.

15 As seen in Fig. 1A, the electronic device 101 also comprises a portable memory

interface 106, which is coupled to the processor 105 via a connection 119. The portable

memory interface 106 allows a complementary portable memory device 125 to be

coupled to the electronic device 101 to act as a source or destination of data or to

supplement the internal storage module 109. Examples of such interfaces permit

20 coupling with portable memory devices such as Universal Serial Bus (USB) memory

devices, Secure Digital (SD) cards, Personal Computer Memory Card International

Association (PCMIA) cards, optical disks and magnetic disks.

The electronic device 101 also comprises a communications interface 108 to

permit coupling of the device 101 to a computer or communications network 120 via a

2334034V1 (892016_Final)

-10-

20
09

22
53

36

13
 O

ct
 2

00
9

connection 121. The connection 121 may be wired or wireless. For example, the

connection 121 may be radio frequency or optical. An example of a wired connection

includes Ethernet. Further, an example of wireless connection includes Bluetooth™ type

local interconnection, Wi-Fi (including protocols based on the standards of the IEEE

5 802.11 family), Infrared Data Association (IrDa) and the like.

Typically, the electronic device 101 is configured to perform some special

function. The embedded controller 102, possibly in conjunction with further special

function components 110, is provided to perform that special function. For example,

where the device 101 is a digital camera, the components 110 may represent a lens, focus

10 control and image sensor of the camera. As another example, the device 101 may be a

mobile telephone handset. In this instance, the components 110 may represent those

components required for communications in a cellular telephone environment. Where

the device 101 is a portable device, the special function components 110 may represent a

number of encoders and decoders of a type including Joint Photographic Experts Group

15 (JPEG), (Moving Picture Experts Group) MPEG, MPEG-1 Audio Layer 3 (MP3), and

the like.

The methods described below may be implemented using the embedded

controller 102 wherein the processes of Figs. 2 to 18, to be described, may be

implemented as one or more software application programs 133 executable within the

20 embedded controller 102. The electronic device 101 is an effective and advantageous

apparatus for implementing the described methods. In particular, with reference to Fig.

IB, the steps of the described methods are effected by instructions in the software 133

that are carried out within the controller 102. The software instructions may be formed

as one or more code modules, each for performing one or more particular tasks. The

2334034v1 (892016_Final)

- ii -

20
09

22
53

36

13
 O

ct
 2

00
9

software may also be divided into two separate parts, in which a first part and the

corresponding code modules performs the described methods and a second part and the

corresponding code modules manage a user interface between the first part and the user.

The software 133 is generally loaded into the controller 102 from a computer

5 readable medium, and is then typically stored in the ROM 160 of the internal storage

module 109, as illustrated in Fig. 1A, after which the software 133 can be executed by

the processor 105. In some instances, the processor 105 may execute software

instructions that are located in RAM 170. Software instructions may be located in RAM

170 by the processor 105 initiating a copy of one or more code modules from ROM 160

10 into RAM 170. Alternatively, the software instructions of one or more code modules

may be pre-installed in a non-volatile region of RAM 170 by a manufacturer. After one

or more code modules have been located in RAM 170, the processor 105 may execute

software instructions of the one or more code modules.

As described herein, the application program 133 is typically pre-installed and

15 stored in the ROM 160 by a manufacturer, prior to distribution of the electronic device

101. However, in some instances, the application programs 133 may be supplied to the

user encoded on one or more CD-ROM (not shown) and read via the portable memory

interface 106 prior to storage in the internal storage module 109 or in the portable

memory 125. In another alternative, the software application program 133 may be read

20 by the processor 105 from the network 120 or loaded into the controller 102 or the

portable storage medium 125 from other computer readable media. Computer readable

storage media refers to any storage medium that participates in providing instructions

and/or data to the controller 102 for execution and/or processing. Examples of such

storage media include floppy disks, magnetic tape, CD-ROM, a hard disk drive, a ROM

2334034v1 (892016_Final)

- 12-

20
09

22
53

36

13
 O

ct
 2

00
9

or integrated circuit, USB memory, a magneto-optical disk, flash memory, or a computer

readable card such as a PCMCIA card and the like, whether or not such devices are

internal or external of the device 101. Examples of computer readable transmission

media that may also participate in the provision of software, application programs,

5 instructions and/or data to the device 101 include radio or infra-red transmission

channels as well as a network connection to another computer or networked device, and

the Internet or Intranets including e-mail transmissions and information recorded on

Websites and the like. A computer readable medium having such software or computer

program recorded on it is a computer program product.

10 The second part of the application programs 133 and the corresponding code

modules mentioned above may be executed to implement one or more graphical user

interfaces (GUIs) to be rendered or otherwise represented upon the display 114. Through

manipulation of the user input device 113 (e.g., the keypad), a user of the device 101 and

the application programs 133 may manipulate the interface in a functionally adaptable

15 manner to provide controlling commands and/or input to the applications associated with

the GUI(s). Other forms of functionally adaptable user interfaces may also be

implemented, such as an audio interface utilizing speech prompts output via

loudspeakers (not illustrated) and user voice commands input via the microphone (not

illustrated).

20 Fig. IB is a detailed schematic block diagram of the controller 102 comprising

the processor 105 for executing the application programs 133, and the internal storage

109. The internal storage 109 comprises read only memory (ROM) 160 and random

access memory (RAM) 170. The processor 105 is able to execute the application

programs 133 stored in one or both of the connected memories 160 and 170. When the

2334034v1 (892016_Final)

- 13 -

20
09

22
53

36

13
 O

ct
 2

00
9

electronic device 102 is initially powered up, a system program resident in the ROM 160

is executed. The application program 133 permanently stored in the ROM 160 is

sometimes referred to as “firmware”. Execution of the firmware by the processor 105

may fulfil various functions, including processor management, memory management,

5 device management, storage management and user interface.

The processor 105 typically includes a number of functional modules including a

control unit (CU) 151, an arithmetic logic unit (ALU) 152 and a local or internal

memory comprising a set of registers 154 which typically contain atomic data elements

156, 157, along with internal buffer or cache memory 155. One or more internal buses

10 159 interconnect these functional modules. The processor 105 typically also has one or

more interfaces 158 for communicating with external devices via system bus 181, using

a connection 161.

The application program 133 includes a sequence of instructions 162 though 163

that may include conditional branch and loop instructions. The program 133 may also

15 include data, which is used in execution of the program 133. This data may be stored as

part of the instruction or in a separate location 164 within the ROM 160 or RAM 170.

In general, the processor 105 is given a set of instructions, which are executed

therein. This set of instructions may be organised into blocks, which perform specific

tasks or handle specific events that occur in the electronic device 101. Typically, the

20 application program 133 will wait for events and subsequently execute the block of code

associated with that event. Events may be triggered in response to input from a user, via

the user input devices 113, as detected by the processor 105. Events may also be

triggered in response to other sensors and interfaces in the electronic device 101.

2334034v1 (892016_Final)

-14-

20
09

22
53

36

13
 O

ct
 2

00
9

The execution of a set of the instructions may require numeric variables to be

read and modified. Such numeric variables are stored in the RAM 170. The disclosed

method uses input variables 171 that are stored in known locations 172, 173 in the

memory 170. The input variables are processed to produce output variables 177 that are

5 stored in known locations 178, 179 in the memory 170. Intermediate variables 174 may

be stored in additional memory locations in locations 175, 176 of the memory 170.

Alternatively, some intermediate variables may only exist in the registers 154 of the

processor 105.

The execution of a sequence of instructions is achieved in the processor 105 by

10 repeated application of a fetch-execute cycle. The control unit 151 of the processor 105

maintains a register called the program counter, which contains the address in ROM 160

or RAM 170 of the next instruction to be executed. At the start of the fetch execute

cycle, the contents of the memory address indexed by the program counter is loaded into

the control unit 151. The instruction thus loaded controls the subsequent operation of

15 the processor 105, causing for example, data to be loaded from ROM memory 160 into

processor registers 154, the contents of a register to be arithmetically combined with the

contents of another register, the contents of a register to be written to the location stored

in another register and so on. At the end of the fetch execute cycle the program counter

is updated to point to the next instruction in the system program code. Depending on the

20 instruction just executed this may involve incrementing the address contained in the

program counter or loading the program counter with a new address in order to achieve a

branch operation.

Each step or sub-process in the processes of the methods described below is

associated with one or more segments of the application program 133, and is performed

2334034v1 (892016_Final)

- 15 -

20
09

22
53

36

13
 O

ct
 2

00
9

by repeated execution of a fetch-execute cycle in the processor 105 or similar

programmatic operation of other independent processor blocks in the electronic device

101.

In a graphics rendering system, rendering of graphic objects produces pixel

5 values in a frame buffer suitable for display on a display device such as a liquid crystal

display (LCD) screen. In a simple rendering system, each graphic object is rasterised, in

order from bottom-most graphic object to top-most graphic object. The bottom-most

graphic object may be obscured by any of the graphic objects above the bottom-most

graphic object. Such a rendering system is known as a painter’s algorithm Tenderer.

10 Rendering in such a way is efficient in terms of memory usage and processing, even in

the presence of opacity being applied to individual graphic objects.

In rendering systems, colour and opacity can be represented in various ways. The

red/green/blue (RGB) pixel format is the most common format to encode colour

information. The colour is expressed as an RGB triplet (r,g,b), each colour component

15 of which can vary from zero to a defined maximum value. The value of the r colour

component represents intensity of red, the value of the g colour component represents the

intensity of green and the value of the b colour component represents the intensity of

blue. If all three colour components are zero the result is black. If all three colour

components are at maximum, the result is a brightest representable white.

20 The red/green/blue/alpha (RGBA) pixel format is a variant of the RGB pixel

format which includes a component for opacity. The opacity component is commonly

known as the alpha channel, so the format is named RGBA. RGBA is a representation

that integrates opacity information along with colour information. An RGBA pixel value

may be expressed in the form (r, g, b, a). The alpha channel allows for alpha blending of

2334034v1 (892016_Final)

- 16-

20
09

22
53

36

13
 O

ct
 2

00
9

one image over another. If the alpha value is zero the result is fully transparent; if the

alpha value is at maximum, the result is fully opaque.

The ranges for the r, g, b and a components may be quantified in several different

ways, as follows:

5 (i) as fractional values between 0.0 and 1.0 inclusive. This representation is used

in systems that use floating-point representations;

(ii) as percentages from 0% to 100%;

(iii) as integer numbers in the range zero (0) to two hundred and fifty five (255),

the range that a single 8-bit byte can offer (by encoding 256 distinct values); or

10 (iv) as integer numbers in the range zero (0) to sixty-five thousand five hundred

and thirty-five (65535), the range that sixteen (16) bits can offer, as is common in high

end digital imaging equipment.

Another pixel format referred to as the RGBA8888 pixel format, consists of four

(4) component values of eight (8) bits each. This means that the RGBA8888 pixel

15 format consumes a total of thirty-two (32) bits per pixel (BITS_PER_PIXEL) which is

equivalent to four (4) bytes per pixel (BYTES PER PIXEL).

When determining the pixel values of the frame buffer, each graphic object

intersecting some point on the display screen is considered. Moreover, for a given point

on the display screen corresponding to a display pixel, any graphic object intersecting the

20 point may have some colour value contributing to the display pixel value. The process

of determining a resulting display pixel value based on intersecting graphic objects is

known as compositing.

