wo 2014/059183 A2 [N 0F V0O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

17 April 2014 (17.04.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/059183 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
A61K 48/00 (2006.01) A61K 38/17 (2006.01)

International Application Number:
PCT/US2013/064398

International Filing Date:
10 October 2013 (10.10.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/712,107 10 October 2012 (10.10.2012) US

Applicant: WEBTRENDS INC. [US/US]; 851 SW 6th
Avenue, Suite 1600, Portland, Oregon 97204 (US).

Inventors: LAWBAUGH, Paul; 851 SW 6th Avenue,
Suite 1600, Portland, Oregon 97204 (US). EVERLY,
David; 851 SW 6th Avenue, Suite 1600, Portland, Oregon
97204 (US).

Agent: BERGSTROM, Robert W.; Olympic Patent
Works PLLC, P.O. Box 4277, Seattle, Washington 98194-
0277 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: METHODS AND AUTOMATED SYSTEMS FOR TESTING, OPTIMIZATION, AND ANALYSIS THAT PRESERVE
CONTINUITY IN IDENTITIES AND STATUS OF USERS WHO ACCESS REMOTE INFORMATION FROM DIFFERENT
CONTEXTS

context 1

context 2

1
m o2
Qq

& o)

_)ﬁ

FIG. 24E

(57) Abstract: The current document is directed to automated electronic testing, optimization, and/or analysis systems that collect
sufficient data from instrumentation, maintain sufficient user status, and provide sufficient communications between instrumentation
and testing, optimization, and/or analysis systems in order to follow, reconstruct, and record temporal threads of user activity that
span multiple user contexts. In one implementation, JSON-encoded information is collected through instrumentation and supple -
mented by testing, optimization, and/or analysis systems in order to provide many different types of information about remote-in -
formation-accessing users and the device and program contexts from which they access remote information. In addition, instrument -
ation can provide context-transition alerts to the testing, optimization, and/or analysis systems to facilitate the ability of testing, op -
timization, and/or analysis systems maintain user-thread continuity over context transitions and the testing, optimization, and/or ana-
lysis system and provide JSON-encoded information back to instrumentation.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

METHODS AND AUTOMATED SYSTEMS FOR TESTING,
OPTIMIZATION, AND ANALYSIS THAT PRESERVE CONTINUITY IN
IDENTITIES AND STATUS OF USERS WHO ACCESS REMOTE
INFORMATION FROM DIFFERENT CONTEXTS

CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of Provisional Application No.
61/712,107, filed October 10, 2012.

TECHNICAL FIELD

The current document is directed to automated systems for testing,
optimization, and/or analysis, methods employed in such systems, and, in particular,
10 website-testing systems and methods that collect and provide information through
instrumentation to preserve temporal threads of user access that span multiple user

contexts.

BACKGROUND

During the past 20 ycars, the continued evolution of computer
processors, data-storage devices and subsystems, and networking, together with the
emergence of the World Wide Web and broad consumer acceptance of the Internet,
have created a vast new Internet-based retailing infrastructure that represents a
significant portion of current retail transactions for products and services. In certain
retail sectors, including books and recorded music, Internet-based retail transactions
now rival or have surpassed traditional retailing media, including physical retail
establishments and catalog-based mail-order and telephone transactions. It is
expected that Internet-based retailing will continue to grow and assume increasingly
greater shares of the total retail-transaction volumes on a worldwide basis.

As Internet-based retailing of products and services has evolved and
increased in market share, a variety of new support industries have grown up around
Internet-based retailing, including cloud computing, website-development services,
Internet-transaction services, automated testing and optimization services, and web-
analytics services. Automated testing and optimization services provide tools and

infrastructure to allow owners and managers of websites o carry out experiments in

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

which websites are systematically altered in order to determine salient features and
characteristics of websites and modify the salient features and characteristics to
improve website performance.

In many automated testing systerns, it is either impossible or difficult
and imprecise to track a particular user's information-access activities with respect to
websites and other types of remotely accessible information as the user's
computational context changes, due to intended and unintended navigation by the
user through various programs, sessions, and contexts as the user interacts with one
Or more processor—contiolled devices to access websites and other types of remotely
accessible information. As a result, many currently available automated testing and
optimization services and web-analytics services cannot reconstruct continuous
threads of user activities from collected data. Those who perform testing,
optimization, and/or analysis, as well as those for whom testing, optimization, and/or
analysis is performed, continue to seek testing, optimization, and/or analysis methods
and systems that provide more useful information with regard to web-site users’

activities.

SUMMARY

The current document is directed to automated electronic testing,
optimization, and/or analysis systems that collect sufficient data from
instrumentation, maintain sufficient wuser status, and provide sufficient
communications between instrumentation and testing, optimization, and/or analysis
systems in order to follow, reconstruct, and record temporal threads of user activity
that span multiple user contexts. In one implementation, JSON-encoded information
is collected through instrumentation and supplemented by testing, optimization,
and/or analysis systems in order to provide many different types of information about
remote-information-accessing users and the device and program contexts from which
they access remote information. In addition, instrumentation can provide context-
transition alerts to the testing, optimization, and/or analysis systems to facilitate the
ability of testing, optimization, and/or analysis systems maintain user-thread

continuity over context transitions. The testing, optimization, and/or analysis

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

systems, in certain implementations, provide JSON-encoded information back to
instrumentation to allow user programs to establish information about web-site users
and their status and activities to, in turn, facilitate subsequent information
transmission and processing of transmitted information by testing, optimization,

and/or analysis systems.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an environment in which web analytics are
conducted.

Figure 2 provides a general architectural diagram for various types of
computers.

Figure 3 illustrates a second type of environment in which tests are
conducted to provide data for an automated web-analytics system.

Figures 4A-C illustrate the exchange of information between a user of
a website and the remote computer system that serves the website both under normal
conditions as well as during testing of a website.

Figures SA-C illustrate three of many different possible methods by
which website-testing services carry out tests of web pages served by remote web
SErvers.

Figure 6 illustrates single-factor testing.

Figure 7 illustrates a second type of web-page test, referred to as a
"multi-factor/multi-level" test.

Figure 8§ shows a simple, exemplary web page.

Figure 9 shows the contents of an HTML file that encodes the
exemplary web page shown in Figure 8 and that includes simple modifications.

Figure 10 provides a tree-like representation of the contents of the
exemplary HTML file shown in Figure 9.

Figure 11A illustrates a simple web site comprising seven web pages.

Figure 11B illustrates the data and data structures that define tests, test

runs, and experiments.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

Figure 11C illustrates the nature of the statistics, or test results, that are
collected for a particular test run.

Figures 12A-H illustrate the general method and system for web-site
testing used in currently described implementations.

Figure 13 shows the HTML modifications used to virtually
incorporate a testing service into a web site.

Figure 14 illustrates the high-level components and data paths within
one implementation of a system that collects data from web browsers executing on
processor-controlled user appliances.

Figure 15 shows a cookie, or small data structure, that is stored within
the memory of each remote computer system that is instrumented for data collection
according to one implementation of the currently disclosed methods and systems.

Figures 16A-E illustrate the various types of data messages that are
transmitted between computers in the example system shown in Figure 14.

Figures 17A-B provide an example of the instrumentation inserted
within a web page that carries out data collection.

Figure 18 illustrates, in a fashion similar to Figure 14, an example of a
data-collection system.

Figures 19A-21 illustrate a user thread that spans multiple contexts as
a user interacts with a processor-controlled device to access remote information and,
n certain cases, transmit information to remote servers.

Figures 22 and 23 illustrate another user thread that spans multiple
computational contexts.

Figures 24A-E illustrate the instrumentation features and testing-
service procedures used by the methods and systems to which the current document is
directed.

Figures 25A-D provide control-flow diagrams that illustrate one

implementation of incoming message handling by a testing service.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

DETAILED DESCRIPTION

The current document is directed to automated methods and systems
for website testing. Because of the complexity of the method and systems to which
the current document is directed, the following discussion is divided into a number of
subsections that each refer to relatively large numbers of figures. In a first
subsection, entitled "Overview of Website-Testing Systems," a general overview of
web-analytics systems and of various implementations of web-analytics systems is
provided. A second subsection, entitled "Collection of Information by
Instrumentation and Supplementation of Collected Information,” a particular
implementation of instrumentation-based data collection is provided.. A third
subsection, entitled "Methods and System to Which the Current Document is
Directed," discusses the currently disclosed methods and systems for preserving the
continuity of temporal user threads over multiple user contexts.

It should be noted, at the onset, that the currently disclosed methods
carry out real-world operations within physical systems and that the currently
disclosed systems are real-world physical systems. Implementations of the currently
disclosed subject matter may, in part, include computer instructions that are stored on
physical data-storage media and that are executed by one or more processors in order
to carry out website testing and to analyze results accumulated during website testing,
These stored computer instructions are neither abstract nor characterizable as
"software only" or "merely software.” They are control components of the systems to
which the current document is directed that are no less physical than processors,

sensors, and other physical devices.

Overview of Website-Testing Systems and Other Service Systems

Figure 1 illustrates an environment in which web analytics are
conducted. Various users of a website employ a variety of different types of user
devices, including personal desktop computers 102 and 104, electronic tablets 106,

smart phones 108, and other such processor-controlled electronic devices to connect

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

to a remote computer system 110 in order to access the pages of a website served by
the remote computer system 110 through the Internet 112. Of course, each of the
user devices, the remote computer system, and the Internet are extremely complex
systems that would require thousands, tens of thousands, or more pages to describe in
detail. As one example, a particular user device may access the websites served by
the remote computer system through a local area network, various bridge and router
systems, multiple wide-area networks, various routing systems, and a second local
area network. In other cases, these systems may further include mobile-cell systems
or public switched telephone networks.

The remote computational system 110 may be a single server
computer, a larger system that includes multiple server computers, and an even
larger, distributed system that may include a variety of different types of computer
systems interconnected with local and wide-area networks, or server computers and
other types of computers of a cloud-computing facility that provide virtual web
servers and other virtual systems to a website owner. As another example, the remote
computer system 110 may include hundreds of blade servers within blade-server
enclosures, complex power supplies and other support components, network-attached
mass-storage devices, including disk arrays, and many internal layers of control
processes and application programs. In certain cases, the collection of data and the
analysis of the collected data involved in web-analytics-based analysis of one or more
tests may be carried out within the same remote computer system that serves web
pages to users. In other cases, as discussed below, a separate web-analytics system
carries out all or a portion of the website testing.

Figure 2 provides a general architectural diagram for various types of
computers. The computer system shown in Figure 2 contains one or multiple central
processing units ("CPUs") 202-205, one or more clectronic memories 208
mterconnected with the CPUs by a CPU/memory-subsystem bus 210 or multiple
busses, a first bridge 212 that interconnects the CPU/memory-subsystem bus 210
with additional busses 214 and 216, or other types of high-speed interconnection
media, including multiple, high-speed serial interconnects. These busses or serial

interconnections, in turn, connect the CPUs and memory with specialized PIOcessors,

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

such as a graphics processor 218, and with one or more additional bridges 220, which
are interconnected with high-speed serial links or with multiple controllers 222-227,
such as controller 227, that provide access to various different types of mass-storage
devices 228, electronic displays, input devices, and other such components,
subcomponents, and computational resources.

Figure 3 illustrates a second type of environment in which tests are
conducted to provide data for an automated web-analytics system. Figure 3 uses the
same illustration conventions as used in Figure 1 and shows the same different types
of user devices 102, 104, 106, and 108, the remote computer system 110 that serves a
website accessed by users using these devices, and the Internet 112. The
computational environment also includes another remote computer system 302 that
carries out all or a portion of website testing and analysis of test results. This remote
system, just as the website-serving system 110, may be a single computer system,
multiple interconnected computer systems, a geographically distributed computer
system, virtual computers and data-processing facilities provided by a cloud-
computing facility, and other types of computational facilities.

Figures 4A-C illustrate the exchange of information between a user of
a website and the remote computer system that serves the website both under normal
conditions as well as during testing of a website. Figure 4A shows the basic
components within the user device and remote web server. In Figure 4A, dashed
horizontal line 402 represents the boundary between the user or client device, below
the dashed line, and the remote website-serving system, above the dashed line. The
user device 404 is illustrated as having three fundamental layers: (1) a hardware
layer 406; (2) an operating-system layer 407; and (3) a web-browser application
program 408. The remote web-serving computer system 410 is similarly illustrated
as having four fundamental layers: (1) a hardware layer 412; (2) a virtualization layer
413; (3) an operating-system layer 414; and (4) a web-server application program
415. The basic interaction between users, or clients, and the web-serving computer
system is a client/server request/response protocol. In this protocol, clients initiate
information exchange by making a request 420 to the server and receive the requested

information in a response 422 transmitted from the web server to the client device. In

WO 2014/059183 PCT/US2013/064398

10

15

20

30

order for the web browser of the client device to receive the information needed to
display a particular web page to a user, a large number of request/response
transactions may be carried out. Many different types of information may be
requested by client devices and furnished by web servers, including hypertext markup
language ("HTML") files, any of various different types of image files, such as .JPG
files, executable code, audio files, streaming video, and other types of data. Often,
the client/server protocol used for website access is a logical stack of protocols
described as HTTP/TCP/IP over the Intemet, where HTTP is the high-level hypertext
transport protocol, TCP is a lower-level transmission control protocol, and IP is the
still-lower-level Internet protocol. However, for any particular client and web server,
many additional protocol layers may be involved to provide the high-level
client/server request/response communications between a user device and the
website-serving computer system. In general, the website-serving computer system
410 also stores at least a portion of the data 426 that is exchanged with user devices
in order to display web pages on the user devices.

Figure 4B illustrates a generalized sequence of events that occur
during a single request/response transaction between the client and server. Figure 4B,
and Figure 4C that follows, uses the same illustration conventions as used in Figure
4A. In the example shown in Figure 4B, the request sent from the client to the server
is initiated by a user input, such as the click of a mouse when the mouse cursor
overlays a hyperlink. The user's mouse click is sensed by the mouse controller in a
first step represented by arrow 428. Note that, in Figure 4B, and in Figure 4C that
follows, each step is represented by a curved arrow that is additionally annotated with
a step number to indicate the sequence of operations underlying the request/response
transaction. Hardware detection of the mouse-click event results in an interrupt being
sent to the operating system. The operating system fields the interrupt, in a second
step 430, determines that the interrupt represents an event to be handled by the web
browser application running within the client device, and notifies the web browser of
the occurrence of the event through a software interrupt, asynchronous call back, or
some other mechanism by which events are transferred from the operating system to

the application program to which the events are related. In a third step 432, the web

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

browser handles the mouse-click event, using the mouse-cursor position to determine
that the mouse-click event was directed to a hyperlink and then formulates a request
to send to the web server that serves the web page represented by the hyperlink and
requests transmission of the request from the operating system by calling a system
call for transmitting the request message. In general, there may be additional
transactions between the client device and a DNS server in order for the IP address of
the web-serving computer system to be identified so that the request message can be
directed to the website-serving computer system. Those additional request/response
transactions are omitted from Figure 4B in the interest of clarity and simplicity of
llustration.

