(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

8 May 2003 (08.05.2003) PCT WO 03/038582 Al

(51) International Patent Classification’: GO6F 1/28
(21) International Application Number: PCT/US02/34830
(22) International Filing Date: 30 October 2002 (30.10.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/003,338 31 October 2001 (31.10.2001) US

(71) Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: SOUZA, Joseph, G.; 1332 Lake Washington
Blvd. South, Seattle, WA 98144 (US). HOLAN, Doron, J.;
2714 Fairview Ave., Apt. #102, Seattle, WA 98102 (US).
RAY, Kenneth, D.; 7479 Old Redmond Road, Redmond,
WA 98052 (US).

(74) Agents: BARTA, James, J., Jr. et al.; Senniger, Powers,
Leavitt & Roedel, 1 Metropolitan Square, 16th Floor, St.
Louis, MO 63102 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

[Continued on next page]

(54) Title: SELECTIVE SUSPENSION OF BUS DEVICES

/\82

COMPUTER
— 84
K‘ 86
PCIBUS
8?“ USB HOST
CONTROLLER

88

e

ROOT HUB
>

F o
(94

K 90
MOUSE
| PRINTER
SPEAKERS
-~ JovsTick |
g

] N

0O 03/038582 Al

(57) Abstract: A method and system for asserting power control over one or more hardware devices (86, 90, 92, 94 and 96) con-
nected via a bus (84). The invention includes a method and system for signaling and waiting to suspend a first device connected to
a second device. The invention also includes a method and system for suspending a tree of devices with one or more of the devices
hierarchically organized as parent devices and child devices in the tree. A controller (86) at a root of the tree receives an idle request

from one or more of the child devices and suspends all devices in the tree after receiving an idle request from each of the child
devices. The invention also includes an input/output control (IOCTL) data structure for communicating the idle request.

w0 03/038582 A1 NN 0000 .0 00O O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/038582 PCT/US02/34830

SELECTIVE SUSPENSION OF BUS DEVICES

TECHNICAL FIELD

[0001] The present invention generally relates to the field of device power control. In
particular, this invention relates to a system and method for asserting power control over

one or more hardware devices connected via a bus to selectively suspend the devices.

BACKGROUND OF THE INVENTION

[0002] Peripheral hardware devices connect to personal computers via various bus
architectures. For example, a Universal Serial Bus (USB) connects devices such as hubs,
human interface devices (HIDs), speakers, and user-input devices. In some prior art
systems, the host operating system maintains the connected devices at full power while the
system is running, even if such devices are not in use at the time. Further, any hubs or
controllers remain needlessly at full power when there are no non-hub devices connected
to them. These limitations have power consumption and heat generation implications for
desktop computers, and most especially battery power conservation implications for laptop
computers.

[0003] Additionally, in some prior art systems, a bus controller for the bus accesses
main memory on the host system continuously when the bus controller is not in a
suspended state. This prevents the host system from placing the system processor cache or
the main cache for main memory and processor in an idle state (e.g., C3). Further, some
prior art systems idle the bus controller of the bus only if there is nothing plugged into the
root hub ports of the bus.

[0004] The invention described below addresses one or more of these and other

disadvantages.

10

15

20

25

WO 03/038582 PCT/US02/34830

SUMMARY OF THE INVENTION

[0005] The invention generally relates to asserting power control over one or more
hardware devices commected via a bus. In particular, the invention includes signaling and
waiting to suspend a first device connected to a second device. The first device sends an
idle request to the second device when the first device is ready to suspend. The first
device then waits to receive a call from the second device to a callback function associated
with the first device to suspend the first device.

[0006] A method embodying aspects of the invention suspends a tree of devices where
one or more devices are hierarchically organized as parent devices and child devices in the
tree. A controller at a root of the tree receives an idle request from one or more of the
child devices and suspends all devices in the tree after receiving an idle request from each
of the child devices.

[0007] The invention also allows the bus, host controller, and any devices on the bus
associated with a computing system such as a laptop computer to enter a low power mode
even while the computing system retains full operating power. The low power mode
enables battery power savings on laptop computers, especially when there are no USB
devices connected to the system, and provides benefits to other computer systems with
respect to power savings initiatives. The invention idles the host controller even though
additional devices are plugged into root hub ports as long as the class drivers or other
device drivers take advantage of this invention. Further, the invention can suspend the bus
when a composite device is connected to the bus, whether the composite device is the only
device or one device in a tree of devices.

[0008] In another embodiment, this invention allows the entire bus to suspend at once
because all devices on the bus can register themselves as idle and ready to suspend. The
invention suspends peer devices that lack independent power control. The invention

abstracts the variations among different controllers away from the class driver. Further,

10

15

20

WO 03/038582 PCT/US02/34830

with this invention, original equipment manufacturers can add embedded devices to their
computing system while allowing the host controller to idle out and allowing the
processors and caches associated with the embedded devices to enter a suspended state.
[0009] Alternatively, the invention may comprise various other methods and
apparatuses.

[0010] Other features will be in part apparent and in part pointed out hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a block diagram of one embodiment of the invention illustrating a
hardware model of devices connected via a Universal Serial Bus.

[0012] FIG. 2 is a block diagram of one embodiment of the invention illustrating an
exemplary computing system environment on which the invention may be implemented.
[0013] FIG. 3 is a block diagram of one embodiment of the invention illustrating a
software model of devices connected via a Universal Serial Bus.

[0014] FIG. 4 is a flow chart of one embodiment of the invention illustrating operation
of driver software for controlling a child USB device.

[0015] FIG. 5 is a flow chart of one embodiment of the invention illustrating operation
of driver software for controlling a parent USB device.

[0016] FIG. 6 is a flow chart of one embodiment of the invention illustrating operation

t
)

of controller software for suspending a tree of devices.
[0017] FIG. 7 is a block diagram of one embodiment of the invention illustrating a
signaling component and a driver component associated with driver software for

controlling a child USB device in a tree structure.

10

15

20

WO 03/038582 PCT/US02/34830

[0018] FIG. 8 is a block diagram of one embodiment of the invention illustrating an
interface component and a controller component for asserting power control over
hardware devices.

[0019] FIG. 9 is a block diagram of one embodiment of the invention illustrating an
IOCTL idle request.

[0020] Corresponding reference characters indicate corresponding parts throughout the

drawings.

DETAILED DESCRIPTION OF THE INVENTION

[0021] Referring now to the drawings, the present invention asserts power control over
one or more hardware devices connected via a bus such as a Universal Serial Bus (USB).
[0022] FIG. 1 illustrates a hardware model of devices connected via USB in block
diagram form. In the embodiment of FIG. 1, a computer 82 includes an internal PCI bus
84. Peripheral components including, but not limited to, those described in connection
with FIG. 2, connect to the internal PCI bus 84. For example, a peripheral component
may be a composite device (e.g., a device with multiple interfaces), a root hub such as
USB root hub 88, or a controller such as USB host controller 86. In FIG. 1, USB host
controller 86, within the computer 82, connects to the PCI bus 84. The USB host
controller 86 includes the USB root hub 88 to which peripheral devices can be connected
via a USB indicated generally at 89. In other embodiments, the USB root hub 88 is
external to the USB controller 86. In FIG. 1, printer 90 and a joystick 92 are connected to
the USB root hub 88. In this embodiment, the printer 90 includes a hub as it has a mouse
94 and speakers 96 connected to it.

[0023] The peripheral devices in the example of FIG. 1 are hierarchically organized as

nodes in a tree structure in that the mouse 94 and speakers 96 are child nodes or child

10

15

20

25

WO 03/038582 PCT/US02/34830

devices of the printer 90. If the printer 90 is a composite device, the printing component
would be a sibling to other components on the same printer 90 device. In another
embodiment, a generic parent device is used as a parent of a composite device which itself
has no minimal functionality. Similarly, the printer 90 and joystick 92 are child nodes of
the computer 82. In this case, the controller 86, root hub 88, or computer 82 is referred to
as the parent node for the printer 90 and joystick 92. In general, a hub, controller, or a
generic parent can be a parent node for one or more child nodes. For simplicity reference
character 98 refers to devices generally such as one or more of printer 90, joystick 92,
mouse 94, speaker 96, and the like.

[0024] Those skilled in the art will note that the arrangement of the nodes in FIG. 1 is
merely exemplary and that the invention is operable with any one node of a plurality of
nodes in the tree structure connected to a second node. Further, while the bus in FIG. 1 is
a USB, those skilled in the art will note that the invention is operable with any type of bus
or network architecture that allows communication between devices or between the
devices and a controller.

[0025] In some prior art systems, children of composite devices cannot be
independently power controlled because the children are components of the same physical
device and as such share the same common power source with one another. The invention
provides independent power control of a device 98 that does not have independent power
control over any connected child devices (e.g., mouse 94 and speakers 96). The
implementation of the invention is a cooperative effort between driver software such as
USB device drivers (e.g., class drivers) and the USB core stack. While the invention as
described herein includes exemplary references to class drivers, those skilled in the art will
note that the invention is generically operable with any type of device driver software (i.e.,

not limited to class drivers). According to the invention, USB class drivers indicate to the

10

15

20

25

WO 03/038582 PCT/US02/34830

USB core stack that the device 98 is idle and no longer in use. When the particular device
98 is idle, the drivers may wish to put their respective devices 98 into a low power mode.
The low power mode saves energy and battery power, if applicable. In addition, the
invention includes a mechanism by which the USB core stack indicates to the class driver
that the device 98 may be safely put into a low power mode. The interaction between the
drivers and the core stack allows USB class drivers to power down their devices 98 when
the drivers detect that their devices 98 are idle or not in use.

[0026] Operating in accordance with the invention, two independent devices with
independent input/output control and function but without independent power control can
become idle and ready to suspend independently. The two independent devices send a
message to a third device to which they are both connected and suspend simultaneously.
Further, host controller 86 may idle even when one or more devices are connected to one
or more ports of root hub 88. Similarly, the invention includes a method for independently
suspending one or more root hub ports connected to the bus. The invention also allows
suspension of a bus when only a composite device is connected to the bus. Similarly, the
invention operates to allow a computer to suspend a bus controller when no devices are
connected to the bus.

[0027] A new input/output control IOCTL) request permits a USB class driver to
indicate to a USB core stack that the device associated with the USB class driver is ready
to suspend. The USB class driver sends the IOCTL request to the USB core stack when
the class driver has determined that the USB device 98 for which it is loaded is idle and no
longer in use. In one embodiment, the IOCTL is sent to the USB core stack via an
input/output request packet (IRP) mechanism. One of the parameters passed to the USB
core stack in the IOCTL request is a pointer to a callback function within the USB class

driver that is submitting the request. This callback function is the actual function within

10

15

20

25

WO 03/038582 PCT/US02/34830

the USB class driver that will submit the request to put the USB device 98 into low power
mode when called to do so.

[0028] In one embodiment of the invention, the devices 98 are connected via USB. A
USB composite device (e.g., printer 90, speakers 96) is a type of USB device 98 that
contains more than one interface for which more than one (or more than one instance of
the same) USB class driver is to be loaded. For example, ni'any USB speaker devices,
such as speakers 96, are in fact USB composite devices, with one interface being the
actual USB audio component, and the other interface being a set of human interface device
(HID) controls, typically used to raise/lower the volume of the sound emitted by the
speakers 96. Typically, a driver for a USB device 98 is not aware of whether it is loaded
for a simple USB device, or for an interface on a USB composite device. In general, a
USB composite device exposes multiple interfaces. For USB devices 98, software for
controlling a HID or other USB device is also referred to as USB class driver. Similarly,
for 2 USB, software for controlling the controller is also referred to as a USB core stack.
The USB core stack includes a generic parent driver, a hub driver, and a controller driver.
For example, the USB core stack may include USBCCGP.SY'S as a class driver for USB
composite devices and USBHUB.SYS as a class driver for USB hub devices and as a bus
driver for USB in general. USBHUB.SYS creates a physical device object (PDO) for
every USB device conmected to the system, both simple and composite devices. In the
composite device case, USBCCGP.SYS is loaded as the class driver on a PDO created by
USBHUB.SYS.

[0029] Various constraints exist with conventional USB implementations. In
particular, in the case of a USB composite device, a single interface cannot enter a low
power mode without also requiring all the other interfaces on the same USB composite

device to enter a low power mode. Further, an interface cannot be forced into a low power

10

15

20

25

WO 03/038582 PCT/US02/34830

mode without the knowledge or permission of the USB class driver associated with that
interface.

[0030] In addition, some types of USB class drivers, notably those for USB input (or
HID) devices, require notification of user input or device activity in order to I;now when to
put the USB device back into full power mode. For certain existing USB host controllers,
there is a hardware bug in the controller whereby the notification feature does not function
if only a single USB port is in low power mode and the entire controller hardware itself is
not in low power mode. For example, if a USB mouse (e.g., mouse 94) were connected to
one port of one of the suspect USB host controllers (e.g., USB host controller 86), and
there was another USB device connected to a second port of the same controller, then if
the class driver for the USB mouse were to put the device into a low power mode, the
USB class driver would not be made aware of subsequent device activity (i.e. end-user
moved the mouse or clicked a mouse button). Thus, the USB class driver for the USB
mouse would not set the device to full power mode. The effects of this hardware bug to
the end-user would appear that the USB mouse had become inoperational. Due to these
buggy USB host controllers, another constraint when working with USB is that USB class
drivers loaded for USB devices cannot be allowed to put the USB device for which the
driver is loaded into a low power mode based on a unilateral request from the USB class
drivers.

[0031] Operation of the driver software according to the invention is illustrated and
described in connection with FIGs. 4 and 5. In FIG. 4, the driver software supports a USB
device (e.g., a HID) acting as a child device in a tree of hierarchically organized devices.
In FIG. 5, the driver software supports a USB composite parent device or USB hub device
in a tree of hierarchically organized devices. The driver software of the invention includes

both aspects of the software as illustrated in FIGs. 4 and 5.

10

15

20

25

WO 03/038582 PCT/US02/34830

[0032] Referring now to FIG. 2, a block diagram illustrates one example of a suitable
computing system environment 100 on which the invention may be implemented. The
computing system environment 100 is only one example of a suitable computing or
operating environment and is not intended to suggest any limitation as to the scope of use
or functionality of the invention. Neither should the computing system environment 100
be interpreted as having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary computing system environment
100.

[0033] FIG. 2 shows one example of a general purpose computing device in the form
of a computer 130. In one embodiment of the invention, a computer such as the computer
130 is suitable for use in the other figures illustrated and described herein. For example, a
computer such as the computer 130 is suitable for use as computer 82.

[0034] Computer 130 has one or more processors or processing units 132 and a system
memory 134. In the illustrated embodiment, a system bus 136 couples various system
components including the system memory 134 to the processors 132. The bus 136
represents one or more of any of several types of bus structures, including a memory bus
or memory controller, a peripheral bus, an accelerated graphics port, and a processor or
local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus.

[0035] The computer 130 typically has at least some form of computer readable media.
Computer readable media, which include both volatile and nonvolatile media, removable

and non-removable media, may be any available medium that can be accessed by

10

15

20

25

WO 03/038582 PCT/US02/34830
10

computer 130. By way of example and not limitation, computer readable media comprise
computer storage media and communication media. Computer storage media include
volatile and nonvolatile, removable and non-removable media implemented in any method
or technology for storage of information such as computer readable instructions, data
structures, program modules or other data. For example, computer storage media include
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or any other medium that can be
used to store the desired information and that can accessed by computer 130.
Communication media typically embody computer readable instructions, data structures,
program modules, or other data in a modulated data signal such as a catrier wave or other
transport mechanism and include any information delivery media. Those skilled in the art
are familiar with the modulated data signal, which has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. Wired media, such as
a wired network or direct-wired connection, and wireless media, such as acoustic, RF,
infrared, and other wireless media, are examples of communication media. Combinations
of the any of the above are also included within the scope of computer readable media.
[0}03 6] The system memory 134 includes computer storage media in the form of
removable and/or non-removable, volatile and/or nonvolatile memory. In the illustrated
embodiment, system memory 134 includes read only memory (ROM) 138 and random
access memory (RAM) 140. A basic input/output system 142 (BIOS), containing the
basic routines that help to transfer information between elements within computer 130,
such as during start-up, is typically stored in ROM 138. RAM 140 typically contains data
and/or program modules that are immediately accessible to and/or presently being

operated on by processing unit 132. By way of example, and not limitation, FIG. 2

10

15

20

25

WO 03/038582 PCT/US02/34830

11

illustrates operating system 144, application programs 146, other program modules 1438,
and program data 150.

[0037] The computer 130 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. For example, FIG. 2 illustrates a hard disk
drive 154 that reads from or writes to non-removable, nonvolatile magnetic media. FIG. 2
also shows a magnetic disk drive 156 that reads from or writes to a removable, nonvolatile
magnetic disk 158, and an optical disk drive 160 that reads from or writes to a removable,
nonvolatile optical disk 162 such as a CD-ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 144, and magnetic disk drive 156 and
optical disk drive 160 are typically connected to the system bus 136 by a non-volatile
memory interface, such as interface 166.

[0038] The drives or other mass storage devices and their associated computer storage
media discussed above and illustrated in FIG. 2, provide storage of computer readable

instructions, data structures, program modules and other data for the computer 130. In

FIG. 2, for example, hard disk drive 154 is illustrated as storing operating system 170,

application programs 172, other program modules 174, and program data 176. Note that
these components can either be the same as or different from operating system 144,
application programs 146, other program modules 148, and program data 150. Operating
system 170, application programs 172, other program modules 174, and program data 176
are given different numbers here to illustrate that, at a minimum, they are different copies.
[0039] A user may enter commands and information into computer 130 through input

devices such as a keyboard 180 and a pointing device 182 (e.g., a mouse, trackball, pen, or

10

15

20

25

WO 03/038582 PCT/US02/34830
12

touch pad). Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are connected to
processing unit 132 through a user input interface 184 that is coupled to system bus 136,
but may be connected by other interface and bus structures, such as a parallel port, game
port, or a Universal Serial Bus (USB). A monitor 188 or other type of display device is
also connected to system bus 136 via an interface, such as a video interface 190. In
addition to the monitor 188, computers often include other peripheral output devices (not
shown) such as a printer and speakers, which may be connected through an output
peripheral interface (not shown).

[0040] The computer 130 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 194. The
remote computer 194 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to computer 130. The logical connections depicted in FIG. 2
include a local area network (LAN) 196 and a wide area network (WAN) 198, but may
also include other networks. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and global computer networks (e.g., the
Internet).

[0041] When used in a local area networking environment, computer 130 is connected
to the LAN 196 through a network interface or adapter 186. When used in a wide area
networking environment, computer 130 typically includes a modem 178 or other means
for establishing communications over the WAN 198, such as the Internet. The modem
178, which may be internal or external, is connected to system bus 136 via the user input
interface 194, or other appropriate mechanism. In a networked environment, program

modules depicted relative to computer 130, or portions thereof, may be stored in a remote

10

15

20

25

WO 03/038582 PCT/US02/34830
13

memory storage device (not shown). By way of example, and not limitation, FIG. 2
illustrates remote application programs 192 as residing on the memory device. It will be
appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

[0042] Generally, the data processors of computer 130 are programmed by means of
instructions stored at different times in the various computer-readable storage media of the
computer. Programs and operating systems are typically distributed, for example, on
floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary
memory of a computer. At execution, they are loaded at least partially into the computer’s
primary electronic memory. The invention described herein includes these and other
various types of computer-readable storage media when such media contain instructions or
programs for implementing the steps described below in conjunction with a
microprocessor or other data processor. The invention also includes the computer itself
when programmed according to the methods and techniques described below.

[0043] For purposes of illustration, programs and other executable program
components, such as the operating system, are illustrated herein as discrete blocks. Itis
recognized, however, that such programs and components reside at various times in
different storage components of the computer, and are executed by the data processor(s) of
the computer.

[0044] Referring next to FIG. 3, a block diagram illustrates a software model of
devices connected via USB such as those illustrated and described in connection with FIG.
1. The software model of FIG. 3 shows the software components associated with an
exemplary device configuration. The device configuration in FIG. 3 is different from the
device configuration in FIG. 1. In FIG. 3, the hardware devices shown in phantom are

associated with the software components shown proximal to the devices.

10

15

20

25

WO 03/038582 PCT/US02/34830

14

[0045] In this embodiment, USB controller 302 connects to a PCI bus 304 associated
with a computer (such as computer 130). The USB controller 302 includes a root hub 306.
The root hub 306 includes one or more ports 308 indicated by Port #1 through Port #N. A
hub 310 connects to one of the ports 308. Software for the hub 310 includes a bus driver
312 and a client driver 314. A generic parent (or other composite device) 316 and a HID
318 connect to the hub 310 as child devices or nodes of the hub 310. Software for the
HID 318 includes a client driver. In the exemplary embodiment of FIG. 3, the HID 318 is
associated with a mouse. The generic parent 316 has two child devices: an audio
component 320 and a HID 322. Software client drivers are separately associated with the
audio component 320 and the HID 322. In this example, the andio component 320 is
associated with a speaker. Further, the HID 322 is associated with one or more speaker
buttons.

[0046] Referring next to FIG. 4, a flow chart illustrates exemplary operation of driver
software for controlling a child USB device, such as HID 322. The driver éoftware
includes a method for signaling and waiting to suspend a USB device (e.g., a generic
parent or a hub device) such as described in connection with FIGs. 1 and 3. Driver
software associated with the USB device continually determines at 402 whether the USB
device is idle. The driver software submits an idle request or otherwise signals to the
parent device (e.g., parent 316) of the USB device at 404 if the driver software determines
that the USB device is idle or otherwise ready to suspend. For example, the driver
software sends the request to its physical device object in software. In one embodiment,
submitting or sending the idle request includes transmitting an IOCTL request from the
USB device to the parent device of the USB device. In one embodiment, transmitting the
IOCTL request includes transmitting an input/output request packet (IRP) comprising the

IOCTL request from the USB device to the parent device of the USB device. For

10

15

20

25

WO 03/038582 PCT/US02/34830

15

example, the USB device may be a USB host controller and the parent device of the USB
device may be a computer. In this example, the USB host controller signals the computer
that the USB host controller is ready to suspend. The computer can subsequently suspend
the USB host controller, even if no other devices are connected to the USB host controller.
That is, the client driver for the root hub that wishes to idle sends an idle request to the
physical device object (PDO) for the root hub. The PDO then instructs the client driver to
suspend the root hub.

[0047] Inone embodiment, the USB device has an active state and an idle state. In this
example, the USB device is ready to suspend when in the idle state. The invention
contemplates other embodiments in which the USB device may wish to suspend even
though the USB device is not completely idle. For example, the USB device may be
performing operations that do not require full power. As such, the USB device can
continue performing the operations even while entering a low power mode or other
suspended state. In an embodiment in which the USB device has one or more child nodes
(see FIG. 5 below), the USB device is ready to suspend when the USB device is idle and
cach of the child nodes of the USB device is ready to suspend. In this example, each of
the child nodes of the USB device would have sent an idle request to the USB device
indicating their readiness to suspend.

[0048] After submitting the idle request, the driver software waits at 406 for its power
down callback function to be called from the parent device. After the power down
callback function is called from the parent device, the driver software for the USB device
executes the power down callback function to suspend the USB device at 408. After non-
idle activity, the driver software wakes the USB device at 410. The USB device, any one
or more of a plurality of child nodes of the USB device, the parent node of the USB

device, or software associated with the controller (e.g., application programs) may perform

10

15

20

25

WO 03/038582 PCT/US02/34830

16

the non-idle activity that signals the USB device to wake. For example, if the USB device
is a pointing device such as a mouse, then the non-idle activity could be movement of the
mouse. Similarly, if the parent node is the controller and one or more of the devices are
speakers, then software executing on the computer associated with the controller may
create the non-idle activity by playing music over the speakers. Waking the devices
includes resetting the idle requests such that the devices are free to submit new idle
requests.

[0049] In an embodiment where the devices are connected via USB, once a USB
device (and the entire USB device tree) has been suspended, there are at least two methods
by which the device (and subsequently the entire USB device tree) may be “awakened”
and put back into full power mode. The first method is that any USB class driver may put
its child device into full power mode by submitting the appropriate set power request for
the device. The second is via “remote wake” activity on any USB device that supports and
had previously been enabled for remote wake before the device was put into low power
mode. In each of these cases, the action taken will have the effect of putting the entire
device tree into full power mode, and the USB class drivers for the child devices are then
free to submit new idle requests again in the future when they determine that their child
device or interface is idle and no longer in use, and the entire cycle begins once again.
[0050] That is, once suspended, a device can be awakened in at least one of two ways.
First, waking may occur via resumption of signaling for remote wake-capable devices
(i.e., a wait/wake IRP completes successfully). Typically, the device is set to a fully
operational power state (e.g., power state DO0) by the function driver's wait/wake IRP
completion routine. A wait/wake IRP is used to arm the device for remote wake. Second,
waking may occur via a new open request initiated by client software. During the waking

process, any idle request messages are reset or otherwise cancelled.

10

15

20

25

WO 03/038582 PCT/US02/34830

17

[0051] In one embodiment of the invention, a driver may cancel the idle request for its
child device or interface by sending, prior to execution of its callback function, a cancel
request to the parent device of the child device when the child device is no longer ready to
suspend. Generally, the cancel request is sent by the child device after sending the idle
request. The controller (e.g., the USB core stack) cancels any suspend transition currently
in process in response to the cancel request and cancels any other outstanding idle requests
for any other device in the device tree.

[0052] If the cancel request is sent after suspension, the controller considers the cancel
request to be non-idle activity that requires waking the entire device tree.

[0053] The USB device and the parent device are connected via a communications
medium. The communications medium includes, but is not limited to, any of the networks
or bus architectures described in connection with FIG. 2. Such bus architectures include a
hierarchical parallel bus, a wireless bus with tree-like connectivity, and a USB. For
example, the nodes discussed in connection with FIG. 4 may be devices connected via
USB. In this example, a USB hub and/or a USB controller also suspend when the other
devices suspend. Further, a computer can suspend the USB controller even when no other
devices (internal or external to the computer) are connected to the bus.

[0054] The invention includes one or more computer readable media having computer-
executable instructions to perform the method illustrated in FIG. 4.

[0055] In one embodiment, communication between devices occurs via the software
representations of the devices internal to the operating system. For example, when the
controller receives an idle request, it is the software device object for the controller that
receives the idle request. Those skilled in the art will note that communication may also
occur via electrical signaling between the physical hardware devices. Further, those

skilled in the art will note that the parent and child devices may be logically different, but

10

15

20

25

WO 03/038582 PCT/US02/34830

18

not physically different, for the purposes of control and function. For example, the
devices may include an embedded hub and two embedded devices, or a composite device
with two independently controlled functions.

[0056] Referring next to FIG. 5, a flow chart illustrates operation of driver software for
controlling a parent USB device (e.g., parent 316). The parent USB device (e.g., a generic
parent or hub device) has one or more chiid devices (e.g., audio 320 and HID 322)
connected to the parent USB device. The driver software for the parent USB device
repeatedly loops at 502 to determine whether an idle request has been received from each
child device. If an idle request has been received from each child device, the driver
software determines at 504 whether the parent USB device itself is idle. The driver
software returns to determining at 502 if the parent USB device is not idle. If the parent
USB device is idle, the driver software determines at 506 whether the parent device is a
root hub. If the parent USB device is not the root hub, the parent USB dpvice propagates
the received idle requests at 508 by submitting an idle request to a parent device (e.g., hub
310) of the parent USB device. In one embodiment, the submitted idle request includes all
the idle requests received from the child devices. If the child devices have child devices
subordinate to the parent USB device in the tree, then the submitted idle request includes
all the idle requests submitted by each of the subordinate child devices. In this manner,
the idle requests are propagated from each device in the tree to the root hub or qther
controller at a root of the tree.

[0057] The parent USB device suspends the tree of devices at 510 if the parent USB
device is the root hub (see FIG. 6). In the embodiment where the devices are connected
via USB, the root hub manages power for the devices in the tree.

[0058] Those skilled in the art will note that the order in which the idle determinations

are made is not limited to that illustrated in FIG. 5. The determinations of whether an idle

10

15

20

WO 03/038582 PCT/US02/34830

19

request has been received from each child node and whether the parent USB device is idle
can occur in any order so long as both determinations are satisfied before the tree is
suspended or the parent USB device propagates the idle request to the parent device of the
parent USB device. That is, propagating the idle request generally includes transmitting
the received idle request from a first device to a second device (such as a parent of the first
device) if the first device is ready to suspend and if the first device has received an idle
request from each of any child devices of the first device. Propagating the idle request
includes inductively traversing the tree structure from the first device to the controller.
Specifically, propagating the idle request includes determining whether the first device has
received an idle request from each of the child nodes of the first device. The driver
software waits to receive an idle request from each of the child nodes if an idle request
from each of the child nodes has not been received. The driver software submits an idle
request to the second device if the first device has received an idle request from each of
the child nodes.

[0059] The invention includes one or more computer readable media having computer-
executable instructions to perform the method illustrated in FIG. 5.

[0060] Referring next to FIG. 6, a flow chart illustrates opération of controller software
for suspending the tree of devices. In an embodiment where the devices are connected via
USB, FIG. 6 illustrates operation of software for the root hub (e.g., root hub 306) that
manages power for the devices in the tree. In other embodiments, the controller software
may be associated with a component at a root of the tree other than the root hub.

[0061] With regard to FIG. 6, the tree includes one or more devices hierarchically
organized as child devices and parent devices in the tree. In particular, the root hub has

one or more child devices connected to the root hub and organized in a tree structure. The

10

15

20

25

WO 03/038582 PCT/US02/34830

20

controller software (e.g., the USB core stack) receives idle requests from the child devices.
The controller software for the root hub repeatedly loops at 602 to determine whether an
idle request has been received from each child device. If an idle request has been received
from each child device, the controller software suspends the tree of devices at 604.

[0062] In one embodiment, the idle requests received from the child devices include
propagated idle requests from child devices further subordinate in the tree structure.
Suspension occurs by each parent in the tree calling the power down callback function of
each of its child devices. This occurs through the tree via the route taken by the idle
requests received from the child devices and the propagated idle requests. This propagates
through the tree in that the driver software for each child device in the tree receives a call
to its callback function from the parent device of the child device and the callback function
then executes to suspend the child device. Suspension of each child device includes
execution of the callback function to put the child device into a low power mode or other
suspended state.

[0063] In an alternative embodiment, the root hub or other controller receives a single
idle request from each of the child devices connected to the root hub where the received
idle request does not include idle requests from any further subordinate child devices. In
response to receiving all the idle requests from the child devices, the root hub suspends all
devices in the tree by reverse propagation of the power down callback function. That is,
the controller software for the root hub calls the power down callback function of each of
the child devices of the root hub, the driver software for each child device then calls the
power down callback function of each of its child devices, etc. In this manner, each
device in the tree is suspended. This embodiment assumes that the driver software for
each parent device is aware of the power down callback function specific to the driver

software for each of any child devices of the parent device.

10

15

20

25

WO 03/038582 PCT/US02/34830

21

[0064] The invention includes one or more computer readable media having computer-
executable instructions to perform the method illustrated in FIG. 6.

[0065] Referring next to FIG. 7, a block diagram illustrates a signaling component 704
and a driver component 706 associated with driver software for controlling a HID as a
child device in a tree structure. While the child device in FIG. 7 is described as a HID,
those skilled in the art will note that the child device may be any bus device (e.g., any
USB device). The tree includes one or more devices hierarchically organized as parent
devices and child devices. In one embodiment, the parent devices and child devices are
connected via USB. One or more computer-readable media 702 associated with the HID
have computer-executable components for signaling and waiting to suspend the HID. The
components include signaling component 704 and driver component 706. The signaling
component 704 sends an idle request from the HID to a parent device of the HID when the
HID is ready to suspend. The idle request propagates through the tree from the parent
device to the controller or the root hub device. Further, if the HID has at least one child
device, the signaling component 704 receives an idle request from the child device and
sends the received idle request to the parent device.

[0066] In one embodiment, the idle request can be canceled by the HID if sent prior to
suspension of the HID. In this embodiment, the signaling component 704 sends a cancel
request from the HID to the parent device in response to non-idle activity by the HID. The
cancel request propagates to the controller or root hub device and the idle request sent by
the signaling component 704 is subsequently cancelled. If sent after suspension of the
HID, the cancel request is considered by the controller or parent device to be non-idle
activity requiring waking of all the devices in the tree.

[0067] The driver component 706 waits for its callback function to be called from its

parent device to suspend the HID. The signaling component 704 receives a call to its

10

15

20

25

WO 03/038582 PCT/US02/34830
22

callback function from the controller in response to the propagated idle request. The
driver component 706 suspends the HID in response to execution of the callback function
called by the signaling component 704. In one embodiment, the callback function
executes a power down function to power down the HID. Further, the power down
function may include a low power function for putting the HID into a low power mode.
The dI‘iYCI’ component 706 wakes the HID in response to activity by the HID, a signal
from the parent device, or a signal from software associated with the controller.

[0068] Referring next to FIG. 8, a block diagram illustrates an interface component 804
and a controller component 806 associated with a controller. Those skilled in the art will
note that some or all of the functionality of the controller described generally herein and
with particular regard to FIGs. 7 and 8 may be performed by a root hub device acting as a
child of the controller. One or more computer-readable media 802 have computer-
executable components for asserting power control over a tree of devices by a controller at
a root of the tree. The one or more computer-readable media 802 are associated with the
controller. The tree includes one or more devices hierarchically organized as parent
devices and child devices in the tree. In one embodiment, the parent devices and child
devices are connected via USB. The components include interface component 804 and
controller component 806. The interface component 804 receives an idle request from one
or more child devices. The controller component 806 suspends all devices in the tree after
receiving an idle request from each of the child devices. The controller subsequently
wakes the devices in the tree in response to activity by the controller or any of the devices
or both.

[0069] Referring next to FIG. 9, a block diagram illustrates an IOCTL idle request data
structure. A computer-readable medium 902 stores a data structure 904 representing an

idle request embodied as an IOCTL request. The data structure 904 includes a first field

10

15

20

25

WO 03/038582 PCT/US02/34830

23

and a second field. The first field stores a routine attribute 906 representing a callback
function. For example, the routine attribute 906 is a pointer to a function in the child
driver that is to be called by the parent when the parent desires to indicate to the child that
it is safe to power down its device. The second field stores a context attribute 908
representing a callback context. The callback context is passed to the callback function
when called and provides an environment for executing the callback function. As
described herein, a first device transmits an idle request to a second device via the data
structure 904 when the first device is ready to suspend. The callback function executes to
suspend the first device in response to the transmission of the idle request as described in
connection with FIG. 4 and FIG. 5.
[0070] The first device has one or more child nodes organized in a tree structure.
Further, the first device has an active state and an idle state. The first device is ready to
suspend when each of the one or more child nodes of the first device is ready to suspend.
In one embodiment, the first device and the second device are connected via a Universal
Serial Bus.
[0071] An example of the data structure 904 in FIG. 9 is shown below.
typedef VOID (*USB_IDLE_CALLBACK) (
PVOID Context
)

typedef struct USB_IDLE_CALLBACK_INFO {

USB_IDLE CALLBACK IdleCallback;

PVOID IdleContext;
} USB_IDLE CALLBACK INFO, *PUSB_IDLE_CALLBACK INFO;
[b072] Those skilled in the art will note that the devices described herein include, but
are not limited to, devices external to the computer and devices embedded in the

computer. For example, the devices may be USB-compliant devices embedded with a

10

15

20

25

WO 03/038582 PCT/US02/34830
24

laptop computer. Using the invention, the laptop computer permits a cache and
processor(s) associated with the embedded USB devices, associated with the laptop, or
associated with another embedded device (e.g., a controller) to enter a suspended state
(e.g., C3).

[0073] The following USB-specific example illustrates the invention. When a USB
class driver determines that the USB device for which it is loaded is idle and no longer in
use, the USB class driver sends an IRP containing an IOCTL idle request to the USB core
stack to indicate to the USB core stack that the USB class driver for the device wishes to
put the device into a low power mode. The IOCTL idle request is referenced as

IOCTL INTERNAL USB_SUBMIT_IDLE_NOTIFICATION. The IOCTL idle request
is sent at an interrupt request level (IRQL) of PASSIVE_LEVEL. When the USB core
stack receives this request, the USB core stack driver notes that the child device is idle.
The USB core stack, bus, or port driver sets the appropriate error status such as
STATUS_SUCCESS in a variable such as Irp->IoStatus.Status. The USB core driver then
traverses the list of all child devices to determine if all the USB class drivers for all other
child devices have already requested to put their child devices into a low power mode. If
the USB core driver determines that indeed all USB child devices have been requested to
enter a low power mode by the USB class drivers loaded for each device, the USB core
stack then submits an idle request to the parent device of these USB child devices. The
parent device may be a USB generic parent device if the child device is a USB composite
device. Similarly, the parent device may be a USB hub if the child device is a simple USB
device. The parent USB generic or hub device is idle if all of its child devices are idle.
[0074] Once the idle requests are propagated through the tree of USB devices and an
idle request is submitted for the USB root hub device, the USB root hub device then calls

the callback of its loaded class driver (USBHUB.SYS). Each USB parent, USB

10

15

20

25

WO 03/038582 PCT/US02/34830

25

composite, or hub device subsequently calls the callback of each of the USB class drivers
loaded for each of the USB child devices or interfaces. All such drivers request to put
their USB device or interface into low power mode, and thus the entire tree of USB
devices and USB root hub are put into low power mode. When the USB root hub is put
into low power mode, the USB host controller is then subsequently put into low power
mode as well. If the USB devices or interfaces support remote wake up and have no

IRP_ MN_WAIT WAKE request pending, the callback routines for these devices or
interfaces should submit an IRP. MN_WAIT WAKE request to the USB core stack before
turning off the device or interface. Alternatively, the function driver submits a Wait/Wake
IRP to the USB driver stack once it becomes clear that this IRP will be required, rather
than waiting to do this in the callback routine.

[0075] Additionally, the hub driver completes the idle request with a status code
indicating success if the device can be set to a fully operational power state (i.e., D0). This
informsn higher-level drivers that the device is no longer idle. If, however, the device has
been removed or stopped, the hub driver completes the idle request IRP with an
appropriate error code.

[0076] If the function driver cancels the idle request IRP, the hub driver will complete
the IRP with an error code. When a function driver's completion routine detects that the
hub driver completed the idle request IRP with an error code other than

STATUS _POWER_STATE_INVALID, the function driver attempts to turn on the device.
In one embodiment, the hub driver does not guarantee that the device is in a powered state
whenever it completes an idle request IRP with an error.

[0077] In accordance with one aspect of the invention, a method provides for signaling
and waiting to suspend a first device. The first device is connected to a second device via

a communications medium. The method includes sending an idle request from the first

10

15

20

25

WO 03/038582 PCT/US02/34830

26

device to the second device when the first device is ready to suspend. The method further
includes waiting, by the first device, to receive a call from the second device to a callback
function associated with the first device to suspend the first device.

[0078] In accordance with another aspect of the invention, a method provides for
suspending a tree of devices. The tree includes one or more devices hierarchically
organized as parent devices and child devices in the tree. The tree further includes a
controller at a root of the tree. The method includes receiving, by the controller, an idle
request from one or more of the child devices. The method further includes suspending,
by the controller, all devices in the tree after receiving an idle request from each of the
devices in the tree.

[0079] In accordance with yet another aspect of the invention, one or more computer-
readable media have computer-executable components for signaling and waiting to
suspend a device in a tree of devices. The tree includes one or more devices hierarchically
organized as parent devices and child devices. The tree has a controller at a root of the
tree. The components include a signaling component for sending an idle request from at
least one child device to a parent device when the child device is ready to suspend. The
idle request propagates through the tree from the parent device to the controller. The
components also include a driver component for waiting to receive, by the child device, a
call from the controller to a callback function associated with the child device to suspend
the child device.

[0080] One or more computer-readable media embodying aspects of the invention have
computer-executable components for asserting power control over a tree of devices by a
controller at a root of the tree. The tree includes one or more devices hierarchically
organized as parent devices and child devices in the tree. The components include an

interface component for receiving, by the controller, an idle request from one or more

10

15

20

25

WO 03/038582 PCT/US02/34830

27

child devices. The components also include a controller component for suspending, by the
controller, all devices in the tree after receiving an idle request from each of the child
devices.

[0081] In yet another embodiment of the invention, a computer-readable medium
stores a data structure representing an idle request. The data structure includes a first field
and a second field. The first field stores a routine attribute representing a callback
function. The second field stores a context attribute representing a callback context. A
first device transmits an idle request to a second device via the data structure when the
first device is ready to suspend.

[0082] Although described in connection with an exemplary computing system
environment, including computer 130, the invention is operational with numerous other
general purpose or special purpose computing system environments or configurations.
The computing system environment is not intended to suggest any limitation as to the
scope of use or functionality of the invention. Moreover, the computing system
environment should not be interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in the exemplary operating
environment. Examples of well known computing systems, environments, and/or
configurations that may be suitable for use with the invention include, but are not limited
to, personal computers, server computers, hand-held or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, distributed computing
environments that include any of the above systems or devices, and the like.

[0083] The invention may be described in the general context of computer-executable
instructions, such as program modules, executed by one or more computers or other

devices. Generally, program modules include, but are not limited to, routines, programs,

10

15

WO 03/038582 PCT/US02/34830

28

objects, components, and data structures that perform particular tasks or implement
particular abstract data types. The invention may also be practiced in distributed
computing environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules may be located in both local and remote computer storage media
including memory storage devices.

[0084] When introducing elements of the present invention or the embodiment(s)
thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or
more of the elements. The terms “comprising,” “including,” and “having” are intended to
be inclusive and mean that there may be additional elements other than the listed elements.
[0085] In view of the above, it will be seen that the several objects of the invention are
achieved and other advantageous results attained.

[0086] As various changes could be made in the above products and methods without
departing from the scope of the invention, it is intended that all matter contained in the
above description and shown in the accompanying drawings shall be interpreted as

illustrative and not in a limiting sense.

WO 03/038582 PCT/US02/34830
29

CLAIMS

1. A method for signaling and waiting to suspend a first device, said first device
being connected to a second device via a communications medium, said method
comprising:

sending an idle request from the first device to the second device when the first
device is ready to suspend; and

waiting, by the first device, to receive a call from the second device to a callback

function associated with the first device to suspend the first device.

2. The method of claim 1, wherein the second device is a computer and the first

device is a peripheral component associated with the computer.

3. The method of claim 2, wherein the peripheral component is selected from a

group consisting of a composite device, a root hub, and a controller.

4. The method of claim 1, wherein sending and waiting occur via a driver

controlling the first device.

5. The method of claim 1, wherein the first device has an active state and an idle

state and wherein the first device is ready to suspend when in the idle state.

6. The method of claim 1, wherein the first device comprises one of a plurality of
nodes organized in a tree structure, and wherein the first device comprises a child node of

the second device.

WO 03/038582 PCT/US02/34830
30

7. One or more computer readable media having computer-executable instructions

for performing the method recited in claim 6.

8. The method of claim 6, wherein the nodes in the tree are connected via a

Universal Serial Bus.

9. The method of claim 6, wherein the first device has one or more child nodes in
the tree structure and wherein the first device is ready to suspend when each of the one or

more child nodes of the first device is ready to suspend.

10. The method of claim 9, further comprising receiving, by the first device, an

idle request from at least one of the child nodes of the first device.

11. The method of claim 10, further comprising propagating the idle request from

the first device to a controller at a root of the free structure.

12. The method of claim 11, wherein propagating the idle request comprises
propagating the idle request by inductively traversing the tree structure from the first

device to the controller

13. The method of claim 11, wherein propagating the idle request comprises
transmitting the received idle request from the first device to the second device if the first
device is ready to suspend and if the first device has received an idle request from each of

the child nodes of the first device.

WO 03/038582 PCT/US02/34830
31

14. The method of claim 11, wherein propagating the idle request comprises:

determining whether the first device has received an idle request from each of the
child nodes of the first device;

waiting to receive an idle request from each of the child nodes if an idle request
from each of the child nodes has not been received; and

submitting an idle request to the second device if the first device has received an

idle request from each of the child nodes.

15. The method of claim 1, wherein sending an idle request comprises transmitting

an input/output control (IOCTL) request from the first device to the second device.

16. The method of claim 15, wherein transmitting the IOCTL request comprises

transmitting an input/output request packet from the first device to the second device.
17. The method of claim 1, further comprising receiving, by the first device, the

call from the second device to the callback function associated with the first device and

suspending the first device in response to execution of the received callback function.

18. The method of 17, further comprising waking the first device.

19. The method of 18, wherein waking occurs in response the first device

signaling the second device that the first device is ready to wake.

20. The method of claim 18, wherein waking occurs in response to the second

device signaling the first device to wake.

WO 03/038582 PCT/US02/34830
32

21. The method of claim 18, wherein the first device comprises one of a plurality
of nodes organized in a tree structure, wherein the first device has one or more child
nodes, and wherein waking occurs in response to at least one of the child nodes signaling

the first device to wake.

22. The method of claim 18, wherein waking comprises resetting the sent idle

requests.

23. The method of claim 1, further comprising sending a cancel request from the
first device to the second device when the first device is no longer ready to suspend, said

sending a cancel request occurring after sending the idle request.

24. The method of claim 1, further comprising a third device sending an idle
request to the second device when the third device is ready to suspend and suspending
simultaneously with the first device, said third device having input/output control and

function independent from the first device.

25. A method for suspending a tree of devices, said tree comprising one or more
devices hierarchically organized as parent devices and child devices in the tree, said tree
further comprising a controller at a root of the tree, said method comprising:

receiving, by the controller, an idle request from one or more of the child devices;

and

WO 03/038582 PCT/US02/34830
33

suspending, by the controller, all devices in the tree after receiving an idle request

from each of the devices in the tree.

26. The method of claim 25, wherein receiving an idle request comprises
receiving, by the controller, an idle request from one or more of the child devices via

software for controlling the child devices.

27. The method of claim 25, wherein suspending comprises executing a callback

function for each of the child devices to put the child devices into a low power mode.

28. The method of claim 25, wherein the parent devices and the child devices are
comnected via a Universal Serial Bus (USB), wherein the tree comprises a USB hub, and

further comprising suspending, by the controller, the USB hub.

29. The method of claim 25, wherein the parent devices and the child devices are
comnected via a Universal Serial Bus (USB), wherein the controller is a computer, wherein
the tree comprises a USB controller, and further comprising suspending, by the computer,

a USB host controller.

30. The method of claim 25, wherein receiving an idle request comprises
receiving, by the controller, an input/output control (IOCTL) request from one or more of

the child devices.

10

WO 03/038582 PCT/US02/34830
34

31. The method of claim 30, wherein receiving the IOCTL request comprises
receiving, by the controller, an input/output request packet from the one or more child

devices.

32. The method of claim 25, wherein the parent devices and child devices are

connected via a Universal Serial Bus.

33. One or more computer readable media having computer-executable

instructions for performing the method recited in claim 25.

34. One or more computer-readable media having computer-executable
components for signaling and waiting to suspend a device in a tree of devices, se;id tree
comprising one or more devices hierarchically organized as parent devices and child
devices, said tree having a controller at a root of the tree, said components comprising:

a signaling component for sending an idle request from at least one child device to
a parent device when the child device is ready to suspend, wherein the idle request
propagates through the tree from the parent device to the controller; and

a driver component for waiting to receive, by the child device, a call from the

controller to a callback function associated with the child device to suspend the child

device.

35. The method of claim 34, wherein the signaling component receives an idle
request from at least one child of the child device, and wherein the signaling component

sends the received idle request to the parent device.

WO 03/038582 PCT/US02/34830
35

36. The computer-readable media of claim 34, wherein the signaling component
receives a call to a callback function from the controller in response to the propagated idle

request.

37. The computer-readable media of claim 36, wherein the driver component

suspends the child device in response to execution of the callback function.

38. The computer-readable media of claim 37, wherein the driver component
wakes the child device in response to activity by the child device or a signal from the

parent device or both.

39. The computer-readable media of claim 34, wherein the callback function

comprises a power down function for powering down the child device.

40. The computer-readable media of claim 39, wherein the power down function

comprises a low power function for putting the child device into a low power mode.

41. The computer-readable media of claim 34, wherein the parent devices and

child devices are connected via a Universal Serial Bus.

42. The computer-readable media of claim 34, wherein the signaling component
sends a cancel request from the child device to the parent device in response to non-idle

activity by the child device.

WO 03/038582 PCT/US02/34830
36

43. One or more computer-readable media having computer-executable
components for asserting power control over a tree of devices by a controller at a root of
the tree, said tree comprising one or more devices hierarchically organized as parent
devices and child devices in the tree, said components comprising:

an interface component for receiving, by the controller, an idle request from one or
more child devices; and

a controller component for suspending, by the controller, all devices in the tree

after receiving an idle request from each of the child devices.

44, The computer-readable media of claim 43, wherein the controller wakes the

devices in the tree in response to activity by the controller or any of the devices or both.

45. The computer-readable media of claim 43, wherein the child device comprises

a Human Interface Device (HID).

46. The computer-readable media of claim 43, wherein the child device comprises

a device embedded in a computer.

47. The method of claim 43, wherein the parent devices and child devices are

connected via a Universal Serial Bus.

48. A computer-readable medium having stored thereon a data structure
representing an idle request, said data structure comprising:

a first field storing a routine attribute representing a callback function; and

WO 03/038582 PCT/US02/34830
37

a second field storing a context attribute representing a callback context, wherein a
first device transmits an idle request to a second device via said data structure when the
first device is ready to suspend, said callback function executing to suspend the first
device in response to the first device transmitting the idle request, and said callback

context providing an environment for executing said callback function.

49. The method of claim 48, wherein the first device has one or more child nodes
organized in a tree structure, wherein the first device has an active state and an idle state,
and wherein the first device is ready to suspend when each of the one or more child nodes

of the first device is ready to suspend.

50. The method of claim 48, wherein the first device and the second device are

connected via a Universal Serial Bus.

PCT/US02/34830

WO 03/038582

17

omJ

SH3IMVICS

3SNON

vo

N@J

ADILSAOr ~

d3INIdd

\

OmK
N g A

88
0
vv anH 100y
HITIOHINOD|
LsoHEsn | o°
0
v8 \

sSNg 10d

d41NdINOD

I Old

PCT/US02/34830

WO 03/038582

217

SNVHO0Hd _ — v.ivd S3ITNAON SINVHOO¥d WILSAS
NOILLYOITddY F1OWIY, i@ J\ NVHO0Hd INVEDO0Ud ¥IHLO | NOILYOITddY | ONILYYIHO
: U 761 evsivoveioves eves o/ P —/ I\
= MHOMLAN - 2oL — 29 1) ey ¢LL = 0Ll
== _|vadv 3am . _
= — A v&klo_‘ O [
86l — g, 8l 0
, 9L~ | 9SG~ |pgl-
1T e] (ar)
| = = [05T
08l =1 = V.LVd NVYO0Hd
_ y,
96l 1 — J
JOV4YILINI JOV4YILNI JOVINILNI g5 SITNAON
SYHOMIIN V| #HOMLIN LNdNI ¥3sn AHOWIN TOA-NON NVYY90dd
V3V V007! ____d¥3HIO
: gl _ g0 (ovt)
SINVYOO0Hd
SNg WALSAS | v S NOLLYOI'lddY)
ocl _ —r N
ST _ P Y7l naisAs
- r ~ L ONILYYIO)
O3alA i e
— L oVl (NvY)
ONISSID0Nd ﬁmi sola w
N) iEEE (noY)
., AHOWZIN WALSAS
e 443 o el — -

AIE

WO 03/038582

PCT/US02/34830

3/7
m B |
SPEAKER |
| | | |
: SPEAKER | | BUTTONS |
| e e e e — |
AUDIO HID
3207 (CLIENT (CLIENT — 322
DRIVER) DRIVER)
/ 318
GENERIC
HID
PARENT Fo—-—- .
16— | (COMPOSITE Sy | 1 MO%E
DEVICE))
310—— | s 32
1101 R —
CLIENT |, ,
USB CONTROLLER 302
308 S
™~
PORT #1 | « » « | PORT #N 308
ROOT HUB T306

o e —__

PCI BUS

e
/

- 304

WO 03/038582 PCT/US02/34830

417

FIG. 4

402

USB NO
DEVICE IS

IDLE
YES

USB DEVICE SUBMIT IDLE
| REQUEST IOCTL TO PARENT (OF
404 THIS USB DEVICE)

406
NO

USB DEVICE
RECEIVE POWER
DOWN CALLBACK
FUNCTION?

USB DEVICE
SUSPEND

y

408~ |

410 USB DEVICE WAKE IN
RESPONSE TO NON-IDLE
| ACTIVITY

PCT/US02/34830

WO 03/038582

57

ANJdvd OL
153n03y
31dI 1INENS

80§

_/

I3d1 AN3dSNS

K ()8

S3AA

¢dnH

1004 30IA3d
JINFdVd SI

ON
904

¢371dI 30IA3d
1NFAVd SI

¢301A3A dTIHO
WOYd 1S3N03 31AI

G Old

¢0s

PCT/US02/34830

WO 03/038582

6/7

908 1ININOdINOD
| ¥3TI0HYLINOD

$08 | LNINOJINOD
N FOV4d3LNI

WNIA3N 318vavad-d3.1.NdiNoD

05— 8 Old

90/ | ININOJWOD
~ "3AING

"y
ININOJINOD
1 ONIYNOIS

WNIA3IW F19vavadg-441nNdNoD

e’ J 'Ol

3341 AN3dSNS

SaA //g@

¢340IA3A ATIHD
WOYd 1S3N03Y 31d1

09

9 Old

PCT/US02/34830

WO 03/038582

717

JLNGiHL1V IX31NOD
806 J4N1LONdLS V.ivd
1S3N03Y 11001
906 41N9ld11v INILNOY
¢om|\ WNIAd3N 318vav3d-43.LNdNO0D

Nomlk

6 9Old

INTERNATIONAL SEARCH REPORT International application No.

PCT/US02/34830
A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) . GOGF 1/28

US CL : 713300, 330

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 713/300, 330

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,915,119 A (CONE) 22 June 1999 (22.06.1999), see the entire document. 1-50
Y US 6,092,209 A (HOLZHAMMER et al.) 18 July 2000 (18.07.2000), see the entire 1-50
document.
Y US 6,243,771 B1 (VAN GASTEREN et al.) 05 June 2001 (05.06.2001), see the entire 1-50
document.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xn document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on privrity claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“p” document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the mtematlonal‘search }qport
) bl 20U
13 December 2002 (13.12.2002) .) K by

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
‘Washington, D.C. 20231

Facsimile No. (703)305-3230

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

