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(57) Abstract: Techniques are disclosed for a combined machine learned (ML)
model that may generate a track confidence metric associated with a track and/
or a classification of an object. Techniques may include obtaining a track. The
track, which may include object detections from one or more sensor data types
and/or pipelines, may be input into a machine-learning (ML) model. The model
may output a track confidence metric and a classification. In some examples,
if the track confidence metric does not satisfy a threshold, the ML model may
cause the suppression of the output of the track to a planning component of an
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COMBINED TRACK CONFIDENCE AND
CLASSIFICATION MODEL

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Application No. 16/797,656, filed on
February 21, 2020 and entitled “COMBINED TRACK CONFIDENCE AND

CLASSIFICATION MODEL,” the entirety of which is incorporated herein by reference.

BACKGROUND
[0002]  Detecting and tracking objects is used in numerous applications, such as
operating autonomous vehicles, identifying individuals for security purposes, etc.
Detection and tracking techniques may use sensors to capture data regarding an
environment and use this sensor data to detect objects in the environment. Since detection
and tracking techniques may utilize two or more different types of sensors, the sensor data
may widely vary in its format and content, and the detections algorithms may process the

sensor data differently, the detections generated by different sensor types may differ.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The detailed description is described with reference to the accompanying
figures. In the figures, the left-most digit(s) of a reference number identify the figure in
which the reference number first appears. The same reference numbers in different figures
indicate similar or identical items.

[0004]  FIG.1 illustrates an example scenario in which an autonomous vehicle
configured with a perception component including a tracking component that may track an
object in an environment surrounding the autonomous vehicle and a combined model that

may provide both a track confidence metric and classification for the track.
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[0005]  FIG. 2 illustrates a block diagram of an example system comprising a
perception component including a tracking component and a combined model.

[0006]  FIG. 3 illustrates a flow diagram of an example process for determining a track
confidence metric and a classification from aggregated track data.

[0007]  FIG. 4 illustrates an example data flow diagram of a perception component of

an autonomous vehicle including a combined track confidence and classification model.

DETAILED DESCRIPTION
[0008]  Thetechniques discussed herein generally relate to a combined track confidence
and classification model (also referred to herein as “combined model ) that may determine
both a track confidence metric and a classification for a track based at least in part on output
from one or more pipelines (e.g., series of steps or operations performed on data to yield a
particular result which, in at least some examples, comprise the use of only data of a certain
type or sub-type). In some examples, the one or more pipelines (which, throughout may
be referenced as perception pipelines, as they operate on perception data) may be associated
with different sensor types (e.g., a pipeline associated with a single type of sensors, such as
lidar sensor(s), camera(s), radar sensor(s); and/or a pipeline associated with a hybrid
combination of sensors such as lidar-vision, and/or the like. A tracking component may
accept input from the one or more pipelines and generate one or more tracks. More
particularly, a tracking component may be configured to track and output a track
comprising the current and/or previous position, velocity, acceleration, and/or heading of a
detected object (or tracked object) based on pipeline data received from the one or more
pipelines. A track confidence metric may provide a measure of whether an associated track
is a true-positive (the corresponding tracked object exists in the environment) or a false-

positive (the corresponding tracked object was detected and tracked by the pipelines and
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tracking component but does not exist in the environment). Further, the classification
output by the combined model for a track may include a coarse classification and/or a fine-
grained classification which may be determined based on information from one or more
perception pipelines. In some autonomous vehicle implementations of an autonomous
operation system, coarse classifications of tracked objects of tracks may include general
categories such as vehicle, pedestrian, bicyclist, and clutter while fine classifications of
tracked objects of tracks may be, for example, more specific subcategories with service
vehicle, motorcycle, tractor-trailer, sedan, pickup, and so on being fine classifications
within the coarse classification of vehicle.

[0009]  In some examples described in detail herein, a track may comprise an
association of detections over a period of time with a historical record of previous positions,
orientations, sizes (extents), classifications, etc. of a detected object, in addition to
kinematic and/or dynamic information associated with such an object over time (e.g., linear
and/or angular velocity, linear and/or angular accelerations, etc.).

[0010]  In some examples, the combined model may be utilized in the automated
operation system of an autonomous vehicle or similar autonomous or partially autonomous
systems. The track confidence metric may be utilized to determine whether to output the
associated track to the prediction and/or planning components of the automated operation
system. In other examples, the associated track may be output with the track confidence
metric to the prediction and/or planning components of the automated operation system. In
turn, the prediction and/or planning components may utilized the track confidence metric
to determine a weight (e.g. a up-weight or down-weight) to give the associated track. The
classification (e.g., the coarse and/or fine-grained classifications) may be utilized by the

prediction and/or planning components to predict the changes and behavior of the objects
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associated with the tracks and/or plan a trajectory or other actions for the autonomous
operation system.

[0011]  The techniques discussed herein may improve detecting and tracking of objects
by, for example, increasing the accuracy of tracks and classifications thereof and/or
improve detections of objects, generally. For example, the track confidence metric output
by the combined model may be used to detect and/or suppress a false positive generated by
the tracking component and avoiding excessive reliance on a particular pipeline or
pipelines which may lead to scenarios in which a detection of an actual object in other
pipelines is disregarded due to non-detection by the overly relied upon pipeline(s). Further,
the determination of a classification by the combined model based on information from
multiple perception pipelines may allow for classification when some of the pipelines do
not provide object detections of the tracked object, thereby eliminating excessive
dependency on a particular pipeline and reducing redundant or conflicting data. Heuristic
logic for determining whether an object and/or track is a false-positive or true positive may
be difficult to develop and refine, requiring significant investment to improve. The
operation of the combined model to produce both a track confidence metric and a
classification for a track (e.g. a classification for a corresponding tracked object of the
track) may reduce computation and latency in the system as well as make system
development and refinement simpler.

[0012] As mentioned above, the track confidence metric may indicate the likelihood
that track data aggregated from multiple perception pipelines (referred to herein as
aggregated track data of track) corresponds to an object in the environment. For example,
the track confidence metric mav be a value between O and 1, where O represents an

indication by the combined model that the track has alow likelihood of being a true positive
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and where 1 indicates that the track has a high likelihood of being a true positive, although
other permutations are contemplated.

[0013]  The track confidence metric determination may operate based at least in part on
the output of a plurality of perception pipelines and the output of a tracking component.
The pipeline data may include information about object detections by respective pipelines.
A tracking component may be configured to track and output a current and/or previous
position, velocity, acceleration, and/or heading of a detected object based on pipeline data
received from the perception pipelines. In some examples, the output of the plurality of
perception pipelines may be aggregated into aggregated track data associated with a tracked
object by the tracking component.

[0014] In general, tracking may comprise determining whether to associate a current
object detection generated from recently received (e.g., current) sensor data with another
object detection generated from other (e.g. formerly received) sensor data. Aggregated
track data of a track may identify that an object detected in former sensor data and current
sensor data and/or current pipeline data output by multiple perception pipelines is the same
object. In some examples, the data aggregated into the aggregated track data may comprise
at least a portion of the pipeline outputs for the current time and/or one or more previous
times.

[0015]  Insome examples, the sensors may input sensor data to the perception pipelines
at intervals or in input cycles. The perception pipelines may generate and output pipeline
data to the tracking component for each input cycle. In some examples, the pipelines may
be synchronized to generate pipeline outputs at a frequency that may correspond to input
cycles (e.g., every 100 milliseconds, every 500 milliseconds, every second). In an example
where the pipelines are synchronized to output pipeline data at substantially the same time

every 500 milliseconds (e.g., 500ms cycles), the aggregated track data may comprise the
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data discussed above for 0 milliseconds (i.e., a set of data corresponding to a most recently
received sets of pipeline data the current input cycle), -500 milliseconds, -1 second, and so
on. In at least one example, the aggregated track data may comprise pipeline data for the
time steps 0 milliseconds, -100 milliseconds, -200 milliseconds, -300 milliseconds, and/or
-400 milliseconds, and/or -1 second, -2 seconds, and/or -3 seconds, although any suitable
time steps or cycle length may be used. In some examples, track data associated with every
time cycle or interval (e.g., every other cycle) over a time window may be input to the
combined model with the current track data.

[0016]  As mentioned above, the pipeline data may include information about object
detections which may be utilized to determine the track. For example, the pipeline data
may comprise an indication of one or more regions of interest (ROIs) determined by an ML
model of at least one of the pipelines and identifying a portion of sensor and/or perception
data associated with the object. For example, the pipeline data output by a pipeline may
comprise a center, extents, and/or yaw of a region of interest (ROI) associated with an
object detected by the pipeline. In some examples, the region of interests discussed herein
may be a three-dimensional region of interest and/or a two-dimensional region of interest
(e.g., atop-down/bird’s eve perspective of the environment). Some examples may include
receiving multiple regions of interest (ROIs) for different portions of an image. The ROIs
may be in any form that may identify the existence of an object in the image. For example,
an ROI may include a box or other shape indicative of pixels identified as being associated
with the detected object (a “bounding box™), a mask that includes pixels that correspond to
the detected object, etc.

[0017]  The tracking component may utilize the information about object detections to
match object detections from multiple pipelines and object detections from different input

cycles. The tracking component may generate track data for a track that includes
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information about the matched object detections. As such, in some examples, the track
may comprise the center, extents, and/or yaw of a region of interest (ROI) associated with
an object and/or similar information regarding previous ROI(s) generated in association
with the track in prior cycles.

[0018]  The track data may additionally or alternatively include other data about the
tracked object. For example, the track data may include a classification associated with the
object (e.g., a vehicle, an oversized vehicle, a pedestrian, a cyclist), a current/or previous
heading associated with the object, a current and/or previous velocity and/or acceleration
of the object, and/or a current and/or previous position of the object.

[0019]  In some examples, other components may utilize the track data output by the
tracking component to control an autonomous vehicle. For example, a planning component
of an autonomous vehicle may predict motion/behavior of the detected object and
determine a trajectory and/or path for controlling an autonomous vehicle based at least in
part on such current and/or previous data.

[0020]  As mentioned above, some perception pipelines of the perception component
may be associated with, and operate based on data from, respective sets of sensors. Some
example perception pipelines associated with respective sets of sensors may include single
sensor type pipelines, such as a vision pipeline, a lidar pipeline, a radar pipeline and so on,
and/or combined sensor type pipelines, such as a vision-lidar pipeline, a vision-lidar-radar
pipeline, and/or the like. In some examples, at least one perception pipeline may be a fusion
detector or deep tracking network component which may operate based at least in part on
data from other perception pipelines. For example, see U.S. Patent Application No.
16/779,576 which claims the benefit of U.S. Patent Application No. 62/926,423, both of

which are incorporated herein in their entirety.
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[0021]  Additionally or alternatively, a perception pipeline may determine an object
confidence score for object detections produced by the pipeline. For example, a pipeline
may include a ML model that may produce an object confidence score that is indicative of
whether the pipeline actually identified a salient object in the image and/or how well a ROI
associated with the object fits the object. For example, an object confidence score may be
a value between 0 and 1, where O represents an indication that there is a low likelihood an
object appears in the ROI and where 1 indicates that there is a high likelihood an object
appears in the ROI, although other permutations are contemplated. The object confidence
may be included in the information relating to object detections in the pipeline data. In
other words, the pipeline may output an indication of where an object might be and a score
that indicates how likely it correctly identified an object and/or how well the ROI points
out where the object is in the image.

[0022]  As mentioned above, the tracking component may receive the information
regarding detections output by the one or more perception pipelines as pipeline data. The
tracking component may compare the information regarding detections in the pipeline data
to determine tracks that relate to the same object. Pipeline data related to the same object
may be combined to generate aggregated track data. For example, pipeline data from a
pipeline may be compared to data of existing tracks to determine whether an existing track
matches the pipeline data. If an existing track is found to match the pipeline data, the track
data may be incorporated into the existing aggregated track data. Otherwise, a new track
may be generated based on the pipeline data. Additional details related to the generation
of tracks by the tracking component are provided in U.S. Patent Application
No. 16/297,381, which is incorporated in its entirety herein. The aggregated track data may
then be analyzed by the combined model to generate a track confidence metric and

classification for the track associated with the aggregated track data.
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[0023]  The combined model may, in some examples, comprise a single machine
leamed model that may infer both the track confidence metric for atrack and a classification
of an object associated with the track. In at least one non-limiting example, the combined
model may be a single multi-layer perceptron which may receive aggregated track data
including data from multiple perception pipelines as input to generate the track confidence
metric and a coarse and/or fine-grained classification of an object associated with the
aggregated track data.

[0024]  An example set of data that may be input to the combined model may include,
for example, lidar, radar, vision, and fusion pipeline object detections such as semantic
segmentation probabilities for lidar and vision (e.g., in the form of float probability
vectors); a metric indicating the existence of object detections associated with the track for
each perception pipeline; object detection statistics for the track such as total number of
voxels in lidar object detections, vision object detection confidence, radar object detection
doppler ambiguity resolving status, and so on (which may be input to the combined model
as continuous float values). The combined model may additionally or altematively receive
as input classification data from the vision pipeline and/or top down segmentation
probabilities from the lidar pipeline (e.g., in the form of one-hot vectors or vectors of
probability values). Further, the input to the combined model may additionally or
alternatively include geometric properties, such as velocity, extent, the fraction of the object
which may be occluded, distance from the device including the sensors, and so on. In
addition to the above data, any previously generated data associated with the track from
prior cycles, ticks, or operations may also be utilized by the combined model.

[0025]  While example forms for example inputs are provided above, embodiments are

not so limited and such forms may vary from implementation to implementation. For



10

15

20

25

WO 2021/167953 PCT/US2021/018334

example, inputs may be discretized into one-hot vectors or input as continuous values
depending on the implementation.

[0026]  Additional details relating to non-limiting example systems for training and
utilizing the combined track confidence and classification model are provided below with

reference to the figures.

EXAMPLE SCENARIO

[0027]  FIG. 1 illustrates an example scenario 100 including a vehicle 102, In some
instances, the vehicle 102 may be an autonomous vehicle configured to operate according
to a Level S classification issued by the U.S. National Highway Traffic Safety
Administration, which describes a vehicle capable of performing all safety-critical
functions for the entire trip, with the driver (or occupant) not being expected to control the
vehicle at any time. However, in other examples, the vehicle 102 may be a fully or partially
autonomous vehicle having any other level or classification. It is contemplated that the
techniques discussed herein may apply to more than robotic control, such as for
autonomous vehicles. For example, the techniques discussed herein may be applied to
mining, manufacturing, augmented reality, etc. Moreover, even though the vehicle 102 is
depicted as a land vehicle, vehicle 102 may be a spacecraft, watercraft, and/or the like. In
some examples, vehicle 102 may be represented in a simulation as a simulated vehicle. For
simplicity, the discussion herein does not distinguish between a simulated vehicle and a
real-world vehicle. References to a “vehicle” may therefore reference a simulated and/or
a real-world vehicle.

[0028]  According to the techniques discussed herein, the vehicle 102 may receive
sensor data from sensor(s) 104 of the vehicle 102. For example, the sensor(s) 104 may

include a location sensor (e.g., a global positioning system (GPS) sensor), an inertia sensor
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(e.g., an accelerometer sensor, a gyroscope sensor, etc.), a magnetic field sensor (e.g., a
compass), a position/velocity/acceleration sensor (e.g., a speedometer, a drive system
sensor), a depth position sensor (e.g., a lidar sensor, a radar sensor, a sonar sensor, a time
of flight (ToF) camera, a depth camera, an ultrasonic and/or sonar sensor, and/or other
depth-sensing sensor), an image sensor (e.g., a camera), an audio sensor (e.g., a
microphone), and/or environmental sensor (e.g., a barometer, a hygrometer, etc.).

[0029] The sensor(s) 104 may generate sensor data, which may be received by
computing device(s) 106 associated with the vehicle 102. However, in other examples,
some or all of the sensor(s) 104 and/or computing device(s) 106 may be separate from
and/or disposed remotely from the vehicle 102 and data capture, processing, commands,
and/or controls may be communicated to/from the vehicle 102 by one or more remote
computing devices via wired and/or wireless networks.

[0030]  Computing device(s) 106 may comprise a memory 108 storing a perception
component 110, a tracking component 112, a combined model 114, a prediction
component 116, aplanning component 118, and/or system controller(s) 120. As illustrated,
the perception component 110 may comprise a tracking component 112 and/or a combined
model 114, Although so depicted in FIG. 1 for illustrative purposes, it should be
understood that the tracking component 112 and/or combined model 114 may reside in/on
a separate computing device (or otherwise) than any one or more of the other components.
In general, the perception component 110 may determine what is in the environment
surrounding the vehicle 102, the prediction component 116 may estimate or predict the
future movements or behaviors of objects in the environment surrounding the vehicle 102,
and the planning component 118 may determine how to operate the vehicle 102 according
to information received from the perception component 110 and/or prediction component

116. For example, the planning component 118 may determine trajectory 128 based at least
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in part on the perception data, prediction data and/or other information such as, for example,
one or more maps, localization information (e.g., where the vehicle 102 is in the
environment relative to a map and/or features detected by the perception component 110),
and/or the like. The trajectory 128 may comprise instructions for system controller(s) 120
to actuate drive components of the vehicle 102 to effectuate a steering angle and/or steering
rate, which may result in a vehicle position, vehicle velocity, and/or vehicle acceleration.
For example, the trajectory 128 may comprise a target heading, target steering angle, target
steering rate, target position, target velocity, and/or target acceleration for the
controller(s) 120 to track. The perception component 110, the prediction component 116,
the planning component 118, and/or the tracking component 112 may include one or more
machine-learned (ML) models and/or other computer-executable instructions.

[0031]  Insome examples, the perception component 110 may receive sensor data from
the sensor(s) 104 and determine data related to objects 130 in the vicinity of the vehicle 102
(e.g., classifications associated with detected objects, instance segmentation(s), semantic
segmentation(s), two and/or three-dimensional bounding boxes, tracks), route data that
specifies a destination of the vehicle, global map data that identifies characteristics of
roadways (e.g., features detectable in different perception pipelines useful for localizing
the autonomous vehicle), local map data that identifies characteristics detected in proximity
to the vehicle (e.g., locations and/or dimensions of buildings, trees, fences, fire hydrants,
stop signs, and any other feature detectable in various perception pipelines), etc. The object
classifications determined by the perception component 110 may distinguish between
different object types such as, for example, a passenger vehicle, a pedestrian, a bicyclist, a
delivery truck, a semi-truck, traffic signage, and/or the like. The data produced by the

perception component 110 may be collectively referred to as perception data.
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[0032]  In some examples, the perception component 110 may monitor as much of the
environment surrounding the autonomous vehicle as possible, which may be limited by
sensor capabilities, object and/or environmental occlusions (e.g., buildings, elevation
changes, objects in front of other objects), and/or environmental effects such as fog, snow,
and/or the like. For example, the sensor data may comprise image data 122, LIDAR 124
and/or radar data (not shown), which the perception component 110 may receive as input.
The perception component 110 may be configured to detect as many objects and
information about the environment as possible to avoid failing to account for an event or
object behavior that should be taken into account by the prediction component 116 in
predicting changes in or behavior of the object and by the planning component 118 in
determining the trajectory 128.

[0033]  In some examples, the perception component 110 may comprise one or more
pipelines of hardware and/or software, which may include one or more GPU(s), ML
model(s), Kalman filter(s), and/or the like. For example, perception data may comprise
outputs of sensor specific pipelines (e.g., vision, lidar, radar), hybrid sensor pipelines (e.g.,
vision-lidar, radar-lidar), and/or fusion pipelines (e.g., pipelines that operate based at least
in part on the output of other pipeline(s)) of the perception component.

[0034]  In some examples, the tracking component 112 of the perception component
110 may produce track data based at least in part on the sensor data received from the
sensors 104. In some examples, the track data may be part of the perception data output by
the perception component 110. More particularly, the tracking component 112 may
determine the track data based on pipeline data received from the one or more perception
pipelines of the perception component 110. For example, the perception component 110
may include perception pipelines associated with sets of sensors 104. In some examples,

each type of sensor 104 may be associated with one or more perception pipelines of the
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perception component 110. Some perception pipelines may be associated with multiple
types of sensors. In addition or alteratively, some perception pipelines may operate based
on detection data output by one or more other perception pipelines (e.g., a pipeline
associated with a fusion detector such as a deep tracking network). The multiple pipelines
may each detect objects and generate detection information for detected objects in each
input cycle.

[0035] The pipeline data output by each pipeline may comprise one or more object
detections. In some examples, the detected object of the track may be associated with a
region of interest (ROI) that indicates the position of the object in the environment and/or
any of the other perception data. Such ROIs are illustrated in FIG. 1 in which image 122
and lidar data 124 each include an ROI 126 associated with the indicated truck.

[0036]  The tracking component 112 may aggregate object detections from the various
pipelines with tracks from prior cycles (e.g., based on a similarity threshold which may
consider various data, such as how closely the current location of the tracked object matches
across pipelines for current detections and how closely the current location matches a
projected location determined based on the track generated based on prior cycles).

[0037]  In particular, in some examples, each pipeline of the component 112 discussed
herein may determine object detections from sensor data generated by one or more sensor
types (e.g., discrete sensor types such as lidar, RGB camera, thermal image, sonar, radar;
or hybrid sensor types such as vision-lidar association, lidar-radar association). As shown
in FIG. 1, a track 132 may comprise at least a previous region of interest 126, which may
comprise a center 134, extents, a heading, a classification 136 and so on. An object
detection may comprise an estimated ROI 138 with an estimated center 140 and a heading
142. In some examples, the technique discussed herein may comprise projecting the

previous ROI 126 based at least in part on a velocity and/or heading associated with the
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track to establish a projection 144. The object detection may be compared to the projection
144 to determine if the object detection matches the track.

[0038]  In some examples, one or more detections may be matched to a prior track or,
if no matches are determined, a new track may be generated and the one or more detections
may be associated therewith. The perception component 110 may output any of this data
to the combined model 114.

[0039] The combined model 114 may, in some examples, comprise a single machine
learned model that may infer both the track confidence metric for atrack and a classification
of an object associated with the track. In other words, the combined model 114 may
generate the classification portion of the perception data output by the perception
component 110, for example, instead of the perception component 110 or tracking
component 112 thereof including a separate classification component. In some examples,
the combined model 114 may be a multi-layer perceptron model which may operate based
at least in part on aggregated track data including data from multiple perception pipelines
to determine the track confidence metric and a coarse and/or a fine-grained classification
of an object associated with the aggregated track data. In some examples, the classification
output by the combined model 114 may be aggregated into the aggregated track data.
[0040]  An example set of aggregated track data that may be input to the combined
model 114 may include, for example, lidar, radar, vision, and/or fusion pipeline object
detections such as semantic segmentation probabilities for lidar and vision (e.g., in the form
of float probability vectors, a probability distribution over a mask or field); a metric
indicating the existence of object detections associated with the track for each perception
pipeline; object detections statistics for the track such as total number of voxels in lidar
detections, vision detection confidence, radar detection doppler ambiguity resolving status,

and so on (which may be input to the combined model as continuous float values). In some
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examples, the combined model 114 may additionally or alternatively receive classification
data as input from a vision pipeline (a pipeline which operates on image data) and top-
down segmentation probabilities from the lidar pipeline (e.g., in the form of one-hot
vectors, vectors of probability values, or an image having pixel values associated with the
probabilities). Further, the input to the combined model 114 may additionally or
alternatively include geometric properties, such as velocity, extent, fraction occluded,
distance from the device including the sensors, and so on. In addition to the above data,
any previously generated data associated with the track from prior cycles, ticks or
operations may also be utilized by the combined model 114.

[0041]  In some examples, once the perception component 110 has generated the
perception data (e.g., the tracking component 112 has generated aggregated track data and
the combined model 114 has generated a track confidence metric and classification for the
track(s)), the perception component 110 may determine track(s) with track confidence
metrics above a threshold. The perception component 110 may then provide the perception
data associated with track(s) having track confidence metrics meeting or exceeding the
threshold to the prediction component 116 and/or planning component 118. In other
examples, the associated track may be output with the track confidence metric to the
prediction component 116 and/or planning component 118. In turn, the prediction and/or
planning components may utilize the track confidence metric to determine a weight (e.g. a
up-weight or down-weight) to give the associated track.

[0042] The planning component 118 may determine one or more trajectories 128 to
control motion of the vehicle 102 based at least in part on the perception data received from
perception component 110 and/or prediction data received from the prediction component
116. In some examples, the planning component 118 may determine the one or more

trajectories 128 to control the vehicle 102 to traverse a path or route, and/or otherwise
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control operation of the vehicle 102, though any such operation may be performed in
various other components (e.g., localization may be performed by a localization
component, which may be based at least in part on perception data). For example, the
planning component 118 may determine a route for the vehicle 102 from a first location to
a second location; generate, substantially simultaneously and based at least in part on the
perception data and/or simulated perception data (which may further include predictions
regarding detected objects in such data), a plurality of potential trajectories for controlling
motion of the vehicle 102 in accordance with a receding horizon technique (e.g., 1 micro-
second, half a second) to control the vehicle to traverse the route (e.g., in order to avoid any
of the detected objects); and select one of the potential trajectories as a trajectory 128 of
the vehicle 102 that may be used to generate a drive control signal that may be transmitted
to drive components of the vehicle 102. FIG. 1 depicts an example of such a trajectory 128,
represented as an arrow indicating a heading, velocity, and/or acceleration, although the
trajectory itself may comprise instructions for controller(s) 120, which may, in turn, actuate
a drive system of the vehicle 102.

[0043] In some examples, the controller(s) 120 may comprise software and/or
hardware for actuating drive components of the vehicle 102 sufficient to track the
trajectory 128. For example, the controller(s) 120 may comprise one or more proportional-

integral-derivative (PID) controllers.

EXAMPLE SYSTEM

[0044]  FIG. 2 illustrates a block diagram of an example system 200 that implements
the techniques discussed herein. In some instances, the example system 200 may include
a vehicle 202, which may represent the vehicle 102 in FIG. 1. In some instances, the

vehicle 202 may be an autonomous vehicle configured to operate according to a Level 5
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classification issued by the U.S. National Highway Traffic Safety Administration, which
describes a vehicle capable of performing all safety-critical functions for the entire trip,
with the driver (or occupant) not being expected to control the vehicle at any time.
However, in other examples, the vehicle 202 may be a fully or partially autonomous vehicle
having any other level or classification. Moreover, in some instances, the techniques
described herein may be usable by non-autonomous vehicles as well.

[0045] The vehicle 202 may include a vehicle computing device(s) 204, sensor(s) 206,
emitter(s) 208, network interface(s) 210, and/or drive component(s)212.  Vehicle
computing device(s) 204 may represent computing device(s) 106 and sensor(s) 206 may
represent sensor(s) 104.  The system 200 may additionally or alternatively comprise
computing device(s) 214.

[0046] In some instances, the sensor(s) 206 may represent sensor(s) 104 and may
include lidar sensors, radar sensors, ultrasonic transducers, sonar sensors, location sensors
(e.g., global positioning system (GPS), compass, etc.), inertial sensors (e.g., inertial
measurement units (IMUs), accelerometers, magnetometers, gyroscopes, etc.), image
sensors (e.g., red-green-blue (RGB), infrared (IR), intensity, depth, time of flight cameras,
etc.), microphones, wheel encoders, environment sensors (e.g., thermometer, hygrometer,
light sensors, pressure sensors, etc.), etc. The sensor(s) 206 may include multiple instances
of each of these or other types of sensors. For instance, the radar sensors may include
individual radar sensors located at the comers, front, back, sides, and/or top of the
vehicle 202. As another example, the cameras may include multiple cameras disposed at
various locations about the exterior and/or interior of the vehicle 202. The sensor(s) 206
may provide input to the vehicle computing device(s) 204 and/or to computing

device(s) 214.
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[0047]  The vehicle 202 may also include emitter(s) 208 for emitting light and/or sound,
as described above. The emitter(s) 208 in this example may include interior audio and
visual emitter(s) to communicate with passengers of the vehicle 202. By way of example
and not limitation, interior emitter(s) may include speakers, lights, signs, display screens,
touch screens, haptic emitter(s) (e.g., vibration and/or force feedback), mechanical
actuators (e.g., seatbelt tensioners, seat positioners, headrest positioners, etc.), and the like.
The emitter(s) 208 in this example may also include exterior emitter(s). By way of example
and not limitation, the exterior emitter(s) in this example include lights to signal a direction
of travel or other indicator of vehicle action (e.g., indicator lights, signs, light arrays, etc.),
and one or more audio emitter(s) (e.g., speakers, speaker arrays, horns, etc.) to audibly
communicate with pedestrians or other nearby vehicles, one or more of which comprising
acoustic beam steering technology.

[0048]  The vehicle 202 may also include network interface(s) 210 that enable
communication between the vehicle 202 and one or more other local or remote computing
device(s). For instance, the network interface(s) 210 may facilitate communication with
other local computing device(s) on the vehicle 202 and/or the drive component(s) 212.
Also, the network interface (s) 210 may additionally or alternatively allow the vehicle to
communicate with other nearby computing device(s) (e.g., other nearby vehicles, traffic
signals, etc.). The network interface(s) 210 may additionally or alternatively enable the
vehicle 202 to communicate with computing device(s) 214. In some examples, computing
device(s) 214 may comprise one or more nodes of a distributed computing system (e.g., a
cloud computing architecture).

[0049]  The network interface(s) 210 may include physical and/or logical interfaces for
connecting the vehicle computing device(s) 204 to another computing device or a network,

such as network(s) 216. For example, the network interface(s) 210 may enable Wi-Fi-

19



10

15

20

25

WO 2021/167953 PCT/US2021/018334

based communication such as via frequencies defined by the IEEE 200.11 standards, short
range wireless frequencies such as Bluetooth®, cellular communication (e.g., 2G, 3G, 4G,
4G LTE, 5G, etc.) or any suitable wired or wireless communications protocol that enables
the respective computing device to interface with the other computing device(s). In some
instances, the vehicle computing device(s) 204 and/or the sensor(s) 206 may send sensor
data, via the network(s) 216, to the computing device(s) 214 at a particular frequency, after
a lapse of a predetermined period of time, in near real-time, etc.

[0050] In some instances, the vehicle 202 may include one or more drive
components 212.  In some instances, the vehicle202 may have a single drive
component 212. In some instances, the drive component(s) 212 may include one or more
sensors to detect conditions of the drive component(s) 212 and/or the surroundings of the
vehicle 202. By way of example and not limitation, the sensor(s) of the drive
component(s) 212 may include one or more wheel encoders (e.g., rotary encoders) to sense
rotation of the wheels of the drive components, inertial sensors (e.g., inertial measurement
units, accelerometers, gyroscopes, magnetometers, etc.) to measure orientation and
acceleration of the drive component, cameras or other image sensors, ultrasonic sensors to
acoustically detect objects in the surroundings of the drive component, lidar sensors, radar
sensors, etc. Some sensors, such as the wheel encoders may be unique to the drive
component(s) 212. In some cases, the sensor(s) on the drive component(s) 212 may
overlap or supplement corresponding systems of the vehicle 202 (e.g., sensor(s) 206).
[0051] The drive component(s) 212 may include many of the vehicle systems,
including a high voltage battery, a motor to propel the vehicle, an inverter to convert direct
current from the battery into alternating current for use by other vehicle systems, a steering
system including a steering motor and steering rack (which may be electric), a braking

system including hydraulic or electric actuators, a suspension system including hydraulic
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and/or pneumatic components, a stability control system for distributing brake forces to
mitigate loss of traction and maintain control, an HVAC system, lighting (e.g., lighting
such as head/tail lights to illuminate an exterior surrounding of the vehicle), and one or
more other systems (e.g., cooling system, safety systems, onboard charging system, other
electrical components such as a DC/DC converter, a high voltage junction, a high voltage
cable, charging system, charge port, etc.). Additionally, the drive component(s) 212 may
include a drive component controller which may receive and preprocess data from the
sensor(s) and to control operation of the various vehicle systems. In some instances, the
drive component controller may include one or more processors and memory
communicatively coupled with the one or more processors. The memory may store one or
more components to perform various functionalities of the drive component(s) 212.
Furthermore, the drive component(s) 212 may also include one or more communication
connection(s) that enable communication by the respective drive component with one or
more other local or remote computing device(s).

[0052]  The vehicle computing device(s) 204 may include processor(s) 218 and
memory 220 communicatively coupled with the one or more processors 218. Memory 220
may represent memory 108, Computing device(s) 214 may also include processor(s) 222,
and/or memory 224. The processor(s) 218 and/or 222 may be any suitable processor
capable of executing instructions to process data and perform operations as described
herein. By way of example and not limitation, the processor(s) 218 and/or 222 may
comprise one or more central processing units (CPUs), graphics processing units (GPUs),
integrated circuits (e.g., application-specific integrated circuits (ASICs)), gate arrays (e.g.,
field-programmable gate arrays (FPGAs)), and/or any other device or portion of a device
that processes electronic data to transform that electronic data into other electronic data that

may be stored in registers and/or memory.
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[0053]  Memory 220 and/or 224 may be examples of non-transitory computer-readable
media. The memory 220 and/or 224 may store an operating system and one or more
software applications, instructions, programs, and/or data to implement the methods
described herein and the functions attributed to the various systems. In various
implementations, the memory may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous dynamic RAM (SDRAM),
nonvolatile/Flash-type memory, or any other type of memory capable of storing
information, The architectures, systems, and individual elements described herein may
include many other logical, programmatic, and physical components, of which those shown
in the accompanying figures are merely examples that are related to the discussion herein.
[0054] In some instances, the memory 220 and/or memory 224 may store alocalization
component 226, perception component 228, prediction component 230, planning
component 232, tracking component 234, combined model 236, map(s) 238, system
controller(s) 240 and/or a training component 242. Perception component 228 may
represent perception component 110, prediction component 230 may represent prediction
component 116, planning component 232 may represent planning component 118, tracking
component 234 may represent tracking component 112, and/or combined model 236 may
represent combined model 114,

[0055]  In at least one example, the localization component 226 may include hardware
and/or software to receive data from the sensor(s) 206 to determine a position, velocity,
and/or orientation of the vehicle 202 (e.g., one or more of an x-, y-, z-position, roll, pitch,
oryaw). For example, the localization component 226 may include and/or request/receive
map(s) 238 of an environment and can continuously determine a location, velocity, and/or
orientation of the autonomous vehicle within the map(s) 238. In some instances, the

localization component 226 may utilize SLAM (simultaneous localization and mapping),
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CLAMS (calibration, localization and mapping, simultaneously), relative SLAM, bundle
adjustment, non-linear least squares optimization, and/or the like to receive image data,
lidar data, radar data, IMU data, GPS data, wheel encoder data, and the like to accurately
determine a location, pose, and/or velocity of the autonomous vehicle. In some instances,
the localization component 226 may provide data to various components of the vehicle 202
to determine an initial position of an autonomous vehicle for generating a trajectory and/or
for generating map data, as discussed herein. In some examples, localization
component 226 may provide, to the tracking component 234, a location and/or orientation
of the vehicle 202 relative to the environment and/or sensor data associated therewith.
[0056] In some instances, perception component228 may comprise a primary
perception system and/or a prediction system implemented in hardware and/or software.
The perception component 228 may detect object(s) in in an environment surrounding the
vehicle 202 (e.g., identify that an object exists), classify the object(s) (e.g., determine an
object type associated with a detected object), segment sensor data and/or other
representations of the environment (e.g., identify a portion of the sensor data and/or
representation of the environment as being associated with a detected object and/or an
object type), determine characteristics associated with an object (e.g., a track identifying
current, predicted, and/or previous position, heading, velocity, and/or acceleration
associated with an object), and/or the like. Data determined by the perception
component 228 is referred to as perception data.

[0057] The prediction component 230 can generate one or more probability maps
representing prediction probabilities of possible locations of one or more objects in an
environment. For example, the prediction component 230 can generate one or more
probability maps for vehicles, pedestrians, animals, and the like within a threshold distance

from the vehicle 202. In some instances, the prediction component 230 can measure a track
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of an object and generate a discretized prediction probability map, a heat map, a probability
distribution, a discretized probability distribution, and/or a trajectory for the object based
on observed and predicted behavior. In some instances, the one or more probability maps
can represent an intent of the one or more objects in the environment.

[0058]  The planning component 232 may receive a location and/or orientation of the
vehicle 202 from the localization component 226 and/or perception data from the
perception component 228 and may determine instructions for controlling operation of the
vehicle 202 based at least in part on any of this data. In some examples, determining the
instructions may comprise determining the instructions based at least in part on a format
associated with a system with which the instructions are associated (e.g., first instructions
for controlling motion of the autonomous vehicle may be formatted in a first format of
messages and/or signals (e.g., analog, digital, pneumatic, kinematic) that the system
controller(s) 240 and/or drive component(s) 212 may parse/cause to be carried out, second
instructions for the emitter(s) 208 may be formatted according to a second format
associated therewith).

[0059] The tracking component 234 may operate on the vehicle 202 and/or on the
computing device(s) 214. In some examples, the tracking component 234 may be upstream
(provide input to) from the combined model 236, the prediction component 230 and
planning component 232 in a pipeline. The tracking component 234 may be configured to
pass all, part, or none of the output of the tracking component 234 to the prediction
component 230 and planning component 232 based at least in part on whether a track
confidence metric determined by the combined model 236 meets a threshold. In some
examples, combined model 236 may output the tracking component output to the prediction

component 230 and/or planning component 232 for the tracking component 234.
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[0060]  In some examples, the perception component 228 may produce pipeline or
detection data based on the sensor data received from the sensors 206. For example, the
perception component 228 may include perception pipelines associated with sets of sensors
104. In some examples, each type of sensor 206 may be associated with one or more
perception pipelines of the perception component 228. Some perception pipelines may be
associated with multiple types of sensors. In addition or alternatively, some perception
pipelines may operate based on detection and/or tracking data output by one or more other
perception pipelines (e.g. a pipeline associated with a fusion detector such as a deep
tracking network). The multiple pipelines may each detect objects and generate detections
for objects each input cycle. At any rate, the tracking component 234 may determine
whether or not to aggregate an object detection in the pipeline data with an existing track
or to generate a new track in association with an object detection. Additional details of the
operation of tracking component 234 may be understood with reference to the discussion
above of tracking component 112.

[0061]  The combined model 236 may, in some examples, comprise a single machine
learned model that may infer both the track confidence metric for a track and a classification
of an object associated with the track. More specifically, the combined model 236 may be
a single multi-layer perceptron model which may operate based on aggregated track data
including data from multiple perception pipelines to generate the track confidence metric
and a classification (which may include both a coarse and a fine grained classification) of
an object associated with the aggregated track data. Additional details of the operation of
combined model 236 may be understood with reference to the discussion above of
combined model 114.

[0062] The training component 242 may operate to perform machine learning training

operations for the combined model 236. In particular, the training component 242 may
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train the combined model 236 to output a track confidence metric and a classification
(which may include both a coarse and a fine grained classification) in association with an
object that is detected as being represented in aggregated track data. As discussed above,
the aggregated track data may be based on pipeline data output from multiple perception
pipelines and matching track data from prior intervals or cycles, if any. In other words, the
combined model 236 may be trained to determine the track confidence metric for a track,
1.e., thereby providing a measure of the likelihood a track output by the tracking component
234 1s a “false positive.” At the same time, the combined model may also be trained to
determine a classification of the tracked object. In some autonomous vehicle
implementations, coarse classifications may include general categories such as vehicle,
pedestrian, bicyclist and clutter while fine classifications may be more specific, for example
with service vehicle, motorcycle, tractor-trailer, sedan, pickup, and so on being fine
classifications within the coarse classification of vehicle.

[0063]  In some examples, the training component 242 may operate to train the
combined model 236 by using supervised learning and by backpropagating loss through
the combined model 236.

[0064]  In some examples, the training component 242 may backpropagate a loss for
the track confidence metric and one or more losses for the coarse and/or fine classifications.
In some examples, a loss may be calculated for each output of the combined model (e.g.,
based at least in part on ground truth data that specifies a current ROI and/or a previous
ROI in a prior input cycle to which the current ROI corresponds and coarse and/or fine
classifications for an object associated with the current ROI). For example, one or more
losses may be calculated from corresponding combined model outputs and ground truth
data using sigmoid functions. The ground truth data may, for example, be included with

or annotated into the input data provided to the combined model 236 by the tracking
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component 234. In those examples where multiple perception pipelines are used, the
ground truth data may include ROIs for each type of sensor data. Backpropagating the loss
to train the combined model 236 may further refine the accuracy of the combined model
236. In some examples, the training of the combined model 236 may use determine a loss
for the track confidence metric, a loss for the coarse classification and a loss for the fine
classification. Other examples may include combined ground truth data and/or a combined
loss for the training the coarse and fine classification outputs. Training may then propagate
the losses back through the combined model for refinement. In autonomous vehicle
systems, once the combined model is trained, the trained combined model may be output
to one or more autonomous vehicles for used in future operations.

[0065] As mentioned above, the training may be based training data that includes
annotations. For example, in an autonomous vehicle implementation, the training data may
include one or more types of sensor data. One or more of the types of sensor data may
include annotations identifying objects in the sensor data and providing a classification for
the identified objects. The sensor data may be input to perception pipelines to provide
pipeline data. The pipeline data may be provided to the tracking component which may
output one or more tracks. The one or more tracks may be processed by the combined
model and the combined model may output a track confidence metric and a classification
for each track generated based on the training data. The training component 242 may then
use the annotations attached to the sensor data to determine whether outputs from the
combined model were correct or incorrect and back propagate a loss based thereon. For
example, for a given track, the training component may determine the track corresponds to
an object included in the annotations. For example, the training component may determine
whether a tracked object matches an object identified in the annotations by determining if

an intersection over union (IOU) of an object identified in the annotations with the tracked

27



10

15

20

WO 2021/167953 PCT/US2021/018334

object meets or exceeds a threshold. The training component 242 may determine a loss for
the track confidence metric of the track based whether a match was found using the IOU
and the magnitude of the track confidence metric. Similarly, when an object in the
annotations is matched based on the IOU, the training component 242 may determine a loss
for classification(s) output by the combined model based on the classification in the
annotation and the classification output by the combined model.

[0066] Although localization component 226, prediction component 230, planning
component 232, map(s) 238, and/or system controller(s) 240 are illustrated as being stored
in memory 220, any of these components may include processor-executable instructions,
machine-learned model(s) (e.g., a neural network), and/or hardware and all or part of any
of these components may be stored on memory 224 or configured as part of computing
device(s) 214.

[0067]  As described herein, the localization component 226, the perception
component 228, prediction component 230, planning component 232, and/or other
components of the system 200 may comprise one or more ML models. For example, the
localization component 226, the perception component 228, prediction component 230,
and/or the planning component 232 may each comprise different ML model pipelines. In
some examples, an ML model may comprise a neural network. An exemplary neural
network is a biologically inspired algorithm which passes input data through a series of
connected layers to produce an output. Each layer in a neural network can also comprise
another neural network, or can comprise any number of layers (whether convolutional or
not). As can be understood in the context of this disclosure, a neural network can utilize
machine-learning, which can refer to a broad class of such algorithms in which an output

1s generated based on learned parameters.
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[0068]  Although discussed in the context of neural networks, any type of machine-
leamning can be used consistent with this disclosure. For example, machine-leaming
algorithms can include, but are not limited to, regression algorithms (e.g., ordinary least
squares regression (OLSR), linear regression, logistic regression, stepwise regression,
multivariate adaptive regression splines (MARS), locally estimated scatterplot smoothing
(LOESS)), instance-based algorithms (e.g., ridge regression, least absolute shrinkage and
selection operator (LASSO), elastic net, least-angle regression (LARS)), decisions tree
algorithms (e.g., classification and regression tree (CART), iterative dichotomiser 3 (ID3),
Chi-squared automatic interaction detection (CHAID), decision stump, conditional
decision trees), Bayesian algorithms (e.g., naive Bayes, Gaussian naive Bayes, multinomial
naive Bayes, average one-dependence estimators (AODE), Bayesian belief network
(BNN), Bayesian networks), clustering algorithms (e.g., k-means, k-medians, expectation
maximization (EM), hierarchical clustering), association rule learning algorithms (e.g.,
perceptron, back-propagation, hopfield network, Radial Basis Function Network (RBFN)),
deep learning algorithms (e.g., Deep Boltzmann Machine (DBM), Deep Belief Networks
(DBN), Convolutional Neural Network (CNN), Stacked Auto-Encoders), Dimensionality
Reduction Algorithms (e.g., Principal Component Analysis (PCA), Principal Component
Regression (PCR), Partial Least Squares Regression (PLSR), Sammon Mapping,
Multidimensional Scaling (MDS), Projection Pursuit, Linear Discriminant Analysis
(LDA), Mixture Discriminant Analysis (MDA), Quadratic Discriminant Analysis (QDA),
Flexible Discriminant  Analysis (FDA)), Ensemble Algorithms (e.g., Boosting,
Bootstrapped Aggregation (Bagging), AdaBoost, Stacked Generalization (blending),
Gradient Boosting Machines (GBM), Gradient Boosted Regression Trees (GBRT),
Random Forest), SVM (support vector machine), supervised learning, unsupervised

learning, semi-supervised learning, etc. Additional examples of architectures include
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neural networks such as ResNet-50, ResNet-101, VGG, DenseNet, PointNet, and the like.
In some examples, the ML model discussed herein may comprise PointPillars, SECOND,
top-down feature layers (e.g., see U.S Patent Application No. 15/963,833, which is
incorporated in its entirety herein), and/or VoxelNet. Architecture latency optimizations
may include MobilenetV2, Shufflenet, Channelnet, Peleenet, and/or the like. The ML
model may comprise a residual block such as Pixor, in some examples.

[0069] Memory 220 may additionally or alternatively store one or more system
controller(s) 240, which may be configured to control steering, propulsion, braking, safety,
emitters, communication, and other systems of the vehicle 202.  These system
controller(s) 240 may communicate with and/or control corresponding systems of the drive
component(s) 212 and/or other components of the vehicle 202. For example, the planning
component 232 may generate instructions based at least in part on perception data and
prediction data generated by the perception component 228 and prediction component 230.
The system controller(s) 240 may control operation of the vehicle 202 based at least in part
on the instructions received from the planning component 232.

[0070] It should be noted that while FIG. 2 is illustrated as a distributed system, in
alternative examples, components of the vehicle 202 may be associated with the computing
device(s) 214 and/or components of the computing device(s) 214 may be associated with
the vehicle 202. That s, the vehicle 202 may perform one or more of the functions

associated with the computing device(s) 214, and vice versa.

EXAMPLE PROCESS
[0071]  FIG. 3 illustrates a flow diagram of an example process 300 for determining a
track confidence metric and a classification based at least in part on aggregated track data.

The aggregated track data may include a track that associates one or more object detections
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associated with a same time and/or one or more object detections associated with a previous
time. In some examples, process 300 may be performed by an ML model that determines
a metric representing the likelihood that the track and/or object detection(s) associated
therewith are a false positive and/or a classification of an object represented associated with
the aggregated track. If the track is a false positive, the example process 300 may comprise
suppressing the output of the aggregated track to a prediction and planning components.
Otherwise, the example process 300 may comprise outputting the aggregated track to the
prediction and planning components. The combined model 114 or 236 of systems 100 and
200, respectively, may perform the process 300, although it is contemplated that one or
more other components may perform at least part of example process 300.

[0072] At 302, example process 300 may comprise receiving a first object detection
associated with a first sensor type, a second object detection associated with a second sensor
type, and/or other track data and classification information associated with an object in an
environment. For example, an example set of data that may be received may include, for
example, lidar, radar, vision (e.g., thermal and/or visible light spectrum image(s)), and
fusion pipeline object detections such as semantic segmentation probabilities for lidar and
vision (e.g., in the form of float probability vectors); a metric indicating the existence of
object detections associated with the track for each perception pipeline; object detection
statistics for the track such as total number of voxels in lidar object detections, vision object
detection confidence, radar object detection doppler ambiguity resolving status, and so on
(which may be input to the combined model as continuous float values). The process 300
may additionally or alternatively receive as input classification data and/or top down
segmentation probabilities (e.g., see U.S Patent Application No. 15/963,833, which is
incorporated in its entirety herein). Further, the received data may additionally or

alternatively include geometry statistics, such as velocity, extent, fraction occluded,

31



10

15

20

25

WO 2021/167953 PCT/US2021/018334

distance from the device including the sensors, and so on. In addition to the above data,
any previously generated data associated with the track from prior cycles, ticks, or
operations may also be utilized by the combined model.

[0073] At 304, example process 300 may comprise providing the first object detection,
the second object detection, the other track data and/or the classification information as
input to a ML model of the combined model. The combined model may then receive, as
output from the ML model of the combined model, a track confidence metric and a
classification at 306. The combined model may, in some examples, comprise a single
machine learned model that may infer both the track confidence metric for a track and a
classification of an object associated with the track. More specifically, the ML model may
be a single multi-layer perceptron model which may operate based on aggregated track data
including data from multiple perception pipelines to generate the track confidence metric
and a classification (which may include both a coarse and a fine grained classification) of
an object associated with the aggregated track data. In some examples, the ML model may
comprise an additional or alternate type of ML model and/or other accompanying
components, such as a long short-term memory for receiving data associated with multiple
input cycles. Additional details of the operation of combined model may be understood
with reference to the discussion above of combined model 114 and 236.

[0074]  In some examples, the ML model of the combined model may be trained by
using supervised and/or semi-supervised learning techniques. The training the ML model
may comprise determining a loss associated with an output of the ML model and
backpropagating the loss through the ML model. In some examples, determining a loss
may be based at least in part on a difference between the track confidence metric and/or the
coarse and/or fine classification(s) and ground truth data. For example, the loss may be

based at least in part on ground truth that specifies a current ROI and/or a previous ROI in
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a prior input cycle to which the current ROI corresponds and coarse and/or fine
classifications for an object associated with the current ROI. In those examples where
multiple perception pipelines are to be used, the ground truth data may include ROIs for
one or more types of sensor data. Training the ML model may comprise altering one or
more parameters of the ML model to reduce the loss. Backpropagating the loss to train the
ML model in this manner may further refine the accuracy of the ML model. In some
examples, the training of the ML model may use multiple losses and propagate the multiple
losses back for refinement.

[0075] At 308, example process 300 may comprise determining whether the track
confidence metric satisfies a threshold at 308. As mentioned above, the track confidence
metric may indicate the likelihood that track data aggregated from multiple perception
pipelines (referred to herein as aggregated track data of track) corresponds to an object in
the environment. For example, the track confidence metric may be a value between 0 and
1, where O represents an indication by the combined model that the track has a low
likelihood of being a true positive and where 1 indicates that the track has a high likelthood
of being a true positive, although other permutations are contemplated. The threshold may
be a value between 0 and 1 (e.g., 0.1, 0.5, 0.93), set depending on the implementation. The
track confidence metric may satisfy the threshold by meeting or exceeding the threshold
value or being less than a threshold value, depending on how the metric determination and
threshold are set up.

[0076] If the track confidence metric satisfies the threshold, the process may continue
t0 310. Otherwise, the process may continue to 312.

[0077] At 310, the example process 300 may comprise transmitting a track associated

with the first object detection, the second object detection, and/or the track data to the
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prediction and/or planning components along with the classification output by the
combined model.

[0078]  At312, the example process 300 may comprise suppressing the track associated
with the first object detection, the second object detection, the other track data and
classification information to the prediction and planning components from the prediction
and planning components. In some examples, the example process 300 may suppress a
track by blocking an output or not outputting the track data of the track to the prediction
and planning components.

[0079]  As above, examples are not limited to those that determine whether to output
tracks to the prediction and/or planning components based on the track confidence
measures. In other examples, the associated track may be output with the track confidence
metric to the prediction and/or planning components of the automated operation system
regardless of the value of the track confidence metric. In turn, the prediction and/or
planning components may utilized the track confidence metric to determine a weight (e.g.
a up-weight or down-weight) to give the associated track.

[0080] FIG. 4 illustrates a block diagram of an example data flow 400 within a
perception component 402 of an autonomous vehicle (e.g., component 110 or 228)
including a tracking component 404 and a combined model 406 (e.g., combined model 114
and/or 236).

[0081] As shown in FIG. 4, the perception component 402 may receive various types
of sensor data such as vison data 408, lidar data 410 and radar data (not shown). The
various types of sensor data may be input to perception pipelines such as vision pipeline

412, radar pipeline 414 and lidar pipeline 416.
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[0082]  The pipelines 412-416 may perform detection operations for their respective
sensor data inputs to determine vision pipeline data 418, radar pipeline data 420, and/or
lidar pipeline data 422.

[0083]  One or more additional or alternative perception pipelines may receive raw
sensor data and/or the output of other perception pipeline(s) to produce pipeline data. An
example is shown in FIG. 4 as the fusion pipeline 424. In particular, the fusion pipeline
424 may receive as input vision pipeline data 418, radar pipeline data 420, and/or lidar
pipeline data 422 and perform further detection operations to produce fusion pipeline data
426. Details of the operations of a fusion pipeline may be understood with regard to the
discussion of a fusion detector above.

[0084] The tracking component 404 may receive as input any one or more of the
pipeline data 418-422 and/or 426 and previous track(s) 428. Based on the pipeline data
418-422 and/or 426 and/or previous track(s) 428, the tracking component 404 may
determine tracks and produce corresponding aggregated track data 430. The aggregated
track data may be aggregated from the data 418-422, 426, and/or 428 based on the
discussion above with regard to FIGS. 1, 2, and 3.

[0085]  The tracking component 404 may provide the aggregated track data 430 may to
the combined model 406. The combined model may determine a track confidence metric
and classification information for tracked objects of each track of the aggregated track data.
The classification information may include a coarse classification and/or a fine-grained
classification for the tracked object. In some autonomous vehicle implementations of an
autonomous operation system, coarse classifications may include general categories such
as vehicle, pedestrian, bicyclist, and clutter while fine classifications may be, for example,
more specific subcategories with service vehicle, motorcycle, tractor-trailer, sedan, pickup,

and so on being fine classifications within the coarse classification of vehicle. The
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combined model may then output data 432 which may include the aggregated track data
for the track 430 and the classification from the combined model 406 to a prediction
component 434 and/or a planning component 436, which may correspond to the prediction
components 116 or 230 and/or the planning components 118 or 232, respectively, if the

track confidence metric satisfies a threshold.

EXAMPLE CLAUSES

[0086]  A. A method comprising: receiving sensor data comprising first sensor data of
a first type and second sensor data of a second type; determining, based at least in part on
the sensor data associated with the first type, a first object detection of an object represented
in the sensor data; determining, based at least in part on the sensor data associated with the
second type, a second object detection of the object represented in the sensor data; receiving
a track associated with the object, the track comprising one or more previous object
properties; inputting the first object detection, the second object detection, and at least a
portion of the track into a machine-learning (ML) model; receiving, as output from the ML
model, a track confidence metric and a classification of the object, the track confidence
metric comprising a likelihood that the track is a true positive; and outputting the track to
a planning component of an autonomous vehicle based at least in part on the track
confidence metric.

[0087] B. The method of clause A, wherein the classification comprises a coarse object
classification associated with a category of objects and a fine classification associated with
a sub-category of objects within the category.

[0088]  C. The method of clause A, further comprising: determining, by the planning
component, instructions for controlling the autonomous vehicle based at least in part on the

track; and controlling the autonomous vehicle based at least in part on the instructions.

36



10

15

20

25

WO 2021/167953 PCT/US2021/018334

[0089]  D. The method of clause A, wherein outputting the track to the planning
component comprises determining the track confidence metric meets or exceeds a
confidence threshold.

[0090]  E. The method of clause A, wherein at least one of the first object detection or
the second object detection comprises at least one of: a representation of the environment
from a top-down perspective; an indication that a portion of the environment is occupied;
a region of interest associated with the object; an object classification associated with the
object determined by a perception pipeline associated with the first sensor type; a sensor
data segmentation; a voxelization of sensor data; or a yaw associated with the object.
[0091] F. A system comprising: one or more processors; and a memory storing
processor-executable instructions that, when executed by the one or more processors, cause
the system to perform operations comprising: inputting at least a portion of a track
associated with a first object detection of an object in an environment and a second object
detection of the object in the environment into a machine-learning (ML) model; receiving,
as output from the ML model, a track confidence metric and a classification of the object,
the track confidence metric comprising a likelihood that the track is a true positive; and
outputting the track, the track confidence metric and the classification to a planning
component.

[0092]  G. The system of clause F, the operations further comprising: wherein inputting
at least the portion of the track into the machine learning model further comprises inputting
an object detection confidence value associated with the first object detection into the ML
model.

[0093]  H. The system of clause G, wherein the outputting of the track to the planning
component comprises determining the track confidence metric meets or exceeds a

confidence threshold.
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[0094] L The system of clause F, wherein at least one of the first object detection or the
second object detection comprises at least one of: a representation of the environment from
a top-down perspective; an indication that a portion of the environment is occupied; a
region of interest associated with the object; an object classification associated with the
object determined by a perception pipeline associated with the first sensor type; a sensor
data segmentation; a voxelization of sensor data; or a yaw associated with the object.
[0095] J. The system of clause F, wherein: the track is further associated with a first
prior object detection associated with a time previous to a time at which the first object
detection was generated and previous to a time at which the second object detection was
generated; and at least the portion of the track into the ML model further comprises
inputting at least the first prior object detection into the ML model.

[0096] K. The system of clause F, wherein the first object detection is associated with
a first sensor type; and the second object detection is associated with a second sensor type.
[0097] L. The system of clause F, the operations further comprising: generating, by the
planning component, control information for an autonomous vehicle at least in part by
adjusting a weight of the track in the generating of the control information based on the
track confidence metric.

[0098] M. The system of clause F, the operations further comprising: generating, by
the planning component, control information for an autonomous vehicle based on the track;
and controlling the autonomous vehicle based on the control information.

[0099]  N. The system of clause F, wherein the first sensor type comprises at least one
of lidar, radar, sonar, time-of-flight (TOF), or a camera.

[0100]  O. A non-transitory computer-readable medium storing processor-executable
instructions that, when executed by one or more processors, cause the one or more

processors to perform operations comprising: receiving a track associated with a first object
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detection of an object in an environment and a second object detection of the object in the
environment; inputting at least a portion of the track into a machine-learning (ML) model;
receiving an output from the ML model, the output including a track confidence metric and
a classification of the object; determining a loss based at least in part on the output; altering,
as a trained ML model, one or more parameters of the ML model to reduce the loss; and
transmitting the trained ML model to an autonomous vehicle.

[0101] P. The non-transitory computer-readable medium of clause O, the operations
further comprising: receiving ground truth data associated with the first object detection;
determining the loss based at least in part on the ground truth data; and performing the
altering of the parameters by backpropagating the loss.

[0102] Q. The non-transitory computer-readable medium of claim 15, wherein:
inputting at least the portion of the track into the ML model comprises inputting at least an
object detection confidence value associated with the first object detection into the ML
model.

[0103]  R. Thenon-transitory computer-readable medium of clause O, wherein the first
object detection is associated with a first sensor type; and the second object detection is
associated with a second sensor type.

[0104] S. The non-transitory computer-readable medium of clause O, wherein: the
track is further associated with a first prior object detection associated with a time previous
to a time at which the first object detection was generated and previous to a time at which
the second object detection was generated; and the portion of the track comprises at least
of portion of each of the first prior object detection, the first object detection and the second
object detection.

[0105]  T. The non-transitory computer-readable medium of clause O, wherein at least

one of the first object detection or the second object detection comprises at least one of: a
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representation of the environment from a top-down perspective; an indication that a portion
of the environment is occupied; a region of interest associated with the object: an object
classification associated with the object determined by a perception pipeline associated
with the first sensor tvpe; a sensor data segmentation; a voxelization of sensor data; and a
vaw associated with the object.

[0106]  While the example clauses described above are described with respect to one
particular implementation, it should be understood that, in the context of this document, the
content of the example clauses can also be implemented via a method, device, system,
computer-readable medium, and/or another implementation. Additionally, any of
examples A-T may be implemented alone or in combination with any other one or more of
the examples A-T.

[0107]  Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as example forms of implementing the
claims.

[0108] The components described herein represent instructions that may be stored in
any type of computer-readable medium and may be implemented in software and/or
hardware. All of the methods and processes described above may be embodied in, and
fully automated via, software code components and/or computer-executable instructions
executed by one or more computers or processors, hardware, or some combination thereof.
Some or all of the methods may alternatively be embodied in specialized computer
hardware.

[0109]  Conditional language such as, among others, “may,” “could,” “may” or

“might,” unless specifically stated otherwise, are understood within the context to present
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that certain examples include, while other examples do not include, certain features,
elements and/or steps. Thus, such conditional language is not generally intended to imply
that certain features, elements and/or steps are in any way required for one or more
examples or that one or more examples necessarily include logic for deciding, with or
without user input or prompting, whether certain features, elements and/or steps are
included or are to be performed in any particular example.

[0110] Conjunctive language such as the phrase “at least one of X, Y or Z.” unless
specifically stated otherwise, is to be understood to present that an item, term, etc. may be
either X, Y, or Z, or any combination thereof, including multiples of each element. Unless
explicitly described as singular, “a” means singular and plural.

[0111] Any routine descriptions, elements or blocks in the flow diagrams described
herein and/or depicted in the attached figures should be understood as potentially
representing modules, segments, or portions of code that include one or more computer-
executable instructions for implementing specific logical functions or elements in the
routine. Alternate implementations are included within the scope of the examples described
herein in which elements or functions may be deleted, or executed out of order from that
shown or discussed, including substantially synchronously, in reverse order, with
additional operations, or omitting operations, depending on the functionality involved as
would be understood by those skilled in the art.

[0112] Many variations and modifications may be made to the above-described
examples, the elements of which are to be understood as being among other acceptable
examples. All such modifications and variations are intended to be included herein within

the scope of this disclosure and protected by the following claims.
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CLAIMS

WHAT IS CLAIMED IS:

5 L A system comprising:
one or more processors; and
a memory storing processor-executable instructions that, when executed by the one
or more processors, cause the system to perform operations comprising:
inputting at least a portion of a track associated with a first object detection
10 of an object in an environment and a second object detection of the object in the
environment into a machine-learning (ML) model;
receiving, as output from the ML model, a track confidence metric and a
classification of the object, the track confidence metric comprising a likelihood that
the track is a true positive; and
15 outputting the track, the track confidence metric and the classification to a

planning component.

2. The system of claim 1, wherein inputting at least the portion of the track into the
ML model further comprises inputting an object detection confidence value associated with

20  the first object detection into the ML model.

3. The system as recited in any one of claims 1-2, wherein the outputting of the track
to the planning component comprises determining the track confidence metric meets or
exceeds a confidence threshold.

25
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4 The system as recited in any one of claims 1-3, wherein at least one of the first
object detection or the second object detection comprises at least one of:

a representation of the environment from a top-down perspective;

an indication that a portion of the environment is occupied;

5 aregion of interest associated with the object;

an object classification associated with the object determined by a perception
pipeline associated with a first sensor type associated with the first object detection;

a sensor data segmentation;

a voxelization of sensor data; or

10 a yaw associated with the object.

5. The system as recited in any one of claims 1-4, wherein:
the track is further associated with a first prior object detection associated with a
time previous to a time at which the first object detection was generated and previous to a
15 time at which the second object detection was generated; and
inputting at least the portion of the track into the ML model further comprises

inputting at least the first prior object detection into the ML model.

0. The system as recited in any one of claims 1-5, wherein:

20 the first object detection is associated with a first sensor type; and

the second object detection is associated with a second sensor type.
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7. The system as recited in any one of claims 1-6, the operations further comprising;
generating, by the planning component, control information for an autonomous
vehicle at least in part by adjusting a weight of the track in the generating of the control

information based on the track confidence metric.

8. The system as recited in any one of claims 1-7, the operations further comprising;
generating, by the planning component, control information for an autonomous
vehicle based on the track; and
controlling the autonomous vehicle based on the control information.
10
9. A method comprising:
receiving a track associated with a first object detection of an object in an
environment and a second object detection of the object in the environment
inputting at least a portion of the track into a machine-learning (ML) model;
15 receiving an output from the ML model, the output including a track confidence
metric and a classification of the object;
determining a loss based at least in part on the output;
altering, as a trained ML model, one or more parameters of the ML model to reduce
the loss; and

20 transmitting the trained ML model to an autonomous vehicle.

10.  The method of claim 9, further comprising:
receiving ground truth data associated with the first object detection;
determining the loss based at least in part on the ground truth data; and

25 performing the altering of the parameters by backpropagating the loss.
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11.  The method as recited in any one of claims 9-10, wherein inputting at least the
portion of the track into the ML model comprises inputting at least an object detection

confidence value associated with the first object detection into the ML model.

12, The method as recited in any one of claims 9-11, wherein:
the first object detection is associated with a first sensor type; and

the second object detection is associated with a second sensor type.

13.  The method as recited in claim 12, wherein at least one of the first object detection
or the second object detection comprises at least one of:

a representation of the environment from a top-down perspective;

an indication that a portion of the environment is occupied;

a region of interest associated with the object;

an object classification associated with the object determined by a perception
pipeline associated with the first sensor type:;

a sensor data segmentation;

a voxelization of sensor data; and

a yaw associated with the object.

14.  The method as recited in any one of claims 9-13, wherein:
the track is further associated with a first prior object detection associated with a
time previous to a time at which the first object detection was generated and previous to a

time at which the second object detection was generated; and
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the portion of the track comprises at least of portion of each of the first prior object

detection, the first object detection and the second object detection.

15.  One or more non-transitory computer-readable media storing instructions that,

when executed by one or more processors, cause one or more computing devices to

perform the method of any one of claims 9-14.
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1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-8, 12-14

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
(see extra sheet)

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable

claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers

only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the

payment of a protest fee.
The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.
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