The operating system then processes the request through numerous
protocol layers and passes the processed request to the hardware, in a fourth step 434,
which carries out several additional lower-level protocol-based processing steps
before transmitting the request message to a communications media that results in the
request message traversing the Intemet and arriving at the web server, in a fifth step
436. In this case, the primary hardware component involved in the message
transmission, aside from internal busses or serial connections, is a network interface
controller or wireless interface controller. Within the web server, the message is
received by a complementary hardware controller and passed, in a sixth step 438 to
the operating system of the web server. The operating system processes the received
message and, in a seventh step 440, transfers the message to the web-server
application running on the web server along with some type of software interrupt or
asynchronous call back to alert the web-server application that a new message is
available for processing. The web-server application processes the message contents
and determines that the message represents a request for the HTML file that encodes
a particular web page that is represented by the hyperlink initially clicked by the user
of the user device. The web-server application, in an eighth step 442 then retrieves
the HTML file and creates a response message containing the file, in a ninth step 444
that the web-server application passes to the operating system. The operating system
then applies various protocol layers and passes the processed response message to the

hardware layer, in a tenth step 446 for transmission back to the client device. In

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

10

many cases, although not shown in Figure 4B, the various protocol layers executed
within the operating system result in the response message being broken up into a
sequence of data messages, each containing a portion of the HTML file, which are
then transferred one after another to the client device in multiple steps, all represented
by the single eleventh step 448 in Figure 4B.

When the HTML file has been received, possibly through multiple
low-level messages, and assembled into memory by the client hardware layer and
operating system, in a twelfth step 450, the HTML file is passed to the requesting
web-browser application in a thirteenth step 452. The web browser then processes
the HTML file in order to generate a series of commands to the operating system, in a
fourteenth step 454, that result in the operating system transmitting a large number of
low-level display commands to the display device, in a fifteenth step 456 that result
in display of the requested web page to the user on the client-device display screen.
In many cases, during processing of the HTML file, the web-browser application may
need to carry out many additional request/response transactions in order to fetch
image files and other files that contain content displayed within the web page in
addition to the basic web-page description contained in the HTML file.

Figure 4C illustrates additional operations carried out within the web
server in order to conduct website testing under certain types of website-testing-
service implementations. The same actions that occur for general serving of a web
page, illustrated in Figure 4B, also occur during testing of the website. However, as
shown in Figure 4C, the eighth step (442 in Figure 4B) is now expanded to include
two separate steps 460 and 462 and the web-server application 415 includes, or runs
in parallel with, an additional layer of testing logic 464. When the web-server
application receives the request for a web page, the request is forwarded to the testing
logic in step 460. The testing logic then determines, from the identity of the
requesting client or client device and the identity of the web pages being accessed,
whether the access to the web page represents a testing event or, in other words,
whether the web page and requesting client represent a user access that falls under
monitoring of events that together comprise a website test. If so, then the testing

logic may access different content, in step 462, for return to the client device than the

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

11

content that would be accessed for a non-test request for the web page. In other
words, the testing logic may systematically alter the web page retumed to the client
device as a portion of an experiment conducted within a time interval corresponding
to a test of the web page. The testing logic may also, in certain cases, consider the
web-page access to be the start of a session during which other requests made by the
same client device are monitored and combined together as a logical user session
from which test results can be derived. For example, in a certain class of web-
analytics experiments, the test data may include an indication of whether or not the
user purchases a product or service during a session while the web page is under test,
referred to as a "conversion" event when the user purchases a product or service
during the session.

Thus, website testing can be carried out by testing logic included
within the web server that serves the web pages under test. After the test period has
been completed, or as the test data is being recorded by testing logic, various types of
analytical processing may be performed on the test data to derive various types of
analytical results.

In many cases, however, the testing of websites and the analysis of test
data involves significant complexities and the development of large and complex
testing and analysis methodologies. It has therefore become increasingly popular for
website testing and the analysis of data collected during website testing to be fully or
partially carried out by website-testing services that execute on different, discrete
website-testing-service computer systems.

There are many methods for testing web pages by website-testing
services. Figures 5A-C illustrate three of many different possible methods by which
website-testing services carry out tests of web pages served by remote web servers.
As shown in Figure 5A, one approach is that, during the testing of a particular
website, the web-server system 502 discontinues serving web pages, as indicated by
the "X"-like symbol 504 overlying the double-headed arrow 506 representing
request/response traffic between the web-server system 502 and the Internet 508.
During testing, requests for web pages under test are redirected to the website-testing-

service computer system 510, which serves the web pages under test to client devices

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

12

in a fashion similar to that in which the web server 502 would normally serve web
pages to requesting clients. In this case, the website-testing-service computer system
510 is provided, by the website owner, data for the web pages 512, including various
alternative forms of web pages under test, as well as a test design so that the website-
testing-service computer systematically provides altered web pages to clients and
records client activities with respect to the web pages.

Figure 5B illustrates a second approach to website testing. In this
approach, client requests are initially forwarded to the web-server system 502. The
web-server system includes logic to determine whether or not a requested page is
current under test 514. When the web page is under test, then the request is
forwarded to the website-testing-service computer system 510 which transfers the
requested web page back to the client device. Otherwise, when the requested page is
not under test, the page is returned to the requesting client device by the web-server
system 502. There are many different variations of this general scheme involving
various types of proxy servers and reverse proxy Servers.

Figure 5C illustrates yet an additional type of implementation of a
website-testing service. In this approach, various tags, represented in Figure 5C by
the small dark rectangles, such as rectangle 520, within HTML files that encode web
pages are mtroduced into the web pages by the web-server system. These tags
indicate portions of the web page that are varied during testing of the web page.
When a client device 522 requests the web page, the request is handled by the web-
server system 502 in the normal fashion, but the client device receives a tagged web
page. As the browser on the client device begins to process the HTML file
corresponding to a requested web page under test, the browser identifies and
processes the tags by requesting the website-testing-service computer system 510 to
return an encoding of the object represented by the tag for display by the browser.
The website-testing-service computer system also can use information transferred by
the client-device browser in order to monitor user activities, within user sessions,
related to web pages under test and collect and process the test data to provide

various types of analysis.

WO 2014/059183 PCT/US2013/064398

13

There are two different fundamental types of testing that are
commonly carried out on web pages. A first type of test varies a single object,
region, or feature of a web page and is referred to as a "single factor” test. Figure 6
illustrates single-factor testing. As shown in Figure 6, the test may involve serving

5 each of multiple different variants of a single web page 602-605. Each web page
includes a particular object or region 606-609, the contents of which is varied to
generate the multiple web-page variations. Then, a websile-testing service or
website-testing logic incorporated within a web server provides generally equal
numbers of the different web-page variants to users who access the page during a

10 testing interval, often randomly selecting a particular web-page variant to return to
each next user who accesses the web page. Ultimately, the accumulated test results
can be thought of as comprising a test-result table 610. In the example results table
shown in Figure 6, each row of the table represents an observation, and includes an
indication of the user who accessed the test page, an indication of the particular test-

15 page varant served to the user, and a result. As one example, the result may be a
binary indicator that indicates whether or not the user completed a retail transaction
within a session or time interval following access of the web page. There are many
other different types of results that may be derived during web-page testing.

Figure 7 illustrates a second type of web-page test, referred to as a

20 "multi-factor/multi-level” test. In the second type of web-page testing, the web page
being tested 702 includes multiple items, objects, or features 703-705 that are
systematically varied to produce a relatively large number of different web-page
variants, a portion of which 710 are shown in the right-hand portion of Figure 7. The
first object that is varied, factor I (703 in Figure 7), includes two different variants, or

25 levels 712, the second item or object within the web page that is varied, factor 2 (704
in Figure 7), includes four different variants or levels 714, and the third item or object
that is varied, factor 3 (705 in Figure 7), includes three different variants or levels
716. As a result, there are 4 x 3 x 2 = 24 different possible test-page variants 718.
Again, a website-testing service or website-testing logic embedded within the web

30 server randomly selects a web-page variant from among the 24 different possible

web-page variants to return to each next accessing user during a test interval, and

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

14

collects observations or results that can be thought of as comprising a test-results
table 720. In this test-results table, each row specifies an observation and includes an
indication of the user, the level of each factor in the web-page variant served to the
user, and a test result.

The goal of website testing is often to try various types of variants in a
systematic fashion in order to identify factors that appear to be relevant with respect
to a measured result as well as to identify particular levels of significant factors that
positively contribute to desired results. For example, in the web-page-testing
example of Figure 7, it may be the case that of the three factors, only factor 3
significantly impacts whether or not users end up completing retail transactions.
Furthermore, it may be determined that a solid-colored factor 3 (722 in Figure 7)
results in a larger percentage of completed retail transactions than either of the striped
factor 3 variants 724-725. Thus, website testing may allow the website owner to
determine that, by including a solid-colored factor 3 object in web pages, a greater
proportion of accessing users will end up completing retail transactions through the
website. Alternatively, the result of the experiment illustrated in Figure 7 may
encourage the website owner to devise additional tests to test a greater number of
possible variants for factor 3, having concluded that factor 3 is the significant factor
that determines whether or not retail transactions are completed by those who access
the web page. Note that, although factor levels are illustrated in Figure 7 as different
colors or patterns within a rectangular object, factor levels may include one or more
of a wide variety of differences, including differences in textural content of features,
different images, different colors and shading, different font sizes, and many other
such differences.

As discussed further, in subsequent subsections, the approach to
website test discussed with reference to Figure 5C provides potential advantages for
web analytics, and is therefore the approach used in implementations discussed

below. Further details of the approach are described in the following subsection.

Collection of Information by Instrumentation and Supplementation of Collected

Information

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

15

Figure 8§ shows a simple, exemplary web page. A web page is
described by an HTML file, discussed below, which is processed by a web browser
executing on a computer in order to generate a web page, as shown in Figure 8, that is
displayed to a user on a display device. The exemplary web page 802 includes a
headline graphic 804, an offer graphic 806, a hero graphic 808, and a button graphic
810. The exemplary web page is subsequently discussed in the context of tests and
experiments in which altered versions of the web page are provided to users of the
web server that serves the web page in order to test the effects of modifications to the
web page.

Figure 9 shows the contents of an HIML file that encodes the
exemplary web page shown in Figure 8 and that includes simple modifications. The
modifications, used to virtually incorporate a testing service into a website are
discussed below, with reference to Figure 14,

A complete discussion of HTML is beyond the scope of the current
discussion. In Figure 9, portions of the HTML file are correlated with features in the
displayed web page shown in Figure 8. In addition, general features of HTML are
illustrated in Figure 9. HTML is hierarchical, in nature. In Figure 9, double-headed
arrows, such as double-headed arrow 902, have been drawn to the left of the HTML
code in order to illustrate tags and tag scoping within the HTML file. In general,
HTML statements are delimited by a pair tags, and are hierarchically organized by
scope. For example, an outermost statement begins with a first tag of a tag pair that
begins with the text "<html xmlns=" (904 in Figure 9) and ends with a last tag of the
tag pair that begins with the text "</HTML" (906 in Figure 9). The scope of
outermost statement encompasses the entire HTML code. The double-headed arrow
902 at the left of the HTML code, which represents the scope of this statement, spans
the entire HTML file. A second-level that begins with the first tag of a tag pair
"<head>" 908 and ends with the last tag of the tag pair "</head>" 910 spans a first
portion of the HTML file, as indicated by double-headed arrow 912, and a second
statement bounded by the first and last tags of a tag pair "<body>" 914 and
"</body>" 916 span a second portion of the HTML file, indicated by double-headed

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

16

arrow 918. By examining the tags within the exemplary HTML. file, shown in Figure
9, and the double-headed indications of the scope of tag-delimited statements, the
hierarchical nature of HTML. can be readily appreciated.

Figure 10 provides a tree-like representation of the contents of the
exemplary HTML file shown in Figure 9. The tree 1002 shown in Figure 10 is
constructed from the double-headed arrows that annotate the HTML code, in Figure
9, that span the scopes tag-delimited statements in the exemplary HTML file. For
example, the root node 1004 corresponds to double-headed arrow 902, and the second
level “head” 1006 and “body” 1008 nodes correspond to double-headed amrows 912
and 918 in Figure 9, respectively. Note that, at the very bottom of the tree
representation of the HTML file, shown in Figure 10, the four leaf nodes 1016-1019
represent the four features 804, 806, 808, and 810 of the displayed web page encoded
by the exemplary HTML file, shown in Figure 8. Each of these nodes is essentially a
reference to an image file that contains a jpeg image of the corresponding web-page
feature. The head statement, represented by node 1006 in Figure 10, includes
formatting information, references to highest-level resource-location directories, and
a great deal of additional information that is used by a browser to plan construction of
a displayed web page. The body statement, represented by node 1008 in Figure 10,
includes references to image files, text, and other features that are rendered by the
browser into displayed features of the web page. Intermediate nodes include
identifiers, particular met-data information, and references to scripts that are
downloaded and run by the web browser during web-page rendering and/or display.

As a specific example, node 1016, a direct and only descendant of the
node labeled "headline” 1010 in Figure 10, corresponds to the headline feature 804
displayed in the exemplary web page shown in Figure 8. This node also corresponds
to double-headed arrow 920 in Figure 9. The statement "<img
sre="images/demo_site_hd_green.jpg" indicates that the displayed object is encoded
as a jpeg image “demo_site_offer_green.jpg* that can be found in a file-system sub-
directory "images."

In order to transform an HTML file into a displayed web page, a web

browser constructs a tree-like binary-encoded data object referred to as a “document

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

17

object model” ("DOM.") The exact contents and structure of a DOM is beyond the
scope of the present document. However, implementations of testing and analytics
services may rely on standardized DOM-editing interfaces that provide routines to
identify nodes and subtrees within a DOM and to edit and modify identified nodes
and subtrees. Once a browser has created a DOM from the exemplary HTML file
shown in Figure 9, DOM-editing routines can be used to locate the node in the DOM
corresponding to the node "headline" 1010 in Figure 10 and replace or modify that
node to reference a different image. Following modification, the web browser would
then display a modified web page in which the headline image 804 in Figure 8 is
replaced by a different image. To effect more dramatic changes, an entire subtree of
a DOM, such as the subtree rooted by a node corresponding to the node “right” 1020,
can be removed or replaced, to change groups of display features. While various
testing and analytics systems, discussed below, uses DOM tree modification
techniques, other types of modification techniques provided by interfaces to other
types of binary representations of web pages may be used, in alternative
implementations. The DOM is only one of many possible binary representations that
may be constructed and employed by web browsers.

Another feature of the exemplary HTML file shown in Figure 9 is that
the various features displayed in Figure 8 are, in HTML, wrapped by tag-delimited
identifiers. For example, the "wm_headline" tag indicated by double-headed arrow
920 and by node 1010 in Figure 10 is an identifier for the headline-image-reference
statement 922. Alphanumeric identifiers, such as the identifier “wm_headline,” are
introduced into an HTML file in order to give easy-to-understand and easy-to-use
labels or handles for various objects, particularly objects that correspond to displayed
features in a web page. Although objects can be easily identified in this manner,
other methods for identifying objects within an HTML file, as well as corresponding
nodes of DOM trees and other such binary representations of a rendered page, can be
used to reference display objects.

Figure 11A illustrates a simple web site comprising seven web pages.
Each web page, such as web page 1102, is represented by a rectangle in Figure 11A.

