(11) Application No. - AU 2004216665 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title

Providing secure input to a system with a high-assurance execution environment

(51)2 International Patent Classification(s)
GO6F 1,00 (2006.01) oBuMJP GO6F
GO6F 9,46 (2006.01) 15700
GO6F 15,00 (2006.01) 20060101ALT2006010

GO6F 21,00 (2006.01) 1BMER GO6F
GO6F 21,20 (2006.01) 21700
G06F 100 20060101AL12005100
20060101AF12005122 SBUER GO6F
OBMIP CO6F 21-20
9,45 20060101AL12005122
20060101AL12005122 OBMIP
(21) Application No: 2004216665 (22) Application Date: 2004 09 30

(30) Priority Data

(31) Number (32) Date (33) Country
10/693061 2003 .10 24 us
(43) Publication Date : 2005 05 12

(43) Publication Journal Date : 5gg5 g5 12

(1) Applicant(s)
Microsoft Corporation

(72) Inventor(s)

Chew, Christine M., Yamamoto, Hirofumi, Paff, John E.. Roberts, Paul C.. Avraham, Idan

(74) Agent/Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
KILPATRICKE et al. "Securing The X Window System With SELinux" January 2003
EPSTEIN et al. "User Interface for a High Assurance Windowing System" TRW Systems
Division 1993
us 5822435

30 Sep 2004

2004216665

ABSTRACT OF THE DISCLOSURE

Techniques are disclosed to provide security for user input in which a first, host operating
system is used along with a second, high assurance operating system, where the first system
provides at least some of the infrastructure for the second system. Two modes are presented. In
a first mode, user data is passed to the host operating system. In a second mode, user data is
retained in the second operating system for the use of the second operating system or processes
running on the second operating system. Transitions between the nodes can be accomplished
according to hypothecated user actions such as keystroke combinations, or when the user
performs an action which indicates a programmatic activation of a process running in the second
operating system. Where shadow graphical elements are run by the first operating system to
indicate the location of graphical elements from processes running on the second operating

system, this programmatic activation may be indicated by programmatic activation of a shadow
graphical element.

30 Sep 2004

2004216665

3/5

User performs NIM
hypothecated action

User focus on nexus

User perfo NiM
space entity °r periorms

hypothecated
action
406

Standard input
mode
300

Nexus input
mode
310

User performs
SIM hypothecated
action

412

FiIG. 4

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

30 Sep 2004

NAME OF APPLICANT(S)::

Microsoft Corporation

2004216665

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Providing secure input to a system with a high-assurance execution environment

The following statement is a full descri

ption of this invention, including the best method of performin g it
known to me/us:-

5102

02 Feb 2010

2004216665

20

25

C:ANRPaNbADCOWAGRO0R2_) DOC- 2212010

FIELD

The present invention relates generally to the field of computer security. For
example, the invention relates to the use of plural execution environments (e.g., operating
systems) on a single computing device, and provides techniques that allow for the integrity
of input to be secured in a higher-assurance execution environment from among the plural

execution environments.

BACKGROUND

In modern computing, many tasks which can be performed on a computer require
some level of security. In order to provide a level of security, there are several options.
One is to perform all secure applications on a computer which is completely separate from
any possibly insecure elements, or to use a virtual machine monitor (VMM) to allow
complete separation between two execution environments (e.g. operating systems) running
on a single computer system. However, this may be impractical. There may be a need, for
cost or convenience reasons, for a secure execution environment to share resources with
applications with unassured security, and those applications and those resources may be
vulnerable {0 an attacker. Additionally, where a VMM is used, since a VMM requires full
virtualization of the machine and all of its devices (thereby requiring that the VMM
provide its own device driver for every possible device), a VMM is not well suited to an
open architecture machine in which an almost limitless variety of devices can be added to
the machine.

One way to provide the ability to share resources among two execution
environments is to provide a computer system in which there is one “main” operating
system that controls most processes and devices on a machine, and where a second
operating system also exists. This second operating system is a small, limited-purpose
operating system alongside the main operating system which performs certain limited
tasks. One way to make an operating system “small” or “limited-purpose” is to allow the
small operating system to borrow certain infrastructure (¢.g., the scheduling facility, the

memory manager, the device drivers, etc.) from

S1A-

30 Sep 2004

2004216665

the “main” operating system. Since a VMM effectively isolates one operating system from
another, this sharing of infrastructure is not practical using a VMM.

[0004] Certain other techniques allow operating systems to exist side-by-side on the
same machine without the use of a VMM. One such technique is to have one operating system
act as a “host” for the other operating system. (The operating system that the “host” is hosting is
sometimes called a “guest.”) In this case, the host operating system provides the guest with
resources such as memory and processor time. Another such technique is the use of an
“exokernel.” An exokemel manages certain devices (e.g., the processor and the memory), and
also manages certain types of interaction between the operating systems, although an exokernel —
unlike a VMM - does not virtualize the entire machine. Even when an exokemel is used, it may
be the case that one operating system (e.g., the “main” operating system) provides much of the
infrastructure for the other, in which case the main operating system can still be referred to as the
“host,” and the smaller operating system as the “guest.” Both the hosting model and the
exokernel model allow usefuil types of interaction between operating systems that support
sharing of infrastructure.

[000S] Thus, these techniques can be used to provide a computer system with at least
two execution environments. One of these may be a “high-assurance” operating system, referred
to herein as a “nexus.” A high-assurance operating system is one that provides a certain level of
assurance as to its behavior. For example, a nexus mi ght be employed to work with secret
information (e.g., cryptographic keys, etc.) that should not be divul ged, by providing a curtained
memory that is guaranteed not to leak information to the world outside of the nexus, and by
permitting only certain certified applications to execute under the nexus and to access the
curtained memory.