When compositing graphic objects that are completely opaque (i.e., each graphic

object’s opacity is 100%), a top-most intersecting graphic object will have a 100%

2334034v1 (892016_Final)

-17-

20
09

22
53

36

13
 O

ct
 2

00
9

contribution to a resulting display pixel value. That is, the resulting display pixel value

will be equal to the colour value of the top-most intersecting graphic object. Moreover,

any intersecting graphic object below the top-most graphic object will have no

contribution (i.e., each graphic object below the top-most will have 0% contribution) to

5 the resulting display pixel value.

When compositing graphic objects that may have an opacity between 0% and

100%, the colours of graphic objects need to be blended using compositing operations.

Such a blending process is referred to as alpha compositing.

Consider a painter’s algorithm Tenderer that composites graphic objects into a

10 compositing buffer B. Before any graphic objects are composited into the compositing

buffer, the compositing buffer colour component (B.colour) is initialised to 0%. Now

consider a graphic object O with colour component O.colour and opacity O.opacity. The

graphic object O can be alpha composited into (i.e. on top of) the compositing buffer

using the Equation (1) as follows:

15

B.colour final = O. co lour * O.opacity + (100% - O.opacity) * B. colour inMai (1)

Equation (1) is known as the OVER compositing operator. If the compositing

buffer needs to be alpha composited over other graphic objects, then a compositing

20 buffer opacity component (B.opacity) for each pixel may be stored in the compositing

buffer. Before any graphic objects are composited into the compositing buffer, the

compositing buffer opacity component (B.opacity) is initialised to 0%. When a graphic

object O is alpha composited into the compositing buffer, the compositing buffer opacity

component (B.opacity) is determined using the Equation (2), as follows:

2334034v1 (892016_Final)

- 18-

20
09

22
53

36

13
 O

ct
 2

00
9

B.opacityftnai = O.opacity + (100% - O.opacity) * B.opacityiniliai (2)

Equation (2) is referred to as the OVER compositing operator for the alpha

channel.

5 After applying the OVER compositing operator (i.e., Equations (1) and (2)), the

effect of the opacity component (B.opacity) has already been applied to the resulting

colour component (B. colour). Such a colour value is described as B.colour having been

pre-multiplied by B.opacity.

A graphic object P that has been pre-multiplied by an associated alpha channel

10 can be alpha composited into (i.e. on top of) an initialised compositing buffer B using

Equation (3) as follows:

B.colourfinai = P.colour + (100%> - P.opacity) * B.colourinitiai (3)

15 The effect of using pre-multiplied graphic objects does not affect alpha channel

calculations. That is, the opacity component (B.opacity) is determined using the OVER

compositing operator for alpha channel calculations (i.e., Equation (2)).

A subset of graphic objects may be composited as a group and then an additional

opacity may be applied to the result of compositing the group. Such an additional

20 opacity is referred to as a group opacity. An additional render buffer, which will be

referred to as the group buffer (GBinitial), may be used for applying the group opacity.

The additional render buffer method renders the subset of graphic objects into the group

buffer in isolation from the final display buffer. Once the subset of graphic objects has

been rendered into the group buffer (GBiniliai), the group opacity associated with the

2334034v1 (892016_Final)

- 19-

20
09

22
53

36

13
 O

ct
 2

00
9

1010

1515

group is en applied to the group buffer. The following expressions may be used

determine a result (GBfinai) of applying group opacity GO to a group buffer (GBMliai) in

accordance with Equations (4) and (5) below:

GB. GO * GB. CO lour initial (4)

GB.opacityfinal = GO * GB. opacity initial (5)

The group buffer is then used in place of the subset of graphic objects, producing

what may be referred to as the group graphic object. The group graphic object has been

pre-multiplied by a corresponding alpha channel. The group graphic object is then

composited with the remaining graphic objects into the final display buffer. Such a

method uses additional memory and introduces additional calculations associated with

compositing the group graphic object with remaining graphic objects. The methods

described below replicate the effect of applying group opacity using the method

described above, while minimising resource costs normally associated with applying

such an effect.

The application of group opacity to a graphic object may be used to hide part or

all of a graphic object. This may be achieved by using a zero (0) group opacity value,

which will result in grouped graphic objects being invisible. Such an effect, which

results in graphic objects being invisible, may be described as a clipping effect.

When rendering graphic objects, some graphics rendering systems composite

graphic objects in a top-down order. Such a graphics rendering system is sometimes

described as a reverse painter's algorithm Tenderer.

The described methods composite a number of bitmap image graphic objects.

Bitmap image graphic objects may be composited using the OVER compositing operator

as described above. Additionally, a subset of bitmap image graphic objects may be

2334034v1 (892016_Final)

-20-

20
09

22
53

36

13
 O

ct
 2

00
9

grouped, so as to apply group opacity. The described methods permit nested grouping,

such that the graphic objects in one group are a subset of the graphic objects of a parent

group.

In accordance with the described methods, a number of bitmap image graphic

5 objects may be provided to the processor 105 for compositing and rendering to a frame

buffer configured within RAM 170. Bitmap image graphic objects may have various

pixel formats. Two such formats are RGB and RGB A as described above.

A bitmap image may have a varying opacity across the image. Such an image is

described as having variable alpha. A bitmap image may have the same opacity for all

10 pixels. Such an image is described as having constant alpha. A bitmap image may have

the same colour for all pixels. Such an image is described as having a constant colour.

A bitmap image may have all pixels fully opaque. Such an image is described as being

fully opaque. As described herein, flags may be used to distinguish the different types of

images (i.e., variable alpha, constant alpha, constant colour and fully opaque) described

15 above. The flags may be used during the compositing process to perform various

optimisations, such as using simple compositing for constant colour bitmap or for a

quick determination of fully opaque resulting image, etc.

While the described methods accept bitmap image graphic objects, it will be

appreciated that other types of graphic objects may be used. For example, the described

20 methods may be applied to vector graphic objects, run length encoded graphic objects,

linear blended graphic objects, etc.

The described methods render graphic objects by creating a rasterised

representation of the graphic objects referred to as a frame. Rendering of a frame is

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -21 -

broken into two processes; firstly a frame setup process, followed by a frame render

process.

The frame setup process involves receiving a description of graphic objects that

are to be rendered. Additionally, the frame setup process involves receiving a

5 description of graphic objects to be grouped, so as to allow the application of group

opacity. During the frame setup process, the combined description of all graphic objects

and groups of graphic objects is referred to as the frame description. The frame

description is constructed by calls to an Application Programming Interface (API).

When setting up a frame, iterative calls to an API specify bitmap images to be

10 placed in the frame to be rendered. Each time a bitmap is placed using the API, a bitmap

data structure may be added to a list of all bitmap data structures for the frame

configured within the RAM 170. This list of bitmaps may be referred to as the bitmaps

list. The bitmaps list is part of the frame description, and is initialised to be an empty list

before the user adds any bitmap images to the frame description.

15 In addition to bitmap images, iterative calls to an API are used to specify groups

of graphic objects, which allow group opacity to be applied. Each time a group is

defined using the API, a group data structure may be added to a list of all group data

structures for the frame. This list of groups is referred to as the groups list. The groups

list is part of the frame description, and is initialised to be an empty list before the user

20 adds groups to the frame description.

After bitmaps and groups have been added to the frame description, the frame

may be rendered using a call to the API.

Fig 3 is a flow diagram showing a method 300 of adding bitmap images into a

frame. The method 300 may be implemented as one or more code modules of the

2334034v1 (892016_Final)

-22-

20
09

22
53

36

13
 O

ct
 2

00
9

application program 133 resident in ROM 160 and being controlled in its execution by

the processor 105.

The method 300 begins at step 301, where an API function is called by the

processor 105 to select a first bitmap image as the current image. Then in step 302, an

5 API function is called by the processor 105 to add the current bitmap image graphic

object to a frame description configured within the RAM 170. A method 400 of adding

the bitmap image to the frame description will be described in detail below with

reference to Fig. 4. In step 303, if the processor 105 determines that there are additional

bitmap images to be added, then the method 300 proceeds to step 304, where the next

10 bitmap image is selected by the processor 105 to be the current image. Then in step 302,

the image selected in step 304 is added to the frame description configured within the

RAM 170. Steps 302, 303 and 304 repeat until all bitmap images have been added to the

frame description.

The method 400 of adding a bitmap image to the frame description, as executed

15 at step 302, will now be further described with reference to Fig. 4. The method 400 may

be implemented as one or more code modules of the application program 133 resident in

ROM 160 and being controlled in its execution by the processor 105.

Referring to Figure 4, the method 400 begins at step 401, where the position of

the bitmap image is determined by the processor 105 using (x, y) screen pixel co-

20 ordinates. Step 401 will be described in further detail below. At step 402, the processor

105 determines a priority value for the bitmap image. This priority value affects the

compositing order of graphic objects. Step 402 will be described in further detail below.

In step 403, the processor 105 creates a bitmap data structure in the RAM 170 for

the bitmap image being added to the frame description. In step 404, the bitmap data

2334034v1 (892016_Final)

-23 -

20
09

22
53

36

13
 O

ct
 2

00
9

structure is passed to a clipping operation by the processor 105 which either discards the

bitmap data structure or clips the bitmap data structure so that the data structure lies

completely within bounds of a screen displayed on the display device 114. A method

500 of discarding and clipping an image, as executed at step 404, will be described

5 below with reference to Fig. 5.

In step 405, the processor 105 updates the bitmap data structure and sorts the

bitmap data structure into a list of all bitmap data structures in the order required by the

compositing process 1400

At step 401, the position of the bitmap image is determined by specifying the

10 screen pixel column and row for positioning the top-left comer of the bitmap image.

The screen pixel column and row are specified using an (x, y) screen pixel co-ordinate

system. A value of (0, 0) indicates a position at the top-left comer of the screen

displayed on the display device 114. A value of (SCRWIDTH, SCR HEIGHT)

indicates a position at the bottom-right of the screen, where the values SCR WIDTH and

15 SCR_HEIGHT represent the actual values of the screen width and screen height, in

pixels, respectively. A bitmap image may be positioned within the bounds of the screen

displayed on the display device 114, overlapping the screen bounds or completely

outside the screen bounds.

As described above, at step 402, the processor 105 determines a priority value for

20 the bitmap image. The priority value associated with the bitmap image of a graphic

object provides information indicating the compositing order of the graphic object,

relative to all other graphic objects placed into the frame description for rendering. Fig.

2 shows the relationship between rendering order and priority. As seen in Fig. 2, graphic

objects 210, 220 and 230 are associated with priority values one (1), two (2), and three

2334034v1 (892016_Final)

-24-

20
09

22
53

36

13
 O

ct
 2

00
9

(3) respectively. The object 210 has a priority value of one (1) in the frame description

and is rendered closest to a background. As shown in Fig. 2, graphic object 210 is

obscured by graphic objects 220 and 230, since the graphic object 210 has the lowest

priority value (i.e., one (1)) of the three graphic objects 220 and 230 in the frame. The

5 graphic object 230 has a priority value of three (3), which is the highest priority value in

the frame description and therefore is rendered the furthest from the background. As

seen in Fig. 2, graphic object 230 obscures all other graphic objects, because graphic

object 230 has the highest priority value of the three graphic objects in the frame. When

the graphic objects are processed using a top-down Tenderer, graphic objects with a

10 higher priority value are processed before graphic objects with lower priority value.

As described above, in step 403, a bitmap data structure is created. Fig. 7 shows

fields in an exemplary bitmap data structure. The bitmap data structure includes the

following fields:

- BMPX field 701, representing the starting column of the image,

15 - BMP_Y field 702, representing the starting row of the image,

- BMP_WIDTH field 703, representing the bitmap image width in pixels,

- BMP HEIGHT field 704, representing the bitmap image height in

pixels,

- BMP_PRIORITY field 705, representing the priority value of the

20 bitmap,

- BMP_STRIDE field 706, representing a value specifying the number of

bytes used for each row of the bitmap, and,

- BMP PIXEL DATA field 707, representing which is used to reference

the actual bitmap pixel data.