Curved arrows, such as curved arrow 1104, indicate navigational paths between the

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

18

web pages. Accessing the web site illustrated in Figure 11A, a user generally first
accesses a landing page 1102 as a result of clicking a link provided by another web
page, such as a web page provided by a search engine, or provided in a list of
bookmarked links by a web browser. The landing page is often, but not necessarily, a
home page for the website. A home page is a central portal for access to all of the
remaining web pages in the web site. In general, a user navigates through the web
site by clicking on displayed links embedded in web pages. For example, the web
site illustrated in Figure 11A is a retailing web site. The landing page provides links
to four different pages 1150-1153 that provide product descriptions for four different
products. A user, after viewing the landing page 1102, may click a link in order to
navigate to a display of a product-description page 1150. In the exemplary web site
shown in Figure 11A, a user may subsequently navigate from a product-description
page or product-details page to a central order page 1120 that contains a button or
feature 1122 to which the user can input a mouse click in order to order one or more
products. In certain cases, web sites may comprise a single page and, in other cases,
a web site may comprise tens to hundreds or more pages, linked together in a
network-like graph describing various navigational paths between web pages.

An example application of web-site testing would be to monitor
access, by users, of the web pages shown in Figure 11A in order to attempt to
determine how often users end up navigating to the order page and clicking the place-
order button 1122. One might then modify one or more of the pages, and again
monitor users' access to the pages and subsequent input to the place-order button
1122. In this way, by testing collective user response various alternative web pages,
web-site developers and managers may be able to determine an optimal set of web
pages that provides the highest ratio of inputs to the place-order button 1122 to user
accesses of the landing page 1102. In testing parlance, clicking the place-order
button 1122, in the exemplary web site shown in Figure 11A, is, in this example,
considered to be a conversion event. One goal of optimizing the web site might be to
increase the percentage of users clicking on the place-order bﬁtton 1122 after initially
accessing the landing page 1102. However, conversion events may be arbitrarily

defined, and there may be multiple conversion events for a particular web site.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

19

Optimization of a web site may also involve multiple, often at-least partially
contradictory goals. One goal may be to increase the number of accesses to any page
other than the landing page by users who have initially accessed the landing page.
Another goal may be to increase total accesses to the landing page, regardless of
subsequent page accesses by users accessing the landing page. Another goal may be
to obtain maximum possible conversion rates, even at the expense of decreasing the
overall rate of page accesses.

Figure 11B illustrates the data and data structures that define tests, test
runs, and experiments. A testing service may, at any given time, carry out a large
number of different tests for many different client web-site-based organizations.
Each test is defined by a test record, such as test record 1132 in Figure 11B.
Information contained in the test record includes an alphanumeric name of the test, an
identifier for the client on behalf of whom the test has been created, a description of
the test, an indication of the time that the test was created, an indication of the web
page that is tested by the test, and a list of the factors that may be involved in any
particular test run associated with the test. Note that the factors can be specified by
the identifiers associated with features or objects displayed in the web page. For
example, referring to Figures 8-10, a list of factors for a test of the exemplary web
page shown in Figure 8 may include the alphanumeric strings: "wm_headline,"
"wm__hero," "wm_offer," and "wm_button."

Any particular test may be carried out over a series of test runs. For
example, each test run may be carried out at a different time, with respect to a
different segment of users, and may test a different array of features and feature
levels, Thus, each test record, such as test record 1132 in Figure 11B, may be
associated with one or more test-run records, such as test-run record 1134 in Figure
1IB. Test-run records include information such as the levels to be used for each
factor, with the levels specified as URLs, or other references to images and other
resources, or as text strings or other data directly displayed by the browser, a current
state of the test run, a description of the segment to which the test run is directed, an
indication of the particular orthogonal-array basis or other test design for the test run,

and an indication of one or more conversion events for the test run. Finally, using the

WO 2014/059183 PCT/US2013/064398

10

I5

20

30

20

orthogonal-array basis or other test design selected for the test runm, a test run is
associated with a set of experiments, such as experiment 1136 in Figure 11B. Each
experiment corresponds to an altered web page that is displayed'to users during the
test run. An experiment is essentially defined by associating each factor, tested in the
test run, with a particular level, or referenced resource, according to a matrix of test
pages generated by the orthogonal-array basis or other test design selected for the test
run.

Figure 11C illustrates the nature of the statistics, or test results, that are
collected for a particular test run. The results include indications of the test 1142 and
test run 1144, the date on which the test run was conducted 1146, a start time and an
end time for the test run 1148-1149, and a reference 1150 to a results table 1152 in
which test results are tabulated. The test results table includes a row for each
experiment associated with the test run, such as row 1154 in experimental-results
table 1152. The row includes an indication of the experiment to which the row
corresponds 1156, a count of the number of the times that the page corresponding to
the experiment was accessed by a user of an active segment 1158, an indication of the
number of times that a user who accessed the test page generated a corresponding
conversion event 1160, other similar numerical information in additional columns
1162, and, finally, a computed conversion rate 1164 for each experiment. The test
results shown in Figure 11C are but one example of the type of statistics and data that
can be collected during a test run. Different or additional statistics may be collected
by different implementations of testing and analytics, or according to different test
configurations created by test-service clients.

There are many different possible ways of testing a web server in
order to accumulate test results, discussed above with reference to Figure 11C, for
tests defined for particular web pages and factors associated with those web pages, as
discussed above with reference to Figure 11B. One method would require the web
server to design a test by creating all or a subset of possible alternative test pages and
to then develop a test-page-serving system that would execute concurrently with, or
as part of, the web server on an intermittent or continuous basis. As discussed above,

testing methods and systems that require the web server to develop and run tests may

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

21

be prohibitively expensive, both in time and resources, for web-site owners or web-
site-based organizations. Furthermore, such testing methods can inadvertently cause
serious financial losses and other non-financial damage to a web site. For example,
were the test pages improperly constructed or served, sales or other activities
generated by real-time users may be lost and, in worst cases, the web site could
potentially lose business from particular customers and users altogether. Real-time
testing additionally involves significant security risks. A malicious hacker or
employee might be able to alter the test system to display fraudulent or offensive test
pages, for example. Finally, similar to problems encountered in a variety of physical
and behavioral systems, poorly or improperly design tests may so perturb the system
being tested that the statistics collected from the tests are meaningless or, in worst
cases, lead to false conclusions. For example, a poorly designed test engine may
introduce significant delays in web-page service to customers or users. As a result,
the conversion rate measured during a test run may fall precipitously, not because of
particular alterations made to test web pages, but instead because the significant time
delay encountered by users for whom the test page is constructed and to whom the
test web page is transmitted. For these, and many other reasons, web-site-based-
organization test design and execution can be undesirable and, in worst cases,
disruptive and damaging to the web-site-based organization.

An alternative approach involves using a third-party testing service, in
tandem with the web server that serves the web site to be tested. However, simply
conducting tests by a third-party server does not guarantee that the many pitfalls and
disadvantages discussed above with respect to web-site-based-organization test
design and execution are necessarily avoided. In fact, in many cases, the pitfalls and
disadvantages discussed in the preceding paragraph may be exacerbated by third-
party testing of web sites and web servers. For example, in the case that a test web
page, requested by a customer, needs to be prepared by the third-party server, in
response to a request generated by the web site as a result of a user request for the
web page being tested, test-page serving may be significantly delayed, deleteriously
perturbing the users’ interaction with the web server to the point that the test statistics

end up meaningless or misleading. As another example, security issues may be

WO 2014/059183 PCT/US2013/064398

22

compounded by distributing testing tasks between a web-server computer system and
a third-parting testing server. Currently discussed implementations employ an array
of techniques and features that address these pitfalls and disadvantages, and that
provide minimally intrusive and cost-effective testing for web sites and web servers.
5 Figures 12A-H illustrate the general method and system for web-site
testing used in currently described implementations. Figures 12A-H all use the same
illustration conventions, in which large rectangles 1202, 1206, 1212, and 1216
represent a client computer, client web server, web-server customer, and a testing
service. The client computer and client web server are operated by a web-site owner
10 or organization that is a client of the testing service. The web-server customer is a
user who accesses a web site served by the client web server.
A client establishes a relationship with the testing service, as shown in
Figure 12A, by accessing the testing service through a browser executing on the
client computer. As shown in Figure 124, an employee or owner of the client web
15 server uses the client computer 1202 to access a testing-service web site, via a
browser 1204 running on the client computer, which allows the client web server to
register as a client of the testing service. The testing service 1206 includes one or
more databases 1208 and 1210 that store information used to construct library and
key files that are downloaded to client web servers, store statistics collected during
20 testing, and store various different data objects and records that describe clients, tests,
test runs, experiments, and other data used to conduct web-site testing. The client
web server 1212 serves a number of different web pages described by HTML files
1214 to users, represented by user 1216 who access the web pages served by the
client-web server through a browser 1218 running on the customer computer 1216.
25 The testing service and client web server additionally include web-server engines,
application programs, and other components of servers and computer systems (1215
and 121 in Figure 12A).
As shown in Figure 12B, the client carries out a dialog 1220 with the
testing service in order to provide the testing service with information about the client
30 that allows the testing service to prepare a client record or records 1222 that describe

the client and to store the client record or records in the database. In addition, the

WO 2014/059183 PCT/US2013/064398

23

testing service may undertake various authorization and authentication steps to ensure
that the client web server is a valid web server and that the client can transmit
remuneration for testing services to the testing service. As part of client initialization,
the testing service prepares a script library 1224 and a key file 1226 that the testing
5 service downloads to the client web server. The script library 1224 includes routines
that are called by client-web-server users during web-site testing. This library is
referred to as a “script library” because script routines are often provided to browsers
for execution. The key file 1226 includes cryptographic information that ensures
that all information exchanges that occur between client users and the testing service
10 are secure.

As shown in Figure 12C, following client initialization, the client
modifies any of the HTML encodings of web pages that may be altered during testing
of the client-web server by the testing service. The alternations are minimal. To each
HTML file that encodes a web page that may be tested, the client generally adds only

15 two single-line statements and, in the case that display objects are not associated with
identifiers, as discussed above with reference to Figure 9, the client web server
provide identifiers for each of the objects that may be specified as factors for testing
of web pages. The single-line statements are generally identical for all client web
pages, greatly simplifying the web-page modification carried out by the client. The

20 first statement results in downloading of a script library from the client web server,
and the second script launches one or more information exchanges between the
testing server and user computer. In the case that a conversion event is tied to a
specific user-activated display device, such as a button, a call to a conversion script is
mnserted into the HTML file, so that user activation of the user-activated display

25 device generates an information-exchange tramsaction with the testing service
corresponding to a conversion event. As discussed above, these may be the HTML
identifiers discussed with reference to Figure 9, or other types of identifiers. In many
cases, simple changes to the HTML files can be automatically carried out by a script
or by routines provided by a content-management-service application-programming

30 interface.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

24

Following client initialization and modification of the HTML-file
encodings of web pages that may be subsequently tested, the client can configure and
run tests through a test-configuration interface provided as a website by the testing
service to clients, as shown in Figure 12D. The test configuration interface 1230
allows the client computer to define tests 1232, specify and modify already-specified
test runs 1234, and specify segments 1236, and, using client-supplied test and test-run
specifications, the testing service generates the experiments 1238 associated with
each test mn. All of the test, test-run, and segment information is stored in records
associated with a reference to the client in one or more databases within the testing
service. The test-configuration interface 1230 additionally provides run-time
information to the client web server and allows the client web server to launch trial
runs and test runs.

When a client web server has created a test and launched a test run for
the test, the testing service provides modifications of the tested web page to users of
the client-web-server during the test in order that the users receive altered web pages
that constitute test experiments, and the testing service collects statistics based on
users” access to web pages under test. This process is next described, with reference
to Figures 12E-G.

When a client-web-server user 1216 accesses a test web page, the
client-web-server user sends an HTML-file request through the Internet to the client
web server 1212, as shown in Figure 12E, which returns the requested HTML page to
the client-web-server user 1216 for rendering and display by the browser 1218
executing within the user’s computer. As the browser begins to process the HTML
file, the browser encounters a statement 1240 that causes the browser 1218 to request
the script library from the client web server. When the script library is downloaded
by the client web server, the HTML file is modified, on the user computer, to launch
an additional information exchange with the testing service to download additional
library routines from the testing service. This additional information exchange is
carried out only when the web page being processed is an active test page, the user
computer 1s a valid test subject for an active test, and the additional library routines

are not already cached in the user computer’s browser. Insertion of the library-

WO 2014/059183

10

I3

20

25

30

25

routine-fetch statement is one of the two modifications to the HTML files
corresponding to tested web pages made by the client.

Next, as the browser continues to process the HTML, as shown in
Figuré 12F, the browser encounters a call to the library routine “WM.setup” 1241.
When executed by the browser, WM.setup initiates one or more information
exchanges with the testing service during which the testing service can access cookies
and other information associated with the web page on the user’s computer, and the
user computer receives web-page modifications from the testing service. Cookies
can be used, for example, to ensure that a test subject who repeatedly accesses a
landing page receives the same experiment, or test page, each time. Only when the
web page being processed by the user computer is an active test page, and the user
computer is an active test subject, are web-page modifications returned to the user
computer by the testing service, and information uploaded by the testing service from
the user computer. When this web page and user are validated, the testing service
records the page accessed by the user, an identifier of the user, and a time of access in
one or more database entries 1242 and returns a snippet, representing one or more
nodes or sub-trees of the DOM corresponding to the web page, to the user computer,
which modifies the DOM constructed by the browser to incorporate the snippet
downloaded by the testing service to the user. In other words, the testing service
downloads modifications that transform the web page downloaded by the user to a
particular altered web page representing an experiment. Thus, following the
mformation transaction illustrated in Figure 12F, the user's browser alters the DOM
and displays, to the user, the altered web page corresponding to an experiment as part
of the test run. The snippet is constructed or retried by the testing service based on
the orthogonal-array test basis or other test design. The stored test design defines the
experiments, from which the testing service selects experiments for provision to users
in order to obtain a well-distributed sampling of experiments during the test.
Subsequently, as shown in Figure 12G, should the user download a page, or invoke a
feature on a page, corresponding to a conversion event, the user's browser, in
processing the HTML file, encounters a library call 1250 that results in an

information transaction between the user and testing service. The testing service

PCT/US2013/064398

WO 2014/059183 _ PCT/US2013/064398

10

15

20

25

30

26

checks to ensure that the web page is a valid conversion page for an active test, that
the user is a valid test subject. When all of these tests are valid, the conversion event
is recorded 1352 for the experiment by the testing service.

Finally, as shown in Figure 12H, when the testing service has
collected sufficient data to consider the test run to be complete, the testing service
changes the status of the test run to complete, and may then undertake analysis and
reporting of the test results. The test results may be automatically retumned to the
client web server, or may be subsequently returned, on demand, when the client
checks the status of the test run and determines that the test run has been completed.

Figure 13 shows the HTMIL modifications used to virtually
incorporate a testing service into a web site. The HTML code, previously shown in
Figure 9, includes first statement 1402 that directs a browser to download the script-
routine library and a second statement 1404 that calls a script-library entry point
“WM.setup” that results in sending a message or request to the testing service to
indicate a landing-page-access event or page-access-conversion event. A page that
includes a displayed object, activation of which is defined to be a conversion even, is
similarly modified to include a call to the library routine “WM.convert.” By merely
adding two statements to an HTML file, or three in the case that the page corresponds
both to a landing-page-access event and to a conversion event, the HTML file
becomes a potential test web page, and the testing service is virtually incorporated
nto the client web server. Again, the statements used to modify landing-access-
event-associated web pages are identical for all such web pages, as is the statement
that is used to modify display-objects associated with conversion events. A client can
easily write a script or other program, or use a content-management-system
programming interface to introduce these identical statements into web pages.
Alternatively, website-testing services may provide software developer kits ("SDKs™)
that provide a graphical user interface and tool sets that allow clients to easily
Incorporate testing-service instrumentation into HTML code and other information to
allow the testing service to collect data from client web pages and other type of

information provided by the clients to users.