[0006] Tn a computer system with two execution environments, one of which is a
nexus, it may be desirable for the nexus to be the guest operating system, and a second operating
system, not subject to the same level of assurance as to behavior, to be the host operating system.
This allows the nexus to be as small as possible. A small nexus aliows a higher level of
confidence in the assurance provided by the nexus. Therefore operating system functions be run

by the host operating system.

02 Feb 2010

2004216665

10

20

25

30

CWRPORBIDCOMAGRKIN24_1 DOC- 2212080

One such operating system which may be run by the host operating system is a
windowing system. When using a windowing system, a uset’s display will be populated
with windows, areas on the screen which display information from an application. An
application may have one or more windows. One window of all the windows displayed
may have focus. The focus window may be indicated by a different border around the
window, for example.

In traditional windowing systems, when a window has focus, it is generally the
object of the user’s input. Therefore, if a user types information using a keyboard, in many
cases, the keystroke data will be sent by the operating system to the application which
owns the window which has focus. Some keystrokes and other input actions may not be
sent to the application which owns the window with focus. For example, in some
windowing systems there is a keystroke command which minimizes all windows. Such a
command will be handled by the windowing system, and not sent to the application
owning the window with focus. The application owning the focused-on window may
receive notification of the minimization of the window; however, the user keystrokes are
intended for the windowing system, not the application owning the window having focus,
and will not be sent to that application.

When the windowing system is run by the host operating system, rather than by the
nexus, it is vulnerable to attack. This causes a problem because, as described, the
windowing system tracks which window will receive user input by tracking which window
has focus. Therefore an attack can be mounted on the system by shifting the focus without
the user noticing, or even without indications which the user can notice.

An attack may occur, for example, via a program running on the host which
switches the focus and captures keystrokes. The user is led to believe that the user’s input
will be directed towards a trustworthy entity — some hardware, system software,
application, or window which is running in the nexus. However, at some point the focus
shifts. The user input instead is being directed to the attacking program, where it is
captured and may be used later.

Thus, because the windowing system is under the control of the host operating
system and the user’s input is generally directed to the window having focus at the time of
the input, the high-assurance nature of the nexus is imperiled. Although embediments of
the invention are described with reference to a windowing system, there may be other

_3.

02 Feb 2010

2004216665

20

25

30

CANRPonBADC CIMACU6GRS24_).DOC22/2014

systems in which there are two or more levels of assurance, and where a user may choose
which entity (e.g. an application) to interact with. In these systems, as well, certain input
must be kept secure from lower-assurance applications and entities, and the same problems

described above occur.

It is desired to address or ameliorate one or more disadvantages or limitations

associated with the prior art, or to at least provide a useful alternative.

SUMMARY

In accordance with the present invention, there is provided a method for
maintaining the security of a secured execution environment on a system comprising said
secured execution environment and a second execution environment both on a single
computing device, the method comprising:

accepting at the second execution environment a flow of user input from a trusted
input device;

initially directing the accepted flow of user input from the second execution
environment to the secured execution environment;

determining at the secured execution environment whether said secured execution
environment is in a standard input mode;

subsequently directing the initially directed flow of user input at the secured
execution environment based on the input mode of the secured execution environment
including if said secured execution environment is in a standard input mode, transferring at
least a first portion of said user input to said second execution environment;

determining at the secured execution environment from the initially directed flow
of user input at such secured execution environment whether said user input comprises a
user NIM indication that said secured execution environment should be in a nexus input

mode; and

if said user input comprises said user NIM indication and said secured execution
environment is not in said nexus input mode, switching said secured execution
environment to said nexus input mode, said user NIM indication being the only way to
initiate a transition from said standard input mode to said nexus input mode, there being at
least two ways to transition from said nexus input mode to said standard input mode at

least one of which is not a symmetrical counterpart of said user NIM indication.
-4 -

02 Feb 2010

2004216665

20

25

30

CANRPoRbADCOWAGURIN2L_| DOC-22020100

The present invention also provides a method for maintaining the security of a
sccured execution environment on a system comprising said secured execution
environment and a second execution environment, comprising:

accepting encrypted user input from a trusted input device and passing said
encrypted user input from an input stack in the second execution environment to the
secured execution environment;

decrypting said encrypted user input;

determining whether said secured execution environment is in a standard input
mode; and

if said secured execution environment is in the standard input mode, transferring at
least a first portion of the decrypted user input to said input stack in the second execution
environment.

The present invention also provides a trusted user interface engine for use in a
computer system comprising both a secured execution environment and a second execution
environment on a single computing device, said trusted user interface engine comprising:

an input stack at the second execution environment for accepting a flow of user
input from a trusted input device; and

a trusted input manager at the secured execution environment for receiving the
accepted flow of user input from the input stack and determining at the secured execution
environment whether said secured execution environment is in a standard input mode; and
for subsequently directing at least a first portion of said user input to said second execution
environment if said secured execution environment is in a standard input mode,

the trusted input manager for determining at the secured execution environment
from the received flow of user input at such secured execution environment whether said
user input comprises a user NIM indication that said secured execution environment
should be in a nexus input mode; and if said user input comprises said user NIM indication
and said secured execution environment is not in said nexus input mode, switching said
secured execution environment to said nexus input mode, there being at least two ways to
transition from said secured execution environment to said standard input mode at least
one of which is not a symmetrical counterpart of said user NIM indication.

The present invention also provides a computer system comprising a secured
execution environment and a second execution environment, said computer system

.5-

02 Feb 2010

2004216665

20

25

30

CANRParbADCOMAGUAIN24_| DOC- 220N

comprising:

an input stack in the second execution environment for accepting encrypted user
input from a trusted input device, wherein the encrypted user input is passed from the input
stack in the second execution environment to the secured execution environment;

a trusted service provider in the secured execution environment, where the
encrypted user input is decrypted;

a trusted user interface engine in the secured execution environment having a
trusted input manager for determining whether said secured execution environment isina
standard input mode and for directing at least a first portion of the decrypted user input to
said input stack in the second execution environment if said secured execution
environment is in the standard input mode.