2334034v1 (892016_Final)

-25-

20
09

22
53

36

13
 O

ct
 2

00
9

- BMP_FLAGS field 708, representing a set of flags, which contains a

bitwise OR of flag values indicating if the bitmap image has variable alpha, constant

alpha, constant colour or is fully opaque.

Each of the fields 701-708 is initialised at step 403 of the method 400. In

5 addition to the above listed fields 701-708, the bitmap data structure contains fields 709-

712 which are used and modified by the processor 105. The additional fields include

SORT_X 710, SORT_Y 709, the IS_ACTIVATING flag 711 and the BMP_NEXT

pointer 712. The usage of the fields 701-712 is described in more detail below.

As described above, in step 404, the bitmap image is either discarded or clipped

10 to the screen bounds. Step 404 optimises the frame description, whereby an image

displayed outside of the screen bounds is discarded. If the image is not discarded, then

the image either lies entirely inside the screen bounds or partially within the screen

bounds. If the image lies partially within the screen bounds, then the image is clipped so

that the image lies entirely within the screen bounds. The rendering of the frame is

15 performed by the processor 105 based on the assumption that all graphic objects are

defined within the screen bounds. As such, image discarding and clipping operations are

performed.

The method 500 of discarding and clipping an image, as executed at step 404,

will described with reference to Fig. 5. The method 500 may be implemented as one or

20 more code modules of the application program 133 resident in ROM 160 and being

controlled in its execution by the processor 105.

The method 500 begins at 501, where if the processor 105 determines that the

bitmap image is placed above the top edge of the screen displayed on the display device

114, then the method 500 proceeds to step 505. Otherwise, the method 500 proceeds to

2334034v1 (892016_Final)

-26-

20
09

22
53

36

13
 O

ct
 2

00
9

step 502. The determination is made by the processor 105 at step 501 by checking if the

bottom edge of the bitmap image is above or coincides with the top edge of the screen

(i.e., BMPY + BMPHEIGHT <= 0) displayed on the display device 114. At step 505,

the bitmap data structure for the bitmap image is deleted by the processor 105. For

5 example, the bitmap data structure may be removed from RAM 170.

At step 502, the processor 105 determines whether the bitmap image is placed

below the bottom edge of the screen of the display device 114, by checking if the top

edge of the bitmap image is below or coincides with the bottom edge of the screen (or

bottom screen edge) displayed on the display device 114 (i.e., BMP_Y >=

10 SCR HEIGHT). If the bitmap image is placed below the bottom screen edge, then the

method 500 proceeds to step 505. Otherwise, the method 500 proceeds to step 503. At

step 505, the bitmap data structure for the bitmap image is deleted.

At step 503, the processor 105 determines whether the bitmap image is placed to

the left of the left screen edge (i.e., the left edge of the screen being displayed on the

15 display device 114), by checking if the right edge of the bitmap image is to the left of or

is coincident with the left screen edge (i.e. (BMP_X + BMP_WIDTH) <= 0). If the

bitmap is placed to the left of the left screen edge, then the method 500 proceeds to step

505. Otherwise, the method 500 proceeds to step 504. At step 505, the bitmap data

structure for the bitmap image is deleted.

20 At step 504, the processor 105 determines whether the bitmap image is placed to

the right of the right screen edge (i.e., the right edge of the screen being displayed on the

display device 114), by checking if the left edge of the bitmap image is to the right of or

is coincident with the right screen edge (i.e. BMP_X >= SCR WIDTH). If the bitmap is

placed to the right of the right screen edge, then the method 500 proceeds to step 505.

2334034v1 (892016_Final)

-27-

20
09

22
53

36

13
 O

ct
 2

00
9

Otherwise, the method proceeds to step 506. At step 505, the bitmap data structure for

the bitmap image is deleted.

At step 506, the bitmap image is clipped so that the bitmap image is entirely

within the bounds of the screen displayed on the display device 114. A method 600 of

5 clipping the bitmap image, as executed at step 506, will now be described with reference

to Fig. 6. The method 600 may be implemented as one or more code modules of the

application program 133 resident in ROM 160 and being controlled in its execution by

the processor 105.

Any image that reaches the bitmap clipping stage 506 intersects with some region

10 of the screen. The method 600 begins at step 601, where a check is performed by the

processor 105 to determine whether the bitmap image overlaps the top edge of the screen

being displayed on the display device 114. If the bitmap image does overlap the top

edge of the screen (i.e., BMP_Y < 0), then the method 600 continues to step 602, where

the bitmap image is clipped so that the bitmap is aligned with the top edge of the screen

15 of the display device 114. Following this clipping step 602, the method 600 continues to

step 603. If at step 601 the processor 105 determines that the bitmap image does not

overlap the top edge of the screen, then the method 600 continues directly to step 603.

At step 603, a check is performed by the processor 105 to determine whether the

bitmap image overlaps the bottom edge of the screen. If the bitmap image does overlap

20 the bottom edge of the screen (i.e., BMP_Y + BMP_HEIGHT > SCR HEIGHT), then

the method 600 continues to step 604, where the bitmap image is clipped so that the

bitmap image is aligned with the bottom edge of the screen. Following this clipping step

604, the method 600 continues to step 605. If at step 603 the processor 105 determines

2334034v1 (892016_Final)

-28-

20
09

22
53

36

13
 O

ct
 2

00
9

that the bitmap image does not overlap the bottom edge of the screen, then the processor

105 continues directly to step 605.

At step 605, a check is performed by the processor 105 to determine whether the

bitmap image overlaps the left edge of the screen. If the bitmap image does overlap the

5 left edge of the screen (i.e., BMPX < 0), then the method 600 continues to step 606,

where the bitmap image is clipped so that bitmap image is aligned with the left edge of

the screen. Following this clipping step 606, the method 600 continues to step 607. If at

step 605 the processor 105 determines that the bitmap image does not overlap the left

edge of the screen, then the method 600 continues directly to step 607.

10 At step 607, a check is performed by the processor 105 to determine whether the

bitmap image overlaps the right edge of the screen. If the bitmap image does overlap the

right edge of the screen, then the method 600 continues to step 608, where the bitmap

image is clipped so that the bitmap image is aligned with the right edge of the screen.

Following this clipping step 608, the clipping process has completed. If at step 607 the

15 processor 105 determines that the bitmap image does not overlap the right edge of the

screen, then the method 600 has completed.

In step 602, the bitmap image is clipped to align with the top edge of the screen

by updating the bitmap data structure fields BMP_PIXEL_DATA 707, BMP_HEIGHT

704 and BMPY 702, as follows:

20 BMPPIXELDATA = BMP_PIXEL_DATA + BMP STRIDE * (-BMPY)

BMP_HEIGHT = BMPHEIGHT + BMPY

BMPY = 0

In particular, at step 602, the bitmap pixel data is updated to reference the first

scanline of bitmap pixel data that is required to be rendered. This is achieved by

2334034v1 (892016_Final)

-29-

20
09

22
53

36

13
 O

ct
 2

00
9

offsetting the bitmap data address by exactly BMPSTRIDE * (-BMPY) bytes. The

BMPY field is negative whenever this clipping step 602 is performed.

In step 604, the bitmap image is clipped to align with the bottom edge of the

screen by updating the bitmap data structure field, BMPHEIGHT 704, as follows:

5 BMP HEIGHT = SCR HEIGHT - BMPY

Accordingly, only the BMP_HEIGHT field 704 is updated at step 604. The

values of other fields 701-703 and 705-708 are not changed.

In step 606, the bitmap image is clipped to align with the left edge of the screen

by updating the bitmap data structure fields, BMPPIXELDATA 707, BMP_WIDTH

10 703 and BMP_X 701 as follows:

BMP PIXEL DATA = BMPJPIXEL DATA + BYTES_PER_PIXEL * (-BMP_X)

BMP_WIDTH = BMP_WIDTH + BMP_X

BMP_X = 0

15

In particular, at step 606, the processor 105 updates the bitmap pixel data to

reference the first column of bitmap pixel data that is required to be rendered. This is

achieved by offsetting the bitmap data reference by exactly BYTES PER PIXEL * (-

BMP_X) bytes, where BYTES_PER_PIXEL defines the number of bytes that one pixel

20 of bitmap image data occupies. The BMP_X field 701 is negative whenever this

clipping step 606 is performed.

In step 608, the bitmap image is clipped to align with the right edge of the screen

by updating the bitmap data structure field, BMP WIDTH 703, as follows:

BMP_WIDTH = SCRWIDTH - BMP_X

2334034v1 (892016_Final)

-30-

20
09

22
53

36

13
 O

ct
 2

00
9

Only the BMPWIDTH field 703 is updated at step 608. The values of other

fields 701-702 and 704-708 are not changed.

Referring to Fig. 4, in step 405, the processor 105 updates the bitmap data

structure and sorts the bitmap data structure into a scan ordered list of bitmap data

5 structures. The method 800 of updating and sorting a bitmap data structure will now be

described in detail with reference to Fig. 8. The method 800 may be implemented as one

or more code modules of the application program 133 resident in ROM 160 and being

controlled in its execution by the processor 105.

The method 800 begins at step 801, where runtime field, SORTY 709, is

10 initialised to the BMP_Y field 702 representing the starting column of the bitmap image.

At the next step 802, the runtime field, SORT X 710, is initialised to the

BMP_X field 701, representing the starting column of the image. Then at step 803, the

runtime field, IS_ACT1VATING 711, is initialised to TRUE .

After step 803, the method 800 continues to step 804. In step 804, the bitmap

15 data structure is insertion sorted into the bitmaps list configured within the RAM 170.

The bitmaps list is sorted in scan order. That is, the bitmaps list is sorted lowest to

highest, first by the SORT_Y field 709, and then by the SORT_X field 710 for items

which have equal SORT Y values. After step 804, the method 800 of updating and

sorting a bitmap data structure is complete and the frame description (including the

20 bitmaps list) is in a state where rendering can be performed.

In one embodiment, after bitmap images have been specified, groups of graphic

objects and their corresponding group opacity values may be specified. For each such

group of graphic objects, an API function is called to define parameters for the group of

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -31 -

objects and a group data structure is added to the groups list. Referring to Fig. 12, the

fields of a group data structure include the following:

- G_TOP 1201, representing a top-most priority included in the group of graphic

objects. The G TOP field 1201 is an unsigned 16-bit quantity, where zero (0) refers to

5 the graphic object nearest the background,

- GBOT 1202, representing a bottom-most priority included in the group of

graphic objects. The G BOT field 1202 is an unsigned 16-bit quantity, where zero (0)

refers to the graphic object nearest the background,

- G_ALPHA 1203, representing the group opacity. The GALPHA field 1203 is

10 an unsigned 8-bit value, where zero (0) means completely transparent, and two-hundred

and fifty-five (255) means completely opaque,

- G_STORED_MASK 1204, representing a reference to a mask stored in a

storage medium such as RAM 170,

- G_PARENT 1205, representing a reference to a parent group data structure,

15 - G_NEXT 1206 representing a reference to a next group data structure in the

groups list.

In one embodiment, the group opacity field, G_ALPHA 1203, may be specified

for each pixel of the screen. In such an embodiment, a group opacity buffer configured

within RAM 170 may be used to store a group opacity value for each pixel of the screen.

20 Such a group opacity may be denoted G_ALPHAx,y

In another embodiment, the group opacity G ALPHA, 1203 may be specified for

each scanline of the screen. In such an embodiment, a group opacity buffer configured

within RAM 170 may be used to store a group opacity value for each scanline of the

screen. Such a group opacity may be denoted G_ALPHAy.