WO 2014/059183 PCT/US2013/064398

27

Figure 14 illustrates the high-level components and data paths within
one implementation of a system that collects data from web browsers executing on
processor-controlled user appliances. The collected data may be used for website-
testing and web analytics, as in the examples discussed above, but may also be used

5 for real-time display of user activity to clients of a website-data-collection-and-
rendering service. In Figure 14, a website-data-collection-and-rendering service is
illustrated, but, in general, the data-collection system may be alternatively or
concurrently used for collecting test data for website-testing and web analytics.
Initially, when a data-rendering application 1402 begins to execute, the application

10 initializes various data structures and then opens at least one communications socket
to a processing center. In Figure 14, the console-or-monitor-like application 1402
executes within an execution environment provided by an operating system 1404 that
executes above the hardware platform 1406 within a client computer system 1408.
The processing center 1410 is generally a remote, distributed computer system that
15 includes tens to hundreds of server computers and other types of processor-controlled
devices, systems, and subsystems. In order to open a communications socket and
communicate with the processing center, the following high-level steps occur: (a) the
application executes an open-socket system call 1420; (b) in response to the system
call, the operating system creates an open-socket-request message and, via a device
20 dnver, queues the message to the input queue of a communications controller and
signals the communications controller to transmit the message to the processing
center 1421; (c) the communications controller controls a transceiver to transmit the
open-socket-request message to a listening process executing on a computer within
the processing center 1422; (d) the processing center returns an acknowledgement
25 message to the transceiver 1423 within computer system 1408; (e) the operating
system 1404 within computer 1408 is notified of the reception of the
acknowledgement message and retrieves the acknowledgement message from a
memory buffer 1424; and (f) the acknowledgement message is passed to the

application program to indicate successful opening of the communications socket
30 1425,

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

28

Once the socket is opened, or, in other words, a protocol-based
communications link is established between the application 1402 and the processing
center 1410, the processing center begins to send a stream of data messages to the
application program through the communications socket. This stream continues until
the occurrence of some type of stream-ending event, such as closing of the socket via
a system call by the application program, termination of the application program, or
various types of failures and computational discontinuities. The application program
may choose to open two or more different sockets to the processing center in order to
concurrently receive two or more different streams of data messages.

Continuing with Figure 14, the process by which a data message is
created and transmitted to the application program is next described. The system
depends on instrumentation introduced into HTML files and/or other resources that
are used by a web browser or other type of application program or control program.
In the example shown in Figure 14, the instrumentation is included in HTML files
that are processed by a web browser 1448 to render and display web pages to a
remote user on a remote computer system 1430. In the example, a user is viewing a
currently displayed web page 1432. The following events occur, in this example: (1)
the user depresses a key or clicks a mouse button 1440 in order to input a command,
make a selection, or carry out some other such input to the web browser; (2) the user
input is sensed by the hardware of the remote computer system 1442, which generates
an interrupt or other signal to the operating system 1444 within the remote computer
system; (3) the operating system receives the interrupt and notifies 1446 the browser
1448 within the remote computer system of the input event; (4) as a result of
receiving the input, the browser executes a script routine 1450 within which
instrumentation has been embedded for collecting data; (5) instrumentation within the
script collects data programmatically 1452, encodes the data within a uniform
resource locater ("URL"), and requests that the browser retrieve a remote resource
specified by the URL; (6) the browser executes an HTTP request for the resource
1454 that results in a system call to the operating system 1444; (7) the operating
system «creates a request message and passes the request message 1o a

commuuications-device controller 1456 for transmission 1458 to a data-collection

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

29

system 1460; (8) the data-collection system retrieves the encoded data from the URL
request and packages the data in a JSON-encoded event message; (9) the event
message 1 transmitted by the data-collection system 1462 to a consolidation system
1464; (10) the consolidation system consolidates event messages received from many
different data-collection systems in temporary storage, with a temporary storage area
allocated for the event messages corresponding to each of one or more different
clients; (11) upon request from the processing center 1410, the consolidation system
forwards 1466 a next set of events to the processing center for processing; (12) a
processing center 1410 processes received event messages by adding derived and
calculated data to the event messages and, in certain cases, aggregating and
coalescing individual event messages into higher-level messages as well as filtering
the messages for output to each connection/stream; (13) those processed messages
that belong to the stream requested by the application program are forwarded 1470 by
the processing center to the computer system 1408; (14) the hardware layer of the
computer system notifies the operating system and passes the received processed
message or messages to the operating system 1472; (15) the operating system notifies
and passes the received processed messages to the application program 1474; (16) the
application program then uses the data to generate and update to the monitor display
or console display based on the received data and passes this update 1476 to the
operating system; (17) the operating system controls a graphics processor and other
video components of the hardware level 1478 to update the monitor display or
console display; and (18) update operations are transferred from the graphics
subsystem to the display device 1480 resulting in an update of the monitor display or
console display. The consolidation systems may store collected data for a specified
period of time, in certain cases, for a week or more, allowing the stored data to be
subsequently streamed or re-streamed for various purposes. Data may be additionally
archived for subsequent retrieval, processing, and streaming, either within
consolidation systems or processing centers.

The currently disclosed method and systems generally maintain state
information within remote computer systems to facilitate data collection and

processing. Figure 15 shows a cookie, or small data structure, that is stored within

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

30

the memory of each remote computer system that is instrumented for data collection
according to one implementation of the currently disclosed methods and systems.
The cookie 1502 includes a unique identifier for the user/processor-controlled
appliance 1504, a system time stamp 1506 that indicates the most recent event
detected by the instrumentation, and a session-start time stamp 1508 that indicates the
time at which a session that includes the most recent event began. The identification
of the user/processor-controlled appliance, id, is generally a combination of an IP
address and other numbers that uniquely identify the user/processor-controlled
appliance. The time stamps that indicate the last detected event, or last visit, /v, and
the start of the session, ss, are generally system time values that indicate the number
of seconds or fractions of seconds that have elapsed since some arbitrary point in
time. The data contained in the cookie is used by the instrumentation for encoding
data within a URL for transmission to a data-collection system and subsequent
downstream processing of the data.

Figures 16A-E illustrate the various types of data messages that are
transmitted between computers in the example system shown in Figure 14. The data
initially collected by instrumentation within the web browser is encoded as a series of
key/value pairs within a URL. Figure 16A illustrates the encoding of key/value pairs
generated by instrumentation within a URL. The URL 1602 includes a path name to
a resource stored on a data-collection server 1604 followed by a question mark 1605
and then a series of semi-colon-delimited key/value pairs 1606. In Figure 16A, and
in subsequent figures, the symbol strings "k1,” "k2," ... are used to indicate different
keys and the corresponding values are generally indicated by a series of "x" symbols
between pairs of single quotes or double quotes, such as "x" symbol strings 1608 and
1610 in Figure 16A indicating the values corresponding to keys "k1" and "k2." The
values may be any alphanumeric symbol string and the key names may also be
arbitrary alphanumeric symbol strings.

Figure 16B illustrates a JSON-encoded event message that is
generated by a data-collection system, transmitted to a consolidation system for
storage, and pulled from storage and transmitted to the processing center. A JSON-

encoded event message includes a "meta" object 1612, previously discussed with

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

31

reference to Figure 7, and a "data" object introduced by the symbol string "data" 1614
and including key/value pairs and objects within the bracket pair 1616-1617. A
"data" object may include key/value pairs, such as key/value pairs 1618 and 1620,
and objects, such as the object named "wt" 1622 that includes key/value pairs within
brackets 1624-1625. Key/value pairs may inclide two symbol strings separated by a
colon, such as key/value pair 1626 or may comprise a key followed by a colon that is
in turn followed by an array of symbol strings, such as key/value pair 1628. Arrays
of symbol strings are delimited by square brackets, such as the pair of square brackets
1630. Event messages generally include a "meta” object and a "data" object.

Figure 16C illustrates an enriched event message that is produced
within the processing center (1410 in Figure 14). An enriched event message
includes a "meta” object 1640, a "data" object 1642, and an "ext" object 1644. The
"ext" object includes three lower-level objects "geo" 1646, "device" 1648, and
"browser" 1650. The geo object contains key/value pairs that describe the
geographical location of a user/processor-controlled user appliance. The device
object 1648 includes key/value pairs that characterize the user/processor-controlled
appliance. The browser object 1650 includes key/value pairs that characterize the
type of browser used by the user. The data values included in the "ext" object 1644
are derived from the data values included in the "meta" and "data" objects as well as
additional calculated values and data sources accessible to the processing center and
used for event-message enrichment. Many types of enrichments are possible. For
example, an enriched even message may include indications of the current weather at
a user's location, the size of the town or city in which the user is located, public data
related to the user, and many other types of information.

Figure 16D illustrates a session message. A session message is a
higher-order message that includes session information as well as a
"session_summary" object and an array of "event" objects. The "meta" object 1660 is
the same as the "meta” object in previously described event messages. A number of
key/value pairs 1662 describe session-related information. The "session_summary"

object describes the number of events included in the session message and other

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

32

information related to the session 1664. Finally, the key/array pair "events" 1666
includes the traditional enriched-event data for each of a series of events.

The data within a JSON-encoded data message may alternatively be
described using a hierarchical notation. The alternate hierarchical notation for the
extended event message shown in Figure 16C is provided in Figure 16E. The keys
within the "meta" object are specified by strings that begin with the substring "meta”
1670. The keys contained in the data object 1642 are specified with strings that begin
with the substring "data" 1672. The keys contained within the "ext" object 1644 are
specified by symbol strings that begin with the substring "ext" 1674. Periods are
used to delimit hierarchical levels. For example, there is only a single hierarchical
level within the meta object and thus all of the keys within the meta object of Figure
16E include a single period between the substring "meta" and the names of the keys
of the key/value pairs contained in the meta object. By contrast, the keys that occur
within the "wt" object that, in turn, lies within the "data" object 1642 include two
periods 1676 to indicate two hierarchical levels. The hierarchical key names shown
in Figure 16E can be thought of as the names of variables, and the corresponding
values are the values stored in the variables,

Almost any type of data value that can be accessed from a script or
computed by a script running in the context of a web browser or similar application
programs 1s a candidate for data collection by instrumentation. The data values may
be values produced by system calls, such as a call to a system-time routine or a call to
retrieve the IP address of the computer within which the web browser is executing.
Other values include data values that indicate a particular state of a displayed web
page within the context of a web site, such as indications of pages, sections, and
subsections currently accessed by a user, indications of various types of input events
to web pages, indications of other web sites through which a user passed in
navigating to the current web site, information requested by and displayed to a user,
and many other types of information related to a user's interaction with the web site.
The data values are named hierarchically, as discussed above with reference to Figure
16E, or, equivalently, associated with key symbol sequences encoded within a JSON-

encoded message. In either case, each data value is uniquely named and can be

WO 2014/059183 PCT/US2013/064398

33

extracted from the parameters within a URL passed to a data-collection system by a

web browser executing on a remote user computer.
Figures 17A-B provide an example of the instrumentation inserted
within a web page that carries out data collection. The data collection is initiated,
5 from a web page, by a script (1702 in Figure 17B) embedded within an HTML file
that specifies a particular web page displayed to a user. The script creates a new tag
object 1704 and then calls a "dcsCollect” tag member function to collect data and
transfer the data to a data-collection system 1706. The "desCollect” member function
1708 calls a "desTag" function 1710. The "desTag" function 1712 creates a URL for
10 a one-pixel resource image and then embeds in the URL, following the "?" symbol, a
list of key/value pairs. The URL is contained within the symbol-string variable P
which is passed to the "dcsCreatelmage" routine 1714. The "dcsCreatelmage”
routine 1716 makes an assignment to an image variable 1718 which is processed by
the browser by using an HTTP request and the URL created by the "dcsTag" routine
15 to fetch the one-pixel image. The one-pixel image is not used for display, but is
merely a vehicle for transmitting the key/value pairs encoding in the parameters

within the URL to the data-collection system.

It should be noted that the data collected by the instrumentation is
unstructured. The value of a key/value pair can be an arbitrary symbol string or an
20 array of symbol strings. Multiple values may be later combined to create longer
symbol strings. The data collected is specified by the instrumentation code. The data
processing and data enhancement generally take place downstream, in a processing
center or other system remote from where the instrumentation is executed to collect
data. There are many advantages to downstream data processing. One advantage is
25 that the instrumentation remains simple and efficient, and does not introduce
potentially disruptive computational burdens on processor-controlled user appliances.
The data collected via the instrumentation is also relatively independent of the
remaining system components. For example, the instrumentation may be modified to
collect a new key/value pair, and that key/value automatically ends up passed to data

30 consumers who have not chosen to filter out the key/value pairs using queries. The

WO 2014/059183

10

15

20

25

30

34

instrumentation can be, in many cases, modified even while the data is collected and
streamed to data consumers.

Figure 18 illustrates, in a fashion similar to Figure 14, an example of a
data-collection system. As discussed previously, data collection occurs within
HTML files or scripts executed by browsers running within the remote processor-
controlled user appliances shown in column 1102, Web browsers make HTTP
requests for resources, specified by URLs, that are directed to various different
geographically dispersed data-collection systems 1104-1106. Listener processes
within the data-collection systems receive the parameter string following the "?"
symbol in the URL specification of a resource, generate, from the key/value pairs in
the parameter string, a JSON-encoded event message, and transmit the JSON-
encoded event messages to a consolidation system 1110 and 1111,

In one implementation, the consolidation systems comprise a large
number of servers that exeéute, in a distributed fashion, the Kafka distributed
messaging system. Kafka 1s a distributed messaging system developed for collecting
and delivering high volumes of log data with low latency. Kafka processes streams
of incoming messages, dividing the incoming messages into messages belonging to
each of a number of categories, referred to as "topics.” A testing or analytics system
may, for example, partition collected data into topics that each corresponds to a
different client organization. Kafka further partitions topics into topic partitions, each
of which comprises a set of segment files stored in memory and/or mass-storage
devices. Kaftka also defines brokers, which are distributed processes, each of which
may process incoming messages for a particular set of topics and topic partitions.
Messages are input to Kafka by producers, and thus, in the currently disclosed
system, the data-collection systems represent the producers. The Kafka system
aggregates the incoming messages for each topic and stores the messages in segment
files for subsequent retrieval by consumers. In the currently disclosed system, the
processing center or processing centers 1114 are the consumers of messages
consolidated by the Kafka distributed messaging system. Incoming messages are
appended to a current in-memory segment file. Once the segment file fills up, it is

flushed to mass storage, at which point the messages are made available to

PCT/US2013/064398

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

35

consumers. Kafka stores messages for a defined period of time, often on the order of
a week. During that time, consumers may repeatedly access messages. In general,
the Kafka distributed message system acts as a kind of very large input/output queuse,
with the lag time between message input and message consumption on the order of
seconds or fractions of seconds, when used in the cwmrently disclosed real-time
processed-data streaming system,

In one implementation, the data-collection portion of a testing or
analytics system employs a Storm big-data processing system within the processing
center. Storm is an open-source system originally developed for handling Twitter
messages. Storm is fully distributed and features high performance, fault-tolerance,
and guaranteed message processing. The conceptual model for Storm is a graph
representing interconnections between spouts, which are data sources, and bolts,
which are data-processing entities. Spouts pull data messages from the consolidation
systems and pass the data messages on to one or more bolts, each of which performs
processing activities, including enrichment, query filtering, and other such
processing. The spouts and bolts are interconnected by communications paths, with
the furthest-downstream bolts emitting processed data messages through

communications sockets to client applications.