In embodiments of the present invention, security of a secured execution
environment on a system with a secured execution environment and a second execution
environment, is maintained using two modes — a standard input mode and a nexus input
mode. Generally, user input from the trusted input device is transferred to the second
execution environment only if the secured execution environment is in a standard input
mode. User input will be generally directed to processes running in the secured execution
environment only when the secured execution environment is in a nexus input mode.

Decryption of user input can be done in the secured execution environment.

In at least one embodiment, a transfer from the standard input mode to the nexus
input mode occurs on hypothecated user input or upon programmatic activation of a
process running in the secure execution environment (¢.g. using a mouse pointer or
keyboard commands to bring a window to focus, where that window corresponds to a
process running in the secure execution environment).

In at least one embodiment, transfer from the nexus input mode to the standard
input mode occurs on hypothecated user input, or upon exiting the last process running in
the secure execution environment which was displaying a graphical user interface.

In at least one embodiment, even in standard input mode, user input corresponding
to changes to graphical user interface elements corresponding to a process running in the

secure execution environment is not directed to the second execution environment.

-10-

02 Feb 2010

2004216665

20

25

30

CANRPORDADCCMAGUOMN2A_| DOC-2222010

In at least one embodiment security is maintained by maintaining a current state for
the secured execution environment (from at least a standard input mode state and a nexus

input mode state) and directing the flow of user input according to the current state.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention are hereinafter further described,
by way of example only, with reference to the accompanying drawings, wherein:

FIG. 1 is a block diagram of an exemplary computing environment in which
embodiments of the invention may be implemented;

FIG. 2 is a block diagram of two exemplary execution environments that maintain
some interaction with each other and some separation from each other;

FIG. 3 is a state diagram for input modes according to at least one embodiment of
the invention;

FIG. 4 is a state diagram for input modes with additional transition information,
according to at least one embodiment of the invention.

FIG. 5 is a block diagram of two exemplary execution environments that maintain
some interaction with each other and some separation from each other according to at least
one embodiment of the invention and

FIG. 6 is a flow diagram of a method for maintaining the security of a secured

execution environment according to at least one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION
Overview

When two execution environments, such as operating systems, run side-by-side on
a single machine, it must be determined how user input should be accessed by the
operating systems. Moreover, one of the operating systems may need to be protected from
accessing user input which is directed at the second operating system. Embodiments of the
present invention provide techniques that allow user input directed at a high assurance

entity on a nexus to be protected from possible discovery by host operating system entities.

Reference to "aspects” of the invention hereinafter is intended to refer to

embodiments or examples of the invention and to not be limiting.

-6A -

11-

02 Feb 2010

2004216665

20

25

30

CNRPanbADCCOMAGLKIRI2E_t DOC-22/201

Exemplary Computing Arrangement

FIG. 1 shows an exemplary computing environment in which aspects of the
invention may be implemented. The computing system environment 100 is only one
example of a suitable computing environment.

Embodiments of the invention are operational with numerous other general purpose
or special purpose computing system environments or configurations. Examples of well
known computing systems, environments, and/or configurations that may be suitable for
use include, but are not limited to, personal computers, server computers, hand-held or
laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
embedded systems, distributed computing environments that include any of the above
systems or devices, and the like.

Embodiments of the invention may be described in the general context of
computer-executable instructions, such as program modules, being executed by a
computer. Generally, program modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or implement particular abstract data
types. Embodiments of the invention may also be practiced in distributed computing
environments where tasks are performed by remote processing devices that are linked
through a communications network or other data transmission medium. In a distributed
computing environment, program modules and other data may be located in both local and
remote computer storage media including memory storage devices.

With reference to FIG. 1, an exemplary system for implementing embodiments of
the invention include a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 12! that couples various system components
including the system memory to the processing unit 120. The processing unit 120 may
represent multiple logical processing units such as those supported on a multi-threaded
processor. The system bus 121 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a variety

of bus architectures. By way of example, and not

-6B-

-12-

30 Sep 2004

2004216665

limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect (PCI) bus (also known as Mezzanine
bus). The system bus 121 may also be implemented as a point-to-point connection, switching
fabric, or the like, among the communicating devices.

[0032] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and non-removable media. By way of
example, and not limitation, computer readable media may comprise computer storage media
and communication media. Computer storage media includes both volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can
accessed by computer 110. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data si gnal such as a
carrier wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of any of the above should also be included within the scope of computer readable
media.

[0033] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that
help to transfer information between elements within computer 110, such as during start-up, is

typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are

-7.

-13-

30 Sep 2004

2004216665

immediately accessible to and/or presently being operated on by processing unit 120. By way of
example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

[0034] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard
disk drive 140 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152,

and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk
156, such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media-that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk
drive 141 is typically connected to the system bus 121 through a non-removable memory
interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable memory interface, such as interface
150.

[0035] The drives and their associated computer storage media discussed above and
illustrated in FIG. 1, provide storage of computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is
illustrated as storing operating system 144, application programs 145, other program modules
146, and program data 147. Note that these components can either be the same as or different
from operating system 134, application programs 135, other program modules 136, and program
data 137. Operating system 144, application programs 145, other program modules 146, and
program data 147 are given different numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and information into the computer 20 through
input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system bus,

but may be connected by other interface and bus structures, such as a parallel port, game port or

-8-

-14-

02 Feb 2010

2004216665

20

25

30

C:ANRPorbADCOWIAGR6USI24 | DOC-2272010

a universal serial bus (USB). A monitor 191 or other type of display device is also
connected to the system bus 121 via an interface, such as a video interface 190. In addition
to the monitor, computers may also include other peripheral output devices such as
speakers 197 and printer 196, which may be connected through an output peripheral
interface 190.