2334034V1 (892016_Final)

-32-

20
09

22
53

36

13
 O

ct
 2

00
9

In yet another embodiment, the group opacity G ALPHA 1203, may be defined

by some function of x and y. Accordingly, the group opacity may be a function of screen

position.

When a definition for a group of objects is added to the frame description, a new

5 group data structure is allocated and added into the groups list configured within RAM

170. As described above, the groups list contains all group data structures to be applied

during the rendering of the frame. In one embodiment, the groups list is stored in a

RAM 170 as a singly linked list. Before any groups are added into the frame description,

the groups list is initialised to be empty. To initialise the groups list, a head pointer of

10 the list is set to be NULL. The groups list is sorted highest to lowest, by the group top­

most priority field, GTOP 1201. Group data structures that have equal values for the

GTOP field 1201 are further sorted, lowest to highest, by group bottom-most priority

according to the G_BOT field 1202. As described below, the groups list is sorted in this

way for efficient processing during the compositing process 1400.

15 Each group of objects is defined by calls to an API function. For each group of

objects, a group data structure is initialised and added to the groups list configured

within RAM 170. A method 1300 of adding a new group data structure to the groups list

will now be described with reference to Fig. 13. The method 1300 may be implemented

as one or more code modules of the application program 133 resident in ROM 160 and

20 being controlled in its execution by the processor 105.

The method 1300 begins at 1302, where a previous pointer, prev, is initialised to

NULL and a current pointer, cur, is initialised to point to the head of the groups list

configured within RAM 170. After this, the method 1300 continues to step 1303. At

step 1303, the current pointer, cur, is compared with the NULL value. If the current

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -33 -

pointer, cur, is NULL then the method 1300 continues to step 1304. At step 1304, the

new group is appended to the end of the existing groups list configured within the RAM

170.

At step 1304, if the processor 105 determines that the existing groups list is

5 empty, then the head pointer is set to point to the new group data structure and the next

pointer of the new group data structure is set to be NULL. Still at step 1304, if the

processor 105 determines that the existing groups list is not empty, then the next pointer

of the previous group data structure is set to point to the new group data structure and the

next pointer of the new group data structure is set to be NULL. After step 1304, the

10 insertion of the new group data structure has been completed.

If at step 1303 the current pointer is found to be not NULL by the processor 105,

then the method 1300 continues to step 1306. At step 1306, the processor 105

determines if the top-most priority as represented by the G TOP field 1201 of the new

group data structure is greater than the top-most priority as represented by the G_TOP

15 field 1201 of the current group data structure. At 1306, if the result of the determination

is TRUE, then the method 1300 continues to step 1307. At step 1307, the processor 105

inserts the new group data structure into the groups list configured within RAM 170

between the previous and current group data structures.

At step 1307, if the processor 105 determines that the previous pointer (i.e., prev)

20 is NULL then the head pointer is set to point to the new group data structure and the next

pointer (G_NEXT) of the new group data structure is set to point to the current group

data structure. After step 1307 has been performed, the insertion of the new group data

structure into the groups list is complete.

2334034v1 (892016_Final)

-34-

20
09

22
53

36

13
 O

ct
 2

00
9

At step 1306, if the processor 105 determine that the result of the comparison is

FALSE, then the method 1300 continues to step 1308. At step 1308, the processor 105

determines if the top most priority (GTOP) of the new group data structure is equal to

the top most priority (G TOP) of the current group data structure. Then at step 1308, if

5 the result of the comparison is TRUE then the method 1300 continues to step 1309. At

step 1309, the processor 105 compares whether the bottom most priority (G BOT) of the

new group data structure is greater than the bottom most priority (G BOT) of the current

group data structure. At step 1309, if the result of the comparison is TRUE then the

method 1300 continues to step 1307 where the new group data structure is inserted into

10 the groups list configured within RAM 170 between the previous group and cunent

group data structures.

At step 1309, if the result of the comparison is FALSE, then the method 1300

continues to step 1310 which involves advancing to the next group data structure. At

step 1310 the previous pointer (i.e., prev) is set to point to the current group data

15 structure and the current pointer (i.e., cur) is set to point to the next group data structure

in the groups list or NULL if at end of list. Following step 1310, processing continues at

step 1303.

At step 1308, if the result of the comparison is FALSE, then the method 1300

continues to step 1310.

20 After the frame has been set up, an API function may be called by the processor

105 in order to commence the rendering of the frame. Upon the rendering commencing,

a frame description (comprising scan ordered list of bitmap data structures and priority

ordered list of group data structures) is rendered to a frame buffer configured within the

RAM 170. The frame buffer is an area of memory where result pixel data is stored.

2334034v1 (892016_Final)

-35-

20
09

22
53

36

13
 O

ct
 2

00
9

After rendering is complete, the pixel data of the frame buffer is in a format ready for

display on the display device 114. Typically, the frame buffer contains scan ordered

pixel data. That is, typically, pixel data in the frame buffer is ordered scanline by

scanline from the top of display to the bottom of display, where pixels within a scanline

5 appear in left to right order. In one embodiment, the processor 105 outputs composited

pixels to a scan ordered frame buffer.

The pixel data within the frame buffer is of a particular pixel format. A common

frame buffer pixel format is RGB888, which consists of eight (8) bits of red channel

data, followed by eight (8) bits of green channel data and eight (8) bits of blue channel

10 data, giving a total of twenty-four (24) bits per pixel. Many other pixel formats exist

which use a different number of bits per channel, or use a different ordering of colour

channels or use an entirely different colour space to represent pixel data.

For certain applications, the frame buffer may contain alpha (opacity)

information. A frame buffer using the RGBA8888 pixel format allows an eight (8) bit

15 opacity value to be stored for each pixel in addition to red, green and blue channel data.

This opacity information is referred to as an alpha channel. The presence of an alpha

channel in the frame buffer allows the frame buffer itself to be alpha-composited with

other images at a later stage. In one embodiment, the processor 105 writes composited

pixels to a frame buffer using the RGBA8888 pixel format.

20 The size of the frame buffer depends on the frame buffer pixel format and the

width and height of the display in pixels. The minimum size of the frame buffer (in bits)

is provided by Equation 6, below:

frame_buffer_size = BITS_PER_PIXEL * SCR_WIDTH * SCR_HEIGHT (6)

In some instances, a memory offset may be introduced between scanlines of pixel

25 data in the frame buffer. This, for example, allows the start of each scanline to be
2334034v1 (892016_Final)

-36-

20
09

22
53

36

13
 O

ct
 2

00
9

aligned to a thirty-two (32) bit boundary in the memory address space. Introducing a

memory offset between scanlines of pixel data may also allow a subregion of a larger

buffer to be used as the frame buffer. To facilitate such a memory offset between

scanlines, a stride value is associated with the frame buffer. The stride value is equal to

5 the number of bytes between the start of one scanline and the start of the following

scanline. If there is no memory offset between scanlines, then the stride value (in bytes)

is given by the Equation (7), as follows:

stride = (BITS_PER_PIXEL * SCR_WIDTH) / 8 (7)

If the memory offset between scanlines is scanline_offset bytes, then the stride

10 value (in bytes) is given by the Equation (8), as follows:

stride = ((BITS_PER_PIXEL * SCR_WIDTH) /8)+ scanline_offset (8)

As described herein, the processor 105 processes bitmap images to identify scan

ordered runs of pixels. For each run of pixels, compositing is performed to display the

run of pixels on the display device 114. The required compositing for a run of pixels is

15 performed in accordance with a method 1400 of compositing variable opacity objects,

which will be described in detail below with reference to Fig. 14. Each time the method

1400 is performed, a corresponding run of pixels is written to the frame buffer

configured within the RAM 170.

In one embodiment, each scan-line of the display is rendered in scan order. Fig.

20 9 is a flow diagram showing a method 900 of rendering each scan-line. The method 900

may be implemented as one or more code modules of the application program 133

resident in ROM 160 and being controlled in its execution by the processor 105.

The method 900 begins at step 901, where a list of active bitmaps is initialised to

be empty by the processor 105. This list may be configured within the RAM 170 and is

25 referred to as the active bitmaps list. The active bitmaps list is initially empty and is
2334034v1 (892016_Final)

-37-

20
09

22
53

36

13
 O

ct
 2

00
9

used to store pointers to bitmap data structures. The active bitmaps list is sorted, highest

to lowest, by bitmap priority value (BMP PRIORITY). The active bitmaps list is later

used during the compositing process in accordance with the method 1400 to specify the

bitmaps to be composited for a particular run of pixels. In addition to the active bitmaps

5 list, a value used to track the current scan-line (CUR Y) is initialised to a value of zero

(0) to indicate the first scan-line to render. In one embodiment, the first (i.e. top-most)

scan-line in the screen displayed on the display device 114 will have a CUR Y value of

zero (0) and the final (i.e. bottom-most) scan-line has a CUR_Y value one (1) less than

the height of the screen in pixels (i.e. SCR HEIGHT - 1).

10 An additional value to be tracked is the current column (CUR_X) within the

cunent scanline. At step 902, the CUR X value is set to zero (0) by the processor 105.

After step 902, the method 900 continues to step 903, where the processor 105

determines whether there is a next bitmap available for processing. This is determined

by comparing the head pointer of the bitmaps list with NULL. If no next bitmap exists,

15 then the method 900 continues to step 907 where the current scanline is rendered from

the current column within the scanline (CUR X) to the right screen edge. A method

1000 of rendering to the right screen edge, as executed at step 907, is shown in Fig. 10

and will be described in more detail below.

At step 903, if a next bitmap does exist, then the method 900 continues to step

20 904 where the next bitmap data structure from the bitmaps list is retrieved by the

processor 105. The step of retrieval at step 904 does not remove the bitmap data

structure from the bitmaps list, but accesses the fields contained within the bitmap data

structure.

2334034V1 (892016_Final)

-38-

20
09

22
53

36

13
 O

ct
 2

00
9

After step 904, the method 900 continues to step 905, where a test is performed

by the processor 105 to determine whether the retrieved bitmap intersects with the

current scanline (CUR_Y). To determine this, the SORT Y field of the bitmap data

structure is compared with the CUR Y value. If the processor 105 determines that the

5 currently retrieved bitmap intersects with the current scanline, then the method 900

continues to step 906 where the bitmap data structure retrieved is processed. A method

1100 of processing a current bitmap data structure, as executed at step 906, will be

described in detail below with reference to Fig. 11. After step 906, the method 900

continues to step 903 to retrieve the next bitmap if one exists.

10 At step 905, if the processor 105 determines that the retrieved bitmap does not

intersect with the current scan line being processed, then there are no more images that

need to be rendered for the current scan line and the method 900 continues to step 907.

At step 907, the current scanline is rendered from the current column within the scanline

(CUR X) to the right screen edge, in accordance with the method 1000.

15 At step 907, after a scanline has been rendered to the screen edge, the current

scanline (CUR_Y) is incremented. After step 907, the method 900 flows to 908 where

the processor 105 performs a test to check whether the last scanline on the screen has

been rendered. If the last scanline on the screen has not been reached, then the processor

105 continues to step 902 to render the next scanline.

20 The method 1000 of rendering to the right edge of the screen, will now be

described. The method 1000 may be implemented as one or more code modules of the

application program 133 resident in ROM 160 and being controlled in its execution by

the processor 105.