Methods and System to Which the Current Document is Directed

In many types web testing, including those discussed above, it is
desired to follow a thread or sequence of events related to a particular user through
many different contexts and activities as the user interacts with a processor-controlled
device, such as a mobile phone, pad, tablet, laptop, or desktop computer. However,
in many cases, currently available testing services and analytics systems are unable to
follow user threads through various patterns of remote information access and
interaction, as a result of which the testing services and analytics systems cannot
process and report desired statistics and compiled information to clients.

Figures 19A-21 illustrate a user thread that spans multiple contexts as

a user interacts with a processor-controlled device to access remote information and,

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

36

in certain cases, transmit information to remote servers. Figures 19A-C illustrate a
series of interactions of a user with a smart phone. In Figures 19A-C, each view of a
cell phone represents a different stage of the user's interaction, and each is associated
with a circled integer, representing the stage illustrated, such as the circled "1" 1902
m Figure 19A. The smart phone 1904 is shown to include a display screen 1906 on
which a displayed information window 1908 is displayed to a user. In the first stage,
represented by the first illustration of the cell phone 1902, a user is viewing a web
page rendered for display by a web browser mobile-phone application. In a second
stage 1910, the user has navigated to a different web page on which a banner
advertisement 1912 is displayed. In a third stage 1914, the user positions a cursor
1916 over the banner advertisement 1912 and inputs a touch-screen command 1918
to the mobile phone to navigate to whatever additional information that can be
displayed related to the banner add. Continuing to Figure 19B, in stage 4 1920, the
user now sees a displayed web page that asks the user whether the user wishes to
navigate to an Acme service or information display 1922. In stage 5 1924, the user
inputs a touch-screen command 1926 to the smart phone indicating a desire to
navigate to Acme. However, in this case, the underlying HTML code includes a
truncated URL, referred to as a "custom URL" or "CURL," which, when used by the
web browser in an HTTP command to fetch a remote resource, results in the mobile
phone operating system searching for an appropriate application to launch that
corresponds to the CURL. In the currently illustrated case, however, no appropriate
application is registered for the CURL, as a result of which the mobile phone invokes
a mew session within the web browser to access and display a web page for an
application store where the user may select an appropriate application to download in
order to complete the desired navigation to the Acme service or information display.
In stage 6 1928, the application-store web page 1930 has been rendered and displayed
to the user. Continuing to Figure 19C, in stage 7 1932, the user inputs a touch-screen
command 1934 to the smart phone to download and launch an Acme application.
The Acme application launches, in stage 8 1936, and displays information 1938 to the

USsEeT.

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

37

In this case, the initial Acme web page, displayed in stage 4 1920, may
have been instrumented, so that Acme can determine when a user has navigated to the
Acme web page from a banner advertisement and from what previously viewed web
page that included the banner add. In addition, the Acme application, launched in
stage 8, has also been instrumented, so that Acme can determine how often users who
respond to the banner advertisement purchase and download the Acme application.

Figure 20 provides a different view of the eight stages discussed above
with reference to Figures 19A-C. Circled stage numbers, such as circle "1" 2002, are
again used to related Figure 20 to Figures 19A-C. In Figure 20, small layer
diagrams, such as layer diagram 2004, are used to illustrate the computational context
of the smart phone at each stage. In stage 1 2002, a web page is rendered and
displayed 2006 to the user by a web browser 2008 executing within a first session
2010 or web-browser-execution context. The web browser, in turn, executes within
an execution environment provided by the smart-phone operating system 2012 that
operates above the smart-phone hardware 2014. In stage 2 2016, a different web
page with the banner advertisement (1912 in Figure 19A) 2018 is displayed to the
user, still within the first session 2010. In stage 3 2020, the user touch-screen input is
received by the hardware, passed through the operating system to the web browser
which, on receiving the input, requests the first Acme web page via the operating
system, hardware, and a remote server 2022, as indicated by curved arrows, including
curved arrow 2024, in Figure 20. In stage 4 2026, the first Acme web page 2028 is
now displayed to the user. The asterisk 2030 indicates that this first Acme web page
is instrumented. In stage 5 2032, the user inputs a touch-screen input to the smart
phone that results in the smart-phone operating system invoking a new session or
web-browser-execution context 2034, in stage 6 2036, in which the web browser
fetches the application-store web page from a remote server 2038, renders the web
page, and displays the rendered application-store web page 2040 to the user. In stage
7 2042, the user mputs a touch-screen command to download the Acme application,
which the web browser downloads from a remote server 2044 and launches, in
cooperation with the smart-phone operating system, the Acme application 2046

which executes in stage 8 2048 within an execution environment provided by the

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

38

operating system. In this case, the second web-browser session may have been
terminated, and the first web-browser session may be suspended while the Acme
application executes. Asterisk 2050 indicates that the Acme application is also
instrumented.

One might assume that since both the first Acme web page is
instrumented and the Acme application is instrumented, it would be relatively
straightforward for the instrumentation in the first Acme web page to transmit data to
a web-testing service to indicate that the user has navigated to the first Acme web
page and for the instrumentation in the Acme application to transmit data to the web-
testing service to indicate that the user has downloaded the Acme application, which
represents a type of conversion. In this fashion, the testing service can keep track of
user downloads from various different banner adds displayed on various web pages to
determine which type of banner adds and which web-page hosts for banner adds are
most effective in steering users to downloading the Acme application. But, in fact,
there is a serious problem.

Figure 21 illustrate the problem introduced in Figure 20 with respect
to user-thread following by a testing service. Figure 21 alternative illustrates the
stages shown in Figures 19A-C and 20. In Figure 21, horizontal arrows, such as
honizontal arrow 2102, represent user interaction in each of various different
computational contexts. Arrow 2102 represents the computational context that
mcludes the first web-browser session, within which the user interacts with the smart-
phone and remote servers in stages 1 - 5. The portion of this interaction within
vertical dashed lines 2104 and 2106 represent the period of time, corresponding to
stages 4 and 5, when Acme instrumentation is active within the first Acme web page.
Thus, during the portion of this interaction within vertical dashed lines 2104 and
2106, Acme instrumentation can transmit data 2108 to a testing-service server 2110
from within the first computational context represented by horizontal arrow 2102,
During a second computational context corresponding to the second web-browser
session being active, in stages 6 and 7, represented by horizontal arrow 2112, because
the application-store web page is neither instrumented nor accessible to the Acme

organization, there is no communication between instrumentation and the Acme

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

39

remote server 2110. In a third computational context, represented by horizontal
arrow 2114 and corresponding to stage 8 and subsequent stages not shown or
discussed in Figures 19A-C and 20, instrumentation within the Acme application can
again, as indicated by vertical dashed line 2116, transmit data 2118 to the testing
service server 2110. However, the data transmitted 2108 from the Acme web page is
transmitted from an entirely different computational context 2102 than the data
transmitted 2118 from the Acme application executing in context 2114. The first
Web-browsér session cannot transfer user-identifying or user-thread-identifying
information to the Acme application, for various reasons. The smart-phone
application may fence off different computational contexts from one another to
prevent many different types of security problems and unintentional collisions in
memory between concurrently executing processes. Moreover, the data collectable
from within different computational contexts may be quite different. In some
computational contexts, for example, cookies may be accessible, while, in other
computational contexts, they may not be. Thus, the data transmitted 2108 from the
first computational context appears to come from a different user thread, to the testing
service, than the user thread from which data is transmitted 2118 from the third
computational context. Many currently available testing services and systems cannot
correlate these two received data sets and can therefore not follow the entire user
thread that spans computational contexts 2102, 2112, and 2114.

Figures 22 and 23 illustrate another user thread that spans multiple
computational contexts. These figures use similar illustration conventions as used in
Figures 19A-C and 20, including stage numbers. In stage 1 2202, a user is viewing
an Acme information page 2204 on the user's processor-controlled device. The
Acme information page is generated and displayed by an Acme application executing
on the user's processor-controlled device. The user inputs a touch-screen command
or mouse click 2206 to request display of additional information. In stage 2 2208, the
requested additional information is displayed within a display window 2210 by a
concurrently executing web browser, a session within which launched by the Acme

application. In stages 3 2212 and 4 2214, the user interacts with the web browser,

WO 2014/059183 PCT/US2013/064398

40

through the display window 2210, to purchase an Acme product, and then returns to
the Acme application context, in stage 5 2216.

Figure 23 shows layer diagrams that represent the five stages of Figure

22. In the first stage 2302, the user is viewing information and interacting with the

5 Acme application 2304 in a first computational context. In the second through fourth

stages 2306-2308, the Acme application is suspended while the user views

information and interacts with the web browser in a second computational context

corresponding to a web-browser session 2310, Finally, in stage 5 2312, the user

returns to the first computational context. Both the Acme application and the Acme

10 web pages may be instrumented, but because the mstrumentation is active in two

different computational contexts, data transmitted by the instrumentation in the first

computational context does not appear related to the data transmitted from the second
computational context.

As can be seen from Figures 19A-Figure 23, many currently available

15 testing services cannot follow temporal user threads when the user information access
and interaction spans multiple computational contexts. The curently disclosed
methods and systems provide a number of instrumentation features and testing-
service procedures that allow a testing service to computationally stitch together
seemingly unrelated user threads, represented by data received by the testing service,

20 to follow an entire user thread that spans multiple computational contexts.

Figures 24A-E illustrate the instrumentation features and testing-
service procedures used by the methods and systems to which the current document is
directed. Figure 24A illustrates a multiple computational context example used in
Figures 24B-E. The horizontal arrow 2402 represents the progression of time. A

25 user interacts with a processor-controlled device during the time interval represented
by horizontal arrow 2402 in a first computational context 2404, then in a second
computational context 2406, and then returns to the first computational context 2408,
This is a simple multiple computational context example. The same features and
procedures described below with respect to the multiple computational context

30 example shown in Figure 24A may be similarly employed to stitch together any

WO 2014/059183 PCT/US2013/064398

41

number of seemingly unrelated user threads corresponding to any number of different
computational contexts.

Figure 24B illustrates a first method that might be undertaken by many
currently available testing and analytics services to attempt to stitch together
5 seemingly unrelated user threads. In Figure 24B, data corresponding to the
occurrence of six different events, such as user inputs or requested and viewed
information, is transmitted from the user's device to a testing service, as represented
in Figure 24B by data transmissions 2410-2415. In each case, the transmitted data,
such as transmitted data 2416, includes an identification of the event that is being
10 reported, such as event identification 2418, and whatever information might be
available to identify the user thread within the computational context from which the
data is transmitted, such as information represented by the circled context identifier
2420 for the first computational context. The information received from these data
transmissions, as well as from data transmissions generated by many other users
15 concurrently interacting with many other processor-controlled user devices, is
received and stored by the testing service in a log or table 2422. As shown in Figure
24B, each entry of the log or table, shown as a horizontal row, such as entry 2424,
includes an event identifier 2425, whatever context-related information was included
in the data transmission 2426, and an arrival time 2427 when the testing service
20 received and processed the transmitted data. The testing service may try to correlate
various table entries by arrival time and by comparing whatever context-related
information was provided in the corresponding data transmission. Unfortunately,
because the testing service may receive hundreds, thousands, or more data
transmission per second, entries corresponding to a user thread may be widely spaced
25 within the table or log. Furthermore, the arrival times may not reflect the time
sequence in which the data was initially transmitted from the user's device, due to
network and system-hardware anomalies. In many cases, the context-related
information is insufficient to make reasonably high-probability inferences with regard

to the relatedness of table entries.
30 Figure 24C illustrates a first procedure used in the currently disclosed

systems and methods. Figure 24C illustrates reporting of the same six events

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

42

ilustrated in Figure 24B. However, in this case, the data transmission include
key/value-pair-encoded information, such as key/value-pair-encoded information
represented by rectangle 2430, as discussed with reference to Figure 16A, that is
processed and enhanced by the testing-service data-collection subsystem to produce
corresponding enriched event messages, discussed above with reference to Figure
16B-E and represented by rectangles in Figure 24C such as rectangle 2432. The
enriched event messages, as discussed above, may include a great deal of information
not provided in event messages received by many currently available testing services,
including the time of transmission of the message by the user device, geographical
location information, device-characterization information, and any of many different
types of identifiers that identify the user, including social-network handles and
identifiers, various visitor IDs, and many other types of user-identifving information.
The many different types of information available in the enriched event messages can
be used to compare event messages, as represented by double arrows, such as double
arrow 2434, in Figure 24C. In the vast majority of cases, this rich information is
sufficient for the testing service to associate a unique user-thread identifier, such as
user-thread identifier 2436, with each received data transmission, and this, combined
with the data-transmission times, allow the testing service to easily reconstruct an
entire user thread 2438, even when the reported events span multiple contexts.

Figure 24D illustrates an instrumentation feature and associated
testing-service procedure that facilitates user-thread stitching in methods and systems
disclosed in the current document. In Figure 24D, the same six events illustrated in
Figures 24B-C are reported, the messages generated by instrumentation to include
key/value-pair-encoded information that enables the data-collection subsystem of the
testing service to generate corresponding enriched event messages. In addition, the
procedure illustrated in Figure 24C is used to assign user-thread identifiers to the
enriched event messages. However, additional instrumentation is included in web-
page encodings, applications, and other computational entities to notify the testing
service that a computational-context change is about to occur. In the example of
Figures 19A-C, for instance, a transition event message can be transmitted by the first

Acme web page, in stage 5 (1924 in Figure 19B), prior to executing an HTTP request

WO 2014/059183 PCT/US2013/064398

10

15

20

235

30

43

corresponding to the CURL that ends up launching a second web-browser session.
Thus, in Figure 24D, transition-event messages 2440 and 2442 are transmitted by the
additional instrumentation added to web pages, applications, or other instrumented
entities, prior to a computational context change represented by edges 2444 and 2446.
These transition-event messages are received and processed by the testing service as
additional enriched event messages 2448 and 2450. When the testing service
receives these transition-event messages, the testing service can begin listening, or
waiting, as represented in Figure 24D by ear icons 2452 and 2454 and dashed lines
2456 and 2458, for a next event message from the same user transmitted from a
different computational context. In this case, the transition-event messages serve as
yet additional, confirmatory information with regard to data-comparison used to
stitch together seemingly different user threads, and also facilitate computationally
efficient stitching, since the time window over which detailed comparisons are
needed to determine which event messages with different information correspond to a
single user may be significantly shortened. In cases in which information
comparison, alone, is insufficient to assign the same user-thread identifier to two
different event messages transmitted from two different computational contexts, the
presence of an intervening transition-event message may increase the probability that
the different event messages were transmitted as a result of activities of the same user
above a threshold probability to allow the user-thread-identifier assignment to be
made.