The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181
has been illustrated in FIG. 1. The logical connections depicted in FIG. | include a local
area network (LAN) 171 and a wide area network (WAN) 173, but may also include other
networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically includes a modem 172 or other means
for establishing communications over the WAN 173, such as the Internet, The modem 172,
which may be internal or external, may be connected to the system bus 121 via the user
input interface 160, or other appropriate mechanism. In a networked environment, program
modules depicted relative to the computer 110, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates
remote application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

Plural Computing Environments on a Single Machine

For two operating systems executing side-by-side on a single computing device,
embodiments of the present invention can be used to provide at least some level of
separation between the two operating systems, while still providing for at least some level
of interaction between the two operating systems.

FIG. 2 shows a system in which two operating systems 134(1) and 134(2) execute
on a single computer 110. Some type of logical separation 202 exists between operating

-9.

-15-

02 Feb 2010

2004216665

20

25

C:WRPoABADCCWMAGIENRI24 1. DOC-YY2000

systems 134(1) and 134(2), such that a certain amount of interaction 204 is permitted
between operating systems 134(1) and 134(2), while still allowing at least one of the
operating systems to be protected against events that originate in the other operating
system. In the example of FIG. 2, operating system 134(1) is a host operating system, and
operating system 134(2) is a guest operating system, such as a “nexus” as described above.
When operating system 134(2) is a nexus, it is desirable to construct separation 202 such
that operating system 134(2) can interact with operating system 134(1) in order to borrow
operating system 134(1)’s infrastructure, while still allowing operating system 134(2) to
protect itself from actions (either malicious or innocent) that arise at operating system
134(1) and might cause operating system 134(2) to behave in a manner contrary to its
behavioral specifications.

The separation 202 between operating systems 134(1) and 134(2) may, optionally,
be enforced with the aid of a security monitor. A security monitor is a component external
to both operating systems 134(1) and 134(2), which provides some security services that
may be used to protect operating system 134(2) from operating system 134(1). For
example, a security monitor may control access to certain hardware, may manage the use
of memory (to give operating system 134(2) exclusive use of some portions of memory),
or may facilitate the communication of data from operating system 134(1) to operating
system 134(2) in a secure way. It should be noted that the use of a security monitor
represents one model of how operating system 134(2) can be protected from operating
system 134(1). As another example, operating system 134(2) could include all of the
functionality necessary to protect itself from operating system 134(1).

It should be noted that FIG. 2 shows operating system 134(1) as a “host” and
operating system 134(2) as a “guest.” In general, this characterization refers to the fact
that, in these examples, operating system 134(1) provides certain operating system
infrastructure that is used by both operating systems 134(1) and 134(2) (e.g., device
drivers, scheduling, etc.), and operating system 134(2) is a “guest” in the sense that it
preferably lacks this infrastructure but rather uses the infrastructure of operating system

134(1). However, it should be noted that the

.10 -

-16-

30 Sep 2004

2004216665

parameters of what makes an operating system a “host” or a “guest” are flexible. Moreover, it
should be noted that traditional concepts of “host” and “guest” operating systems presume that
the host needs to protect itself from actions of the guest. In the example of FIGS. 2, however,
guest operating system 134(2) is presumed to be a hi gh-assurance operating system that needs to
protect itself from host operating system 134(1). In the examples that follow, we shall generally
refer to operating system 134(1) as the “host” and operating system 134(2) as the “guest” or
“nexus” for the purpose of distinguishing between them. It should be appreciated that the
techniques described herein can be applied to the interaction of any two or more operaling

systems running on the same machine (or even on the same set of connected machines).

User Input For Plural Computing Environments on a Single Machine

[0042) When a user interacts with programs on a computer system containing a high-
assurance operating system, the user does so by means of a user input device, such as mouse 161
or keyboard 162 (from Figure 1). As discussed above, allowing the windowing system nunning
on host operating system 134(1) control the destination of the stream of input events may allow
an attack using a compromised host operating system or application. Thus the destination of the
stream of input events is controlled by a trusted user interface engine running on the nexus
134(2). Two modes are established in which the computer 110 can be operating. These two
modes are standard input mode (SIM) and nexus input mode (NIM).

[0043] Details will be described below, however, generally, nexus input mode is used
when user input is to be directed towards a nexus-mode process, and standard input mode is used
when user input is not to be directed towards a nexus-mode process. Thus, these modes are used
to provide a level of assurance that the user input will not be misdirected to an entity connected
with host operating system 134(1) when it should be directed toward an entity connected with
nexus 134(2). Avoiding this misdirection allows increased security for nexus-side data and
processes. Because the use of the SIM and NIM modes militate against attacks on the nexus
134(2), control over these modes must be protected. Therefore, the modes are controlled by the
nexus 134(2) or, where a security monitor is present in the computer system 110, it may be

controlled by the security monitor.

S11-

17-

30 Sep 2004

2004216665

[0044) In standard input mode, generally, user input events are unencrypted in the
nexus and then passed by the nexus to a standard-mode input pipeline. This standard-mode
input pipeline is the input pipeline which the host operating system 134(1) draws user input
events from for its own use and for the use of applications running under the host operating
system 134(1). Certain user input events, however, trigger a switch from the standard input
mode to the nexus input mode. Therefore, before Input events are passed to the standard-mode
input pipeline, they are examined by a process running on the nexus 134(2) in order to determine
whether they are events which should tri gger a switch to the nexus input mode.

[0045] In addition to events which trigger a switch to the nexus input mode, some
mouse or other user input events may be retained and acted on by the nexus rather than passed to
the host side, even in SIM. For example, where a windowing system is being used, in standard
input mode only a window owned by a non-nexus entity can have focus. In one embodiment,
where a windowing system is used, the mouse is used to control the movement of a cursor over
the display and the nexus controls the tracking and display movement of the mouse over
windows controlled by a nexus-side application or other entity in both NIM and SIM. In such a
case, where input events are mouse movements, in SIM input events which arc passed to the host
side from the nexus do not include mouse movements over areas with a nexus user interface
element.