2334034V1 (892016_Final)

-39-

20
09

22
53

36

13
 O

ct
 2

00
9

The method 1000 begins at step 1001, where the processor 105 determines a

composite width value. The composite width value is the number of pixels to be

composited and rendered in accordance with the method 1400 (i.e., the compositing

process). The composite width is stored in a variable named COMP WIDTH configured

5 within the RAM 170. To render the remaining pixels in the current scanline, the

COMP WIDTH value is calculated by deducting the cunent column position (CUR_X)

from the total number of pixels in a scanline (SCR_WIDTH). After step 1001, the

method 1000 continues to step 1002, where the compositing process is performed by the

processor 105 in accordance with the method 1400. The method 1400 (i.e., the

10 compositing process) involves processing the graphic objects in the active bitmap list

and will be described in more detail later. After step 1002, the method 1000 continues to

step 1003 where the current scanline variable (CUR_Y) is incremented to indicate

rendering is advancing to the next scanline. After step 1003, the method 1000 of

rendering to the right edge of the screen is complete.

15 The method 1100 of processing a current bitmap data structure, as executed at

step 906, will now be described with reference to Fig. 11. The method 1100 may be

implemented as one or more code modules of the application program 133 resident in

ROM 160 and being controlled in its execution by the processor 105.

The method 1100 begins at step 1101, where a check is performed by the

20 processor 105 to determine if the current bitmap starts in the cunent column in the

current scanline being processed. If the bitmap image does not start at the current

column, then the method 1100 continues to step 1102, where the processor 105

determines the number of pixels (COMP_WIDTH) between the current column and the

starting column of the current bitmap (SORT_X). Following step 1102, at step 1103,

2334034V1 (892016_Final)

-40-

20
09

22
53

36

13
 O

ct
 2

00
9

using the current row (CUR_Y), the cunent column (CURX), the number of pixels to

be composited (COMP_WIDTH) and the active bitmaps list, a compositing process is

performed by the processor 105 in accordance with the method 1400.

Following step 1103, the method 1100 continues to step 1104 where the current

5 column variable (CUR X) is incremented by the number of composited pixels

(COMP WIDTH). After step 1104, the method 1100 flows to step 1105.

At 1101, if it is determined that the current bitmap starts in the current column,

then the method 100 flows to step 1105.

At step 1105, the current bitmap data structure is examined by the processor 105

10 to determine if the current bitmap data structure is associated with the activating (left) or

deactivating (right) side of a bitmap image. A bitmap data structure with

IS ACTIVATE flag set to TRUE marks the activating (left) side of a bitmap. Such a

bitmap data structure may be referred to as an activating bitmap data structure.

If at step 1105, an activating bitmap data structure is encountered by the

15 processor 105, then the method 1100 moves to step 1111 where the bitmap data structure

fields are updated so that the bitmap data structure fields mark the ending column for the

current bitmap. In particular, at step 1111, the processor 105 adds the bitmap width

(BMP_WIDTH) to the SORT_X field, and sets the IS_ACTIVATE flag to FALSE.

Once these fields have been adjusted, the method 1100 moves to step 1112 where a

20 pointer to the bitmap data structure is added into the active bitmaps list configured

within the RAM 170, such that the bitmap data structure of the active bitmaps list are

sorted from highest to lower by the bitmap priority value (BMP_PRIORITY). After step

1112, the method 1100 continues to step 1113, where the processor 105 re-sorts the

bitmaps list configured within RAM 170 to ensure that the bitmap data structure is in the

2334034v1 (892016_Final)

-41 -

20
09

22
53

36

13
 O

ct
 2

00
9

conect position within the bitmaps list according to the updated field values. The re­

sorting step 1113 results in the bitmap data structures of the bitmaps list being sorted in

scan order. That is, the bitmaps list is sorted lowest to highest, first by the SORTY

field 709, and then by the SORT_X field 710 for items which have equal SORTY

5 values.

If at step 1105 a deactivating bitmap data structure is encountered by the

processor 105, then the method 1100 moves to step 1106 where the bitmap data structure

is removed from the active bitmaps list. Following step 1106, the method 1100

continues to step 1107, where the SORT_Y field of the bitmap data structure is

10 incremented to indicate the next scanline of the bitmap which will need rendering.

Following step 1107, the method 1100 continues to step 1108, where the

processor 105 determines if the last scanline of the bitmap image has been reached. In

particular, at step 1108, the processor 105 compares whether the SORT Y value is equal

to BMP Y + BMP HEIGHT. If this test returns FALSE then the method 1100 flows to

15 step 1109. At step 1109, the SORT X field of the bitmap data structure is set to be

equal to the left column value of the bitmap (BMP_X) and the IS ACTIVATE flag is set

to a value of TRUE. Following step 1109, at the next step 1113, the bitmaps list is re­

sorted by the processor 105. After step 1113, the processing of a current bitmap data

structure is complete.

20 If the processor 105 determines at step 1108 that the last scanline of the bitmap

has been reached, then the method 1100 continues to step 1110. At step 1110, the

processor 105 removes the bitmap data structure from the bitmaps list so that the bitmap

data structure is not processed on subsequent scanlines. After step 1110, the processing

of a current bitmap data structure is complete.

2334034v1 (892016_Final)

-42-

20
09

22
53

36

13
 O

ct
 2

00
9

The compositing process 1400 composites a number of graphic objects using a

top-down compositing order. The method 1400 (compositing process) accepts a number

of RGBA8888 pixel format bitmap image graphic objects to be composited.

Alternatively, pixel formats other than RGBA8888 may also be used. The following

5 parameters are determined before the method 1400 (compositing process) is invoked by

the processor 105:

- cunent row (CUR Y) of pixels to be rendered;

- start column (CUR X) of the run of pixels to be rendered;

- number of pixels in the current row of pixels to be rendered (COMP WIDTH);

10 - priority ordered active bitmap list containing the graphic objects to be

composited;

- priority ordered groups list; and

- a frame buffer (FRAMEJBUF) configured within RAM 170.

In accordance with the method 1400 (compositing process), group opacity is

15 applied to the graphic objects of the active bitmaps list configured within RAM 170. The

application of group opacity is performed in accordance with the group data structure

definitions of the groups list. The method 1400 (compositing process) composites the

graphic objects of the active bitmaps list and renders a run of pixels to the frame buffer

configured within RAM 170. The number of pixels in the run of pixels to be rendered is

20 equal to the composite width (COMP_WIDTH). In one embodiment, the maximum

composite width is equal to the screen width in pixels (SCR_WIDTH).

In another embodiment, the maximum composite width is limited to a value less

than the screen width in pixels (SCR_WIDTH). Such a limitation reduces RAM 170

requirements at the cost of some additional processing overhead.

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -43 -

During compositing, as graphic objects are processed top to bottom in a top down

compositing fashion, a mask stored in a mask buffer configured within RAM 170 is used

to store remaining opacity which can be applied to those graphic objects yet to be

processed. In one embodiment, each value of the mask is a one (1) byte quantity holding

5 a value between zero (0) and two hundred and fifty five (255) inclusive. For each nested

group that is entered, the mask is saved into a temporary mask stored in a temporary

mask buffer configured within RAM 170 for later use. Each mask buffer is large enough

to hold mask values for each pixel in the run of pixels to be rendered. The maximum

mask buffer size is defined by the maximum composite width required during

10 compositing.

A mask value corresponding to a particular pixel in the mask may be denoted

maskpixei..

As compositing takes place, result pixel colour and opacity values accumulate in

a compositing buffer configured within the RAM 170. The compositing buffer is large

15 enough to hold pixel values for the run of pixels to be rendered. The compositing buffer

has a maximum size defined by the maximum composite width required during

compositing.

A particular pixel in the compositing buffer may be denoted as

composite_bufferpixci.

20 A particular colour or opacity channel (r, g, b, a) corresponding to a particular

pixel in the compositing buffer may be denoted as composite_bufferpixei, channel·

Each value of the mask corresponds to exactly one pixel in the compositing

buffer.

2334034v1 (892016_Final)

-44-

20
09

22
53

36

13
 O

ct
 2

00
9

After compositing of all pixels in a run has completed, the result pixel values are

read from the compositing buffer, converted to the required frame buffer pixel format

and written to the frame buffer configured within RAM 170. The pixel data in the frame

buffer is in a format suitable for display on the display 114.

5 The method 1400 of compositing graphic objects, including variable opacity

graphic objects, will now be described with reference to Fig. 14. One or more of the

graphic objects are attenuated by group opacity. As described above, the method 1400

may be referred to as the compositing process. The method 1400 may be implemented

as one or more code modules of the application program 133 resident in ROM 160 and

10 being controlled in its execution by the processor 105.

The method 1400 begins at step 1402, where a number of initialisations are

performed by the processor 105. In particular, a primary mask is initialised within RAM

170 such that all mask values have value two hundred and fifty five (255).

Accordingly, the processor 105 performs that step of initialising the primary mask. The

15 initialised primary mask may be referred to as a first mask. Further, the compositing

buffer is initialised so that red, green, blue and alpha components are zero and a

NEXTGROUP variable is set to point to the first rendering group in the groups list.

Finally, also at step 1402, a MASK_ALL_ZERO flag is initialised to FALSE. The

NEXT_GROUP variable indicates the next new group in the groups list that needs to be

20 processed during the execution of the method 1400 (compositing process).

Following step 1402, the method 1400 (compositing process) continues to step

1403, where the current graphic object is set to be the first graphic object in the active

bitmap list configured within RAM 170. After step 1403, processing continues to step

1404, where the processor 105 performs a test to determine whether the current graphic

2334034v1 (892016_Final)

-45-

20
09

22
53

36

13
 O

ct
 2

00
9

object is the start graphic object of a group. Step 1404 is achieved by comparing the

priority (BMP_PRIORITY) of the current graphic object with the start priority (G TOP)

of the NEXT GROUP in the groups list. If the current graphic object does correspond to

the start graphic object of a group, then the method 1400 proceeds to step 1407.

5 Otherwise, the method 1400 proceeds to step 1405 to process the current graphic object.

The current graphic object is processed at step 1405 in accordance with a method 1700

of processing a current graphic object, which will described in detail below with

reference to Fig. 17. At step 1405, the following variables and buffers may be updated:

- the primary mask values;

10 - the MASK_ALL_ZERO flag; and

- the compositing buffer values.

After step 1405, processing flows to step 1409.

At step 1407, the group of graphic objects is processed in accordance with a

method 1500 of processing grouped graphic objects, which will be described in detail

15 below with reference to Fig. 15. The method 1500 may be referred to as a process group

method. The processing of a group may update the primary mask values, current graphic

object, NEXT_GROUP and MASK_ALL_ZERO flag accordingly. The current graphic

object will have been set to refer to the last (i.e. bottom-most) graphic object of the

group as the group will have been processed. After step 1407, the method 1400 proceeds

20 to step 1409.

At step 1409, the processor 105 tests the MASK._ALL_ZERO flag. If the

MASK_ALL_ZERO flag is set to TRUE, then the remaining graphic objects in the

active bitmaps list do not need to be processed and the method 1400 (compositing

2334034v1 (892016_Final)

-46-

20
09

22
53

36

13
 O

ct
 2

00
9

process) is complete. Otherwise, at step 1409, if the MASK_ALL_ZERO flag is set to

FALSE, then the method 1400 continues to step 1410.

At step 1410, the processor 105 checks whether the current graphic object is the

bottom-most graphic object to be processed (i.e. the last bitmap data structure in the

5 active bitmaps list). If the current graphic object is not the bottom-most graphic object,

then the method 1400 continues to step 1411 where the graphic object below the current

graphic object (BMP_NEXT) is set as the new current graphic object. After step 1411,

the method 1400 loops back to step 1404 to process the new current graphic object. If, at

step 1410, the current graphic object is the bottom-most graphic object to be processed,

10 then the method 1400 (compositing process) is complete, as there are no more graphic

objects to be processed.

The method 1500 of processing grouped graphic objects will now be described

with reference to Fig. 15. As described above, the method 1500 may be referred to as

the process group method. The method 1500 may be implemented as one or more code

15 modules of the application program 133 resident in ROM 160 and being controlled in its

execution by the processor 105.

The input of the method 1500 includes a mask, which will be referred to as the

primary mask in method 1500. The primary mask contains the mask values for each

pixel in the run of pixels to be rendered. The input to the method 1500 also includes the

20 current row (CUR_Y) being rendered, the start column (CUR X) of the run of pixels to

be rendered and the number of pixels in the run to be rendered (COMP WIDTH). The

input to the method 1500 also includes a current graphic object (bitmap) in the active

bitmap list, a current group in the priority ordered groups list and a frame buffer

(FRAME_BUF).

2334034v1 (892016_Final)

-47-

20
09

22
53

36

13
 O

ct
 2

00
9

The method 1500 starts at step 1501, where the processor 105 performs

initialisation by setting the MASKALLZERO flag to FALSE and the NEXT_GROUP

variable to reference the next group of the current group.

Following step 1501, at step 1502, the group opacity (G_ALPHA) of the current

5 group is tested. If the group opacity is zero (0), then the method 1500 advances to step

1514. Otherwise, if the group opacity is not zero (0), then the method 1500 continues to

step 1503.

At step 1503, the primary mask is stored for later use. This stored mask will be

referred to as the stored mask. A new mask is allocated (or generated) within RAM 170,

10 and this new mask becomes the second primary mask. The new mask is allocated with

the same size as the stored mask as follows:

stored_mask = primary_mask

allocate new_mask

2nd primary_mask - new_mask

15 The above expressions involve assignments of references and no copying of

buffer content is performed.

Then at step 1504, the second primary mask (i.e. the newly allocated mask or

second mask) is initialised according to the opacity of the current group (G_ALPHA)

and the stored mask. Accordingly, at step 1504, the processor 105 performs the step of

20 generating the second primary mask. For each second primary mask value, the

initialisation is carried out in accordance with Equation (9) as follows:

2nd primary_maskPixei = stored_maskpixei * G_ALPHA /255 (9)

In one embodiment, if the current group opacity is a variable opacity, then the

second primary mask is initialised according to Equation (10) as follows:

25

2334034v1 (892016_Final)

-48-

20
09

22
53

36

13
 O

ct
 2

00
9

2nd primary_maskPixei = stored_maskpixel * G_ALPHA pixel, cur_y/255

(10)

5

In another embodiment, if the current group opacity is a variable opacity in the

vertical direction only, then the second primary mask is initialised according to Equation

(11) as follows:

10 2nd primary_maskPixei = stored_maskPixei * G_ALPHAcur_y /255

(ID

Accordingly, the group opacity (G_ALPHA) may be a function of screen

15 position. In yet another embodiment, the group opacity (G ALPHA) value may be

determined by evaluating some function of screen row and column position.

At step 1507 the current graphic object is tested by the processor 105 to

determine whether the current graphic object corresponds to the start graphic object of a

new rendering group. The processor 105 makes the determination at step 1507 by

20 examining the start priority (G_TOP) of the NEXT GROUP in the groups list. If the

current graphic object is the start of a new group, the method 1500 continues to step

1508 and the new group is processed by recursively calling the process group method

1500 itself. The processing of the new rendering group may update the values of the

second primary mask, the MASK ALL ZERO flag, the current graphic object pointer

25 and the NEXT_GROUP accordingly. After processing the new group at step 1508, the

2334034v1 (892016_Final)

-49-

20
09

22
53

36

13
 O

ct
 2

00
9

current graphic object will have been set to the end graphic object of the new group, as

the new group will have been processed at step 1508. Otherwise, at step 1507, if the

current graphic object is not the start of a new rendering group then the method 1500

proceeds to step 1509. At step 1509, the current graphic object is processed in

5 accordance with the method 1700 of processing the current graphic object described

below using the second primary mask.

After step 1509, the method 1500 continues to step 1511, where the

MASKALLZERO flag is tested. If the MASKALLZERO flag is FALSE, then the

method 1500 continues to step 1512, where the current graphic object is tested to

10 determine whether the current graphic object corresponds to the end graphic object of the

current rendering group. Step 1512 is performed by testing if there is a next graphic

object (BMP_NEXT) with priority (BMP PRIORITY) greater than or equal to the

bottom-most priority (G_BOT) of the current group. If the current graphic object is not

the end graphic object of the current group, then at the next step 1513, the graphic object

15 below the current graphic object (BMP NEXT) is set to be the new current graphic

object. After step 1513, the method 1500 loops back to step 1507 to process the new

current graphic object. At step 1512, if the current graphic object is the end graphic

object of the current rendering group, the method 1500 continues to step 1516 where the

stored mask is adjusted before the processing of the group finishes.

20 If the group opacity is zero at step 1502, or the MASK_ALL_ZERO flag is set to

TRUE at step 1511, then the method 1500 continues to step 1514.

At step 1514, all graphic objects contained within the current group are skipped.

A graphic object O is considered to be “contained within” a group G if the graphic object

O satisfies the following condition:

25 G.G_B0T <= O.BMP_PRIORITY <= G.G_TOP
2334034v1 (892016_Final)

-50-

20
09

22
53

36

13
 O

ct
 2

00
9

Step 1514 is performed by setting the current graphic object to be the end

(bottom-most) graphic object within the current group. Following step 1514, the method

1500 advances to step 1515.

At step 1515, all groups contained within the current group are skipped. A group

5 CHILD is considered to be contained within another group PARENT if the top priority

of the group CHILD is smaller or equal to the top priority of the group PARENT and the

bottom priority of the group CHILD is greater or equal to the bottom priority of the

group PARENT. Step 1515 is performed by scanning the group list from the current

group until a group is found that is not contained within the current group. The

10 NEXT GROUP variable is updated to point to the first group not contained within the

current group, or NULL if no such group is found. Following step 1515, the method

1500 advances to step 1516.

At step 1516, the stored mask may be adjusted by the processor 105. If the group

opacity (G_ALPHA) is zero, then the stored mask adjustment is not performed. In this

15 case there is no adjustment needed. If the group opacity is not zero, then the mask

adjustment is carried out in accordance with Equation (12) as follows:

stored_maskpixel= 2nd primary_maskpixel+ (255 - G_ALPHA)/255 *

stored_maskpixei

20 (12)

Following the stored mask adjustment, the stored mask is returned to the primary

mask for subsequent processing. The MASK_ALL_ZERO flag is also updated according

to the values in the primary mask by setting the MASK_ALL_ZERO flag to true if the

25 primary mask is all zero. The stored mask, restored as the primary mask, is updated

2334034v1 (892016_Final)

-51 -

20
09

22
53

36

13
 O

ct
 2

00
9

using the second primary mask and the group opacity. The primary mask can then be

used for compositing graphic objects located below the current object. After step 1516,

the method 1500 is complete.

The method 1700 of processing a current graphic object will now be described in

5 with reference to Fig. 17. The method 1700 may be implemented as one or more code

modules of the application program 133 resident in ROM 160 and being controlled in its

execution by the processor 105. The method 1700 operates on a primary mask. The

primary mask is usually the equivalent of the second primary mask used in the method

1500 of Fig. 15 or the primary mask of the method 1400. Alternatively, the primary

10 mask is the primary mask of a method 1600 which will be described below with

reference to Fig. 16.

The method 1700 starts at step 1702, where the processor 105 performs the step

of determining the contribution value (OBJ_CONTRIB) of each pixel of the current

graphic object, based on the opacity of the graphic object (OBJ ALPHA) and the values

15 of the primary mask. The contribution value (OBJ CONTRIB) of each pixel of the

current graphic object may be determined in accordance with Equation (14) and

represents a contribution of the graphic object to the compositing buffer. The

contribution value can be calculated as follows:

20 OBJ_CONTRIBpixel = (OBJ_ALPHApixeI * primary_maskpixei)/255 (14)

At step 1702, if the graphic object is a fully opaque image, i.e. the opacity of the

graphic object (OBJ_ALPHA) is equal to two hundred and fifty five (255), then the

calculation of the contribution (OBJ_CONTRIB) of each pixel of the current graphic

25 object can be optimised, in accordance with Equation (15) as follows:

2334034V1 (892016_Final)

-52-

20
09

22
53

36

13
 O

ct
 2

00
9

OBJ_CONTRIBpiXei = primary_maskpiXei (15)

Equation (15) is equivalent to Equation (14) when OBJ ALPHA is equal to two

5 hundred and fifty five (255).

The contribution value (OBJCONTRIB) is later used to update the values of the

primary mask. In addition to setting the contribution of the current graphic object, at

step 1702, if the graphic object is fully opaque then the MASK_ALL_ZERO flag is set

to TRUE.

10 Then at step 1703, the processor 105 performs the step of determining an output

colour value (OBJ OUT COL) of each pixel of the graphic object. The output colour

value (OBJOUTCOL) is based on the colour (OBJ COL) of the graphic object and the

corresponding value of the primary mask. The red, green and blue colour channels of the

output colour value (OBJ_OUT_COL) are determined in accordance with Equation (16)

15 as follows:

OBJ_OUT_COLpixei, channel = (OBJ_COLpixei, channel * OB J_CONTRIBpixei)/255 (16)

The opacity channel of the output colour value (OBJOUTCOL) is equal to the

20 contribution value of the graphic object, in accordance with Equation (16b) as follows:

OBJ_OUT_COLpixei, a = OBJ_CONTRIBplxei (16b)

The determination of the opacity channel of the colour value (OBJOUTCOL)

25 is a function of the contribution value (OBJ CONTRIB) of the graphic object, in

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -53 -

accordance with Equation (16). Furthermore, the contribution value (OBJ CONTRIB) of

the graphic object is a function of the primary mask value, in accordance with the

Equation (14). Furthermore, the primary mask value is a function of group opacity

(G_ALPHA), in accordance with Equation (9). Accordingly, the colour value

5 (OBJOUTCOL) is determined at step 1703 using the group opacity (G ALPHA).

The contribution value (OBJ_CONTRIB) is also used in updating the mask. Further, the

determined colour value (OBJOUTCOL) includes an opacity value, in accordance

with Equation (16b).

After the output colour value (OBJ OUT COL) for each channel has been

10 determined, at step 1704, the processor 105 performs the step of compositing the output

colour with a compositing buffer. In particular, at step 1704 each output channel (red,

green, blue and alpha) is added to the compositing buffer configured within RAM 170 in

accordance with Equation (17) as follows:

1 5 COIUpOS i t C btlf f j channel “COmpOS i tC_buf f θΐ^ρίχεί, channel'*' OB J OUT—C0Lpixei. channel

(17)

After step 1704, the method 1700 continues to step 1706, where the processor

20 105 performs the step of updating the primary mask values. Corresponding to each

pixel, the primary mask values are updated in accordance with Equation (19) as follows:

primary_maskPixei - primary_maskpixei - OBJ_CONTRIBpixei (19)

2334034v1 (892016_Final)

-54-

20
09

22
53

36

13
 O

ct
 2

00
9

The updated primary mask values are a function of the contribution value

(OBJ CONTRIB) of the graphic object, in accordance with Equation (19). Furthermore,

the contribution value (OBJ CONTRIB) of the graphic object is a function of the

opacity of the graphic object (OBJ_ALPHA), in accordance with the Equation (14).

5 Additionally, the existing primary mask values are a function of group opacity

(G_ALPHA), in accordance with Equation (9). Accordingly, at step 1706, the primary

mask values are updated using the group opacity (G ALPHA) and the opacity

(OBJ_ALPHApixei) corresponding to the graphic object. Following step 1706, the

method 1700 is complete.

10 In an alternative embodiment, graphic objects may be composited without using a

recursive technique. Instead of using recursion, information associated with a group may

be stored in a stack data structure configured within the RAM 170. A method 1600 of

compositing variable opacity graphic objects will now be described with reference to

Fig. 16. One or more of the graphic objects are attenuated by group opacity. The method

15 1600 may be referred to as an “alternative compositing process”. The method 1600

avoids recursion and may be implemented as one or more code modules of the

application program 133 resident in ROM 160 and being controlled in its execution by

the processor 105.

The method 1600 starts at 1602, where a number of initialisations are performed

20 by the processor 105. In particular, at step 1602, a primary mask, or first mask, is

initialised within RAM 170 such that all values of the primary mask have a value of two

hundred and fifty five (255), the compositing buffer is initialised so that red, green, blue

and alpha components are zero (0), and a cunent group (CUR_GROUP) is set to NULL.

Accordingly, at step 1602 the processor 105 performs the step of initialising the primary

2334034v1 (892016_Final)

-55-

20
09

22
53

36

13
 O

ct
 2

00
9

mask. Additionally at step 1602, a next group (NEXT_GROUP) is set to the first

rendering group in the groups list, the parent group of the next group is set to NULL, a

MASK ALL ZERO flag is initialised to FALSE, and the current graphic object

(CUR_OBJECT) is set to be the first graphic object in the active bitmap list.

5 The current group (CUR GROUP) indicates the innermost group currently

attenuating the current graphic object (CUR_OBJECT). The next group

(NEXTGROUP) indicates the next group in the groups list after the current group

(CUR_GROUP) that needs to be processed during the compositing process 1400.

Following step 1602, the method 1600 continues to step 1604 where a test is

10 performed by the processor 105 to determine whether the next group (NEXT GROUP)

starts at or above the current graphic object (CUR OBJECT) where above is determined

by Z order. If the next group does start at or above the current graphic object, then the

method 1600 advances to step 1605. Otherwise, the method 1600 advances to step 1607.

At step 1605, a reference to the primary mask is pushed on a stack for later use. The

15 primary mask will be referred to as the stored mask.

Following step 1605, the method 1600 continues to step 1606 where a new mask

is initialised according to the opacity of the next group. The new mask becomes the

primary mask. The new mask will be a second mask when the step 1606 is executed a

first time and a third mask when executed a second time and so on. . The operations of

20 initialising a new mask at step 1606 are summarised below:

allocate new_mask

new_maskpixei = stored_maskPixei * (NEXT_GROUP.G_ALPHA)/255

primary_maskpixei = new_maskPixei

25

2334034v1 (892016_Final)

-56-

20
09

22
53

36

13
 O

ct
 2

00
9

Still at step 1606, the current group (CUR_GROUP) is set to be the next group

(NEXTGROUP). Following step 1606, the next group (NEXT_GROUP) is set to be the

group following the cunent group (CUR GROUP.G NEXT) in the groups list

configured within RAM 170. Still at step 1606, if the NEXT_GROUP is not NULL,

5 then the NEXT GROUP.G PARENT field is set to be the cunent group

(CUR GROUP). At steps 1605 and 1606, an optimisation may be performed to ignore

groups that end above the cunent graphic object. Additionally, at steps 1605 and 1606,

groups that have 100% group opacity may be ignored. Following step 1606, the method

1600 flows back to step 1604.

10 At step 1607 the cunent graphic object (CUR_OBJECT) is processed in

accordance with the method 1700 described above with reference to Fig. 17. In

particular, the cunent graphic object (CUR_OBJECT) is processed at step 1607 using

the primary mask, which could be the first, second or any other mask that is cunently in

use by the method 1700.

15 Following step 1607 the method 1600 flows to step 1608 where the cunent

graphic object (CUR_OBJECT) is tested to determine whether the cunent graphic object

(CUR_OBJECT) is the bottom-most graphic object. If the cunent graphic object

(CUROBJECT) is the bottom-most graphic object, then the method 1600 is complete.

If the cunent graphic (CUR_OBJECT) object is not the bottom-most graphic object, then

20 the method 1600 continues to step 1610.

At step 1610, the processor 105 sets the cunent graphic object (CUR OBJECT)

to be the next graphic object (CUR_OBJECT.G_NEXT) in the active bitmap list

configured within RAM 170. Following step 1610, the method 1600 continues to step

1611.

2334034v1 (892016_Final)

-57-

20
09

22
53

36

13
 O

ct
 2

00
9

At step 1611 a test is performed by the processor 105 to determine if the current

group (CURGROUP) ends above, in terms of Z order, the current graphic object

(CUROBJECT). If the current group (CUR_GROUP) does end above the current

graphic object (CUR OBJECT), then method 1600 continues to step 1612. Otherwise,

5 the method 1600 loops back to step 1604.

At step 1612, the stored mask reference is popped from the stack. Still at step

1612, the stored mask referenced by the popped reference, is adjusted in a similar

manner to step 1516 as described above. After adjustment, the primary mask is removed

from RAM 170, and the adjusted stored mask is restored as the primary mask. These

10 operations, performed at step 1612, are summarised below:

stored_maskpixei = primary_maskpixei + (255 -

(CUR_GROUP.G_ALPHA) / 255) * stored_maskpixei;

free primary_mask;

15 primary_maskPixei = stored_maskPixei;

Still at step 1612, the current group (CURGROUP) is set to be the parent group

of the current group (CUR GROUP.G PARENT). Continuing, at the step 1612, the

MASKALLZERO flag is updated according to the values of the primary mask.

20 Following step 1612, the method 1600 flows to step 1611.

In one embodiment, an optimisation may be used to improve the efficiency of

compositing constant alpha graphic objects. In such an embodiment, graphic objects

above the top-most variable alpha graphic object may be processed using just a single

mask value representing the entire run of pixels to be rendered. Such an optimisation

25 may be used to process graphic objects that are above (i.e. of higher priority than) the

2334034v1 (892016_Final)

-58-

20
09

22
53

36

13
 O

ct
 2

00
9

top-most variable alpha graphic object. Instead of initialising the mask buffer at the size

of the number of pixels involved in compositing (COMP WIDTH), only a single mask

value is initialised. When a graphic object with variable alpha is encountered, a mask

buffer with size equal to the run length (COMP_WIDTH) may be initialised so that all

5 mask values are equal to the single mask value. Following the initialisation of the mask

buffer, the methods described above may be used to composite variable opacity objects

with group opacity applied.

Following the steps of the method 1400 (compositing process) or the method

1600 (alternative compositing process), the result pixels for the run are read from the

10 compositing buffer, converted into the frame buffer pixel format and written to the frame

buffer configured within RAM 170.

As described above, there are numerous pixel formats that can be used for

representing a bitmap image. In one embodiment, the frame buffer contains pixels of the

RGBA8888 pixel format which can be assembled from individual 8 bit red, green, blue

15 and opacity channels. In this instance, the opacity information is stored as part of each

frame buffer pixel. The opacity information is only necessary in some applications. If

opacity information is not required in the frame buffer then the opacity information may

be omitted from the frame buffer as an optimisation.

In one embodiment, the compositing buffer may be used as the frame buffer, and

20 no separate frame buffer is required. In such an embodiment, no conversion of pixel

format takes place since the pixels of the compositing buffer are in a pixel format that is

suitable for display on display device 114.

A dithering operation may be applied to each frame buffer pixel. Display devices

using a low number of bits per colour channel can exhibit unintended patterns that

2334034v1 (892016_Final)

-59-

20
09

22
53

36

13
 O

ct
 2

00
9

degrade the visual quality of the rendered output image. Such unintended patterns are a

result of the low dynamic range of phosphor intensities to which such displays are

limited. Dithering is used to minimise such unwanted effects.

In one embodiment, the rendering system outputs eight (8) bits per channel data.

5 In this instance, dithering is not performed since eight (8) bits per channel data provides

sufficient dynamic range of phosphor intensities.

After all pixel runs in the frame have been composited and written to the frame

buffer, the frame buffer will be in a state suitable for display on the display device 114.

In one embodiment, the processor 105 executes a method of creating a linear

10 gradient filled bitmap image. After creating a linear gradient filled bitmap image, the

bitmap image may be used as input to for compositing with other bitmap images.

A method 1800 of filling a bitmap image with a linear gradient, will now be

described with reference to Fig. 18. The method 1800 may be implemented as one or

more code modules of the application program 133 resident in ROM 160 and being

15 controlled in its execution by the processor 105.

The method 1800 begins at step 1801, where the processor 105 determines

parameters of the linear gradient. The linear gradient parameters are as follows:

- a colour ramp array (RAMP) consisting of nine (9) RGBA8888 colour values

(RAMP[0], RAMP[1], RAMP[2], RAMP[3], RAMP[4], RAMP[5], RAMP[6],

20 RAMP[7] and RAMP[8]);

- an affine transformation matrix that may position, scale and rotate the linear

gradient into the bitmap image (TXFM);

- bitmap image buffer (B BUF);

- stride value for the image (B STRIDE);

2334034v1 (892016_Final)

-60-

20
09

22
53

36

13
 O

ct
 2

00
9

- width of the bitmap image (B_W); and

- height of the bitmap image (B_H).

The linear gradient to fill the bitmap image consists of nine (9) ordered RGBA

colour values. Each of these nine (9) colours are specified in a colour ramp parameter

5 (RAMP). The colour ramp is an array of unsigned thirty two (32) bit values, where each

unsigned thirty two (32) bit value represents one RGBA8888 colour value.

A linear gradient may be defined to exist in a two dimensional (2D) gradient

space. In the gradient space, the linear gradient blends colours of the colour ramp across

a range from x = 0 to x = 65536. The gradient space range x < 0 will be filled using a

10 first colour ramp colour (RAMP[0J). The gradient space range x > 65536 will be filled

using a last colour ramp value (RAMP[8J).

A transformation (TXFM parameter) may be specified for mapping the linear

gradient from gradient space into the bitmap image space. The transformation supplied

is an affine transformation as is commonly used in the field of two dimensional (2D)

15 computer graphics. The transformation parameter (TXFM) may be determined in

accordance with Equation (20) below:

sx rl tx
TXFM = rO ty (20)

0 0 1

The TXFM parameter may be used to scale, rotate and translate the linear

gradient by transforming the gradient space into the bitmap image space. If an identity

20 transform (i.e. one that does not scale, rotate or translate) is supplied as the TXFM

parameter, then the linear gradient will be rendered so that the 9 colours of the colour

ramp (RAMP) are blended between the range x=0 to x=65536.

2334034v1 (892016_Final)

-61 -

20
09

22
53

36

13
 O

ct
 2

00
9

Following step 1801, the method 1800 continues to step 1802 where the

processor 105 determines a determinant value of the transformation parameter (TXFM).

The determinant value is calculated in accordance with Equation (21) as follows:

Determinant = sx * sy - rl * rO (21)

5 After step 1802, the method 1800 continues to step 1803 wherein a horizontal

step value is calculated in accordance with Equation (22) as follows:

Horizontal_Step_Value = sy / Determinant (22)

After step 1803, the method 1800 continues to step 1804, where the processor

105 determines whether the horizontal step value is less than zero. If the horizontal step

10 value is less than zero (0), then the method 1800 continues to step 1805. Otherwise, the

method 1800 continues to step 1807.

At step 1805, the processor 105 updates TXFM to include a one hundred and

eighty (180) degree rotation about the centre of the linear gradient and the horizontal step

value is set to the negative of the horizontal step value.

15 The rotation of the linear gradient at step 1805 is achieved using a matrix

multiplication in accordance with Equation (23) as follows:

-1 0 65536
TXFM = TXFM · 0 -1 65536

0 0 1
(23)

Following step 1805, the method 1800 continues to step 1806 which involves

reversing the colours of the colour ramp (RAMP). The colour ramp is reversed by

20 swapping the colour value RAMP[0] with the colour value RAMP[8], the colour value

RAMP[1] with the colour value RAMP[7], the colour value RAMP[2] with the colour

value RAMP[6] and the colour value RAMP[3] with the colour value RAMP[5].

2334034v1 (892016_Final)

-62-

20
09

22
53

36

13
 O

ct
 2

00
9

Following step 1806, the method 1800 continues to step 1807. At step 1807, a

vertical step value may be determined by the processor 105 in accordance with Equation

(24) as follows:

Vertical_Step_Value = -rl / Determinant (24)

5 After step 1807, the method 1800 continues to step 1808 where the gradient

space position corresponding to the bitmap image origin is determined by the processor

105. The gradient space position is the start point when rendering the linear gradient to

the bitmap image. The gradient space bitmap image origin value may be determined in

accordance with Equation (25) as follows:

10

Gradient_Space_Bitmap_Origin=(rl * ty - tx * sy) / Determinant

After step 1808, the method 1800 continues to step 1809 where linear gradient

pixels are rendered by the processor 105 to a bitmap image buffer (B_BUF) configured

15 within RAM 170. The linear gradient pixel rendering is performed one scan line at a

time until all scan lines for the bitmap image are finished. For each pixel in each scan

line of the bitmap image, a gradient space position (gx) is determined from the bitmap

image space pixel position (x, y) according to the following equation:

20 gx = Gradient_Space_Bitmap_Origin +

y * Vertical_Step_Value + x * Horizontal_Step_Value

(26)

(25)

2334034v1 (892016_Final)

20
09

22
53

36

13
 O

ct
 2

00
9 -63 -

Following determination of the gradient space position (gx), a final pixel colour value is

determined as follows:

If gx < 0, the colour is RAMP[0].

If gx > 65535, the colour is RAMP[8].

5 For gx in the range 0 to 65535, the colour is

RAMP[gx / 8192] * (1.0- mod(x, 8192)/ 8192)

+
RAMP[(gx / 8192)+1] * (mod(x, 8192)/ 8192)

10 After step 1809, the method 1800 of filling a bitmap image with a linear gradient

is complete.

The methods described above perform alpha compositing of graphic objects

attenuated by group opacity very efficiently. The described methods need less memory

than conventional compositing methods since no additional RGBA image buffer is

15 needed. In accordance with the methods described above, a single mask is used for each

nested group. The mask is 25% of the size of such a RGBA image buffer.

The compositing methods described above support nested groups and only

visible graphic objects are rendered. For example, if graphic object A is obstructed, then

the graphic object A will not be rendered. Accordingly, there is no need to access

20 obstructed graphic objects below a current graphic object in accordance with the

described methods.

In accordance with the methods described above, there is no per graphic object

overhead to support group opacity. Further the scan ordered frame buffer only needs to

be written once for each graphic object.

2334034v1 (892016_Final)

-64-

20
09

22
53

36

13
 O

ct
 2

00
9

Industrial Applicability

It is apparent from the above that the arrangements described are applicable to

the computer and data processing industries.
The foregoing describes only some embodiments of the present invention, and

5 modifications and/or changes can be made thereto without departing from the scope and
spirit of the invention, the embodiments being illustrative and not restrictive.

In the context of this specification, the word “comprising” means “including
principally but not necessarily solely” or “having” or “including”, and not “consisting
only of’. Variations of the word "comprising", such as “comprise” and “comprises”

10 have correspondingly varied meanings.

2334034v1 (892016_Final)

-65-

20
09

22
53

36

13
 O

ct
 2

00
9

The claims defining the invention are as follows:

1. A method of compositing a plurality of graphic objects with a compositing

buffer, said plurality of graphic objects forming a group being attenuated by group

5 opacity and being composited from a top object to a bottom object, the method

comprising the steps of:

generating, based on a first mask and the group opacity, a second mask, the first

mask storing a remaining possible contribution for further graphic objects below and

including said plurality of graphic objects;

10 processing said plurality of graphic objects in a top down order, the processing

comprising the sub-steps of, for each graphic object of the plurality of graphic objects:

(a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

15 (b) compositing a colour value of the graphic object with the compositing

buffer using said contribution value; and

(c) updating the second mask using said contribution value; and
updating the first mask using said second mask and the group opacity, wherein

said updated first mask is configured for further compositing of objects below said

20 plurality of graphic objects.

2. The method according to claim 1 wherein the first and second masks are each a

single channel mask representing red, green, blue and alpha.

2334034v1 (892016_Final)

-66-

20
09

22
53

36

13
 O

ct
 2

00
9

3. The method according to claim 1, wherein the compositing is an OVER

operation.

4. The method of claim 1, wherein the colour value includes an opacity value.

5

5. The method of claim 1, wherein said group opacity is a function of screen

position.

6. The method of claim 1, wherein said group opacity is a function of screen row.

10

7. The method of claim 1, wherein said group opacity is configured for clipping at

least part of the graphic object.

8. An apparatus for compositing a plurality of graphic objects with a compositing

15 buffer, said plurality of graphic objects forming a group being attenuated by group

opacity and being composited from a top object to a bottom object, the apparatus

comprising:

means for generating, based on a first mask and the group opacity, a second

mask, the first mask storing a remaining possible contribution for further graphic objects

20 below and including said plurality of graphic objects;

means for processing said plurality of graphic objects in a top down order, the

processing comprising the steps of, for each graphic object of the plurality of graphic

objects:

2334034v1 (892016_Final)

-67-

20
09

22
53

36

13
 O

ct
 2

00
9

(a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

(b) compositing a colour value of the graphic object with the compositing

5 buffer using said contribution value; and

(c) updating the second mask using said contribution value; and
means for updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects below

said plurality of graphic objects.

10

9. A system for compositing a plurality of graphic objects with a compositing

buffer, said plurality of graphic objects forming a group being attenuated by group

opacity and being composited from a top object to a bottom object, the system

comprising:

15 a memory for storing data and a computer program; and

a processor coupled to said memory for executing said computer program, said

computer program comprising instructions for:

generating, based on a first mask and the group opacity, a second mask,

the first mask storing a remaining possible contribution for further graphic

20 objects below and including said plurality of graphic objects;

processing said plurality of graphic objects in a top down order, the

processing comprising the sub-steps of, for each graphic object of the plurality of

graphic objects:

2334034v1 (892016_Final)

-68-

20
09

22
53

36

13
 O

ct
 2

00
9

(a) determining a contribution value for the graphic object using

the second mask, the contribution value representing a contribution of the graphic

object to the compositing buffer;

(b) compositing a colour value of the graphic object with the

5 compositing buffer using said contribution value; and

(c) updating the second mask using said contribution value; and
updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects

below said plurality of graphic objects.

10

10. A computer readable medium having recorded thereon a computer program for

compositing a plurality of graphic objects with a compositing buffer, said plurality of

graphic objects forming a group being attenuated by group opacity and being composited

from a top object to a bottom object, the program comprising:

15 code for generating, based on a first mask and the group opacity, a second mask,

the first mask storing a remaining possible contribution for further graphic objects below

and including said plurality of graphic objects;

code for processing said plurality of graphic objects in a top down order, the

processing comprising the steps of, for each graphic object of the plurality of graphic

20 objects:

(a) determining a contribution value for the graphic object using the

second mask, the contribution value representing a contribution of the graphic object to

the compositing buffer;

(b) compositing a colour value of the graphic object with the compositing

25 buffer using said contribution value; and

2334034V1 (892016_Final)

-69-

20
09

22
53

36

13
 O

ct
 2

00
9

(c) updating the second mask using said contribution value; and
code for updating the first mask using said second mask and the group opacity,

wherein said updated first mask is configured for further compositing of objects below

said plurality of graphic objects.

5

11. A method of compositing a plurality of graphic objects with a compositing

buffer, the method being substantially as herein before described with reference to any

one of the embodiments as that embodiment is shown in the accompanying drawings.

10 12. An apparatus for compositing a plurality of graphic objects with a compositing

buffer, the apparatus being substantially as herein before described with reference to any

one of the embodiments as that embodiment is shown in the accompanying drawings.

13. A system for compositing a plurality of graphic objects with a compositing

15 buffer, the system being substantially as herein before described with reference to any

one of the embodiments as that embodiment is shown in the accompanying drawings.

Dated this 12th day of October 2009

CANON KABUSHIKI KAISHA

20 Patent Attorneys for the Applicant

Spruson&Ferguson

2334034v1 (892016_Final)

1/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

2/19

20
09

22
53

36

13
 O

ct
 2

00
9

σ> ο

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fi
g.

 1B

I
J

892016_figs_04 (2333768v1)

3/19

20
09

22
53

36

13
 O

ct
 2

00
9

220

Fig. 2

892016_figs_04 (2333768v1)

4/19

20
09

22
53

36

13
 O

ct
 2

00
9

Fig. 3

892016_figs_04 (2333768v1)

5/19

20
09

22
53

36

13
 O

ct
 2

00
9

401

402

403

404

405

400

Fig. 4

892016_figs_04 (2333768v1)

6/19

20
09

22
53

36

13
 O

ct
 2

00
9

506

892016_figs_04 (2333768v1)

7/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

8/19

20
09

22
53

36

13
 O

ct
 2

00
9

700

701

702

703

704

705

706

707

708

709

710

711

712

BMPX

BMP_Y

BMP_WIDTH

BMP_HEIGHT

BMPPRIORITY

BMP_STRIDE

BMP_PIXEL_DATA

BMP_FLAGS

SORT_Y

SORTX

IS_ACTIVATING

BMP_NEXT

Fig. 7

892016_figs_04 (2333768v1)

9/19

20
09

22
53

36

13
 O

ct
 2

00
9

800

Fig. 8

892016_figs_04 (2333768v1)

10/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

11/19

20
09

22
53

36

13
 O

ct
 2

00
9

1000

1001

1002

1003

Fig. 10

892016_figs_04 (2333768v1)

12/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

13/19

20
09

22
53

36

13
 O

ct
 2

00
9

1201

1202

1203

1204

1205

1206

Fig. 12

892016_figs_04 (2333768v1)

14/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

15/19

20
09

22
53

36

13
 O

ct
 2

00
9

892016_figs_04 (2333768v1)

16/19

1501 1500
initialisation

No

store and
allocate new

mask

0 group
opacity?

1503

1504

initialise new
mask buffer for

this group

▼

No ew group

is current
<

1514
___________I________xz:
skip objects in the

current group

Yes::
process

current object

ιουσ v

V

_______ i_______
skip all groups

contained by the
current group

true
1515

<

process
new

group
is mask all

zero?

1516
________I_______ i.
adjust stored

mask
♦

Yes is current
object end of
the group/

1513

set next object
* No * as current

object

Fig. 15

892016_figs_04 (2333768v1)

17/19

1600

20
09

22
53

36

13
 O

ct
 2

00
9

No

x
process

current object

1607

Fig. 16

892016_figs_04 (2333768v1)

18/19

1700

20
09

22
53

36

13
 O

ct
 2

00
9

Fig. 17

892016_figs_04 (2333768v1)

19/19

20
09

22
53

36

13
 O

ct
 2

00
9

1801

1802

1803

1804

1807

1808

892016_figs_04 (2333768v1)