Figure 24E illustrates an additional instrumentation feature and
asgsociated testing-service procedure that facilitates user-thread stitching in methods
and systems disclosed in the current document. Figure 24E shows reporting of the
same events and use of the same features and procedures used in Figure 24D.
However, an additional mstrumentation feature is added. The new instrumentation
feature requests, at the beginning of each new computational context and when a
suspended computational context resumes, user information from the testing service.
In Figure 24E, the new user-information requests are shown by rectangles and curved
arrows 2460 and 2462. As shown in the lower part of Figure 24E, the user-

information requests allow the testing service to essentially synchronize information

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

44

within the messages that arrive from a single user from multiple computational
contexts. For example, the information included in transition-event message 2464
sent from the first computational context can be acquired by the entity executing in
the second computational context, so that event messages transmitted by the entity
execuling in the second computational context arrive with the same or similar
information 2466. This further facilitates user thread stitching. Moreover, the testing
service can serve as a communications bridge between instrumentation incorporated
within different entities, such as web pages, applications, and other information-
related entities. Thus, not only can the testing service stitch together seemingly
different user threads, but an organization, such as Acme in the preceding examples,
can use instrumentation to allow tﬁe testing service to transfer information between
web browsers, organization applications, and other entities executing on behalf of a
user.

The features and procedures described with reference to Figures 24A-
E, when incorporated within testing-service instrumentation and the testing service,
allow a testing service to correctly correlate received data transmissions from a user
that span multiple computational contexts in order to follow user information requests
and interactions over an entire user thread. Thus, when certain information requests
are made in a first computational context, and a conversion event occurs in a second,
different computational context, the testing service can determine that the information
requests and conversion event are related to a particular user, and therefore maintain
accurate statistics about those information requests that precede conversion events.
This is, of course, but one example of the many different types of testing and analysis
that are enabled by user-thread stitching disclosed in the current document. The
additional instramentation features can be incorporated in SDKs by testing services to
allow the additional information features to be easily incorporated within web pages,
applications, and other entities by clients of the testing service.

Figures 25A-D provide control-flow diagrams that illustrate one
implementation of incoming message handling by a testing service. In Figure 25A,
the message-handling process or processes wait for a next incoming message from

the data-collection subsystem, in step 2502. When a next event message atrives, the

WO 2014/059183 PCT/US2013/064398

10

15

20

25

30

45

information encoded within the message that can be used to identify the user who
precipitated the event that was detected by instrumentation is extracted, in step 2504.
As discussed above, this information may include various types of identifiers, device
and location information, and a great deal of additional statue information retrieved
from a computational context within which the instrumentation executed. Then, in
step 2506, a routine "identify user” is called to identify the user corresponding to the
currently considered message. When the user is identified by this routine, as
determined in step 2508, a routine "identified user" is called in step 2510. Otherwise,
a routine "unidentified user” is called in step 2512. The message handler then either
continues processing additional, queued incoming messages or again waits for more
messages to arrive,

Figure 25B illustrates the routine "identify user” called in step 2506 of
Figure 25A. In step 2520, a local variable bestScore is set to 0 and a local variable u
is set to a null value. In a for-loop of steps 2522-2528, each user in a list of current
users is considered. In step 2523, the user-related information extracted from the
currently considered message is compared to user-related information associated with
the currently considered user from the list of current users, with the comparison
generating a numerical score s. The larger the value of s, the greater the likelihood
that the currently considered user is the user associated with the currently considered
message. Various different types of user-related information may be weighted
differently, to reflect the importance or predictive power of the information. In step
2524, when the currently considered user has been marked as "in transition," as a
result of a transition-event message, and the currently considered message is
compatible with a first subsequent message from a new computational context
associated with the currently considered user, a transition delta is added to the
computed score s to reflect the increased probability that the currently considered
user 1s the user associated with the currently considered message, in step 2525. When
the score s is greater, in value, than the value stored in the local variable bestScore, as
determined in step 2526, then the local variable bestScore is updated to store the
score s and the local variable u is set to the user identifier of the currently considered

user, in step 2527. When there are no more current users to consider, as determined

WO 2014/059183

10

15

20

25

30

46

in step 2528, then, in step 2530, the value stored in the local variable bestScore is
compared to a threshold score. When the value stored in the local variable bestScore
is less than or equal to threshold score, then the routine "identify user” returns false,
to indicate that the user associated with the currently considered message was not
identified. Otherwise, in step 2532, the user identifier stored in the local variable u is
associated with the currently considered message and the routine "identify user"
returns true. In step 2532, if the current user ¥ was marked as "in transition," that
marking is removed. In certain implementations, the for-loop of steps 2522-2528
may be short circuited when a sufficiently large computed score s is observed.

Figure 25C illustrates the routine "identified user” called in step 2510
of Figure 25A. When the cumrently considered message is a transition event, as
determined in step 2540, then, in step 2542, the user associated with the message is
marked as "in transition." Otherwise, when currently considered message is a sync
request, or, in other words, request for user information, as determined in step 2544,
then, in step 2546, the user information is returned to the requesting instrumentation.
Finally, in step 2548, an indication of recent activity for the user associated with the
currently considered message is updated, to indicate that the user continues to be
active.

Figure 25D illustrates the routine "unidentified user" called in step
2512 of Figure 25A. When currently considered message is a sync request, or, in
other words, request for user information, as determined in step 2550, then, in step
2552, a failure indication is returned to the requesting instrumentation. Otherwise,
when the currently considered message is not a transition event, as determined in step
2554, then, in step 2556, a new user identifier is allocated and associated with the
currently considered message and the new user identifier and user-related information
is added to the list of current users. Otherwise, the list of current users is
reconsidered, in light of the transition event, with user-related information updated,
multiple user identifiers identifying a single user deduplicated, timed-out users and
unidentified messages removed, and other maintenance and verification steps taken to
ensure that the list of current users reflects all available information. Then, in step

2560, the routine "identify user” is again called to attempt to identify the user of the

PCT/US2013/064398

WO 2014/059183 PCT/US2013/064398

10

15

20

25

47

currently considered message. If an identification can now be made, as determined in
step 2562, the routine "identified user” is called in step 2564. Otherwise, the
currently considered message is retained as an unidentified message, in step 2566,

The processed event messages are used, by various types of
subsequently executed analysis procedures, to generate statistics and results for
clients of the testing service. The processed event messages are later deleted, after
they are no longer needed by the testing service.

Although the present invention has been described in terms of
particular embodiments, it is not intended that the invention be limited to these
embodiments. Modifications within the spirit of the invention will be apparent to
those skilled in the art. For example, any of many different design and
implementation parameters may be varied to produce a variety of altemative
implementations of the above described instrumentation features and testing-service
procedures, including modular design, programming language, operating system,
control structures, data structures, and other such details. While the currently
disclosed methods have been discussed in the context of website testing, the same
methods can be used to stitch together user threads in many other types of systems,
including real-time data-collection systems and almost any service system that
includes a data-collection subsystem that receives and processes messages from
embedded instrumentation.

It is appreciated that the previous description of the disclosed
embodiments is provided to enable any person skilled in the art to make or use the
present disclosure. Various meodifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles defined herein may be
applied to other embodiments without departing from the spirit or scope of the
disclosure. Thus, the present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

WO 2014/059183 PCT/US2013/064398

48

CLAIMS
I. A system comprising:

OnNe Of MOre Processors;

one or more data-storage devices;

a data-collection subsystem that receives and processes messages sent from
instrumentation contained in remote web-page encodings, remote applications, and other
remote instrumented entities; and

computer instructions, stored in one or more of the one or more data-storage devices,
that, when executed by one or more of the one or more processors, control the system to
process a next message received and processed by the data-collection subsystem by:

recetving the processed message from the data-collection subsystem;

when the processed message is sent by instrumentation in a computational
context from which another message of a current user thread was sent, using message user-
related information contained within the processed message, including computational-
context-associated user-related information, to determine a user associated with the message;

when the processed message is sent by instrumentation in a computational
context different from one or more computational contexts from which other messages of a
current user thread were sent, using message user-related information contained within the
processed message other than computational-context-associated user-related information, to
determine a user associated with the message; and

associated the determined user with the processed message.

2. The system of claim 1 wherein the instrumentation sends messages that include one or

more key/value pairs to report events to the system.

3. The system of claim 2 wherein the messages are HTTP messages.

4. The system of claim 2 wherein the data-collection subsystem processes the received
messages to associate the received messages with information, including user-related
information included in key/value pairs and information stored within the data-collection

subsystem.

WO 2014/059183 PCT/US2013/064398

49

5. The system of claim [wherein the user-related information includes information that
can be used by the system to determine a user identity to associate with the processed
message including one or more of:

visitor identifiers;

geographical location information;

device hardware information;

device operating system information;

information regarding previous user on-line activities; and

social-networking user identifiers.

6. The system of claim 1 wherein computational-context-associated user-related
information includes information available to less than all of the computational contexts from
which messages related to determined user are sent, including;

user-identifying information stored in a computational context or in memory
accessible to a computational context; and

computational-context-specific user identifiers.

7. The system of claim 1 wherein the instrumentation contained in remote web-page
encodings, remote applications, and other remote instrumented entities sends transition event
messages to the system prior to execution of instructions or system calls that result in a

change of computational context.

8. The system of claim 7 wherein the system uses transition event messages to facilitate

identification of users associated with messages.

9. The system of claim 1 wherein the instrumentation contained in remote web-page
encodings, remote applications, and other remote instrumented entities requests, at the
beginning of execution of, or resumption of execution of, a computational context. user-

related information from the system.

WO 2014/059183 PCT/US2013/064398

50

10. The system of claim 9 wherein, when the system identifies the user associated with a
request for user-related information, the system returns stored user-related information for the

user associated with the request to the requesting information.

11. A method carried out in a testing-service, analysis-service, or other service system
having one or more processors, one or more data-storage devices, and a data-collection
subsystem that receives and processes messages sent from instrumentation contained in
remote web-page encodings, remote applications, and other remote instrumented entities, the
method comprising:
for each next processed message received from the data~-collection subsystem,

extracting user-related information from the processed message,

attempting to identify a user associated with the processed message so that the
user can be identified even when computational-context-associated user-related information
is not available either in the user-related information extracted from the processed message
or in user-related information associated with already identified users, and

when the user associated with the processed message is identified, associating

a user identifier for the identified user with the processed message.

12. The method of claim 11 wherein user-related information includes information that
can be used to determine a user identity to associate with the processed message, including
one or more of:

visitor identifiers;

geographical location information;

device hardware information;

device opérating system information;

information regarding previous user on-line activities; and

social-networking user identifiers.

13, The method of claim 11 wherein computational-context-associated user-related
information includes information available to less than all of the computational contexts from

which messages related to determined user are sent, including:

WO 2014/059183 PCT/US2013/064398

51

user-identifying information stored in a computational context or in memory
accessible to a computational context; and

computational-context-specific user identifiers.

14 The method of claim 11 wherein attempting to identify a user associated with the
processed message so that the user can be identified even when computational-context-
associated user-related information is not available either in the user-related information
extracted from the processed message or in user-related information associated with already
identified users further includes:
for each user in a list of current users,
comparing user-related information associated with the user to the
user-related information extracted from the processed message to generate a score reflective
of the probability that the user is the user associated with the processed message, and
when the score indicates a higher probability than previously
considered users in the list of current users, selecting the user as the user associated with the
processed message;
when the score generated with respect to the selected user is greater than a
threshold score,
identifying the selected user as the user associated with the processed

message.

15, The method of claim 14

wherein instrumentation contained in remote web-page encodings, remote
applications, and other remote instrumented entities sends transition event messages to the
service system prior to execution of instructions or system calls that result in a change of
computational context;

wherein, when the user associated with a processed transition event message
received by the service system from the data-collection subsystem is identified, marking the
user as "in transition;" and

wherein, during comparison of user-related information associated with a
currently considered user to the user-related information extracted from the processed

message to generate a score reflective of the probability that the currently considered user is

WO 2014/059183 PCT/US2013/064398

52

the user associated with the processed message, when the currently considered user is marked
as "in transition” and the processed message is compatible with a first message sent from a
new or resumed computational context, the score is changed to reflect a higher probability

that the currently considered user is the user associated with the processed message.

16. The method of claim 11 wherein the instrumentation contained in remote web-page
encodings, remote applications, and other remote instrumented entities requests, at the
beginning of execution of, or resumption of execution of, a computational context. user-

related information from the service system.

17. The method of claim 16 wherein, when the service system identifies the user
associated with a request for user-related information, the system returns stored user-related

information for the user associated with the request to the requesting information.

18. Computer instructions encoded within a physical data-storage device that, when
executed on one or more processors of a service system having the one or more processors,
one or more data-storage devices, and a data-collection subsystem that receives and processes
messages sent from instrumentation contained in remote web-page encodings, remote
applications, and other remote instrumented entities, control the service system to:
for each next processed message received from the data-collection subsystem,

extracting user-related information from the processed message,

attempting to identify a user associated with the processed message so that the
user can be identified even when computational-context-associated user-related information
is not available either in the user-related information extracted from the processed message
or in user-related information associated with already identified users, and

when the user associated with the processed message is identified, associating

a user identifier for the identified user with the processed message.

WO 2014/059183 PCT/US2013/064398

1/52

| o

Al
SR
104/

= IE /@/f‘:’f‘_
N T
o N

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398
2152
/——— 202 /7 203
CPU [— CPU
210 MEMORY
cru P4 cpu
204——/ o \
\ 208
205
212
] SPECIALIZED /
— PROCESSOR BRIDGE
/ 215 /
218 /__ 216
— 220
BRIDGE

CONTROLLER CONTROLLER

CONTROLLER

CONTROLLER

CONTROLLER

CONTROLLER

- /I | l \ l \ I\ i
223 224 225

FIG. 2

226

SUBSTITUTE SHEET (RULE 26)

MASS
STORAGE

DEVICE

227

128

WO 2014/059183

3/52

\ 302

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

FIG. 3

PCT/US2013/064398

WO 2014/059183

4/52

Vv 9Old

ERIE]
18A0
di/dOt/d11H

FOSMOIG gam ~—_ 20p
poy — > ~ 0p
slempiey ~——
90v
HIET) asuodse! | g7y 1senbal
ones l\ B e
20y
siempray ~— 7Ly
UOREZIENLIA /
ElEp peAlos 5o m _‘.V
B Ty
I Janies gam ~— GLy

9Z¥ \

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

5/52

ar 9ld

I

gjep paalos

PR \ ey
PG \llll\]Am.soﬁ qom @@J - 0eY
f @M SO \ q
95y — 7@ 7 elemplely u\b@ M‘U// oy
® ©
oy —|
- oep
/ aiempIe v
u
@ ®
oty \11.;/\ uonezienyin /\
r % /\// 8cy
O
® OIS oM ,V\ inltizg

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

6/52

I Ol

el

Blep penas

JOSMOIG GaM

50

alempiey

alempiey

UoNeZIfeniA

SO

JaAIDs gam

\ oibop Buyisey

® /N@

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

7152

510
/
\512

Ll

502
e

!
FIG. 5A

"
504

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

PCT/US2013/064398
8/52
o
o
. [
(
i
>

= m

© Ty)

N/ % ;

: O

£ (W

o II c

502
b

i1

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

9/52

510
/

502
e

520 /

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

FIG. 5C

PCT/US2013/064398

WO 2014/059183

10/52

158}

SHNsol 159}

i
3
4
l
9 9l 09 o~ =
[
4
L
¥
£
Z
{
|
£
4
I
¥
€
[
I
¥
£
[
3
ynsel abed jsa} Jasn
509 #09 £09 ¢09
/ ¥ / / I / l
[~
/ Q

