(19)

DANMARK (10 DK/EP 3571580 T5

(12} Rettet oversaettelse af
europaeisk patentskrift

Patent- og
Varemeaerkestyrelsen

(51)
(45)

(80)

(74)
(54)

(56)

Int.CI.: G 06 F 9/30(2018.01)
Oversaettelsen bekendtgjort den: 2021-11-08

Dato for Den Europaeiske Patentmyndigheds
bekendtgerelse om meddelelse af patentet: 2021-09-15

Europaeisk ansggning nr.: 18700180.5

Europaeisk indleveringsdag: 2018-01-03

Den europeaeiske ansggnings publiceringsdag: 2019-11-27
International ansggning nr.: EP2018050137

Internationalt publikationsnr.: WO2018134049

Prioritet: 2017-01-19 US 201715409684

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV
MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patenthaver: International Business Machines Corporation, New Orchard Road, Armonk, New York 10504, USA

Opfinder: GREINER, Dan, IBM CORPORATION, Intellectual Property Law, 2455 South Road, Poughkeepsie, New
York 12601-5400, USA

SLEGEL, Timothy, IBM CORPORATION, 2455 South Road, Poughkeepsie, New York 12601-5400, USA
JACOBI, Christian, IBM Corporation, 2455 South Road, Poughkeepsie, New York 12601-5400, USA
SAPORITO, Anthony, IBM CORPORATION, 2455 South Road, Poughkeepsie, New York 12601-5400, USA
PAPROTSKI, Volodymyr, IBM CANADA LTD, 8200 Warden Avenue, Toronto Lab, Markham, Ontario L6G 1C7,
Canada

MITRAN, Marcel, IBM Canada Ltd, 8200 Warden Avenue, Toronto Lab, Markham, Ontario L6G 1C7, Canada

Fuldmaegtig i Danmark: Plougmann Vingtoft A/S, Strandvejen 70, 2900 Hellerup, Danmark
Benaevnelse: LOAD-LOGICAL-AND-SHIFT-GUARDED-INSTRUKTION
Fremdragne publikationer:

US-A- 3 360 780
US-A1-2007 011 441

DK/EP 3571580 T5

Description
BACKGROUND

[0001] The present invention relates, in general, to
processing within a computing environment, and in par-
ticular, to performing a load and shift operation.

[0002] Many modern programming languages, such
as Java and Python, as examples, allow an application
programto instantiate a data object by simply referencing
it, with no obligation to track or subsequently free the
memory when it is no longer needed.

[0003] Active data objects (that is, those in use by the
application) and inactive data objects (that is, those no
longer needed by the application) may be intermixed in
the language’s memory heap, resulting in a fragmented
memory space. A process, commonly known as storage
reclamation or garbage collection, not only removes in-
active objects from the memory heap, but also relocates
active memory objects by coalescing them into more
compact blocks of memory. This allows forthe free mem-
ory to be combined into larger contiguous blocks that are
available for subsequent use by applications.

[0004] The challenge in relocating active data objects
is just that - they are active, and may be simultaneously
referenced by other central processing units besides the
one performing the storage reclamation. Thus, to perform
storage reclamation, the execution ofall application proc-
esses that may be referencing memory while storage rec-
lamation is in progress is suspended. Depending on the
number of memory relocations needed, this could cause
unacceptable delays in applications.

[0005] US 3,360,780 describes a stored program data
processor ofthe type which uses combined orderinstruc-
tions to perform two operations in a single machine cycle.
For example, one of these operations may be a shift op-
eration and the other may be a read operation. A detector
is provided which is responsive to the magnitude of the
shift being greater than the number of bits in the shift
register. When the detector operates, the shift operation
is inhibited and the read operation is caused to store the
word read in two of the machine registers rather than in
one. Accordingly, it is no longer necessary to employ two
separate read instructions in order to place a word into
two registers.

SUMMARY

[0006] Shortcomings ofthe priorart are addressed and
additional advantages are provided through the provision
of a computer program product for facilitating processing
within a computing environment. The computer program
product comprises: a computer readable storage medi-
um storing instructions and readable by a processing cir-
cuit for: obtaining a Load Logical and Shift Guarded
'LLSG' instruction to perform a load and shift operation;
and executing the LLSG instruction, the executing com-
prising: loading data from a location in memory, the lo-

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

2

cation in memory designated by one or more fields as-
sociated with the instruction; shifting the data by a shift
amount to obtain a shifted value; obtaining an interme-
diate result using the shifted value; and recognising the
occurrence of aguarded storage event comprising: using
the intermediate result to determine whether the instruc-
tion designates a guarded section of storage defined by
a boundary indicating a range of addresses that are
guarded, wherein based on determining that the instruc-
tion designates the guarded section of storage the inter-
mediate result is not loaded into a register specified using
the LLSG instruction; but is instead placed into a guarded
storage event record along with the data and the address
of the LLSG instruction causing the guarded storage
event.

[0007] By using the load data and shift operation to
detect a guarded storage event, processing within the
computing environment, including processing associat-
ed with certain tasks, is facilitated, thereby improving
processing.

[0008] As examples, the data includes a pointer, and
the shifting includes shifting the data left by the shift
amount to obtain the shifted value. Further, in one em-
bodiment, the method furtherincludes obtaining the shift
amount from a register used to specify one or more at-
tributes of a guarded storage area.

[0009] In one embodiment, the recognising the occur-
rence of a guarded storage event includes comparing a
first portion of the intermediate result with an origin of a
guarded storage area; determining whether a particular
section of the guarded storage area is guarded, the de-
termining using a second portion of the intermediate re-
sult; and detecting a guarded storage event based on
the comparing indicating a specific result and the deter-
mining indicating the particular section is guarded.
[0010] Moreover,inone embodiment,the obtainingthe
intermediate result includes adjusting the shifted value
based on an addressing mode of a processor executing
the instruction.

[0011] Yet further, in one embodiment, the method in-
cludes determining the location in memory from where
the data is loaded. The determining uses, for instance,
an index field, a base field and a displacement field of
the instruction.

[0012] In one particular example, the instruction is a
single architected instruction including an operation code
indicating a load logical and shift guarded operation, a
register field to specify a registerto place a result based
on determining that a guarded storage event was not
detected, and a plurality of fields to determine the location
in memory.

[0013] Methods and systems relating to one or more
aspects are also described and claimed herein. Further,
services relating to one or more aspects are also de-
scribed and may be claimed herein.

[0014] Additional features and advantages are real-
ized through the techniques described herein. Otherem-
bodiments and aspects are described in detail herein and

are considered a part of the claimed aspects.
BRIEF DESCRIPTION OF THE DRAWINGS

[0015] One or more aspects are particularly pointed
out and distinctly claimed as examples in the claims at
the conclusion of the specification. The foregoing and
objects, features, and advantages of one or more aspects
are apparent from the following detailed descriptiontaken
in conjunction with the accompanying drawings in which:

FIG. 1A depicts one example of a computing envi-
ronmentto incorporate and use one ormore aspects
of the present invention;

FIG. 1B depicts further details of the processor of
FIG. 1A, in accordance with an aspect of the present
invention;

FIG. 2A depicts another example of a computing en-
vironment to incorporate and use one or more as-
pects of the present invention;

FIG. 2B depicts further details of the memory of FIG.
2A;

FIG. 3 depicts one example of a guarded storage
designation register, in accordance with an aspect
of the present invention;

FIG. 4 depicts one example of arelationship between
guarded storage characteristics, a guarded storage
origin and a guarded storage section size, in accord-
ance with an aspect of the present invention;

FIG. 5 depicts one example of a guarded storage
section mask register, in accordance with an aspect
of the present invention;

FIG. 6A depicts one example of a guarded storage
event parameter list address register, in accordance
with an aspect of the present invention;

FIG. 6B depicts one example of a guarded storage
event parameter list, in accordance with an aspect
of the present invention;

FIG. 7 depicts one example of a guarded storage
control block, in accordance with an aspect of the
present invention;

FIG. 8 depicts one embodiment of a Load Guarded
instruction, in accordance with an aspect of the
present invention;

FIG. 9 depicts one example of a Load Logical And
Shift Guarded instruction, in accordance with an as-
pect of the present invention;

FIG. 10 depicts one example of a Load Guarded
Storage Controls instruction, in accordance with an
aspect of the present invention;

FIG. 11 depicts one example of a Store Guarded
Storage Controls instruction, in accordance with an
aspect of the present invention;

FIG. 12 depicts one example of detection of a guard-
ed storage event, in accordance with an aspect of
the present invention;

FIG. 13A depicts one example of a format of a ma-
chine check extended save area, in accordance with

10

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

4

an aspect of the present invention;

FIG. 13B depicts one example of a machine check
extended save area designation register, in accord-
ance with an aspect of the present invention;

FIG. 13C depicts one example of a signal processor
parameter register, in accordance with an aspect of
the present invention; and

FIGS. 14A-14B depict one embodiment of aspects
relating to facilitating processing in a computing en-
vironment, in accordance with an aspect of the
present invention.

DETAILED DESCRIPTION

[0016] In accordance with one or more aspects of the
present invention, a capability is provided that facilitates
performance of certain tasks within a computing environ-
ment including, but not limited to, storage reclamation.
This capability, referred to as a guarded storage facility,
sets up a boundary indicating a range of addresses that
are guarded or protected, such as a range of addresses
for which storage reclamation is to be performed. When
a program attempts to access an address in a guarded
section defined by the boundary, a guarded storage
event occurs, thereby protecting the addresses within
the boundary. Use of this facility facilitates processing
within a computing environment and improves perform-
ance. For instance, use of this facility enables applica-
tions executing on one or more central processing units
(CPUs) in a computing environment to continue execut-
ing while storage reclamation is in progress on another
CPU in the computing environment. Applications may
continue to access addresses not being protected by the
boundary.

[0017] One or more aspects of the present invention
provide one or more ofthe following, as examples: enable
applications to set and inspect controls that affect the
operation of the guarded storage facility; provide a ca-
pability to identify processor attributes when a guarded
storage event is detected; load data (e.g., a compressed
pointer) that is shifted by a variable amount and used in
guarded storage detection; provide guarded storage
event handling during transactional execution, including
handling an abort of a transaction aborted due to a guard-
ed storage event and the effects thereof.

[0018] An embodiment of a computing environment to
incorporate and use one or more aspects of the present
invention is described with reference to FIG. 1A. In one
example, the computing environment is based on the
z/Architecture, offered by International Business Ma-
chines Corporation, Armonk, New York. One embodi-
ment of the z/Architecture is described in "z/Architecture
Principles of Operation," IBM Publication No.
SA22-7832-10, March 2015, which is hereby incorporat-
ed herein by reference in its entirety. ZZARCHITECTURE
is a registered trademark of International Business Ma-
chines Corporation, Armonk, New York, USA.

[0019] In another example, the computing environ-

ment is based on the Power Architecture, offered by In-
ternational Business Machines Corporation, Armonk,
New York. One embodiment of the Power Architecture
is described in "Power ISA™ Version 2.07B," Interna-
tional Business Machines Corporation, April 9, 2015,
which is hereby incorporated herein by reference in its
entirety. POWERARCHITECTURE is aregistered trade-
mark of International Business Machines Corporation,
Armonk, New York, USA.

[0020] The computing environment may also be based
on other architectures, including, but not limited to, the
Intel x86 architectures. Other examples also exist.
[0021] AsshowninFIG. 1A, a computing environment
100 includes, for instance, a computer system 102
shown, e.g., in the form of a general-purpose computing
device. Computer system 102 may include, but is not
limited to, one or more processors or processing units
104 (e.g., central processing units (CPUs)), a memory
106 (referred to as main memory or storage, as exam-
ples), and one or more input/output (I/O) interfaces 108,
coupled to one another via one or more buses and/or
other connections 110.

[0022] Bus 110 represents one or more of any of sev-
eral types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of
a variety of bus architectures. By way of example, and
not limitation, such architectures include the Industry
Standard Architecture (ISA), the Micro Channel Archi-
tecture (MCA), the Enhanced ISA (EISA), the Video Elec-
tronics Standards Association (VESA) local bus, and the
Peripheral Component Interconnect (PCI).

[0023] Memory 106 may include, forinstance, a cache
120, such as a shared cache, which may be coupled to
local caches 122 of processors 104. Further, memory
106 may include one or more programs or applications
130, anoperating system 132, and one or more computer
readable program instructions 134. Computer readable
program instructions 134 may be configured to carry out
functions of embodiments of aspects of the invention.
[0024] Computer system 102 may also communicate
via, e.g., /O interfaces 108 with one or more external
devices 140, one or more network interfaces 142, and/or
one or more data storage devices 144. Example external
devices include a user terminal, a tape drive, a pointing
device, a display, etc. Network interface 142 enables
computer system 102 to communicate with one or more
networks, such as a local area network (LAN), a general
wide area network (WAN), and/or a public network (e.g.,
the Internet), providing communication with other com-
puting devices or systems.