[0046] In the nexus input mode, user input events are processed within nexus space —
that is, within the portion of computer system 110 which contains the nexus 134(2) and is
separated from other portions of the computer system 110 by logical separation 202. During this
mode, the standard-mode input pipeline receives no user input events. Input events are passed to
the destination entities in the nexus space, or are used by the nexus 134(2) for operating system
functions and also to determine whether a switch to standard input mode should occur,

[0047] In one embodiment, there are some exceptions which, even in NIM, are passed
to the host 134(1). For example, commands regarding the indicator lights on a keyboard, volume
control commands, and screen contrast and bri ghtness commands may be passed to the host
134(1) in one embodiment. In an alternate embodiment, however, these commands are simply

ignored when the computer system is in NIM.

-12 -

18-

30 Sep 2004

2004216665

[0048] Thus, the input mode of the computer system 110 can be described by the state
diagram shown in Figure 3. Figure 3 shows a state diagram for input modes according to one
embodiment of the invention. The standard input mode state 300 represents the standard input
mode, in which events are passed to the standard-mode input pipeline, after being examined to
ensure they are not events which trigger a transition to the nexus input mode state 310. The

nexus input mode state 310 represents the nexus input mode, in which the standard input mode

receives no user input events.

Transitioning Between Input Modes

[0049] The SIM to NIM transition 302 occurs, in one embodiment, when a user
activates a nexus user interface element. In the windowing context, this may occur when the
user selects or clicks on a window which is controlled by an entity in nexus space. This indicates
that the user’s focus has moved to that window. In one embodiment, for each user interface
element controlled by an entity in nexus space, there is a corresponding “shadow” which is
maintained on the host side. When this shadow user interface element is selected (e.g. by
clicking on the title bar of the shadow user interface clement) a transition is made to NIM and the
focus is switched to the corresponding user interface element owned by a nexus-side entity.

[0050] The SIM to NIM transition may also occur when a hypothecated user interaction
occurs. A hypothecated user interaction is a user interaction which, in the context of the
computer system 110, will always result in a specific consequence. Therefore, there may be a
hypothecated user interaction for which the consequence is that the computer system 110 is in
the nexus input mode.

{0051] These two ways of transitioning from SIM state 300 to NIM state 310 according
to one embodiment are more fully described in Figure 4. Figure 4 shows a state diagram for
input modes with more specific transition information, according to one embodiment of the
invention. Figure 4 shows that when the user focuses on a nexus space entity 402, the transition
is made from SIM to NIM. This is one kind of hypothecated action. Additionally, when the user
performs any other NIM hypothecated action 404, that s, an action which is intended to always
result in the computer being in NIM state, the transition is made from SIM to NIM. It may also

be the case that a user can perform a NIM hypothecated action while in NIM state 310. If so, as

-13-

-19-

30 Sep 2004

2004216665

shown by NIM hypothecated action 406, the state remains in NIM state 310. A NIM
hypothecated action may be, for example, a set or combination of keystrokes. For example,
where a user presses the “contro]” key, the “alt” key, and the “tab” key, all at the same time, this
series of keystrokes provides the guarantee that the computer system 110 will immediately
switch to NIM state 310.

[0052] In one embodiment, where such a transition occurs as a result of a combination
of keystrokes, the host side will receive mock-up user input data which resolves any keystroke
infonnatioﬁ which it had received. Therefore, using the previous <CTRL><ALT><TAB>
example, if the host side had received information that the control key and the alt key had been
pressed, when the tab key is pressed, the transition to NIM state 310 occurs, and the host side
receives mock-up user input which indicates that the control key and the alt key had been
released. Thus, the host side input tracking is flushed or reset when the transition to NIM is
made. Similarly, when a transition to SIM is made, the host side receives information about the
state of the input devices, e.g. which keys are currently depressed on the keyboard, so that it can
respond properly to further changes which arrive from the input devices.

[0053] With reference again to Figure 3, a NIM to SIM transaction 312 is also provided
for. In one embodiment, as shown in F igure 4, in order to provide high assurance for nexus-
space entities, this transition only occurs when the user specifically requests this switch, by
performing a SIM hypothecated action 412. It can be seen that there are two ways to transition
from NIM state 310 to SIM state 312, but only one way to transition back. In one embodiment,
no transition exists from NIM state 310 to SIM state 312 which is “symmetrical” the transition
402 from SIM state 312 to NIM state 310 which occurs when the user focuses on a nexus space
entity. More generally, with reference again to Figure 3, in one embodiment, transitions from
SIM to NIM 310 do not occur in exactly symmetrical ways to the ways in which transitions from
NIM to SIM 312 occur. This is to provide increased security by assuring that a user of the
computer system 110 must cause any transition to standard input mode knowingly and not
accidentally.

[0054] In other embodiments, there are alternate ways to switch from SIM to NIM. For
example, if a user mode process executing in the nexus (a “nexus agent”) reaches a point at

which it requires user input, that causes a transition from SIM to NIM. This allows some

-14.-

-20-

30 Sep 2004

2004216665

additional security. For example, if a nexus agent is displaying confidential information on the
monitor 191 (from Fig. 1) it may require a password, at intervals, in order to maintain the
confidential information on the monitor. If the nexus agent can force a transition to NIM and
request this data, when it does not receive the password, it can remove the confidential
information from the monitor 191 and perform any other actions that may be required. Another
event which may trigger a transition to NIM mode is the receipt of a power management event,
Such events may include powering up, powering down, switchin g to another form of power
(battery, etc.), hibernation, etc.

[0055] In other embodiments, there are alternate ways to switch from NIM to SIM. For
example, if a windowing system is being used, and the last window owned by a nexus agent is
closed by the user, this times causes a transition from NIM to SIM. Because NIM is used only to
allow input to nexus agents, in this embodiment, once all windows associated with any nexus

agents are closed, there is no need for the computer system 110 to be in NIM, and it switches to
SIM.

Path of Trusted Input In a Plural Computing Environment

[0056] Inone embodiment, some or all of the user input devices such as mouse 161 or
keyboard 162 (from Figure 1) may support encryption. Such encrypted devices allow the input
device and the nexus to establish a secure connection and can thus prevent a hardware attack. In
one embodiment, the NIM and SIM modes apply only to input from an encrypted device. Other
input devices may not be encrypted, however, input from unencrypted user input devices is only
accepted for the host system, and not for the nexus or any entities running on the nexus.

[0057) Figure 5 is a block diagram of two exemplary execution environments that
maintain some interaction with each other and some separation from each other according to one
embodiment of the invention. As shown in Figure 5, a trusted input device 500 sends encrypted
user input data to computer system 110, The encrypted data arrives in the input stack 505 in the
host-side operating system 134(1). Because it is encrypted, it can not be used by the host-side
operating system 134(1) but is passed to the nexus 134(2). In Figure 5, both the host side {to the
left of logical separation 202) and the nexus side (to the right of logical separation 202) are

divided further by into user level 510 and kernel level 520, These correspond to distinctions

-15-

-21-

30 Sep 2004

2004216665

between user level and kernel level execution in operating systems. When the nexus 134(2)
receives the encrypted user input data, it is passed to the input trusted service provider (TSP)
525, where the encrypted user input data is decrypted.

[0058] Decrypted data is then passed to the trusted user interface en gine (TUE) 530,
specifically to the trusted input manager 540. Trusted input manager 540, in conjunction with
the trusted window manager (TWinMgr) 545 tracks the state of the input mode. Trusted input
manager 540 and TWinMgr 545 also track whether a transition event is indicated by the user
input data and changes the user input mode accordingly.

[0059] In the embodiment described above where shadow user interface elements (e.g.
shadow windows) on the host side are created for each nexus-side user interface element, when a
focus event is received on a shadow user interface element, notification of the event is received
by TWinMgr 545, and this causes a switch to NIM. The TWinMegr 545 functions as a window
manager for nexus-side user interface elements, Thus, a nexus-side window which requests
focus will signal the TWinMgr 545 and cause a switch to NIM.

[0060] If the input mode is SIM, most user input data (as described above) is restored to
input stack 505 for use on the host side, as shown by arrow C 590. One exception is data
concerning mouse movements over nexus-side user interface elements. The display of nexus-
side user interface elements is handled by the trusted output manager (TOM) 550 and so mouse
movements over nexus-side user interface elements are passed to TOM 550, as shown by arrow
B 580. Other exceptions include trigger events, and events as described above, which may be
passed elsewhere in the nexus side.

[0061] If the input mode is NIM, the data will be passed from the trusted input manager
to the correct destination nexus-mode process. This is illustrated by arrow A 570, which shows

user input data being sent to nexus agent 575. Other data may be passed to other entities on the

“nexus side. As described above, in one embodiment some data, for example, volume control

data, may be passed to the host side.

[0062] Figure 6 is a flow diagram of a method for maintaining the security of a secured
execution environment according to one embodiment of the invention. As shown in Figure 6, in
step 600, user input is accepted from a trusted input device. This may be direct, or take an

indirect path, for example, the path shown in Figure 5. In step 610, a determination is made

-16-

22-

02 Feb 2010

2004216665

CANRPORbIDCCVMAGI6 124 DOC-20/1010

whether the secured execution environment is in a standard input mode. If it is, step 620,

at least a first portion of the user input is transferred to the second execution environment,

Conclusion

It is noted that the foregoing examples have been provided merely for the purpose
of explanation of the embodiments of the present invention. The invention is not intended
to be limited to the particulars disclosed herein; rather, the invention extends to all
functionally equivalent structures, methods and uses, such as are within the scope of the
appended claims. Those skilled in the art, having the benefit of the teachings of this
specification, may effect numerous modifications thereto and changes may be made
without departing from the scope and spirit of the invention.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word “comprise”, and variations such as “comprises” and
“comprising”, will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or
steps.

The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that the prior art forms part of the

common general knowledge in Australia.

-17-

-23-

02 Feb 2010

2004216665

10

20

25

CANRPONSAOCCWIAGUMIES 1. DOC-12/2010

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for maintaining the security of a secured execution environment
on a system comprising said secured execution environment and a second execution
environment both on a single computing device, the method comprising:

accepting at the second execution environment a flow of user input from a trusted
input device;

initially directing the accepted flow of user input from the second execution
environment to the secured execution environment;

determining at the secured execution environment whether said secured execution
environment is in a standard input mode;

subsequently directing the initially directed flow of user input at the secured
execution environment based on the input mode of the secured execution environment
including if said secured execution environment is in a standard input mode, transferring at
least a first portion of said user input to said second execution environment;

determining at the secured execution environment from the initially directed flow
of user input at such secured execution environment whether said user input comprises a
user NIM indication that said secured execution environment should be in a nexus input
mode; and

if said user input comprises said user NIM indication and said secured execution
environment is not in said nexus input mode, switching said secured execution
environment to said nexus input mode, said user NIM indication being the only way to
initiate a transition from said standard input mode to said nexus input mode, there being at
least two ways 1o transition from said nexus input mode to said standard input mode at

least one of which is not a symmetrical counterpart of said user NIM indication.

2. The method of claim 1, futher comprising:

decrypting said user input.

3. The method of one of claims 1 or 2, further comprising:
if said secured execution environment is in a nexus input mode, determining a

specific process running in said secured execution environment to which said user input is

-18 -

-24-

02 Feb 2010

2004216665

20

30

CANRPOMBADCOMAGUIHINIZS_I| DOC-22720(0

directed; and

directing said user input to said specific process.

4, A method for maintaining the security of a secured execution environment
on a system comprising said secured execution environment and a second execution
environment, comprising:

accepting encrypted user input from a trusted input device and passing said
encrypted user input from an input stack in the second ¢xecution environment to the
secured execution environment;

decrypting said encrypted user input;

determining whether said secured execution environment is in a standard input
mode; and

if said secured execution environment is in the standard input mode, transferring at
least a first portion of the decrypted user input to said input stack in the second execution

environment.

5. The method of claim 4, further comprising:

if said secured execution environment is in a nexus input mode (NIM), wherein the
nexus input mode is a high assurance input mode, determining a specific process running
in said secured execution environment to which the decrypted user input is directed; and

directing the decrypted user input to said specific process.

6. The method of claim 4, further comprising:

determining whether the decrypted user input comprises a user nexus input mode
(NIM) indication that said secured execution environment should be in a ncxus input
mode; and

if the decrypted user input comprises said user nexus input mode indication and
said secured execution environment is not in said nexus input mode, switching said

secured execution environment to said nexus input mode.

7. The method of any one of claims 1 to 3 and 6, where said user NIM
indication comprises a combination of keystrokes on a keyboard.
-19-

-25-

02 Feb 2010

2004216665

20

30

CONRPOABROCCWAGRAAIZS_I| DOC-22210

8. The method of any one of claims 1 to 3 and 6, where said user NIM
indication comprises a programmatic activation of a process running in said secured

execution environment.

9. The method of claim 8, where said programmatic activation of a first
process running in said secured execution environment comprises selecting a graphical

user interface element corresponding to said process.

10. The method of claim 9, where said graphical user interface element is a
shadow graphical user interface element displayed using a second process, where said
process is running on said second execution environment, and where said shadow
graphical user interface element corresponds to a secured graphical user interface element

displayed by said first process.

11, The method of claim 9, where said graphical user interface element is
displayed using a second process, where said second process is running on said second
execution environment, and where said graphical user interface element corresponds 10 a

secured graphical user interface element displayed by said first process.

12. The method of any one of claims 1 to 11, further comprising:

determining whether said user input comprises a user standard input mode (SIM)
indication that said secured execution environment should be in said standard input mode;
and

if said user input comprises said user SIM indication and said secured execution
environment is not in said standard input mode, switching said secured execution

environment to said standard input mode.

13, The method of claim 12, where said user SIM indication comprises a

combination of keystrokes on a keyboard.

-20 -

-26-

02 Feb 2010

2004216665

20

25

30

CANRPeRERDCCIMAGRAIRIZ | DOC-22/2010

14. The method of claim 12, where said user SIM indication comprises an
action which results in a display with no graphical user interface element which

corresponds to a process running on said secured execution environment.

15. The method of claim 12, where said user standard input mode indication
comprises an action which results in closing the last graphical user interface element which

corresponds to a process running on said secured execution environment.

16. The method of any one of claims 1 to 15, where if said secured execution
environment is in a standard input mode, and a second portion of said user input
corresponds to changes to a graphical user interface element displayed by a process
running on said secured execution environment, said changes to said graphical user

interface element are performed within said secured execution environment.

17. The method of claim 16, where said changes to a graphical user interface
element displayed by a process running on said secured execution environment comprise
the movement of a mouse cursor over a graphical user interface element displayed by a

process running on said secured execution environment.

18. The method of any one of claims 1 to 17, further comprising:
switching said secured execution environment to a nexus input mode if a power

management change is detected.

19. The method of any one of claims 1 to 18, further comprising:

maintaining a current state for said secured execution environment selected from
among a group of possible states comprising: a standard input mode state and a nexus input
mode state; and

directing a flow of user input according to said current state.

20. The method of claim 19, further comprising:
limiting a transfer of said user input to said second execution environment when
said current state is said nexus input mode state.

_21-

27-

02 Feb 2010

2004216665

10

20

25

30

CANRPoAbADCCMAGLGINTZS 1 DOC-22/2010

21. A method for maintaining the security of a secured execution environment

substantially as hereinbefore described, with reference to the accompanying drawings.

22. A computer-readable medium containing computer executable instructions
to maintain the security of a secured execution environment on a system comprising said
secured execution environment and a second execution environment, the computer-

executable instructions to perform the method of any one of claims 1 to 21.

23. A trusted user interface engine for use in a computer system comprising
both a secured execution environment and a second execution environment on a single
computing device, said trusted user interface engine comprising:

an input stack at the second execution environment for accepting a flow of user
input from a trusted input device; and

a trusted input manager at the secured execution environment for receiving the
accepted flow of user input from the input stack and determining at the secured execution
environment whether said secured execution environment is in a standard input mode; and
for subsequently directing at least a first portion of said user input to said second execution
environment if said secured execution environment is in a standard input mode,

the trusted input manager for determining at the secured execution environment
from the received flow of user input at such secured execution environment whether said
user input comprises a user NIM indication that said secured execution environment
should be in a nexus input mode; and if said user input comprises said user NIM indication
and said secured execution environment is not in said nexus input mode, switching said
secured execution environment to said nexus input mode, there being at least two ways to
transition from said secured execution environment to said standard input mode at least

one of which is not a symmetrical counterpart of said user NIM indication.

24. The trusted user interface engine of claim 23, where said trusted input
manager, if said secured execution environment is in a nexus input mode, determines a
specific process running in said secured execution environment to which said user input is
directed; and directs said user input to said specific process.

.22

-28-

02 Feb 2010

2004216665

20

25

30

C2NRPOBADCCWMAGRAIKI2_I DOC-22721101

25. A computer system comprising a secured execution environment and a
second execution environment, said computer syslem comprising:

an input stack in the second execution environment for accepting encrypted user
input from a trusted input device, wherein the encrypted user input is passed from the input
stack in the second execution environment to the secured execution environment;

a trusted service provider in the secured execution environment, where the
encrypted user input is decrypted;

a trusted user interface engine in the secured execution environment having a
trusted input manager for determining whether said secured execution environment is in a
standard input mode and for directing at least a first portion of the decrypted user input to
said input stack in the second execution environment if said secured execution

environment is in the standard input mode.

26. The computer system of claim 25, where said trusted input manager, if said
secured execution environment is in a nexus input mode (NIM), wherein the nexus input
mode is a high assurance input mode, determines a specific process running in said secured
execution environment to which the decrypted user input is directed; and directs the

decrypted user input to said specific process.

27. The computer system of claim 25, where said trusted input manager
determines whether the decrypted user input comprises a user nexus input mode (NIM)
indication that said secured execution environment should be in a nexus input mode; and if
the decrypted user input comprises said user nexus input mode indication and said secured
execution environment is not in said nexus input mode, switching said secured execution

environment to said nexus input mode.

28, The trusted user interface engine of any one of claims 23 to 24, and 27,

where said user NIM indication comprises'a combination of keystrokes on a keyboard.

.23.

-29-

02 Feb 2010

2004216665

20

25

30

CNRPONBADCCOMAG60KI24 1 DOC-22/2010

29. The trusted user interface engine of any one of claims 23 to 24, and 27,
where said user NIM indication comprises a programmatic activation of a process running

in said secured execution environment.

30. The trusted user interface engine of claim 29, where said programmatic
activation of a first process running in said secured execution environment comprises

selecting a graphical user interface element corresponding to said process.

31. The trusted user interface engine of claim 30, where said graphical user
interface element is a shadow graphical user interface element displayed using a second
process, where said process is running on said second execution environment, and where
said shadow graphical user interface element corresponds to a secured graphical user

interface element displayed by said first process. .

32. The trusted user interface engine of claim 30, where said graphical user
interface element is displayed using a second process, where said second process is
running on said second execution environment, and where said graphical user interface
element corresponds to a secured graphical user interface element displayed by said first

process.

33, The trusted user interface engine of any one of claims 23 to 27, where said
trusted input manager determines whether said user input comprises a user (standard input
mode) SIM indication that said secured execution environment should be in said standard
input mode; and if said user input comprises said user SIM indication and said secured
execution environment is not in said standard input mode, switches said secured execution

environment to said standard input mode.

34. The trusted user interface engine of claim 33, where said user SIM

indication comprises a combination of keystrokes on a keyboard.

.24 .-

-30-

02 Feb 2010

2004216665

20

25

CANRPORBADCCWAGUGINNH _1.DOC-22/3010

35. The trusted user interface engine of claim 33, where said user SIM
indication comprises an action which results in a display with no graphical user interface

element which corresponds to a process running on said secured execution environment.

36. The trusted user interface engine of claim 33, where said user standard input
mode indication comprises an action which results in closing the last graphical user
interface element which corresponds to a process running on said secured execution

environment.

37. The trusted user interface engine of any one of claims 23 to 27, where if
said secured execution environment is in a standard input mode, and a second portion of
said user input corresponds to changes to a graphical user interface element displayed by a
process running on said secured execution environment, said changes to said graphical user

interface element are performed within said secured execution environment.

38. The trusted user interface engine of claim 37, where said changes to a
graphical user interface element displayed by a process running on said secured execution
environment comprise the movement of a mouse cursor over a graphical user interface

element displayed by a process running on said secured execution environment.
39. The trusted user interface engine of claim 23 to 27, where said trusted input
manager switches said secured execution environment to a nexus input mode if a power

management change is detected.

40, A computer system substantially as hereinbefore described, with reference

to the drawings and/or examples.

41. A trusted user interface engine substantially as hereinbefore described, with

reference to the drawings and/or examples.

225.

-31-

[65] [555550] o]

081
H3.1NdWNOD
EITIVEL]

L6} Jojjuoiy

| eo—]

%87 SWVYD0Hd
NGILVOIddv
310WTH

19l

ZSL PIECaASY FshoR

L "OId

YL SAON mww PP
vy d LSA

] Hd
grIo | MO

ddv | SNIIVYIdo

BRI
buL T PE,)

i

EEnE)
oW
3JE[OA-UCN

3gercwisy

—

OFT S3epsiu)
AIowaR
MEIOA-UO

BIqEACWIDH-UON

H rersng Esw\,ﬁ —

561 smepmy

» [Eleydiag

naino

061
EREE)
G3pIA

00T doS 0¢

$9991¢P00¢C

001 lusluuoNIAUg bundwo)

I3

qcmm
BUSS50Ig

—— R —
9El sSMpon

Weiboig B0

-32-

30 Sep 2004

2004216665

2/5

Operating
system 134(1)

(e.g., "host")

Operating
system 134(2)

(e.g., "guest” or
"nexus")

FIG. 2

SIM to NIM transition

Standard input
mode

-33-

Nexus input
mode

30 Sep 2004

2004216665

3/5

User performs NIM
hypothecated action

User focus on nexus

User perfo NiM
space entity °r periorms

hypothecated
action
406

Standard input
mode
300

Nexus input
mode
310

User performs
SIM hypothecated
action

412

FiIG. 4

-34-

30 Sep 2004

2004216665

4/5

User level 51

.............

1] TWinMgr 545
Trusted Input Mgr
540

Input TSP
525

User level 51

Operating Input O:e;::::g
system stack fe—; 1’; 2
13401 805 § (Nexus)

Kernel level 520

Kernel level 520

Trusted
input
500

FIG. 5

-35-

Computer 110

30 Sep 2004

2004216665

5/5

600
Accept user input from
trusted input device
A
Is secured execution 610
environment is in
standard input mode
y
Transfer a first portion 602

of user input to second
execution environment,

End

FIG. 6

-36-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