609 \

908 \

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

11752

WO 2014/059183

oL — sebed }sa) a|qissod Juslayp T = Z X E X ¥] mu _n~

£ ¥ Z
A ¥ [4
l 4 4
. o @ t el ¢
A P S (e e A
g ¥ 2
4 ¥ 3
l ¥ L
£ S l
Z e I
0z e
- ® £ 4 L
¢ < {
3 < 3
£ L L
[4 3 |
L L L
nsal 188N
(¢) sione ¢ Jojoey & &Y
. & &S
L= Ny ~a
» -
(2)
= o
-» »
|\\ 111111 h
\

€0/

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

12/52

PCT/US2013/064398

804

808

806

FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

: 906~ Shess
6 Did 916~ <nrer>
w—m <CATR/> ———

<ATPR/>
<S>
</ Lwuo3gng SWoH,=3Te :m&ﬂ.ﬂﬂﬂlﬂOﬂudshﬂwﬂoulwuﬂmldﬁmﬂ\mmwmﬁﬂ:HOHn Bumry-
< EIY XSPUT,=FOXY ©>
CuEOFITE,=PT ATP>
<ATR/>

< / #NOX Jueyrn,=31e ,Bdl-aezzo woTiERmxTIUCO B3TS owep/sebewr,—oxs Burt>
<uISIF0,=PT ATRP>
< IYLTI,=PT atp> — |

<ATP /> ———————
_ _ _SATR/>
</ wu=3Te ,BdL 8y uvorjeIWTIUOD B3TS owep/sebeur,=oxs Hur>
<yOIBY,=PT A4TR>
CaBFOTu=PT ATPD mormwimwnemnd

CATD/>

<HTPR/S >

<uIADPEIUL=PT ATP>

13/52

<WIBUTEJUCD , =PT ATPR>

</ wuoTjewxtyuon,=3Te oBdL py uorjiEmITIUGO o3Ts cwep/seobeur,=0Is Hur> T
<pISUTTPEROY,=PT ATP> 06

<, AXD UTEem,=pT ATP>

<adraos/>: {)dnyes M < 1dracseael /qxes,=ediy 3drIos>

<w w 2peD BUTHDBRAL UOTEILAUOD STTUIPTIM :JIISUT - —-§>

V16 <&poc>

_ 0bf ~——<peou/>
<3dTIos/><. sk Tdeo wm/sl /mon "oTTwepTA anm/ £ 1 A3y, =a08 widrtaaoseael /qxey =odiy jdraos>

<— - &IRIQTT AUSTID WIOFFIETd UOTIEZTUTIH) STIWSPTM 3ISSUT-—|>
<ariys/>

{ ‘xdg xdggrurbzem }juojjngy

/»Bng

urbrew eoTqnop 99T 3osexy/{ xdg xdp xdgy xdsgiutrbaew} JybTIF < x { Ixdg xdp xdpz udgg:utbrew ‘xdegy i yIPTM 3ybTIizecTy jaybray

/»Bnq urbriew sTgnOp YOT IOEDIx/{ !wdgy xdg xdgg:uthrew} IAFOTH < x | fxdpz x3p xdp xdggiurbaewm xdgogiyUIPTM 3IBTI3ECTIF 13ISTH

{ fxdyz 0 xdpz xdpz:Burpped lIspesyp
{ ‘xdgge:yapts xdpgeg i aybray/yIejucoy/ogne xdyg:utbaem 7 p jeedsa-ou (BAL B e3Ts omep/sebewy) Tan FFFH# punoabioeq jasuteluos
{ ‘{sucu:aspxoq }Bwt { {aejues:ubrie-3¥el {£geqegs puncabyoewq ‘fp :Burpped /g :utbxew } Apog
<860 /qxey,,=odky arizs>
<STITY/>WIOIFRTd UOCTARZTHTIAO STTWEPTM | WOTIBUITIUGD DTS oM CUIADITITI>
</ wg-dlN=gesIEgn ! TER/aus) =iusiucd | adir-gusjue),=atnbas-digy Blems
¥06 <pesy>
<nTWRYR/G666T/BI0" grrmnn// dygy, =sutine 7wl
<uPAP " TeUsTI TEWRIZ-TTWAYX /ALA/ TTUIYX /UL /bxo ga nmn/ /1 d33Y,, NI/ /TRUCTITSURIL 01 TWAIHX 4IQ//DEM//~u JTTENA TWIY HIXLOOAi>

B

D

06 z05°

L6

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398
14/52
1004
1002
S
1006 1008
\ /
HEAD BODY
/ \ / \ 1020
L/
TITLE STYLE SCRIPT MAIN
CONTAINER
HEADER LEFT RIGHT
HEADLINE HERO OFFER BUTTON
1010 1011 1012 1013
N N N N
1016 1017 1018 1019
FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

15/52

Vil 9l

uonduossp
npoud

ELil
\\\

RN

A

N

N

0L

-

sjigyep onpoad

—
T
uonduosap

1onpoad

.

éxw

abed Buipus|

A%

0Lk

/J

0z}

uonduosap
onpoud
e . JRPIO
cell o
obed Joplo
uondinsap \
Pnpoxd

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

PCT/US2013/064398

|
[
. [
Test
1132 | name
client
description
time created
web page being tested
factors
|
i
1 134\ f
Test Run

levels for each factor

tested state

segment description

orthogonal array "

conversion event -

1136 T
[[
i [
i ;]
A

Experiment 1

factor 1 — level n
factor 2 «— level m
factor 3 — level o ||

SUBSTITUTE SHEET (RULE 26)

FIG. 11B

PCT/US2013/064398

WO 2014/059183

17/52

4413

e

rell

Il Ol

8vg’ L1L8€ 1969 i
A 16¥%C 80.L e
<08’ 99ty 9618 G
¥92” 250l L26¢ 14
FAWA LZEY L209 €
oLy PRAR 2oL c
8o oLz vior L \
I v \
ESTEY) N SUDISIAAUOD
UOJSI2ALOD . \ 10 # | SMBIA JO # Tcmﬁtmaxm
\ T
0941 8GLl 6711 8l
29l A\ A\
S _ _
sjnsal swif pua | swi| yes
0611
s1eq uny 189 1591
/ \ [
9Ll w w
1242 AZA"

12412

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

18/62

|oiues Bunse)

\

olel

g0z~ |

-osopspeys

uoneddde Buyyss)

o Ak

oy Aoy |
“tAeuau
D

Zlel \\\\\

14747

302!
Sauno.
19AI9S oM
Uy —
\ JSAISS gam Ul

AN

v¢l 9ld

9lci

ﬂ ABUI0ISND Janias-Clom

J2SMOU]

7

)

gicl

L

N

Jasmouq

<0

4

\ Jenduwion jusip

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

19/52

9¢ct —

veel —

20IBS

Burssay

i .”.m.wm.nwumu :

Lsonsnels -

o Aoy
SRRy

U
Ol
il

A

wee TN\

—— ¢écl

d¢l oid

J2WOISND JoAISS-(oM

Areaqu

[y :_

3

|~ ol Aoy \

%

0cel

IBAIBS gam JuaNo

JRSMOUIG

JOSMOI]

Jayndwos usko

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

20/52

aoaes Buyse)

~ aseqeiep

e sonsnels.

ojyhey
S Aeagy

I3y

1254’
N

T
Pi ml\

a¢l Old

JSLLO}SND I2AIRS-(JoM

Jasmolq

193M04Y

19/198 gOMm JUBID

lendwioa jusio

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

21/52

aouas Bunss)

redl
Q

unj 153}

wauyodaa

LA

VA

153

olhe
ey

gecl

acl 'oid

1BUIOISND IB/uas-gam

juy :

JaAlas gam JusiD

19SMOoIg

<
A\

\

N\

\goepraju N
uonembyuoo 1s91 N
5

0cct

<)

N

ADSMOI]

Jemndwos jusio

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

22/52

oones Bupss)

- eseqeiep

[SORSHEIS

e Aen

Raeag

\\\\|/
T T

clcl

4¢l Ol

9Lt

\

IBLLIOISND I9AIDS-Com

//
>

| Josmolg

{

LT

A obed gom

msﬁ__

A\

)

8lci

/

13smoIq

IBAIBS (am a1

Jainduwio u

=[]

)

ovelL

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

23/52

aonies Buysal

" aseqejep

Jawiade

Csopspelst &f///f

oAy
lreag

cvel

jwiy ‘ _

JOAIDS gam B0

T

= AIE

|/ IBWIOISND 19A19S-gam

T

FOSMOIY T~ 1o
i

474"

1PeMoIy

Jaindwoo juain

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

24/52

aoinies Bunsel

- “aseqeep .

. sousneys

e
..‘.WE Koy H N

- Reagy

1

iy — _

JOAIOS oM JUSID

\\\\\\\\\M/

¢l Old

IBWIOISND JOAISS-GOM

Jasmoiq [~

e

0%zl

jesmolq

Jandwoco s

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

25/52

aoines Bunssy

- aseqeiep

Losonsyes

oy Aoy
hieiqy

sishjeue

jecnfAjeue

iy —:

Hc¢l Old

JSUIOISN 1aAes-gam

lasmolq

18sMoIq

lanlas goem a1

Jandwoo jusio

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

26/52

<TWIYS >
a <Apod/>
m” _\ o —l <ATR/<
CATP>
<ATP />
CATP/ >
<ueds />
</ uT uo3ljng uesain,=3Te HBdf ussab ulq =315 ousp/sebewt,=0I1s Bur>
< NOLINH IHESNI ws,=pT ueds:
<LUEOFING WM, =PT ATP><, MY " UOTEIBAUOD ,=FOIY B>

<ATP/>
</ ul 39330 usern,=3Te¢ ,B6AL-ueazl asygo o1Ts ousp/ssbewt,=ois bar>
A:.NW.“.MO.IHFS-_".T._.H LTR>
<uIYBTI,=PT ATP>

<ATP/ >
o _ <ATP/>
</ w1 oToH uasig, =37 .OdL -useadb sy =o31s owep/soabeut,=0xs But>
<,OIBY WM,=PT ATP>
<uFIFISTu=PT ATP>

<ATR/>
o _ <ATR/>
</ 21 SUTTPesH u2x9,=37T2 ,Od[-ussab py =3Ts owsp/sebewur,=0xs DBur>

<uSUTTPESY me,=pT ATIP>

< TOPRIY,,=pPT ATP>

< IVUTEJULD, =PT ATD>
.WOm”_\ —] <CuIXD UTEUL=pT AtP> |
<3draosy>! (ydnjes muMcuidranseael faxeq, =adiy adrios>
<- - wpop Huryowal meTaRbed STTWSPTM :JIosSUT —-j>

<Apod>

FAN) —] _ <pEsu /> |

<3drros/><, 50 Tden ma/sl /mos " sTTuepTM smn/ /1 dyqy, =oxs ,adrrosesel /ausq,, i =adk3 jdrans>

<—- - AJeIrqTT JUSTTD WICIFEBTL UOTIRZTETIAO STTIWSPRTM !JFISSUT ——j>

<aThis/>

{ !xdg xdgog:urBrew }asgzo mmg

/+Bng uTbaew afqnop 9oT 3esexs/{ fxdp xdp xdgy xdggiuthaew } FybTag < x [!xdp xdp xdpg xdog:urbzew ‘xdggp:yzpTm ubraiaeoTI }aybTap
f«Bnq uthrem a1qnop geT aessay/{ xdgp xdo xdp xdygg:urbxewm } 3FeTH < x { xdpg xdp xdgg:urbaem /xdsog:ylpPTM (3IDTIFEOTF 1AIOTH

{ :xdpz @ xdpz wdyz:bHurpped }xopesuy

{ ‘xdzgg:yapTs xdp9g:3ybTay /yasqausoy//ojne xdgg:urbrew /g ¢ jwedez-—ou (BdL-Bq @3Ts omsp/ssbewt) Tan FIF# pUROIBYDOEY }IABDUTRIUCDY
{ {suou:zepzcq }bBwy { /asjuad:ubTie-3xa3 gUededi puncabxoeq g :butpped ‘g :utbaew } Apog

<uS80 /%oy, =adky oTi3s>

<@TITI/>WI0FFeTd UoTILZTUTIAD STTWSpTM | ybnozyiytes sbeqd DuTpue 9375 oM CUSICSTITI>

</ u8-dLN=32SIVUD ! TURY/IHS],=qudqucd ,sdir-qusiucsH,=asarnba-diny ejeus>

<pEIY>

<nTWAIYX/666T/DA0 " ga”mun// d3ny, =SUTmx TO3Y>

<uP3P " TeUOTR TSURIF- T TWIYX /QLa/ TTUIUX /AL/ B30 gn - man/ /1 da13Y. WNI/ /TRUCTITSURES 0" L JWLHX A5G/ /OEM/ /-1 OITENd TU3Y FAXIO0d|>

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

27152

. WL N ——— —— Sttt
pl 'Ol — /o |
¥4) *uw, -Pw |||||| S N 1
\\\\\\
quw\LAmu ® //,qummvv
._womw—. ¥_\|lup|. I |m0i: e @uﬁ o /
| m\w @=_ . M 0874
eyl crb 7l gzyL !, vopeardde I/Iﬁ/ot; /
weysAs uonepljosuo 80v1L
€ corl @
T = @ JUaAS
o9v| \
o_qr\\\\ I quy\\\\ ovp)
{Buppoen Joysia ‘uoiebolbbe @ \
‘SWIBBAS UOISSaS/USAS 'JUBLILOIUS) LR @

Jajuay) Buissano.d

0¥l e

Wwa}sAs UOIJ03||Co Blep

\

eVl

8Pl “ogy) 255 0Er)

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

28/52

/1502

Ve 1504
id = 216.64.169.240-4057458896.30215649 -
v = 13535159100
1506 — | 55 = 13635167173

1508/

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

29/52

1605
1604 / 1606

1602 ~__” 4 B
http:/www server.com/ID/name.gif ? k1 = ‘x>§xx "k2= XXX
1 ‘

\1608 \1610

FIG. 16A

{

"meta" : 1612
{ /

"schema_version" : "2.0",
"api_version" : "2.0",

"message_type" : "event"
"stream_type" : "content"

}1
1t
{
1616 / uk.] [t . ”XXXXXX", / 1618
k2" : "xxxxxx”, —— 1620

1622 S "Wt" :
1630 1631
¢/ /16311628
1624 / ,|k30 : ["XXXXXX", HXXXXXX“L /

uk4n : I‘XXXXXX”, i —————— 1626
"k 1 TR ", 000K, o000,

1625 KB 1 ["ok}
AN
1617 N }
}
FIG. 16B

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

30/52

"meta" : 1640
(e

"schema_version" : "2.0",
"api_version" ; "2.0",
"message type": "event”,

L "

"stream_type" : "content”

1
"data" :
{ 1642
"KM Moo,
"K2" 1 Moo, /
"wi' oo,
{
"k3"] "Moo 1,
I'Ik41l : “X.XX){XX",
"K' T oooaax”, Mxoooox”, "xxoaxx”],
}
Xt 1644
{
_ 7
{
"K20" : "ooxxx”,
1646 pd k21" oo,
3 :
"device" :
{
"k30" 1 " xxexxxx”,
1648 e k31" " oo,
}1 .
"browser" ;
{
"k40" ; "x0000x",
1650 kA X000,
¥
. r FIG. 16C