[0025] Data storage device 144 may store one or more
programs 146, one or more computer readable program
instructions 148, and/ordata, etc. The computerreadable
program instructions may be configured to carry out func-
tions of embodiments of aspects of the invention.
[0026] Computer system 102 may include and/or be
coupled to removable/non-removable, volatile/non-vola-

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

6

tile computer system storage media. For example, it may
include and/or be coupled to a non-removable, non-vol-
atile magnetic media (typically called a "hard drive"), a
magnetic disk drive for reading from and writing to a re-
movable, non-volatile magnetic disk (e.g., a "floppy
disk"), and/or an optical disk drive for reading from or
writing to a removable, non-volatile optical disk, such as
a CD-ROM, DVD-ROM or other optical media. It should
be understood that other hardware and/or software com-
ponents could be used in conjunction with computer sys-
tem 102. Examples, include, but are not limited to; mi-
crocode, device drivers, redundant processing units, ex-
ternal disk drive arrays, RAID systems, tape drives, and
data archival storage systems, etc.

[0027] Computer system 102 may be operational with
numerous other general purpose or special purpose
computing system environments or configurations. Ex-
amples of well-known computing systems, environ-
ments, and/or configurations that may be suitable for use
with computer system 102 include, but are not limited to,
personal computer (PC) systems, server computer sys-
tems, thin clients, thick clients, handheld or laptop devic-
es, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electron-
ics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing en-
vironments that include any of the above systems or de-
vices, and the like.

[0028] Further details regarding one example of proc-
essor 104 are described with reference to FIG. 1B. Proc-
essor 104 includes a plurality of functional components
used to execute instructions. These functional compo-
nents include, for instance, an instruction fetch compo-
nent 150 to fetch instructions to be executed; an instruc-
tion decode unit 152 to decode the fetched instructions
and to obtain operands of the decoded instructions; in-
struction execution components 154 to execute the de-
coded instructions; a memory access component 156 to
access memory for instruction execution, if necessary;
and a write back component 160 to provide the results
of the executed instructions. One or more of these com-
ponents may, in accordance with an aspect ofthe present
invention, be used to execute one or more instructions
166 of the guarded storage facility, described further be-
low.

[0029] Processor 104 also includes, in one embodi-
ment, one or more registers 170 to be used by one or
more of the functional components.

[0030] Another embodiment of a computing environ-
ment to incorporate and use one or more aspects is de-
scribed with reference to FIG. 2A. In this example, a com-
puting environment 200 includes, for instance, a native
central processing unit (CPU) 202, a memory 204, and
one or more input/output devices and/or interfaces 206
coupled to one another via, for example, one or more
buses 208 and/or other connections. As examples, com-
puting environment 200 may include a PowerPC proc-
essor or a pSeries server offered by International Busi-

ness Machines Corporation, Armonk, New York; and/or
other machines based on architectures offered by Inter-
national Business Machines Corporation, Intel, or other
companies.

[0031] Native central processing unit 202 includes one
ormore native registers 210, such as one ormore general
purpose registers and/or one or more special purpose
registers used during processing within the environment.
These registers include information that represents the
state of the environment at any particular point in time.
[0032] Moreover, native central processing unit 202
executes instructions and code that are stored in memory
204. In one particular example, the central processing
unit executes emulator code 212 stored in memory 204.
This code enables the computing environment config-
ured in one architecture to emulate another architecture.
Forinstance, emulator code 212 allows machines based
on architectures other than the z/Architecture, such as
PowerPC processors, pSeries servers, or other servers
or processors, to emulate the z/Architecture and to exe-
cute software and instructions developed based on the
z/Architecture.

[0033] Further details relating to emulator code 212
are described with reference to FIG. 2B. Guest instruc-
tions 250 stored in memory 204 comprise software in-
structions (e.g., correlating to machine instructions) that
were developed to be executed in an architecture other
than that of native CPU 202. For example, guest instruc-
tions 250 may have been designed to execute on a z/Ar-
chitecture processor, but instead, are being emulated on
native CPU 202, which may be, for example, an Intel
processor. In one example, emulator code 212 includes
an instruction fetching routine 252 to obtain one or more
guest instructions 250 from memory 204, and to option-
ally provide local buffering for the instructions obtained.
It also includes an instruction translation routine 254 to
determine the type of guest instruction that has been ob-
tained and to translate the guest instruction into one or
more corresponding native instructions 256. This trans-
lation includes, forinstance, identifying the function to be
performed by the guest instruction and choosing the na-
tive instruction(s) to perform that function.

[0034] Further, emulator code 212 includes an emula-
tion control routine 260 to cause the native instructions
to be executed. Emulation control routine 260 may cause
native CPU 202 to execute a routine of native instructions
that emulate one or more previously obtained guest in-
structions and, atthe conclusion of such execution, return
control to the instruction fetch routine to emulate the ob-
taining of the next guest instruction or a group of guest
instructions. Execution of native instructions 256 may in-
clude loading data into a register from memory 204; stor-
ing data back to memory from a register; or performing
some type of arithmetic or logic operation, as determined
by the translation routine.

[0035] Each routine is, for instance, implemented in
software, which is stored in memory and executed by
native central processing unit 202. In other examples,

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

8

one or more of the routines or operations are implement-
ed in firmware, hardware, software or some combination
thereof. The registers of the emulated processor may be
emulated using registers 210 of the native CPU or by
using locations in memory 204. In embodiments, guest
instructions 250, native instructions 256 and emulator
code 212 may reside in the same memory or may be
disbursed among different memory devices.

[0036] As used herein, firmware includes, e.g., the mi-
crocode or Millicode of the processor. It includes, for in-
stance, the hardware-level instructions and/or data struc-
tures used in implementation of higher level machine
code. In one embodiment, it includes, for instance, pro-
prietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the
underlying hardware and controls operating system ac-
cess to the system hardware.

[0037] A guest instruction 250 that is obtained, trans-
lated and executed is, for instance, an instruction of the
guarded storage facility, a number ofwhich are described
herein. The instruction, which is of one architecture (e.g.,
the z/Architecture), is fetched from memory, translated
and represented as a sequence of native instructions 256
of another architecture (e.g., PowerPC, pSeries, Intel,
etc.). These native instructions are then executed.
[0038] Detailsrelatingto one embodiment ofaguarded
storage facility, including instructions associated there-
with, are described below. The guarded storage facility
provides a mechanism by which a program can designate
an area of logical storage comprising a number of guard-
ed storage sections (e.g., 0 to 64), and may be used,
e.g., by various programming languages that implement
storage reclamation techniques. The facility includes, for
instance, a number of instructions, such as, forexample:
a Load Guarded (LGG) instruction; a Load Logical and
Shift Guarded (LLGFSG) instruction; a Load Guarded
Storage Controls (LGSC) instruction; and a Store Guard-
ed Storage Controls (STGSC) instruction, each of which
is further described below.

[0039] When a selected operand, such as a second
operand, of the Load Guarded or the Load Logical and
Shift Guarded instruction does not designate a guarded
section of the guarded storage area, the instruction per-
forms its defined load operation. However, when the sec-
ond operand ofthe instruction designates a guarded sec-
tion of the guarded storage area, control branches to a
guarded storage event handler with indications of the
cause of the event. While the Load Guarded and Load
Logical and Shift Guarded instructions are capable of
generating a guarded storage event, other instructions
that access a range of guarded storage are unaffected
by the facility and do not generate such an event. Details
relating to the instructions of the guarded storage facility
are described further below, subsequent to a description
of various registers used by the facility.

[0040] Inoneembodiment, the guarded storage facility
is controlled by a bit in a control register, e.g., control
register 2, and by the following three registers: a guarded

storage designation register (GSD); a guarded storage
section mask (GSSM) register; and a guarded storage
event parameter list address (GSEPLA) register. The
contents of these three registers may be loaded and in-
spected by the Load Guarded Storage Controls and
Store Guarded Storage Controls instructions, respective-
ly. Further details of each of these registers, as well as
control register 2, are described below. In the description,
particular values are described for specific bits or bytes.
These values and/or the specific bits and/or bytes are
just examples. Other values, bits and/or bytes may be
used.

[0041] In one example, when the guarded storage fa-
cility is installed, a selected bit, e.g., bit 59, of control
register 2 is the guarded storage enablement (GSE) con-
trol. When bit 59 is zero, attempted execution ofthe Load
Guarded Storage Controls (LGSC) and Store Guarded
Storage Controls (STGSC) instructions results inthe rec-
ognition of an exception condition, for example, a special
operation exception. However, when the guarded stor-
age enablement control is one, the guarded storage fa-
cility is said to be enabled, and attempted execution of
the LGSC and STGSC instructions is permitted, subject
to other restrictions described below.

[0042] In one embodiment, execution of the Load
Guarded and Load Logical and Shift Guarded instruc-
tions is not subject to the guarded storage enablement
control. However, a guarded storage event may only be
recognized, in one example, when the guarded storage
enablement control is one. Thatis, in one example, when
a selected facility indication (e.g., facility indication 133)
is, e.g., one (indicating that the guarded storage facility
is installed in the configuration), the program can use the
Load Guarded and Load Logical and Shift Guarded in-
structions, regardless of the guarded storage enable-
ment control. However, guarded storage events are not
recognized without first loading guarded storage con-
trols. Thus, the control program (e.g., operating system)
is to set the guarded storage enablement control to one
in order to successfully execute the Load Guarded Stor-
age Controls instruction, which loads the guarded stor-
age controls. A program is to examine the operating sys-
tem provided indication (GSE) of the guarded storage
facility enablement (rather than facility bit 133) to deter-
mine if the full capabilities of the facility are available.
[0043] As indicated above, in addition to the guarded
storage facility enablement control, e.g., bit 59 of control
register 2, the guarded storage facility uses a plurality of
registers, including a guarded storage designation (GSD)
register, which is, e.g., a 64-bit register that defines the
attributes of the guarded storage area.

[0044] One embodiment of a guarded storage desig-
nation register (GSD) is described with reference to FIG.
3. A guarded storage designation register 300 includes
the following fields, in one example:

* Guarded Storage Origin (GSO) 302: This field des-
ignates an address of a block of storage that may

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

10

have guarded storage protection applied. The loca-
tion of the guarded storage area is specified by the
leftmost bits ofthe GSD register. In one embodiment,
the number of leftmost bits is determined by the value
of the guarded storage characteristic (GSC) in bits
58-63 of the register. Bit positions 0 through (63 -
GSC) of the guarded storage designation register,
padded on the right with binary zeros in bit positions
(64 - GSC) through 63, form the 64-bit logical ad-
dress of the leftmost byte of the guarded storage
area. Other embodiments may use a different mech-
anism of designating the origin of the guarded stor-
age area.

[0045] In one embodiment, when the GSC is greater
than 25, bit positions (64 - GSC) through 38 are reserved
and are to contain zeros; otherwise, the results of the
guarded storage event detection are unpredictable. In
one embodiment, bit positions 39-52 and 56-57 of the
GSD register are reserved and are to contain zeros; oth-
erwise, the program may not operate compatibly in the
future. Other embodiments may allow a different range
of GSC values, with corresponding changes to the size
of the GSO.

* Guarded Load Shift (GLS) 304: In one embodiment,
bits 53-55 of the guarded storage designation regis-
tercontain a 3-bitunsigned binary integerthatis used
in the formation of the intermediate result of the Load
Logical and Shift Guarded instruction. Valid GLS val-
ues are 0-4, in one embodiment; values 5-7 are re-
served and may result in an unpredictable shift
amount.

[0046] Other embodiments may provide a broader
range of GLS values allowing objects to be aligned on
various boundaries, such as halfwords, words, double-
words, quadwords, etc.

* Guarded Storage Characteristic (GSC) 306: In one
embodiment, bit positions 58-63 ofthe guarded stor-
age designation register contain a 6-bit unsigned bi-
nary integer that is treated as a power of two. Valid
GSC values are, e.g., 25-56; values 0-24 and 57-63
are reserved and may result in an unpredictable
guarded storage event detection. The GSC desig-
nates the following, in one example:

* The alignment of the guarded storage origin. A GSC
value of 25 indicates a 32 M-byte alignment, a value
of 26 indicates a 64 M-byte alignment, and so forth.

* The guarded storage section size. A GSC value of
25 indicates 512 K-byte sections, a value of 26 indi-
cates 1 M-byte sections, and so forth. Other embod-
iments may allow different mechanisms of designat-
ing the GSC, with corresponding changesto the des-
ignation ofthe guarded storage origin and the guard-

11
ed storage section size.

[0047] The relationship between the guarded storage
characteristic, guarded storage origin, and guarded stor-
age section size is shown in FIG. 4. In FIG. 4, G is giga-
bytes (230): GSC is guarded storage characteristic; GSD
is guarded storage designation; GSQO is guarded storage
origin; M is megabytes (229); P is petabytes (250); and T
is terabytes (249).

[0048] In addition to the guarded storage designation
register, the guarded storage facility includes a guarded
storage section mask register, one embodiment of which
is described with reference to FIG. 5. In one example, a
guarded storage section mask (GSSM) register 500 is a
64-bit register, and each bit 502 corresponds to one of
the 64 guarded storage sections within the guarded stor-
age area. As anexample, bit 0 ofthe register corresponds
to the leftmost section, and bit 63 corresponds to the
rightmost section. Each bit, called a section guard bit,
controls access to the respective section of the guarded
storage area by the Load Guarded (LGG) and Load Log-
ical And Shift Guarded (LLGFSG) instructions, as de-
scribed below.

[0049] When all 64 bits of the GSSM register are zero,
guarded storage events are not recognized. In otherem-
bodiments, GSSM register 500 may have a different
number of bits corresponding to a different number of
guarded sections, and/or one bit may be used to repre-
sent more than one guarded section. Many variations are
possible.

[0050] Thethird register ofthe guarded storage facility
is the guarded storage event parameter list address
(GSEPLA) register, an example of which is depicted in
FIG. 6A. As shown, a guarded storage event parameter
list address register 600 includes, e.g., a 64-bit address
602 that is used to locate a guarded storage event pa-
rameter list (GSEPL), when a guarded storage event is
recognized. In one embodiment, when the CPU is notin
the access register mode, the GSEPLA is a logical ad-
dress; when the CPU is in the access register mode, the
GSEPLA is a primary virtual address.

[0051] When a guarded storage event is recognized,
the GSEPL is accessed using the 64 bits of the GSEPLA,
regardless of the current addressing mode of the CPU.
The GSEPL is accessed using the current translation
mode, exceptthatwhen the CPU is inthe access register
mode, the GSEPL is accessed using the primary address
space.

[0052] Inone example, when a guarded storage event
is recognized, various informationis placed intothe GSE-
PL, and control is passed to a GSE handler. Using the
GSEPL, the handler routine can effect the relocation of
the object, adjusting its pointer accordingly.

[0053] One example of a guarded storage event pa-
rameter list is described with reference to FIG. 6B. The
fields of the guarded storage event parameter list, except
the guarded storage event handler address, are stored
into the guarded storage event parameter list when a

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

12

guarded storage event is detected.

[0054] Referring to FIG. 6B, in one example, the con-
tents of a guarded storage event parameter list 610 in-
clude:

Reserved: Bytes 0 and 4-7 of the GSEPL are reserved,
and, in one example, are set to zero when a guarded
storage event is recognized.

[0055] Guarded Storage Event Addressing Mode
(GSEAM) 612: Byte 1 of the GSEPL contains an indica-
tion ofthe addressing mode ofthe CPUwhen the guarded
storage event was recognized, as follows:

Reserved: Bits 0-5 of the GSEAM are reserved and
stored as zeros.

[0056] Extended Addressing Mode (E)614: Bit6 ofthe
GSEAM contains the extended addressing mode bit,
e.g., bit 31 of a program status word. The program status
word is a control register that performs the functions of
a status register and a program counter. It contains in-
formation used for proper program execution, including,
but not limited to, a condition code, an instruction ad-
dress, and other information, as described herein.
[0057] Basic Addressing Mode (B) 616: Bit 7 of the
GSEAM contains the basic addressing mode bit, e.g., bit
32 of the program status word.

[0058] Bits 6 and 7 are set to, e.g., bits 31 and 32 of
the PSW at the time the guarded storage event was rec-
ognized (i.e., in one embodiment, before bits 31 and 32
are replaced by the transaction abort PSW, described
below).

[0059] Guarded Storage Event Cause Indications
(GSECI) 620: Byte 2 of the GSEPL contains the guarded
storage event cause indications. The GSECI is encoded
as follows, in one example:

[0060] Transactional Execution Mode Indication (TX)
622: When bit 0 of the GSECI is zero, the CPU was not
in transactional execution mode when the guarded stor-
age event was recognized. When bit 0 of the GSECI is
one, the CPU was in the transactional execution mode
when the guarded storage event was recognized.
[0061] A CPU may be in nontransactional execution
mode or transactional execution mode, and if in transac-
tional execution mode, it may be in constrained transac-
tional execution mode orin nonconstrained transactional
execution mode. The CPU enters transactional execu-
tion mode by a transaction begin instruction and leaves
the transactional execution mode by either a Transaction
End instruction or an abort of the instruction. The trans-
action begin instruction may be a Transaction Begin
(TBEGIN) instruction of a nonconstrained transactional
execution mode or a Transaction Begin Constrained
(TBEGINC) instruction of a constrained transactional ex-
ecution mode. When the transaction begin instruction is
of the constrained transactional execution mode, the
CPU enters constrained transactional execution mode,
which is subject to a number of limitations (e.g., a subset
of the general instructions is available; a limited number
ofinstructions may be executed; a limited number of stor-
age operand locations may be accessed; and/or the

13

transaction is limited to a single nesting level). In a non-
constrained transactional execution mode (referred sim-
ply as transactional executional mode), the limitations of
the constrained transactional execution mode are not ap-
plied.

[0062] In one embodiment, during execution of the
TBEGIN instruction when a nesting depth is initially zero
(transactions may be nested), a transaction abort pro-
gram status word (PSW) is set to the contents of the
current program status word (PSW), and the instruction
address of the transaction abort PSW designates the
next sequential instruction (that is, the instruction follow-
ing the outermost TBEGIN). During execution of the TE-
GINC instruction, when the nesting depth is initially zero,
the transaction abort PSW is set to the contents of the
current PSW, except that the instruction address of the
transaction abort PSWdesignates the TBEGINC instruc-
tion (ratherthan the next sequential instruction following
the TBEGINC).

[0063] When a transaction is aborted, various status
information may be saved in a transaction diagnostic
block (TDB).

[0064] Constrained Transactional Execution Mode In-
dication (CX) 624: When bit 1 of the GSECI is zero, the
CPU was not in the constrained transactional execution
mode when the guarded storage event was recognized.
When bit 1 of the GSECI is one, the CPU was in the
constrained transactional execution mode when the
guarded storage event was recognized. Bit 1 ofthe GSE-
Cl is meaningful when bit 0 is one.

[0065] Reserved: Bits 2-6 of the GSECI are reserved,
and, in one example, are set to zero when a guarded
storage event is recognized.

[0066] Instruction Cause (IN) 626: Bit 7 of the GSECI
indicates the instruction that caused the guarded storage
event. When bit 7 is zero, the event was caused by the
execution of the Load Guarded instruction. When bit 7 is
one, the event was caused by the execution of the Load
Logical And Shift Guarded instruction. Other causes may
similarly be indicated by using more than one bit.
[0067] Guarded Storage Event Access Information
(GSEALI) 630: Byte 3 of the GSEPL contains information
describing the following CPU attributes, as examples:
[0068] Reserved: Bit 0 of the GSEAI is reserved, and,
in one example, is set to zero when a guarded storage
event is recognized.

[0069] DAT Mode (T)632: Bit 1 ofthe GSEAIl indicates
the current dynamic address translation (DAT) mode
(that is, the T bit is a copy of PSW bit 5).

[0070] Address Space Indication (AS) 634: Bits 2-3 of
the GSEAI indicate the current address space controls
(that is, the AS field is a copy of bits 16-17 of the PSW).
The AS field is meaningful when DAT is enabled (that is,
when the T bit is one); otherwise, the AS field is unpre-
dictable.

[0071] Access Register Number (AR) 636: When the
CPUisinthe access-registermode, bits 4-7 ofthe GSEAI
indicate the access register number used by the LGG or

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

14

LLGFSG instruction causing the event (that is, the AR
field is a copy of the B, field of the LGG or LLGFSG
instruction). When the CPU is not in the access register
mode, the AR field is unpredictable.

[0072] Guarded Storage Event Handler Address
(GSEHA) 640: Bytes 8-15 of the GSEPL contain the
guarded storage event handler address. The contents of
the GSEHA field are considered to be a branch address
that is subject to the current addressing mode in the pro-
gram status word (PSW). When a guarded storage event
is recognized, the GSEHA field forms the branch address
thatis used to complete the execution ofthe Load Guard-
ed or Load Logical And Shift Guarded instruction.
[0073] The instruction address in the PSW is replaced
by the contents of the GESHA.

[0074] The guarded storage event handler address is
specified by the program during execution of the Load
Guarded Storage Controls instruction.

[0075] A guarded storage event is considered to be a
program event recording (PER) successful branching
event. If PER is enabled in, e.g., the PSW, and the PER
branch address control is one in, e.g., control register 9,
the GSEHA is the value compared with, e.g., control reg-
isters 10 and 11.

[0076] Guarded Storage Event Instruction Address
(GSEIA) 650: Bytes 16-23 of the GSEPL contain the
guarded storage event instruction address. When a
guarded storage event is recognized, the address of the
instruction causing the event is stored into the GSEIA
field. The address placed in the GSEIA is either that of
the Load Guarded or Load Logical And Shift Guarded
instruction, or that of the execute-type instruction whose
target is a Load Guarded or Load Logical And Shift
Guarded instruction, as examples.

[0077] Storing of the GSEIA field is subject to the cur-
rent addressing mode when the event is detected. In the
24-bit addressing mode, bits 0-39 of the GSEIA are set
to zeros. In the 31-bit addressing mode, bits 0-32 of the
GSEIA are set to zeros.

[0078] Guarded Storage Event Operand Address
(GSEOA) 660: Bytes 24-31 of the GSEPL contain the
guarded storage event operand address. When a guard-
ed storage event is recognized, the second operand ad-
dress of a Load Guarded or Load Logical And Shift
Guarded instruction causing the event is stored into the
GSEOA field.

[0079] Storing ofthe GSEOQA field is subject to the cur-
rent addressing mode when the event is detected. In the
24-bit addressing mode, bits 0-39 of the GSEOA are set
to zeros. In the 31-bit addressing mode, bits 0-32 of the
GSEOQA are set to zeros.

[0080] If transactional execution is aborted due to the
recognition of a guarded storage event, the GSEOA field
contains the operand address formed during transaction-
al execution. This is true even if the operand address
was formed using one ormore general registers thatwere
altered during transactional execution, and regardless of
whether the register(s) were restored when transactional

15

execution was aborted.

[0081] Guarded Storage Event Intermediate Result
(GSEIR) 670: Bytes 32-39 of the GSEPL contain the
guarded storage event intermediate result. When a
guarded storage event is recognized, the intermediate
result formed by a Load Guarded or Load Logical And
Shift Guarded instruction is stored into the GSEIR field.
[0082] If transactional execution is aborted due to the
recognition of a guarded storage event, the GSEIR field
contains an intermediate result formed from the second
operand location after the CPU has left the transactional
execution mode (e.g., afterthe transaction was aborted).
[0083] Guarded Storage Event Return Address (GSE-
RA) 680: Bytes 40-47 ofthe GSEPL contain the guarded
storage event return address.

[0084] When a guarded storage event is recognized
while the CPU is in the transaction execution mode, the
instruction address of the transaction abort PSW is
placed into the GSERA. In the constrained transactional
execution mode, the instruction address (i.e., the GSE-
RA) designates the TBEGINC instruction. In the noncon-
strained transactional execution mode, the instruction
address (i.e., the GSERA) designates the instruction fol-
lowing the TBEGIN instruction.

[0085] When a guarded storage event is recognized
while the CPU is not in the transactional execution mode,
the contents of the GSERA are identical to the GSEIA.

[0086] During execution of the Load Guarded or Load
Logical And Shift Guarded instruction, the GSEPL is ac-
cessed if aguarded storage event is recognized. Multiple
accesses may be made to any field of the GSEPL when
a guarded storage event is recognized.

[0087] Accesses to the GSEPL during guarded stor-
age event processing are considered to be side effect
accesses. Store type access exceptions are recognized
for any byte ofthe GSEPL including the GSEHA field and
reserved fields. If an access exception other than ad-
dressing is recognized while accessing the GSEPL, a
side effect access indication, bit 54 of a translation ex-
ception identification at, e.g., real location 168-175, is set
to one, and the Load Guarded or Load Logical And Shift
Guarded instruction causing the guarded storage event
is nullified.

[0088] When DAT is on,the GSEPL is accessed using
the current address space control (ASC) mode, except
when the CPU is in the access register mode; in the ac-
cess register mode, the GSEPL is accessed in the pri-
mary address space.

[0089] Thethree guarded storage registers may be set
and inspected by means of the Load Guarded Storage
Controls and Store Guarded Storage Controls instruc-
tions, respectively. The storage operand foreach ofthese
instructions is, e.g., a 32-byte guarded storage control
block (GSCB), and the contents of the guarded storage
registers occupy the last three eight-byte fields of the
block, as shown in FIG. 7.

[0090] Asdepicted, in one example, aguarded storage
control block (GSCB) 700 includes contents 702 of the

10

15

20

25

30

35

40

45

50

55

DK/EP 3571580 T5

16

guarded storage designation register, contents 704 of
the guarded storage section mask register, and contents
706 of the GSE parameter list address register.

[0091] When the GSCB is aligned on a doubleword
boundary, CPU accessto each of the three defined fields
is block concurrent.

[0092] FortheLoad Guarded Storage Controlsinstruc-
tion, reserved bit positions of the GSCB are to contain
zeros, in one example; otherwise, the program may not
operate compatibly in the future.

[0093] For the Store Guarded Storage Controls in-
struction, reserved bit positions that are loaded with
nonzero values may or may not be stored as zeros, and
reserved values of the GLS and GSC fields of the GSD
register may or may not be corrected to model dependent
values.

[0094] In an alternate embodiment, one or more of the
values described in the GSEPL may instead be kept in
additional registers, included in the GSCB, and loaded
and stored by the Load Guarded Storage Controls and
the Store Guarded Storage Controls instructions. Other
examples also exist.

[0095] Inone embodiment, the expected usage is that
the program does not switch ASC mode between the
establishment of the guarded storage controls and the
recognition of a guarded storage event. If the program
switches ASC mode, then, in one example, the GSEPL
is to be mapped to common addresses in both the space
where it was established and in the space where the
guarded storage eventwas recognized. Ifa guarded stor-
age event is recognized in the access register mode, the
guarded storage event handler program may need to ex-
amine the GSEAI field to determine an appropriate ALET
(access list entry token) with which to access the guarded
storage operand.

[0096] Further, when a nonconstrained transaction is
aborted due to a guarded storage event, the addressing
mode from the transaction abort PSWbecomes effective.
The addressing mode that was in effect at the time of the
guarded storage event can be determined by inspecting
the GSEAM field in the GSE parameter list.

[0097] The addressing mode cannot be changed by a
constrained transaction, in one embodiment; thus, in the
one embodiment, if a constrained transaction is aborted
due to a guarded storage event, the addressing mode is
necessarily the same as when the TBEGINC instruction
was executed.

[0098] Furtherdetails of each of the instructions of the
guarded storage facility, including, for instance, Load
Guarded, Load Logical and Shift Guarded, Load Guard-
ed Storage Controls and Store Guarded Storage Con-
trols, are described below. Each instruction may be a
single architected machine instruction at the hard-
ware/software interface. Further, each instruction may
include a plurality of fields. In one embodiment, the fields
of an instruction are separate and independent from one
another. However, in another embodiment, more than
one field may be combined. Further, a subscript number

17

associated with a field of the instruction denotes the op-
erand to which the field applies. For instance, any field
having a subscript 1 is associated with a first operand,
any field having a subscript 2 is associated with a second
operand, and so forth.

[0099] Oneexample ofaload Guarded (LGG) instruc-
tion is described with reference to FIG. 8. A Load Guard-
ed instruction 800 includes, for instance, operation code
(opcode) fields 802a, 802b to designate a load guarded
operation; aregister field (Ri) 804; an index field (X,) 806;
abase field (B,) 808, and a displacement field comprising
a first displacement (DL,) field 810a and a second dis-
placement (DH2) field 810b. The contents of the second
displacement field and the first displacement field are
concatenated to provide a displacement, which is treated
as a 20-bit signed binary integer, in one example.
[0100] When the X, 806 and B, 808 fields designate
a general register other than register 0, the contents of
the respective registers are added to the displacement
to provide an address in storage that includes the second
operand. The second operand is, e.g., a doubleword in
storage. In one example, a specification exception is rec-
ognized and the operation is suppressed if the second
operand address is not a doubleword boundary.

[0101] In operation of the Load Guarded instruction, a
64-bit intermediate result is formed, as follows:

[0102] As examples, in the 24-bit addressing mode,
the intermediate result is formed from the concatenation
of 40 binary zeros with bits 40-63 of the second operand.
In the 31-bit addressing mode, the intermediate result is
formed from the concatenation of 33 binary zeros with
bits 33-63 ofthe second operand. Inthe 64-bit addressing
mode, the intermediate result is formed from the entire
second operand.

[0103] When the guarded storage facility is enabled,
the intermediate result is used in guarded storage event
detection, as an example. If a guarded storage event is
recognized, then general register R, is not modified, and
the instruction is completed, as described further below.
[0104] When either the guarded storage facility is not
enabled, or the facility is enabled but a guarded storage
event is not recognized, then the 64-bit intermediate re-
sult is placed in general register R4, and the instruction
is completed.

[0105] The guarded storage event parameter list
(GSEPL) is accessed when a guarded storage event is
recognized. Store type accesses applytothe entire GSE-
PL. The condition code remains unchanged.

[0106] As indicated above, in addition to the Load
Guarded instruction, the guarded storage facility in-
cludes, in accordance with an aspect of the present in-
vention, a Load Logical and Shift Guarded instruction.
The Load Logical and Shift Guarded instruction is a single
instruction (e.g., a single architected hardware instruc-
tion) that loads data from storage, shifts the data by a
shift amount to obtain a shifted value, obtains an inter-
mediate result using the shifted value, and performs
guarded storage detection using the intermediate result.

10

15

20

25

30

35

40

45

50

55

10

DK/EP 3571580 T5

18

[0107] In one particular example, the data is a 32-bit
value that is shifted to the left by a number of bit positions
specified in the guarded storage designation register to
form, e.g., an intermediate 64-bit value. The 64-bit value
is adjusted for the addressing mode; that is, in the 24-bit
addressing mode, bits 0-39 are set to zeros; in the 31-
bit addressing mode, bits 0-32 are set to zeros; and in
the 64-bit addressing mode, the value is unchanged. Se-
lected bits of the intermediate value are compared with
a guarded storage origin (in the GSD register), and other
selected bits of the intermediate value are used to index
a bit in the guarded storage section mask (GSSM) reg-
ister. If the comparison is equal and the indexed GSSM
bit is one, a guarded storage event is detected. Other-
wise, the instruction simply loads the intermediate value
into a register.

[0108] Oneexample ofaloadLogicaland Shift Guard-
ed (LLGFSG) instruction is described with reference to
FIG. 9. A Load Logical and Shift Guarded instruction 900
includes, for instance, opcode fields 902a, 902b to des-
ignate a load logical and shift guarded operation; a reg-
ister field (Ri) 904; an index field (X,) 906, a base field
(B,) 908; and a displacement field comprising a first dis-
placement (DL,) field 910a and a second displacement
(DH,) field 910b. The contents of the second displace-
ment field and the first displacement field are concate-
nated to provide a displacement, which is treated as a
20-bit signed binary integer, in one example.

[0109] When the X, 906 and B, 908 fields designate
a general register other than register 0, the contents of
the respective registers are added to the displacement
to provide an address in storage that includes the second
operand. The second operand, e.g., is aword in storage.
In one example, a specification exception is recognized
and the operation is suppressed if the second operand
address is not on a word boundary.

[0110] In operation of the Load Logical and Shift
Guarded instruction, a 64-bit intermediate result is
formed, as follows:

[0111] When the guarded storage facility is enabled
(e.g., by means of bit 59 of control register 2), the inter-
mediate result is formed using the guarded load shift val-
ue (GLS, in bits 53-55 ofthe guarded storage designation
register). When the guarded storage facility is not ena-
bled, the GLS value is assumed to be zero.

[0112] As examples, in the 24-bit addressing mode,
the intermediate result is formed from the concatenation
of40 binary zeros, bits (8+GLS) through 31 ofthe second
operand, and GLS binary zeros (i.e., a number equaling
GLS of zeros). In the 31 bit addressing mode, the inter-
mediate result is formed from the concatenation of 33
binary zeros, bits (1+GLS) through 31 ofthe second op-
erand, and GLS binary zeros. In the 64-bit addressing
mode, the intermediate result is formed from the con-
catenation of (32-GLS) binary zeros, the entire 32-bit sec-
ond operand, and GLS binary zeros.

[0113] When the guarded storage facility is enabled,
the intermediate result is used in guarded storage event

19

detection, as an example. If a guarded storage event is
recognized, then general register R, is not modified, and
the instruction is completed, as described further below.
[0114] When either the guarded storage facility is not
enabled, or the facility is enabled but a guarded storage
event is not recognized, then the 64-bit intermediate re-
sult is placed in general register R,, and the instruction
is completed.

[0115] The guarded storage event parameter list
(GSEPL) is accessed when a guarded storage event is
recognized. Store type accesses applytothe entire GSE-
PL. The condition code remains unchanged.

[0116] With execution of either the Load Guarded or
the Load Logical and Shift Guarded instruction, there
may be the following program exceptions: Access (fetch,
second operand; when a guarded storage event is rec-
ognized, fetch and store, GSEPL fields); Operation
(guarded storage facility not installed); and specification.
[0117] Priority of execution foreach ofthe Load Guard-
ed and the Load Logical and Shift Guarded instructions
is as follows:

1.-7. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

8. Access exceptions forthe second operand in stor-
age.

9. Completion with no guarded storage event recog-
nized.

10. Side-effect access exceptions for the guarded
storage event parameter list.

11. Completion with a guarded storage event recog-
nized.

[0118] The Load Logical And Shift Guarded instruction
may be useful in loading what are sometimes referred to
as compressed pointers in which some number of right-
most bits of the pointer address are absent in storage
and assumed to be zeros. Forinstance, various languag-
es, such as Java, may allocate data objects for its appli-
cations on integral storage boundaries (that is, on bound-
aries that are a power of two). For example, objects may
be allocated on a word (4-byte), doubleword (8-byte), or
quadword (16-byte) boundary. When an object is allo-
cated on such a boundary, some number of the rightmost
bits of the object's address are zero. For programming
efficiency, it may be advantageous to represent the point-
ers to such objects using a 32-bit pointer, but this limits
the range of addressability to 4 gigabytes (or, inthe case
of Z/Architecture, which uses 31-bit addresses, the range
of addressability is limited to 2 gigabytes), even when
executing in the 64-bit addressing mode.

[0119] Sinceitis known that some numberofrightmost
bits of such an object (aligned on an integral boundary)

10

15

20

25

30

35

40

45

50

55

11

DK/EP 3571580 T5

20

are zero, these bits can be omitted from an in-memory
representation of the pointer by shifting the pointerto the
right by the number of expected zero bits. This allows
the corresponding number of leftmost bits to be added
to the pointer in storage, thus allowing the pointer to ad-
dress a larger amount of memory than is possible using
an un-shifted version. For example, if it is known that the
pointers indicate doublewords, by shifting the pointer to
the right by three bits, the range of addressability can be
extended on the left by 3 bits, thus allowing the 32-bit
pointer to address up to 32 gigabytes of memory (as op-
posed to the 4 gigabytes that can be addressed using an
un-shifted pointer). Further, when the pointer is loaded
for use by the CPU’s memory subsystem, it is shifted to
the left 3 bits to form a 35-bit pointer.

[0120] Assumingthata programming modeluses com-
pressed pointers that are of the same format (that is, the
compressed pointers are all shifted right by the same
number of bits), the instruction which performs the load-
and-shift operation does not need to have an operand
designating the shift amount. Rather, this can be a rela-
tively static value that is loaded infrequently (e.g., when
a task is dispatched). In one embodiment, the number of
bits by which the compressed pointers are shifted is spec-
ified in the guarded load shift (GLS) field of the guarded
storage designation (GSD) register. In another embodi-
ment, the shift amount may be specified in an operand
of the instruction. Other variations are also possible.
[0121] When the guarded storage facility is installed in
a configuration, the Load Guarded (LGG) and Load Log-
ical And Shift Guarded (LLGFSG) instructions can be
executed regardless of the contents of the guarded stor-
age enablement control (e.g., bit 59 of control register
2). However, guarded storage events may be recognized
as a result of executing LGG or LLGFSG when (a) the
GSE controlis one, and (b) the guarded storage selection
mask is nonzero. The guarded storage selection mask
is not to be loaded without the GSE control being one.
[0122] A guarded storage event is not recognized
when all 64 bits of the guarded storage selection mask
(GSSM) are zero. The program can ensure that guarded
storage events are not recognized by either (a) not load-
ing the guarded storage controls, in which case the
GSSM will contain its reset state of zeros, or (b) loading
zeros into the GSSM.

[0123] One example of a Load Guarded Storage Con-
trols (LGSC) instruction is described with reference to
FIG. 10. The Load Guarded Storage Controls instruction
provides parameters controlling the operation ofa guard-
ed storage event to the CPU, and provides information
describing the state ofthe CPU at the time ofthe guarded
storage event to the program.

[0124] Referring to FIG. 10, a Load Guarded Storage
Controls instruction 1000 includes opcode fields 1002a,
1002b to designate a load guarded storage controls op-
eration; aregister field (Ri) 1004, an indexfield (X,) 1006;
a base field (B,) 1008; and a displacement field compris-
ing a first displacement (DL,) field 1010a and a second

21

displacement (DH2) field 1010b. The contents ofthe sec-
ond displacement field and the first displacement field
are concatenated to provide a displacement, which is
treated as a 20-bit signed binary integer, in one example.
[0125] Whenthe X, 1006 and B, 1008 fields designate
a general register other than register 0, the contents of
the respective registers are added to the displacement
to provide an address in storage that includes the second
operand.

[0126] In operation, contents of the guarded storage
control block (GSCB) atthe second operand address are
loaded into the three guarded storage registers. The for-
mat of the guarded storage control block (GSCB) is
shown inFIG. 7. The R, field ofthe instruction is reserved
and should contain zero; otherwise, the program may not
operate compatibly in the future.

[0127] Access exceptions are recognized for all 32
bytes of the GSCB.

[0128] If eitherthe GLS or GSC fields of the GSD reg-
ister being loaded contain invalid values, or if the re-
served bit positions of the register do not contain zeros,
the results are unpredictable. Ifthe second operand con-
tains either (a) invalid GLS or GSC values, or (b) nonzero
values in the reserved bit positions, then it is model de-
pendentwhetherthe CPU replaces the invalid ornonzero
values with corrected values. Furthermore, it is unpre-
dictable whethersuch corrected values are subsequently
stored by the Store Guarded Storage Controls instruc-
tion.

[0129] A special operation exception is recognized and
the operation is suppressed when the guarded storage
enablement control, e.g., bit 59 of control register 2, is
Zero.

[0130] The condition code remains unchanged, and
there may be the following program exceptions: Access
(fetch, second operand); Operation (if the guarded stor-
age facility is not installed); Special Operation; and
Transaction constraint.

[0131] Ifthe GSC field ofthe GSD register contains an
invalid value, guarded storage events may not occur or
erroneous guarded storage events may be detected.
[0132] Ifthe GLS field of the GSD register contains an
invalid value, the intermediate result used by the Load
Logical and Shift Guarded instruction may be formed
from an unpredictable range of bits in the second oper-
and, shifted by an unpredictable number of bits.

[0133] Oneexample of a Store Guarded Storage Con-
trols instruction is described with reference to FIG. 11. A
Store Guarded Storage Controls instruction 1100 in-
cludes, for instance, opcode fields 1102a, 1102b to des-
ignate a store guarded storage controls operation; a reg-
ister field (Ri) 1104, an index field (X,) 11086; a base field
(B,) 1108, and a displacement field comprising a first
displacement (DL,) field 1110a and a second displace-
ment (DH,) field 1110b. The contents of the second dis-
placement field and the first displacement field are con-
catenated to provide a displacement, which is treated as
a 20-bit signed binary integer, in one example.

10

15

20

25

30

35

40

45

50

55

12

DK/EP 3571580 T5

22

[0134] Whenthe X, 1106 and B, 1108 fields designate
a general register other than register 0, the contents of
the respective registers are added to the displacement
to provide an address in storage that includes the second
operand.

[0135] In operation, the contents of the three guarded
storage registers are stored at the second operand loca-
tion. The second operand has the format of a guarded
storage control block (GSCB), as shown in FIG. 7. Inone
embodiment, zeros are stored in the first eight bytes of
the GSCB.

[0136] Access exceptions are recognized for all 32
bytes of the GSCB.

[0137] The R, field of the instruction is reserved and
should contain zero; otherwise, the program may not op-
erate compatibly in the future.

[0138] A special operation exception isrecognized and
the instruction is suppressed if the guarded storage en-
ablement control, e.g., bit 59 of control register 2, is zero.
[0139] The condition code remains unchanged and
there may be the following program exceptions: Access
(store, second operand); Operation (if the guarded stor-
age facility is not installed); Special Operation; and
Transaction constraint.

[0140] For each of the instructions, although various
fields and registers are described, one or more aspects
ofthe present invention may use other, additional or few-
er fields orregisters, or other sizes of fields and registers,
etc. Many variations are possible. For instance, implied
registers may be used instead of explicitly specified reg-
isters or fields of the instruction. Again, other variations
are also possible.

[0141] One or more of the above-described instruc-
tions and/or registers may be employed in guarded stor-
age event detection used to detect a guarded storage
event. As shown in FIG. 12, in one embodiment, guarded
storage event detection 1200 uses, forinstance, two val-
ues formed from the intermediate result 1202 ofthe Load
Guarded (LGG) or Load Logical And Shift Guarded
(LLGFSG) instruction, including, for instance, a guarded
storage operand comparand (GSOC) 1204; and a guard-
ed storage mask index (GSMX) 1206.

[0142] The guarded storage operand comparand
(GSOC) 1204 is formed from the intermediate result of
the Load Guarded or Load Logical And Shift Guarded
instruction. For example, the GSOC comprises bit posi-
tions 0 through (63 - GSC) of the intermediate result,
inclusive (where GSC is the guarded storage character-
istic in, e.g., bit positions 58-63 of the guarded storage
designation register).

[0143] The GSOC is compared 1210 with the guarded
storage origin 1212 (GSO) in the corresponding bit po-
sitions of the GSD register 1214, which also includes
guarded storage characteristic 1216. When the GSOC
is not equal to the GSO, a guarded storage event is not
recoghized, and the execution of the Load Guarded or
Load Logical And Shift Guarded instruction is completed
by placing the intermediate resultinto general registerR ;.

23

[0144] Whenthe GSOC is equal to the GSO 1220, the
six bits ofthe intermediate result to the right ofthe GSOC
form an unsigned binary integer called the guarded stor-
age mask index (GSMX). The section guard bit (G) 1224
of the guarded storage section mask (GSSM) register
1226 corresponding to the GSMX is examined 1222, If
the section guard bit is zero, a guarded storage event is
not recognized, and the execution of the Load Guarded
or Load Logical And Shift Guarded instruction is com-
pleted by placing the intermediate result into general reg-
ister R,. However, if the section guard bit is one, then a
guarded storage event is recognized 1228.

[0145] Guarded storage event detection is not per-
formed when either (a) the guarded storage facility is not
enabled (by means of, e.g., bit 59 of control register 2),
or (b) all bit positions ofthe guarded storage section mask
(GSSM) register contain zeros, as examples.

[0146] In one embodiment, guarded storage controls
may be captured on a machine check or on a signal proc-
essor (SIGP) store additional status at address opera-
tion. For instance, when a machine check occurs on a
CPU, the architected register context of the CPU is re-
cordedin storage. Most ofthe architected register context
- including the program status word (PSW), general reg-
isters, access registers, control registers, floating point
registers, floating point control register, clock compara-
tor, CPU timer, TOD (Time-Of-Day) programmable reg-
ister, breaking event address register, and prefix register
- are stored into assigned storage locations in the lower
two blocks of real storage (that is, into the prefix area).
Further, the architecture has been extended to include a
machine check extended save area (MCESA) that is dis-
contiguous from the prefix area to save additional infor-
mation, including, in accordance with an aspect of the
present invention, the guarded storage registers.
[0147] As shown in FIG. 13A, in one example, a ma-
chine check extended save area 1300 includes content
1304 indicating the information that is saved. In one ex-
ample, the offsets of the content are shown at 1302, and
an amount of extended save area that is stored is based
on the length characteristic (LC) shown at 1306.

[0148] Inoneexample, content 1304 includes contents
ofthe guarded storage registers, including contents 1306
of the guarded storage designation register, contents
1308 of the guarded storage section mask register, and
contents 1310 of the guarded storage event parameter
list register. In one example, the guarded storage regis-
ters are stored in the same format as that ofthe guarded
storage control block.

[0149] The validity of contents of locations 1024-1055
of the machine check extended save area is indicated
by, e.g., a guarded storage register validity bit, e.g., bit
36 of a machine check interruption code (MCIC) stored
at, e.g., real locations 232-239. When one, it indicates
that the contents of those locations reflect the correct
state of the guarded storage registers at the point of in-
terruption.

[0150] The machine check extended save area is des-

10

15

20

25

30

35

40

45

50

55

13

DK/EP 3571580 T5

24

ignated by a machine check extended save area desig-
nation (MCESAD), an example of which is depicted in
FIG. 13B. A machine check extended save area desig-
nation 1350 includes, for instance, a machine check ex-
tended save area origin (MCESAQ) 1352 used to indicate
the origin ofthe machine check extended save area, and
a length characteristic (LC) 1354 representing the size
and alignment of the MCESA.

[0151] In one example, the length characteristic is a
power of two, and effects of the length characteristic in-
clude, for instance:

* When the guarded storage facility is not installed, or
when the facility is installed, but the LC field is zero,
the size of the machine check extended save area
is assumed to be 1,024 bytes; this ensures compat-
ible operation for older software that is unaware of
the guarded storage facility.

* When the guarded storage facility is installed and
the LC field is any value from, e.g., 1 t0 9, it is as-
sumed to be an error, and the entire MCESAQ is
treated as if it contained zeros (that is, no MCESA
is stored).

* When the guarded storage facility is installed and
the LC field contains a value greater than or equal
to, e.g., 10, then the size and alignment of the MC-
ESA are 2LC pytes. In this case, bits 0 through 63-
LC ofthe MCESAD form the machine check extend-
ed save area origin (MCESAOQO). The MCESAOQO, with
LC bits of zeros appended on the right, form the 64-
bit address of the machine check extended save ar-
ea.

[0152] Similartothe machine check extended save ar-
ea, when the guarded storage facility is installed, a pa-
rameter register of, e.g., a Signal Processor (SIGP) in-
struction, used to capture contents of selected registers
of a CPU, is extended to include additional status infor-
mation. As shown inFIG. 13C, a SIGP parameterregister
1380 for the store additional status at address order in-
cludes an additional status area origin 1382 used to in-
dicate the origin ofthe additional area, and a length char-
acteristic (LC) 1384 representing the size and alignment
of the additional status area.

[01563] In one example, when the guarded storage fa-
cility is installed, if a reserved LC value is specified, or if
any reserved bit position in the parameter register is not
zero, the SIGP order is not accepted by the addressed
CPU, the invalid parameter bit (e.g., bit 55) is indicated
in the status register designated by the R, field of the
SIGP instruction, and the instruction completes by setting
condition code 1.

[0154] Further details regarding processing associat-
ed with a guarded storage event are described below.
Some ofthe processing depends on the execution mode
of the processor. For instance, the processor may be in

25

nontransactional execution mode or transactional exe-
cution mode. Further, if in transactional mode, it may be
in nonconstrained transactional mode or constrained
transactional mode, and processing may depend there-
on. Certain details are described with reference to the
z/Architecture; however, one or more aspects apply to
other architectures. The z/Architecture is only one exam-
ple.

[01565] When a guarded storage event is recognized
while the CPU is in the transactional execution mode,
the following occurs:

1. The transaction is aborted with, e.g., abort code
19. If a transaction diagnostic block (TDB) address
is not valid, orif the TDB address is valid and acces-
sible, condition code 2, as an example, is set in the
transaction abort PSW. If the TDB address is valid,
but the TDB is not accessible, condition code 1, as
an example, is set in the transaction abort PSW.

2. Depending on the model, the second operand of
the Load Guarded or Load Logical Guarded And
Shift instruction may be refetched to determine
whetherthe guarded storage event condition still ex-
ists.

* When the second operand is refetched and the
guarded storage event condition no longer ex-
ists, normal transaction abort processing con-
cludes by the loading of the transaction abort
PSW. Guarded storage event processing does
not occur in this case.

* When the second operand is not refetched, or
when it is refetched and the guarded storage
event condition persists, guarded storage event
processing occurs, as described herein (instead
of loading the transaction abort PSW, i.e., with-
out the guarded storage facility, when transac-
tional execution is aborted, control is passed to
the instruction designated by the transaction
abort PSW. For a nonconstrained transaction,
this is the instruction following the outermost
TBEGIN instruction that started transactional
execution. Typically, this will transfer control to
a transaction abort handler that can potentially
alter program conditions to make a subsequent
attempt at transactional execution successful.
For a constrained transaction, the transaction
abort PSW designates the TBEGINC instruc-
tion. Thus, transaction is re-driven without any
intervention from an abort handler.) When a
GSE is recognized during transactional execu-
tion, the transaction is aborted. Re-driving the
transaction without resolving the GSE will not
be productive. Thus, control is passed to the
GSE handler following a transaction abort, and
the GSE handler manages the event, as de-

10

15

20

25

30

35

40

45

50

55

14

DK/EP 3571580 T5

26
scribed herein.

[0156] Inthis case, the TX bit is set in the GSECI field,
and if the CPU was in the constrained transactional ex-
ecution mode, then the CX bit is also set.

[01567] When aguarded storage eventoccurs, the GSE
instruction address (GSEIA) contains the address of the
LGG or LLGFSG instruction that caused the event. Typ-
ically, the program can branch back to this address after
resolving the GSE, and attempt to continue with access-
ing the object that originally caused the event. However,
in transactional execution (TX) mode, a transaction is
aborted by a guarded storage event, and branching back
tothe LGG/LLGFSG instruction is inappropriate, as other
instructions in the transaction leading up to the GSE will
have beendiscarded. Thus, in accordance with an aspect
ofthe presentinvention, based onan abortdueto a GSE,
processing includes, for instance, branching to a GSE
handler aftertransactional abort to resolve the GSE; pro-
viding an indication to the GSE handlerthatthe CPU was
in transactional mode; and providing the address of the
TBEGIN/TBEGINC instruction that initiated the transac-
tion causing the GSE, such that the GSE handler can
redrive the transaction.

[0158] Regardless of whether the CPU was in the
transactional execution mode when a guarded storage
event is recognized, the guarded storage event param-
eter list address (GSEPLA) register is used to locate the
guarded storage event parameter list (GSEPL). The con-
tent of the GSEPLA register is a 64-bit address, and 64
bits of the address are used regardless of the current
addressing mode. The GSEPL is accessed using the cur-
rent translation mode, except that when the CPU is in
the access register mode, the GSEPL is accessed using
the primary address space.

[0159] If an access exception is recognized when ac-
cessing the GSEPL, processing is as follows:

* A program interruption occurs.

« |f the CPU was not in the transactional execution
mode, then the instruction address in the program
old PSW is set as follows:

- Ifthe exception condition results in nullification,
the instruction address points to the instruction
causing the guarded storage event (that is, the
address of the LGG or LLGFSG, orthe address
of the execute-type instruction whose target is
the LGG or LLGFSG, as examples).

- Ifthe exception condition results in suppression
or termination, the instruction address points to
the next sequential instruction following the in-
structionthat caused the guarded storage event.

[0160] If the CPU was in the transactional execution
mode, the transaction abort PSW is placed into the pro-

27
gram old PSW.

* Forall access-exception conditions except address-
ing, the side effect access indication, e.g., bit 54 of
the translation exception identification (TEID) at real
locations 168-175, is set to one. (The TEID is not
stored for addressing exceptions.)

* The remaining guarded storage event processing,
described below, does not occur when the GSEPL
is not accessible.

[0161] Ifthe GSEPL s accessible,the following actions
are performed using the fields of the GSEPL.:

* Bytes 0 and 4-7 of the GSEPL are set to zeros.

* Anindication of the addressing mode is placed into
the guarded storage event addressing mode
(GSEAM, byte 1 of the GSEPL), as follows:

- Bits 0-5 of the GSEAM are set to zeros.

- Bits6and 7 ofthe GSEAM are set to bits 31 and
32 of the PSW at the time the guarded storage
event was recognized.

* Anindication of the cause of the event is placed into
the guarded storage event cause indication field
(GSECI, byte 2 of the GSEPL), as follows:

- If the CPU was in the transactional execution
mode when the guarded storage eventwas rec-
ognized, bit 0 of the GSECI is set to one; other-
wise, bit 0 of byte 2 is set to zero.

- Ifthe CPU was in the constrained transactional
execution mode when the guarded storage
event was recognized, bit 1 of the GSECI is set
to one; otherwise, bit 1 of the GSECI is set to
Zero.

- Bits 2-6 of the GSECI are set to zeros.

- Bit7 ofthe GSECI is setto designate the instruc-
tion that caused the guarded storage event. A
value of zero means the event was caused by
a LGG instruction; a value of one means the
event was caused by a LLGFSG instruction, as
examples.

* An indication of the PSW DAT, addressing mode,
and address space controls are placed into the
guarded storage event access indication field
(GSEALI, byte 3 of the GSEPL), as follows:

- Bit 0 of the GSEAI is reserved and set to zero.

- The current translation mode, bit 5 of the PSW,

10

15

20

25

30

35

40

45

50

55

15

DK/EP 3571580 T5

28
is placed into bit 1 of the GSEAL.

- IfDAT is on, bits 16-17 of the PSW are placed
into bits 2-3 of the GSEAI. If DAT is off, bits 2-3
of the GSEAI are unpredictable.

- Ifthe CPU is in the access register mode, the
access-registernumber corresponding to the B,
field of the LGG or LLGFSG instruction causing
the event is placed into bits 4-7 of the GSEAI. If
the CPU is not in the AR mode, bits 4-7 of the
GSEAI are unpredictable.

The instruction address in the PSW is replaced by
the contents of the guarded storage event handler
address field (GSEHA, bytes 8-15 of the GSEPL).
The GSEHA field is considered to be a branch ad-
dress. The current addressing mode is unchanged.

The address of the instruction causing the guarded
storage event is placed into the guarded storage
event instruction address field (GSEIA, bytes 16-23
of the GSEPL). The address placed in the GSEIA is
eitherthat of the LGG or LLGFSG instruction, orthat
ofthe execute-type instructionwhosetargetis a LGG
or LLGFSG, as examples. The GSEIA is also placed
into the breaking event address register.

The second operand address ofthe LGG or LLGFSG
instruction is placed into the guarded storage event
operand address (GSEOA, bytes 24-31 of the GSE-
PL). If transactional execution was aborted due to
the recognition of a guarded storage event, the GSE-
OA field contains the operand address formed during
transactional execution.

The intermediate result of the LGG or LLGFSG in-
struction is placed into the guarded storage event
intermediate result field (GSEIR, bytes 32-39 of the
GSEPL). Iftransactional execution is aborted due to
the recognition of a guarded storage event, the
GSEIR field is formed using the guarded storage op-
erand address (GSEOQOA) field. However, ifthe guard-
ed storage event was recognized during transaction-
al execution, it is model dependent whether the
GSEIR contains the value that was transactionally
fetched or the value that was fetched after the trans-
action was aborted.

The GSE intermediate address (i.e., the pointerload-
ed by LGG or LLGFSG) is formed after the transac-
tion has been aborted. In one embodiment, if the
operand ofthe LGG/LLGFSG was transactionally al-
tered during the transaction, the GSEIA will not show
those changes.

Ifthe CPU was in the transactional execution mode
when the guarded storage event was recognized,

29

the instruction address ofthe transaction abort PSW
is placed in the guarded storage event return ad-
dress field (GSERA, bytes 40-47 of the GSEPL). If
the CPU was in the constrained transactional exe-
cution mode, the GSERA designates the TBEGINC
(Transaction Begin Constrained) instruction. If the
CPU was in the nonconstrained transactional exe-
cution mode, the GSERA designates the instruction
following the TBEGIN (Transaction Begin) instruc-
tion. Following GSE handling, the handler can
branch to this address to retry the transaction.

[0162] If the CPU was not in the transactional execu-
tion mode when the guarded storage event was recog-
nized, the content of the GSERA field is identical to that
of the GSEIA field.

[0163] Finally, the LGG or LLGFSG instruction is con-
sidered to have completed without altering general reg-
ister Ry.

[0164] As described herein, programming languages
that implement a storage coalescing technique, known
as storage reclamation orgarbage collection, may benefit
from the guarded storage facility. In such a programming
model, a reference to a program object is performed by
first loading a pointer to the object. The Load Guarded
and Load Logical Guarded And Shift instructions provide
the means by which the program can load a pointer to
an object and determine whether the pointer is usable.
If no guarded storage event (GSE) is recognized, the
pointer can be used to reference the object. However, if
a GSE is recognized, it may indicate that the current
pointer designates a storage location that is being reor-
ganized, in which case the object may have been relo-
cated elsewhere. The GSE handler routine may then
modify the pointerto designate the object’s new location,
and then branch to a location designated by the GSEIA
to resume normal program execution.

[0165] In response to a GSE that is recognized when
the CPU is in the transactional execution mode, the pro-
gram’s GSE handler can attempt to correct the condition
that caused the event (that is, update the operand of the
LGG or LLGFSG), and then re-execute the transaction
by branching to the location designated by the GSERA.
If nonconstrained transactional execution was aborted,
the program is to set the condition code to either2 or 3
prior to branching to the GSERA, depending on whether
the condition causing the event was orwas not corrected,
respectively. If constrained transactional execution was
aborted, then the program is not to branch to the location
designated by the GSERA unless the condition causing
the event has been corrected; otherwise, a program loop
may result.

[0166] To ensure reliable contents of the guarded stor-
age event intermediate result (GSEIR) field, a program
executing in the transactional execution mode is to use
a Nontransactional Store instruction (which performs a
nontransactional store access) if it modifies the second
operand location of a Load Guarded instruction that is

10

15

20

25

30

35

40

45

50

55

16

DK/EP 3571580 T5

30

subsequently executed in the same transaction.

[0167] Similar to other instructions that alter the PSW
instruction address, a specification exception is recog-
nized if the PSW instruction address (loaded from the
GSEHA field) is odd following a guarded storage event.
[0168] During GSE processing, the CPU may recog-
nize an access exception when attempting to update the
guarded storage event parameter list (GSEPL). Such an
access exception may be totally innocuous, for example,
due to the GSEPL being temporarily paged out to auxil-
iary storage by the operating system. Assuming the op-
erating system remedies the exception, it will load the
program old PSWto resume execution ofthe interrupted
program.

[0169] If an access exception is recognized when ac-
cessing the GSEPL, and the CPU was not in the trans-
actional execution mode, the instruction address of the
program old PSW will be set as follows, in one example:

* [fthe exception resulted in nullification, the instruc-
tion address will point to the LGG or LLGFSG in-
struction that caused the GSE (or the execute-type
instruction whose operand was the LGG or LLGF-
SG), as examples.

* [fthe exception resulted in suppression or termina-
tion, the instruction address will point to the next se-
quential instruction following the instruction that
caused the GSE for suppressing or terminating ex-
ceptions.

[0170] If an access exception is recognized when ac-
cessing the GSEPL, and the CPU was in the noncon-
strained transactional execution mode, the program old
PSW will designate the instruction following the outer-
most TBEGIN; if the CPU was in the constrained trans-
actional execution mode, the program old PSW will des-
ignate the TBEGINC instruction.

[0171] Ifthe CPU was in the nonconstrained transac-
tional execution mode and a TDB (transaction diagnostic
block) is stored, abort code 19 indicates thattransactional
execution was aborted due to a GSE. However, a trans-
action abort-handler routine cannot assume that abort
code 19 necessarily indicates that the GSE handler rou-
tine has corrected the cause of the GSE (because of the
possible access-exception condition when accessing the
GSEPL). In this scenario, an abort-handler routine may
re-execute the transaction multiple times to allow for op-
erating system resolution of one or more translation ex-
ceptions and to allow the GSE handler to correct the
cause of the GSE.

[0172] Described above is a guarded storage facility,
including instructions to load and store controls regulat-
ing the operation of the guarded storage facility, used to
facilitate processing within a computing environment.
One or more aspects of the present invention are inex-
tricably tied to computer technology and facilitate
processing within a computer, improving performance

31

thereof.

[0173] One embodiment of aspects ofthe invention re-
lating to facilitating processing in a computing environ-
ment is described with reference to FIGS. 14A-14B. Re-
ferring to FIG. 14A, in one example, an instruction to per-
form a load and shift operation is obtained (1400), and
the instruction is executed (1402). The executing in-
cludes, for instance, loading data (e.g., a pointer) from a
location in memory, the location in memory designated
by one or more fields associated with the instruction
(1404); shifting the data (e.g., left) by a shift amount to
obtain a shifted value (1406); obtaining an intermediate
result using the shifted value (1408); and performing
guarded storage detection based on the intermediate re-
sult (1410).

[0174] In one embodiment, the performing guarded
storage detection includes comparing a first portion of
the intermediate resultwith an origin of aguarded storage
area (1411); determining whether a particular section of
the guarded storage area is guarded, the determining
using a second portion of the intermediate result (1412);
anddetecting aguarded storage eventbased onthe com-
paring indicating a specific result and the determining
indicating the particular section is guarded (1414).
[0175] The performing guarded storage detection fur-
ther includes, in one embodiment, placing the interme-
diate result in a selected location designated by the in-
struction (e.g., a register specified by a field of the in-
struction), based on the comparing and determining not
detecting the guarded storage event (1416).

[0176] Further, in one embodiment, referring to FIG.
14B, the shift amount is obtained from a register used to
specify one or more attributes of a guarded storage area
(1420).

[0177] Moreover, as one example, the obtaining the
intermediate result includes adjusting the shifted value
based on an addressing mode of a processor executing
the instruction (1422).

[0178] Inafurtherembodiment,the locationin memory
from which data is loaded is determined (1430), and the
determining includes, for instance, using an index field,
a base field and a displacement field of the instruction
(1432).

[0179] As one particular example, the instruction is a
single architected instruction comprising an operation
code indicating aload logical and shiftguarded operation,
aregister field to specify a registerto place aresult based
on determining that a guarded storage event was not
detected, and a plurality of fields to determine the location
in memory (1440).

[0180] Many variations are possible.

[0181] The presentinvention may be a system, a meth-
od, and/or a computer program product at any possible
technical detail level of integration. The computer pro-
gram product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention.

10

15

20

25

30

35

40

45

50

55

17

DK/EP 3571580 T5

32

[0182] The computerreadable storage mediumcanbe
a tangible device that can retain and store instructions
for use by an instruction execution device. The computer
readable storage medium may be, for example, but is
not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromag-
netic storage device, a semiconductor storage device, or
any suitable combination ofthe foregoing. A non-exhaus-
tive list of more specific examples of the computer read-
able storage medium includes the following: a portable
computerdiskette, a hard disk, arandom access memory
(RAM), a read-only memory (ROM), an erasable pro-
grammable read-only memory (EPROM or Flash mem-
ory), a static random access memory (SRAM), a portable
compactdisc read-only memory (CD-ROM), adigital ver-
satile disk (DVD), a memory stick, a floppy disk, a me-
chanically encoded device such as punch-cards orraised
structures in a groove having instructions recorded ther-
eon, and any suitable combination of the foregoing. A
computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se,
such as radio waves or other freely propagating electro-
magnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g.,
light pulses passing through a fiber-optic cable), or elec-
trical signals transmitted through a wire.

[0183] Computer readable program instructions de-
scribed herein can be downloaded to respective comput-
ing/processing devices from a computer readable stor-
age medium or to an external computer or external stor-
age device via a network, for example, the Internet, a
local area network, awide area network and/or awireless
network. The network may comprise copper transmis-
sion cables, optical transmission fibers, wireless trans-
mission, routers, firewalls, switches, gateway computers
and/or edge servers. A network adapter card or network
interface in each computing/processing device receives
computer readable program instructions from the net-
work and forwards the computer readable program in-
structions for storage in a computerreadable storage me-
diumwithin the respective computing/processing device.
[0184] Computer readable program instructions for
carrying out operations of the present invention may be
assemblerinstructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, stateset-
ting data, configuration data for integrated circuitry, or
either source code or object code written in any combi-
nation of one or more programming languages, including
an object oriented programming language such as Small-
talk, C++, or the like, and procedural programming lan-
guages, such asthe "C"programming language or similar
programming languages. The computer readable pro-
gram instructions may execute entirely on the user’'s
computer, partly on the user's computer, as a stand-
alone software package, partly on the user's computer
and partly on a remote computer orentirely on the remote
computer or server. In the latter scenario, the remote

33

computer may be connected to the user's computer
through any type of network, including a local area net-
work (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for ex-
ample, throughthe Internet using an Internet Service Pro-
vider). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable pro-
graminstructions by utilizing state information ofthe com-
puter readable program instructions to personalize the
electronic circuitry, in order to perform aspects of the
present invention.

[0185] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and
computer program products according to embodiments
of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations
and/or block diagrams, can be implemented by computer
readable program instructions.

[0186] These computerreadable program instructions
may be provided to a processor of a general purpose
computer, special purpose computer, or other program-
mable data processing apparatus to produce a machine,
such that the instructions, which execute via the proces-
sorofthe computer orother programmable data process-
ing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks. These computer readable program in-
structions may also be stored in a computer readable
storage medium that can direct a computer, a program-
mable data processing apparatus, and/or other devices
to function in a particular manner, such that the computer
readable storage medium having instructions stored
therein comprises an article of manufacture including in-
structions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0187] The computer readable program instructions
may also be loaded onto a computer, other programma-
ble data processing apparatus, or other device to cause
a series of operational steps to be performed on the com-
puter, other programmable apparatus or other device to
produce a computer implemented process, such thatthe
instructions which execute on the computer, other pro-
grammable apparatus, or other device implement the
functions/acts specified in the flowchart and/or block di-
agram block or blocks.

[0188] Theflowchartandblock diagramsinthe Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and
computer program products according to various embod-
iments of the presentinvention. In this regard, each block
in the flowchart or block diagrams may represent a mod-
ule, segment, or portion of instructions, which comprises
one or more executable instructions forimplementing the

10

15

20

25

30

35

40

45

50

55

18

DK/EP 3571580 T5

34

specified logical function(s). In some alternative imple-
mentations, the functions noted in the block may occur
out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed
substantially concurrently, orthe blocks may sometimes
be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block
of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chartillustration, can be implemented by special purpose
hardware-based systemsthat performthe specified func-
tions or acts or carry out combinations of special purpose
hardware and computer instructions.

[0189] In addition to the above, one or more aspects
may be provided, offered, deployed, managed, serviced,
etc. by a service provider who offers management of cus-
tomer environments. For instance, the service provider
can create, maintain, support, etc. computer code and/or
a computer infrastructure that performs one or more as-
pects for one or more customers. In return, the service
provider may receive payment from the customer under
a subscription and/or fee agreement, as examples. Ad-
ditionally or alternatively, the service provider may re-
ceive payment fromthe sale of advertising contentto one
or more third parties.

[0190] In one aspect, an application may be deployed
for performing one or more embodiments. As one exam-
ple, the deploying of an application comprises providing
computer infrastructure operable to perform one or more
embodiments.

[0191] As a further aspect, a computing infrastructure
may be deployed comprising integrating computer read-
able code into a computing system, in which the code in
combinationwith the computing system s capable of per-
forming one or more embodiments.

[0192] Asyetafurtheraspect, a process forintegrating
computing infrastructure comprising integrating compu-
ter readable code into a computer system may be pro-
vided. The computer system comprises a computer read-
able medium, in which the computer medium comprises
one or more embodiments. The code in combination with
the computer system is capable of performing one or
more embodiments.

[0193] Although various embodiments are described
above, these are only examples. Forexample, computing
environments of other architectures can be used to in-
corporate and use one or more embodiments. Further,
different instructions, instruction formats, instruction
fields and/or instruction values may be used. Many var-
iations are possible.

[0194] Further, othertypes of computing environments
can benefit and be used. As an example, a data process-
ing system suitable for storing and/or executing program
code is usable that includes at least two processors cou-
pled directly or indirectly to memory elements through a
system bus. The memory elements include, for instance,
local memory employed during actual execution of the
program code, bulk storage, and cache memory which

35

provide temporary storage of atleast some program code
in order to reduce the number of times code must be
retrieved from bulk storage during execution.

[0195] Input/Output or I/O devices (including, but not
limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory me-
dia, etc.) can be coupled to the system either directly or
through intervening I/O controllers. Network adapters
may also be coupled to the system to enable the data
processing system to become coupled to other data
processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the
available types of network adapters.

[0196] The terminology used herein is for the purpose
of describing particular embodiments only and is not in-
tended to be limiting. As used herein, the singular forms
"a", "an" and "the" are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It
will be further understood that the terms "comprises"
and/or "comprising”, when used in this specification,
specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, compo-
nents and/or groups thereof.

[0197] The corresponding structures, materials, acts,
and equivalents of all means or step plus function ele-
ments in the claims below, if any, are intended to include
any structure, material, or act for performing the function
in combination with other claimed elements as specifi-
cally claimed. The description of one or more embodi-
ments has been presented for purposes of illustration
and description, but is not intended to be exhaustive or
limited to in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order
to best explain various aspects and the practical appli-
cation, and to enable others of ordinary skill in the art to
understand various embodiments with various modifica-
tions as are suited to the particular use contemplated.

10

15

20

25

30

35

40

19

nwi=p 35671580 T5

10

15

20

25

30

DK/EP 3571580 T5

Patentkrav

1. Computerprogramprodukt til at lette bearbejdning i et computermiljg, idet
naevnte computerprogramprodukt omfatter:
et computerlaesbart lagringsmedium som lagrer instruktioner og kan laeses af et
bearbejdningskredslab til:
at opna en Load-Logical-and-Shift-Guarded 'LLSG-' instruktion til at udfgre
en last- og andringsoperation; og
at eksekvere LLSG-instruktionen, idet eksekveringen omfatter:
at laste data fra en lokation i hukommelsen, lokationen i hukommelsen er
angivet af et eller flere felter associeret med instruktionen;
at andre dataet med en sndringsmaengde for at opna en a&ndret veerdi;
at opna et intermedizert resultat ved anvendelse af den andrede vaerdi; og
at genkende forekomsten af en beskyttet lagringshandelse omfattende: at
anvende det intermedizere resultat til at bestemme om instruktionen
angiver en beskyttet lagringssektion defineret af en graense, som indikerer
et omrade af adresser, som er beskyttede, hvor baseret pa bestemmelse af
at instruktionen angiver den beskyttede lagringssektion, lastes det
intermedizere resultat ikke i et register specificeret under anvendelse af
LLSG-instruktionen; men placeres i stedet for i en beskyttet
lagringshaendelsesliste sammen med dataet og adressen af LLSG-

instruktionen, hvilket fordrsager den beskyttede lagringshandelse.

2. Computerprogramproduktet ifglge krav 1, hvor dataet omfatter en pointer.

3. Computerprogramproduktet ifglge krav 1, hvor séendringen omfatter andring af
dataet efterladt af aendringsmaengden for at opna den aendrede vaerdi.

4. Computerprogramproduktet ifglge krav 1, hvor aendringsmangden er opnaet
fra et register, som anvendes til at specificere et eller flere attributter af et
beskyttet lagringsomrade.

5. Computerprogramproduktet ifglge krav 1, hvor genkendelsen af forekomsten af
en beskyttet lagringshaendelse omfatter:

10

15

20

25

30

35

DK/EP 3571580 T5

2

at sammenligne en fgrste del af det intermedizere resultat med en
oprindelse af et beskyttet lagringsomrade;

at bestemme om en bestemt sektion af det beskyttede lagringsomrade er
beskyttet, idet bestemmelsen anvender en anden del af det intermedizere
resultat; og

at detektere en beskyttet lagringshaendelse baseret pa sammenligningen,
som indikerer et specifikt resultat, og bestemmelsen, som indikerer, den
bestemte sektion er beskyttet.

6. Computerprogramproduktet ifglge krav 1, hvor opnaelsen af det intermedisere
resultat inkluderer tilpasning af den sendrede vaerdi baseret pa en

adresseringsmodus af en processor, som eksekverer instruktionen.

7. Computerprogramproduktet ifglge krav 1, hvor fremgangsmaden yderligere
omfatter bestemmelse af lokationen i hukommelsen, idet bestemmelsen anvender

et indeksfelt, et basisfelt og et forskydningsfelt fra instruktionen.

8. Computerprogramproduktet ifglge krav 1, hvor instruktionen er en enkelt
designet instruktion, som omfatter en operationskode, som indikerer en load-
logical-and-shift-guarded-operation, et registerfelt til at specificere et register,
hvor et resultat kan placeres baseret pa bestemmelse af, at en beskyttet
lagringshaendelse ikke blev detekteret, og en flerhed af felter til at bestemme

lokationen i hukommelsen.

9. Computerimplementeret fremgangsmade til at lette bearbejdning i et
computermiljg, idet nsevnte computerimplementerede fremgangsmade omfatter:
at opna en Load-Logical-and-Shift-Guarded 'LLSG-' instruktion for at udfgre
en last- og andringsoperation; og
at eksekvere LLSG-instruktionen, idet eksekveringen omfatter:
at laste data fra en lokation i hukommelsen, lokationen i hukommelsen er
angivet af et eller flere felter associeret med instruktionen;
at andre dataet med en sndringsmaengde for at opna en a&ndret veerdi;
at opna et intermedizert resultat ved anvendelse af den andrede vaerdi; og
at genkende forekomsten af en beskyttet lagringshandelse omfattende: at

anvende det intermedizere resultat til at bestemme om instruktionen

10

15

20

25

30

35

DK/EP 3571580 T5

3

angiver en beskyttet lagringssektion defineret af en graense, som indikerer
et omrade af adresser, som er beskyttede, hvor baseret pa bestemmelse
af, at instruktionen angiver den beskyttede lagringssektion, lastes det
intermedizere resultat ikke i et register specificeret under anvendelse af
LLSG-instruktionen; men placeres i stedet for i en beskyttet
lagringshaendelsesliste sammen med dataet og adressen af LLSG-

instruktionen, hvilket fordrsager den beskyttede lagringshandelse.

10. Den computerimplementerede fremgangsmade ifglge krav 9, hvor
genkendelsen af forekomsten af en beskyttet lagringshaendelse omfatter:
at sammenligne en fgrste del af det intermedizere resultat med en
oprindelse af et beskyttet lagringsomrade;
at bestemme om en bestemt sektion af det beskyttede lagringsomrade er
beskyttet, idet bestemmelsen anvender en anden del af det intermedizere
resultat; og
at detektere en beskyttet lagringshaendelse baseret pa sammenligningen,
som indikerer et specifikt resultat, og bestemmelsen, som indikerer, at den
bestemte sektion er beskyttet.

11. Den computerimplementerede fremgangsmade ifglge krav 9, hvor opnaelsen
af det intermedizere resultat inkluderer tilpasning af den aendrede veaerdi baseret
pa en adresseringsmodus af en processor, som eksekverer LLSG-instruktionen.

12. Den computerimplementerede fremgangsmade ifglge krav 9, hvor LLSG-
instruktionen er en enkelt designet instruktion, som omfatter en operationskode,
som indikerer en load-logical-and-shift-guarded-operation, et registerfelt til at
specificere et register, hvor et resultat kan placeres baseret pd bestemmelse af, at
en beskyttet lagringshaendelse ikke blev detekteret, og en flerhed af felter til at

bestemme lokationen i hukommelsen.

13. Computersystem til at lette bearbejdning i et computermilj@, idet naevnte
computersystem omfatter:

en hukommelse; og

en processor i kommunikation med hukommelsen, hvor processoren

inkluderer en flerhed af funktionelle komponenter til:

10

15

DK/EP 3571580 T5

4

at opna en Load-Logical-and-Shift-Guarded 'LLSG-' instruktion for at udfgre
en last- og andringsoperation; og

at eksekvere LLSG-instruktionen, idet eksekveringen omfatter:

at laste data fra en lokation i hukommelsen, lokationen i hukommelsen er
angivet af et eller flere felter associeret med instruktionen;

at andre dataet med en sndringsmaengde for at opna en a&ndret veerdi;
at opna et intermedizert resultat ved anvendelse af den andrede vaerdi; og
at genkende forekomsten af en beskyttet lagringshandelse omfattende: at
anvende det intermedizere resultat til at bestemme om instruktionen
angiver en beskyttet lagringssektion defineret af en graense, som indikerer
et omrade af adresser, som er beskyttede, hvor baseret pa bestemmelse
af, at instruktionen angiver den beskyttede lagringssektion, lastes det
intermedizere resultat ikke i et register specificeret under anvendelse af
LLSG-instruktionen; men placeres i stedet for i en beskyttet
lagringshaendelsesliste sammen med dataet og adressen af LLSG-
instruktionen, hvilket fordrsager den beskyttede lagringshandelse.

DK/EP 3571580 T5

YiI 9Old gyl

7 (SINOILONMLSNI
oLl WYH90Md
I1gvavay ¥ILNdNOD
(SINOILONHLSNI
NYd90Ud SWYHO0dd [
31avavay il oL
v d3LNdNoDd (isIa) 301A30
) o) JOVHOLS V1va
H0SS300Md | TWOOT AIwI' g jra7dh
¥0l ccl | oLl WILSAS (3AIMQ 3dVL “3)
ONILVHIdO < <« 3DIA3A TYNYILXT
ZEl oLl ovl
e
(nd2) JHIOYD A)
w0SS300Md | Tvo01 E— TYNIWYAL ¥3sn “9'3
,..Tm.@!ﬂ men.. wa ZO_._.I,QID,_Mn_&d\ e ———— mUSmﬂEw_m.ﬁXm
i oSl Ov)
IHOVD SEle) AREIT
JOV4MILNI
(=eIvHS AHOWAN o el MRIOMLIN
ozl 901 801 =21
;
Okl ZOL WALSAS ¥3ILNdWOD

25

DK/EP 3571580 T5

PROCESSOR 1{84
INSTRUCTION FETCH |~150
+ 166
INSTRUCTION DECODE | 45 !
OPERAND FETCH GUARDED STORAGE
FACILITY INSTRUCTIONS
+ 154
-
] INSTRUCTION EXECUTE 170
156 }
‘ [REGISTER(S)
MEMORY ACCESS |et—
160
i
WRITE BACK |et———

FIG. 1B

26

DK/EP 3571580 T5

200
202 204 206
NATIVE CPU MEMORY
EMULATOR INPUT / OUTPUT
210%/\|REGISTERSI |7 CODE
212J 238
FIG. 2A
212 MEMORY
S _ 2?0
| [INSTRUCTION] |
252~ FETCHING ‘"}“_ INST?%LSJECSTTONS
| |_ROUTINE_| |
[+ i 2?6
| [INSTRUCTION] !
L ; NATIVE
25— | TRANS LA N INSTRUGTIONS
| s
| Y |
I
EMULATION
2’50—»/}\ CONTROL | |
| |_ROUTINE |
L e e e e e e |

27

DK/EP 3571580 T5

28

300
GUARDED STORAGE DESIGNATION (GSD)
e toc0y = |ttt | als | 11| ese
0 (53 (5 58 (63
302 304 306
FIG. 3
GSO GSO
ALIGN- | GSD | SECTION ALIGN- | GSD | SECTION
GSC| MENT | BITS | SiZE | |GSC| MENT | BITS | SIZE
2% | 32M | 038 | 512K A | 2T |0z | @6
% | 64M | 037 | 1M 2 | 4T | 021 | &6
27 | 128M | 036 | 2M 53| 8T | 020 | 128G
28 | 256M | 035 | 4M 44 | 16T | 019 | 259G
20 | 512M | 034 | _8M %5 | 32T | 018 | 5126
30 | 1G | 033 | 1M % | 64T | 017 | 1T
3| 26 | 032 | 82M 47 | 1287 | 016 | 2T
32 | 4G | 031 | 64M 48 | 267 | 016 | 4T
33 | 8G | 030 | 128M | | 49 | 5121 | o-t4 | 8T
34 | 16G | 029 | 256M | | 50 | 1P | 043 | 16T
3% | 326 | 028 | 512M 51 | 2P | 012 | &7
% | 646 | 027 | 16 52 | 4P | 041 | 64T
37 | 128G | 027 | 26 53 | 8P | 00 | 1287
3 | 256G | 025 | 46 54 | 6P | 09 | 2567
39 | 5126 | 024 | 8G 55 | 32P | 08 | 5127
0| 1T |02 | 166 5 | 64P | 07 | 1P
FIG. 4

DK/EP 3571580 T5

500
GUARDED STORAGE SECTION MASK (GSSM)
/
/
03 1 2 3 4 63
502
FIG. 5
600
GUARDED STORAGE EVENT PARAMETER LIST ADDRESS (GSEPLA)
ADDRESS
0 ? 63
602
FIG. 6A
610
612 614 616 622 624 620 630
L/ § §
GSEAM\ \ / (GSEC! GSEAI
RESERVED L
0000000 |E|B|T|¢| 00000, 0|T|AS| AR 836
x| X N
Y
RESERVED 626 632 634
GUARDED STORAGE EVENT HANDLER ADDRESS (GSEHA) 640
GUARDED STORAGE EVENT INSTRUCTION ADDRESS (GSEIA) 650
GUARDED STORAGE EVENT OPERAND ADDRESS (GSEOA) | 680
GUARDED STORAGE EVENT INTERMEDIATE RESULT (GSER) _g70
GUARDED STORAGE EVENT RETURN ADDRESS (GSERA) 680

FIG. 6B

29

DK/EP 3571580 T5

700
GUARDED STORAGE CONTROL BLOCK (GSCB) o
RESERVED
GUARDED STORAGE DESIGNATION REGISTER +~702
GUARDED STORAGE SECTION MASK REGISTER 1704
GSE PARAMETER LIST ADDRESS REGISTER +-7086
0 63
FIG. 7
800
LOAD GUARDED (LGG)
OPCODE | R | X B, DL, | DH, OPGODE

o | 8 | 12 { 16 20 { 2 { 40 (4«
802a 804 806 808 810a 810b 802b

FIG. 8
900

LOAD LOGICAL AND SHIFT GUARDED (LLGFSG)
OPCODE | R | % | B, | DL | DH, | OPCODE
o (8 { 12 { 16 (20 (32 {(40 (4
902a 904 906 908 910a 910b 902b

FIG. 9

30

DK/EP 3571580 T5

1000
LOADED GUARDED STORAGE CONTROLS (LGSC)

OPCODE | R X, B, DL, | DH, | OPCODE

0(8312816?20232240(47
1002a 1004 1006 1008 1010a 1010b 1002b

FIG. 10

1100
STORE GUARDED STORAGE CONTROLS (STGSC)

OPCODE | R X, B, DL, | DH, | OPCODE
o (8 (12 {16 (20 {(32 [47

1102a 1104 1106 1108 1110a 1110b 1102b

FIG. 11

31

DK/EP 3571580 T5

1200

1204\ LGG OR LLGFSG INTERMEDIATE RESULT —1202

GSOC GSMX

0 JK L 63
_ 1222
1206 1220 r

IF GSOC=GSO, THE SECTION GUARD
GSOC 1210 | BIT DESIGNATED BY GSMX IS TESTED

=GS0?

GUARDED STORAGE DESIGNATION (GSD) REGISTER ~—1214

2N
GSO csc| 1216
0 { J 58 63
1212

GUARDED STORAGE SECTION | MASK (GSSM) REGISTER —1226
G

63

)
1224 / 1228

IF THE DESIGNATED SECTION GUARD BIT IS ONE,
A GUARDED STORAGE EVENT IS RECOGNIZED

EXPLANATION:

G SECTION GUARD BIT IN THE GSSM REGISTER

GSC GUARDED STORAGE CHARACTERISTIC (BITS 58-63 OF THE GSD REGISTER)
GSD GUARDED STORAGE DESIGNATION REGISTER

GSMX GUARDED STORAGE MASK INDEX (BITS K THROUGH L OF THE LGG AND
LLGFSG INTERMEDIATE RESULT)

GSO GUARDED STORAGE ORIGIN (BITS 0 THROUGH J OF THE GSD)

GSOC GUARDED STORAGE OPERAND COMPARAND (BITS 0 THROUGH J OF THE
LGG AND LLGFSG INTERMEDIATE RESULT)

GSSM GUARDED STORAGE SECTION MASK REGISTER

J THE RIGHTMOST SIGNIFICANT BIT POSITION OF THE GSO
(THAT IS, BIT POSITION 63 MINUS THE VALUE OF GSC)

K BIT POSITION J +1

L BIT POSITION J +6

FIG. 12

32

DK/EP 3571580 T5

1302 1304 1300
	? 13061\		
OFFSET		MINIVUM	
HEX	DEC	CONTENT	LC
1[000-1FF 1 0-511 } VECTOR REGISTERS 0-31 { {

‘ 10
} 200-3FF § 512-1,024 } RESERVED } }
| 400407 | 1,021,031 | ZEROS | |
] |]] |
| 408-40F | 10331039 | GSDREGISTER 1306 | L
| i i | 1
| 410417 | 10401047 | GSSMREGISTER 1308 | 1
. ! . E— :
} 418-41F g 1,048-1,055 i GSEPL REGISTER 1310 § j
FIG. 13A
1350
MACHINE CHECK EXTENDED SAVE AREA DESIGNATION (MCESAD) ~
/ /
MACHINE CHECK EXTENDED SAVE AREA
ORIGIN (MCESAO) RESERVED | LC
0 / { N 60 (63
1352 1354
FIG. 13B
SIGP PARAMETER REGISTER FOR THE STORE 1380
ADDITIONAL STATUS AT ADDRESS ORDER
/ /
ADDITIONAL STATUS AREA ORIGIN RESERVED | LC
0 ! [N 60 { 63
1382 1384

FIG. 13C

33

DK/EP 3571580 T5

OBTAIN AN INSTRUCTION TO PERFORM A LOAD AND SHIFT OPERATION |~1400

EXECUTE THE INSTRUCTION, THE EXECUTING INCLUDING ~ 1402
LOADING DATA (E.G., A POINTER) FROM A LOCATION IN MEMORY,
THE LOCATION IN MEMORY DESIGNATED BY ONE OR MORE
FIELDS ASSOCIATED WITH THE INSTRUCTION ~ 1404
SHIFTING THE DATA (E.G., LEFT) BY A SHIFT AMOUNT TO OBTAIN A
SHIFTED VALUE ~.1406
OBTAINING AN INTERMEDIATE RESULT USING THE SHIFTED VALUE-1~ 1408

PERFORMING GUARDED STORAGE DETECTION BASED ON THE
INTERMEDIATE RESULT ~1410

THE PERFORMING GUARDED STORAGE DETECTION INCLUDES

COMPARING A FIRST PORTION OF THE INTERMEDIATE RESULT
WITH AN ORIGIN OF A GUARDED STORAGE AREA ~—1411

DETERMINING WHETHER A PARTICULAR SECTION OF THE
GUARDED STORAGE AREA IS GUARDED, THE DETERMINING USING
A SECOND PORTION OF THE INTERMEDIATE RESULT ~ 1412

DETECTING A GUARDED STORAGE EVENT BASED ON THE
COMPARING INDICATING A SPECIFIC RESULT AND THE
DETERMINING INDICATING THE PARTICULAR SECTION IS GUARDED-— 1414

THE PERFORMING GUARDED STORAGE DETECTION FURTHER INCLUDES | _1416

PLACING THE INTERMEDIATE RESULT IN A SELECTED LOCATION (E.G., A

REGISTER SPECIFIED BY A FIELD OF THE INSTRUCTION) DESIGNATED BY

THE INSTRUCTION, BASED ON THE COMPARING AND DETERMINING NOT
DETECTING THE GUARDED STORAGE EVENT

FIG. 14A

34

DK/EP 3571580 T5

OBTAIN THE SHIFT AMOUNT FROM A REGISTER USED TO SPECIFY {4450
ONE OR MORE ATTRIBUTES OF A GUARDED STORAGE AREA

THE OBTAINING THE INTERMEDIATE RESULT INCLUDES
ADJUSTING THE SHIFTED VALUE BASED ON AN ADDRESSING ~ 1422
MODE OF A PROCESSOR EXECUTING THE INSTRUCTION

/1430

DETERMINE THE LOCATION IN MEMDR‘}, THE DETERMINING
USING AN INDEX FIELD, A BASE FIELD AND A DISPLACEMENT
FIELD OF THE INSTRUCTION ~-1432

THE INSTRUCTION IS A SINGLE ARCHITECTED INSTRUCTION {._1440
COMPRISING AN OPERATION CODE INDICATING A LOAD
LOGICAL AND SHIFT GUARDED OPERATION, A REGISTER
FIELD TO SPECIFY A REGISTER TO PLACE A RESULT BASED
ON DETERMINING THAT A GUARDED STORAGE EVENT WAS
NOT DETECTED, AND A PLURALITY OF FIELDS TO
DETERMINE THE LOCATION IN MEMORY

FIG. 14B

35

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - ABSTRACT/BIBLIOGRAPHY
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - CLAIMS
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - DRAWINGS
	Page 26 - DRAWINGS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS