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

31/52

"meta” : 1660
{ /
"schema_version" ; "2.0",
"api_version" : "2.0",
"message_type" : "xxxxxx",
"stream_type" : "xoooxx”
b
"session_id" : "1353515717173",
"visitor_id" : "216.64.169.240-4057458896.30216649",

"session_closed" : false, 1662
"session_summary” :
{
"events" :
1664 \ {
K1 oooood,
Hk2l| . IIXXXXXXH
3
"k10" :
{
"K11™ o000,
"K12" 000
h
1] 20"
{
K21 ook
} 1666
3 /
"events” : |
{

FIG. 16D-1

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183
k30" 1 Mxxxxxx”,
K31 Moo, Moo, oo,
"data"
{
"K32" 1 ["00xx”, "Rooxx”, "Xxxxxx"],
|th!| .
_—
k33" 1 Mo, oo, Mo,
"K34" [0, "o, "ok,
}
2
"ext"
{
'Ilgeoll
{
K35 1 "X, Moo, "ooox"],
"K36" 1 000", "OoXXX", "XXHXXX']
3
"source" :
{
"K38" 1 [Mo0000d, "), oo,
K38 1 300X, 00, XXX
L
"device",
{
KAT" 0K, XXX, X,
k42" "0, 0000, Xxxxxx"]
2
"browser”:
{
k44" "0, Moo, oK,
"KAG" 1 [0, XXX, XXX]
}
}
3
{

FIG. 16D-2

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183 PCT/US2013/064398

33/52
"kB0" : "xooexx”,
RS 1 U0, Mooxx”, "xxxxxx,
"data" :
{
"KB2" 1 ["ooexx, 0000, "Xxxxxx"],
llwtll :
{

nk53|l : ["XXXXXX", "XXXXXX", HXXXXXX"],
k4™ 1 ")k, o, oG]

}
L} Xtﬂ :
{
Ilgeoll
{
llk55n : [“XXXXXX", "XXXXXX”, ”XXXXXXN]’
"kB6" 1 ["xaxxxx", "Xxxxxx", "XxxxxX"]
3
"source" :
{
k58" ! ["0000¢”, "o, "ok,
"KD9" 1 Fxxaxxx”, 00, XXX
h
"device™
{
"KB1" 00K, Moo,)oK,
"KBZ2" T "), "X, Mxoaxx’]
]
"browser":
{
kB4" 1 ["x0oxx”, Moo, oaxxx,
"KB5" [0, "X0oxXXX", "XXXXXX"]
}
}

FIG. 16D-3

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

1670 <

1672 <

1674 <

f

34/52

meta.schema_version
meta.api_version
meta.message_type

. meta.stream_type
(" data.k1

data k2
data.wtk3
data.wt.k4
data.wt.kd 1676
data.wt kB

~

" ext.geo.k20

ext.geo.k21
ext.geo.k22

ext.device k30
ext.device.k31

ext.browser k40
ext.browser k41

FIG. 16E

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183 PCT/US2013/064398

35/52

function WebTrends(} { var that = this; this.dcsid =
"dcscyjdorg@eeesfudpsissk_7z2q"; this.domain = "statse.webtrendslive.com”;
this.timezone = -8; this.fpcdom = ".motorcycle-superstore.com”;
this.onsitedoms = (function () { return (window.RegExp ? new
RegExp(".*motorcycle-superstore.com”, "i"} : ""); })();this.downloadtypes =
"xls,doc,pdf,txt,csv,zip"; this.navigationtag = "div,table"; this.adclickparam
= "WT.ac"; this.trackevents = true; this.trimoffsiteparams = true;
this.enabled = true; this.il8n = false; this.fpc = "WT_FPC";
this.paidsearchparams = "ge¢lid"; this.splitvalue = ""; this.preserve = true;
this.vid = { params: "WT.dcsvid,WT.i_e_dcsvid™, name: "WT_VID", path: ";
path=/", expiry: "; expires=" + (function {) { var cur = new Date{); var exp =
new Date(cur.getTime() + 3153660680800); return exp.toGMTString(); })(), _
domain: "; domain=" + this.fpcdom }; this.DCS = {}; this.WT = {}; this.DCSext
= {}; this.images = []; this.index = @; this.qp = []; this.exre = (function ()
{ return (window.RegExp ? new

RegExp("des(uri) | (ref)|(aut)|(met)|(sta)|(sip)|(pro)|(byt}|(dat)|(p3p)|(cfg)|{
redirect)|(cip)", "i") : ""); })(); this.re = (function () { return
(window.RegExp ? (that.ilsn ? { "%25": /\%/g, "%26": /\&/g} : { “%@9": /\t/g,
"%28": [/g, "¥23": /\#/g, "%26": /\&/g, "%2B": /\+/g, "%3F": /\?/g,

"B5C" /\N/g, "%22": /\"/g, "RTF": [\x7F/g, "%A6": /\xA@/g }) : "™); DO); }

1718
WebTrends.prototype.dcsCreateImage = funchi dcssre) {
if (document.images) { this.j glthis.index] = new Image();

1716< this.images[this.index].src 2 dcsSrc; this.index++; }

17124

else { document.write('<img alt="" border="9" name="DCSIMG" width="1"
height="1" src=""' + dcsSrc + '">’); }

¥

fWebTrendsLprototype.dcsTag = function {) {

if (document.cookie.indexOf ("WTLOPTOUT=") != -1} { return; }

var WT = this.WT; var DCS = this.DCS; var DCSext = this.DCSext; var il18n =
this.i18n; var P = "http" + (window.location.protocol.indexOf('https:') == @ ?
'sTor ')+ "i//" + this.domain + (this.desid == "" ? '' : '/' + this.dcsid) +
"/dcs.gif?"; if (i18n) { WT.dep = ""; }

for (var N in DCS) { if (DCS[N] & (typeof DCS[N] != "function")) { P +=
this.dcsA(N, DES[N])}; } 3

for (N in WT) { if (WT[N] && (typeof WT{N] != "function")) { P +=
this.dcsA("WT." + N, WT[N]); } }

for (N in DCSext) {

if (DCSext[N] & (typeof DCSext[N} f= “function")) {
if (i18n) { WT.dep = (WT.dep.length == 8) ? N : (WT.dep + ";" +

FIG. 17A

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

36/52

4 P += this.dcsA(N, DCSext[N]);
} .

}

?f (i18n && (WT.dep.length > @)) { P += this.dcsA("WT.dep", WT.dep); }

if (P.length > 2048 && navigator.userAgent.indexQf ('MSIE') »= 8) {P =
P.substring(0, 204@) + "8WT.tu=1"; }

this.dcsCreatelmage(P); this.WT.ad = ""; 1714
} ¥_—/—

. WebTrends.prototype.dcsCollect = function (0 {
(if (this.enabled) {
. this.dcsvar(); this.dcsMeta(); this.dcsAdv(); if (typeof
(this.dcsCustom) == "function") { this.desCustom(); }
1708 < this.dcsTag();

) NG

1704
/

<script type="text/javascript"> var _tag = new WebTrends();
_tag.dcsGetId(};</script>

<script type="text/
javascript">“tag.trackAllEvents:true;_tag.dcsCollect();</script>

FIG. 17B 1706

1702

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

37/52

WO 2014/059183

&, Buimoyol sied S195MOIG
anea/Aay um

swiaishs sjsenbal afiews diy

w _\ . mu _ -I.* uoijoaljos .Em_u

Sjuang
NOSPH

StuBISAS
UOIRPIECSUDD

sobessaw
NOST 10 sweans

SJUBAD
NOSP

L \ 18U
/ Bussaooud ,\ \
. 118l
fi— I — /

/N

o;m_‘\

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

38/52

wwm_\/
[

vi6l
\o

/

Y0000

j

\w_‘m_‘

PV Iouueg _

W
"
/

./

~

AN i

m_‘mv\

V6l Old

owmw/ @

\\
00000

)

PV Jouuryg

o’

\Nom_‘

e
—OOOOO

~

_— V061

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

39/52

WO 2014/059183

d6l 9i4
8261 / vZ6) / \ 06l
©® O ®
(- ~) fa ~N) (N
0OQOQOOO OO0 O00O OOO0OO
W EITER ﬂ 9761
[J \
_ J
_ “ ~$ mE».«.w..%Emﬁh ALY 0 DL BYE |
| | 2 =
_ — | 40U BWOY 0] 05) ¢ OUf BUIDY 0] 095
/ 81015 ddy /
- Y \ g \S)

0e6l 2761 \

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

40/52

WO 2014/059183

J61 "Old

9e6t A%
/ ® / ®

() (~)

OO0 00O OO0 0O00O00O
6l N
//
n) U "OU[BWOY M
[|
s {]
8E61 — | M “
ONI HWOV | |
210)g ddy
>) . -,

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

41152

8¥0¢ /

®

%02 ~| eyowa

A4 /

O

alempey

S0

—e s 0 &

dde auwoe

x

050¢ \

/ 910

Ionas
aj0lua)

c0le \

\ ¢00¢

1BAloS 1eAlas Jtaalas
gcoz | gowsai ajows)
020
@mom @Now ¢ @ L0c
¢e0¢
\ Eom v L0
S ®® ®
R~ T 4\ A N T tn\
%EBEE\. Em_sEm: _.Emﬁu_mc_. arempley _.Em.;v ’ alempiz) m.ﬁm_.swmm:
1 1 T
" so | S0 7 so | S0 | S0 S0 S0
.kh_mmz—%h W -~ ! a k i |C
0 goM [&— JasMoIq gam | &—| Josmolq QIR | G| JISMOIG oM | & JASMOIG QoM | &<— [Jasmoig gam {&—1 tasmoiq qam
Z Uoissas Z UoIssas] U0lSS9S | UOISSSS | uoissas E UD|SSas | UOI5S9s
| ofied gom | ofied gam | obed qgom | obed gom 1pe yiw abied gom 192 Yl abed gem | obed gom
{_aosouve | (_aosowoe T\ i yowejowoe | A yomejeume Iy peredsp_ | /1] poresp N\
/ PeOZ \ k) /

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

42152

¢lec .

“ONIJWOV

®

;

"ONI FNDV

“ONI JNOV

80¢c / @

‘ON! JNOV

o_‘NN\

¢¢ Old

¢0¢e / @

il

e

9022 — |

“ONI FNDY

v

y0cc /

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

43152

AL
® / \ ®

alemprey

SO

dde swoy

alempley

S50

JB5M0IG
Gam

dde swoy

¢ uoisseg

0Lz |
i€ abed qap|

o — e }

€¢ 9lId

1082
\ ®

alempiey

SO

Jasmolq
9oM

dde sway

L 1 LoIsses

0lLgg |
(Z obed gam|

[|

90€7
\ O,

alempley

SO

JOSMOIq
gsM

dde swoy

L | UoISsag

0Lgz |
1L ebed gapmt

o — —)

2067
\ ®

70EC

alempiey

SO

| dde swoy

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

44/52
™ N
[+ o]
O
wd
[m}
_\
O
o
<I
[aN]
/
<
<t
- N
O
© LL
=
o
.«'/
<t
o
=}
L8]
~
o [N}
% =
ko) I3
= —_
8 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

45152

. | ESPE0] T i T 9 T
m.VN o_m [T L S
] LY.L : Z 1 ¥ ol
= 194 = mm
- SheE 0t z £
eeve £ T T 1
BELEDL 3 z
?NWN 1 mm”oﬂéw\\ F\\ 3 T mN%N
L L L 4
izve /ocie Juons
sl jeAllle xajuoo
. 7
Z Iolloo
| 2 ﬁ | IX3L02
GL¥e Ly elye clye \\ Live \\ 02 0242
® W @ @) od
g Juana G jUaAR ¥ JuaAD £ Juona Z lusne | Jueas
o1z~ gz

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

WO 2014/059183

46/52

e Ol

8EYe
A
' N
Gom — — «— —
(0] (0] 6] @ (0] 0]
9uana G UaAR 4 jUBn8 £ juens 7 Juons | 38
(4] ar K4 a]| a3
\% 9Eve
LA
— — «— — 3 L “— — — «— Een
— — — -3 —> — — — —> e -
¥ E@mSm Z gmw_.a mﬂmom..m ¥ umw_.a 4 am:ww% [ﬁmwé 1 “.mw\.m [“mw>m 4 w_m_w% 1 mw% / Nm”.w..N
4
&
Z Txauon
?
] IXSUOD
2 ?
N ~
] E@w\fm G ﬁncmwaw 4 umw.:m % Hm\.m I gm_wa.w | ﬁmw__m

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

dv¢ Ol

8&/ . R\\\¥f!///,\$§

L N m T T
(@] @
uonsuen (O]
. +1UBA ¢ JUons uoqIsuen ZWaAa L wmw.ﬁ
i Tl) T T T 1] a 5] o]

47152

9byz \ Z XBIH0D
AJ n.w
2 \ | X8)u00
e 1444 :
b ' i I\ \ N ' /\ . ¥
(0]
G WBAS g umugm uoiisuen ¥ %W:m £ amw.;w O.?.VN \ unsues 4 wmwz.u { um_Um,;m

WO 2014/059183

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/064398

N

3v¢ Old

99%¢ / yove /
7 7
.s e — «— &«
uonisue) P un_._w_.,m ¢ HW% UCISUB Z ﬂ%_ﬁ L E@;m
] v] 1] i i i 1]) [}

48/52

- - NJO A Q 7 IX81U09

bt

| IX8juod

(s

~

PRIELE) G 1UBAe uplsues IUsAR £ 1UBAS uDpISUEs) 7 108n0 1 18n0

WO 2014/059183

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

49/52

[

(message handler)

/2512

unidentified user

3

y

wait for next incoming
message

PCT/US2013/064398

»
. 3

A

extract encoded
information refated fo

user identification from

next message

identify user

/ 2510

identified user

SUBSTITUTE SHEET (RULE 26)

FIG. 25A

WO 2014/059183 PCT/US2013/064398

50/52

[identifyuser)

Y

setbestScore=0 | 7 2520
U=9

Y

for each user in list of / 2522

current users

)
-

v
compare information
extracted from
currently censidered

message to user 2523
infarmation ~
associated with
currently considered
userto generate a
comgarisen score S

-~ / 2525
currently /

considered user marked asin
transition and currently considered
message compatible with
transition

§+= transition A

2527
/

bestScore = 5 =
identifier of current
considerad user

2532 ~ associate currently

¢onsidered message

bestScore »

threshold score
?

FIG. 25B

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183 PCT/US2013/064398

51/52

identified user

s
currently

2542
/

mark user as in
transition

return user information / 2540
to requesting
instrucmentation

turrently considered
(essage sync reque

2544 /

2548
update recent actually /

indication for user

FIG. 25C

SUBSTITUTE SHEET (RULE 26)

WO 2014/059183

52/52

unidendified user

2552
/

currently
considered message

return faifure

PCT/US2013/064398

/ 2556
2554
\ curentl aliocate new user
. Y N identifier and add
considered message extracted info to list of
alransition events surcent Users

2558 reconsider current
\ users and deduplicate

and remove timed-out
users

2560
\ identify user

/ 2564

user identified identified user

A A

2566 \ retain message as

unidentified

”i
-

retum\ +

FIG. 25D

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings

