«» UK Patent Application ..GB .,2508645

(13)A

(43)Date of A Publication 11.06.2014

(21) Application No: 1222051.3

(22) Date of Filing: 07.12.2012

(71) Applicant(s):
International Business Machines Corporation
New Orchard Road, Armonk 10504, New York,
United States of America

(72) Inventor(s):
Angel Nunez Mencias
Victor Rafael Escobar Olmos
Jakob Lang
Sven Sterbling
Tomas Libal
Fabian Romanowski

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(51) INT CL:

GO6F 21/10 (2013.01) HO4L 29/08 (2006.01)

(56) Documents Cited:
WO 2008/030759 A1

US 20120072995 A1
US 20030204602 A1

US 7925592 B1
US 20090222505 A1

(58) Field of Search:

INT CL GO6F, HO4L
Other: ONLINE: EPODOC & WPI

(54) Title of the Invention: License management system

Abstract Title: Software licence management in a peer-to-peer network

(57) A software license management system for computer applications runs in a peer-to-peer network. At least one
server acts as a “provider” and at least one server acts as a “user” but each server 201 comprises the same
“means”. The means are suitable for carrying out a method, implemented as a computer program, for the control of
program installations according to respective license regulations. Executable programs are distributed to requesting
servers from storage means, preferably from an update file server 205. A metafile, comprising license information
on licensing conditions for a corresponding executable program code, is generated and stored, preferably on a
licence server 204, and dispatched. A request 202 for transmission of a metafile for a corresponding executable
program code is sent, a metafile is downloaded 203 and stored and the executable program code is downloaded,
installed and executed under control of software license management system.

200
201 ‘

N

201

| Agp Store

04 |
“ |
v

| License Server | 4

3 Y
Update+File Server

Fig. 2

.~ AppStore
> i

. AppStore

V G¥9809¢ 99

7

101 ~

App étore

101

o

App Store

104
N

~

\
N
N % N
\ \
\
\

License Server

105

‘Q /,,///
Updatet+File Server

200

LjD‘E \\

App Store

101

-7

App Store |

201

App Store

| 5 ,/ - -

AN 203 s

| 7 e
204 ‘ " -

\ - | N ////,/*//// ‘,"/
v " 206
‘ License Server | 4
N
. s
. Ve
205
\ ,// /

27
300
301 N

r/,/) /"‘ ,,,,,,,,,,,,,,,,,Ji ,,,,,,,,,,,,,
App Store e ~ App Store
e L
I) e /
! \\ e
: R e i
| B ,,«/, /
304 ‘ . e e
AN - ‘ N e \\ . 1
R " O File Server 3140
. T e B0 S
License Server | /)
\\ / / B
. o g 301
P -

N e
€ &

Update+File Server

05

400 401
401 ™y 1 |

-
App Store

A
§ Update Server
¥
: ¥
License Server yd ™
o 411
7 ~.

e A
< N
\‘\; \«;
~ \
\‘\ \«;
~. N\
N \,
\\ N
~.
™.
~.
~.
-~ ™.
e ~.

e

App Store

402

401

o

¥ /

App Storé

503- T

504

505 |

37

Fig. 5

500
BN
501 501 501
/ ’/ B
Encrypted | LICENSE | Encrypted LICENSE | Encrypled | LICENSE
Record SELLER1 | Record SELLER2 | Record SELLERS
¥ Computer
| Decgryption & Firmwars/
Validation 1 irmware/03
3 507 508
Merge & S
i Encgrypi N
506
e Y — AP B Application
| , e B Decryption & &
| Permanent Storage - o0V R 8 ;
in License DB Validation 2
502

4/ ?

(ﬁ —_—
| send | receive|
mﬁiﬁfﬂ@ “metafiel - 602
of 603

trusted{app) store

enstire that UUiD of this | |
matchea {o gwen UuiD | |

64— N ‘
N /\w e 817

{matc:hes}

decrypt
connection
part 605

Check 608

URLior —
 updates - 606

Download |
o <> [new updates] { and update

609 “egsel T ?‘,‘?ﬁ%’,‘,fi,

{Check static | 7
ixiscense part |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

owni]
P addiimnai ?ac:ense

810 | [additional context " conditions from -
required] 617

Check addstimai
iscense content |

,,,,,,,,,,,,,,,,,,,,,,,,,,

‘Dawnioac
| festure |

from
trusted - — 614
H{app) siore
epgore

616

install - Connact to license server |
product - and place inusage of |
onfarget | icense + UUIDTor
- mstaiiatacn

C 61T

]
©Q
»

&7

701 702
Company A 702 Cormpany B 703
7 e Redistribution
4 & Provisioning
EFS Frovisioning > cES .
T
Seilf produced product Self produced product
Fig. 7
801 — FFS Software
product produced out of
\ thg network
import products | /
{Provisioning) |
v s Self produced product
801 P EFS Software
/ \\
7) | Redistribution
External Sale & & provision others
{out of the network) y Qg

Internal consume of

products

| EFSSofware
81—

Fig. 8

6/7

Manual importing From ancther EFS Self producad
{other company) " Product
. v -
p tmporting layer
901
y
= Catalogue
902
¥
o Consume & Exporting layer
03 <
Self consume & | S
v 4
To another EFS EthOﬁ out ff
. the network
Fig. 9
 Establish |
_— connection }Eo
T company X |
001 Lol
- 1002
resfricted Y/ unrestricted
| Send an requestio Insert URL and connect 1008
/7 company X | o EFS
1003
1007
V ‘ ?L 777777 7
(: rejected e
P \\:& //
1004 accepted
v
Negotiate about
access rights and import EtFS
7 price for the access B ??mei? dar —
1005 | +create the EFS EE’E‘;};‘ N
connector File —-1006

Fig. 10

717

1102
1301)
/
/ {
| Certificate
App Store
-1 UUID: EFS123...
Provider
1]104 e
R 1105
| 7 -~ Y,
¥ ~

,/ 4
/

o

License Server | e . ‘
URL: someadress Update-+File Server

Licenses managed: URL: someadress

Files managed:

Fig. 11

DESCRIPTTION

License Management System

Field of the invention

The invention generally relates to a license management system
for software products in a peer-to-peer network incorporating a

plurality of provider, re-distributor, and client servers.

Background

Software products are often distributed and installed over
intranet or internet nowadays. The use of software products is
in general ruled and regulated by license agreements between
provider and user. The provider of the software product wants
the user to abide by the license agreement. This implies that
the user reads and understands the license agreement for the
respective software product. Hence, there is a need for a secure
licensing and entitlement system to ensure that the demands of

provider and user are precisely matched.

It is known in the prior art to employ software license manager
tools to control software products as to their environment and
runtime. License managers are also employed for product
activation, trial licenses, subscription licenses, feature-based

licenses, and floating licensing from the same software package.

In addition license manager tools reconcile software licenses
and installed software, and include other helpful features such
as device discovery, software inventory, license compliance, and

reporting functions, and they increase operational transparency

in order to prevent litigation costs associated with software

misuse.

Nevertheless, currently the only way to ensure that the license
is enforced is requiring a connection back from the user to the

software product provider.

The relation between provider and user and the processes of
providing products and services is usually complicated and
irregular because of the high complexity and variations of the
involved processes. Variations may be initiated by the software
provider due to business requirements or processes in the
production and interaction. For that reason most provisioning
processes are highly manual and there exists no real

standardization at the moment.

An example for an existing provisioning process is the App
Store® by Apple® Inc. It is based on a closed model with a
centralized architecture to reduce the complexity. However this
approach is exclusively or at least mainly used for
simplification of the provisioning to private customers where

normally no high complexity is to be expected.

In JP 2010 021615 A a content distribution system and method is
described for providing a license management method for a
Streaming content. A plurality of content distribution servers
carry out streaming distribution of an enciphered scramble key
used for release of scramble, while they distribute a scrambled

content.

From JP 2010 218397 A an information processing apparatus and
method is known for easily managing a license while reducing the

load on a network by reducing the obtaining time of software.

In US 8 229 858 Bl an enterprise licensing system is provided
that includes a licensing agent operable to (a) provide a
customer with features and/or capacities, being allocable freely
by the customer among first and second computational components;
(b) receive an allocation of the first and second computational
components; and (c) generate first and second licenses

reflecting the first allocation.

In US 2002/0138441 Al a technique for license management and
online software license enforcement is described, wherein
individual licenses are provided for regulating the use of a
software product, and the software product is individualized
while being downloaded from a license server. The execution of
each individualized software product is monitored in agreement
with the individual license terms corresponding to the

individual software download.

However, in this prior art the license file is unambiguously
assigned to a specific user and location. Yet, registration of
every user implies a large work load and considerable security
requirements on the side of the product provider. In addition,
monitoring data of a huge plurality of users implies
considerable traffic on the network and necessitates permanent
presence of all participants on the network. Moreover, the prior
art is silent on the issue of handling updates of software

products.

In US 2008/0288788 Al a digital rights management is disclosed

that is based on metafiles for managing digital rights.

In general, in the prior art the computer system that wants to
employ software under license must necessarily have an internet
connection in order to register the software product at the

provider. The license record is processed on the receiving

computer system. Additional requirements may be imposed on the
system from outside, e.g. the licensor, depending on the nature
of the license. In summary, the involved procedures are rather

complex and inconvenient to handle.

Hence, there is a need to improve the hitherto known License
Management Systems so as to achieve a secure, self contained
process for provision of software products to a user and to

guarantee observation of license agreements at the same time.

Summary of the invention

The present invention provides a License Management System that
is based on encrypted records to control provision and licensing

of software products.

The present invention provides a license management system for

computer program applications, the system including an exchange

network connecting a plurality of peer-to-peer network servers,
wherein at least one network server of said plurality of
peer-to-peer network servers acts as a provider server and at
least one network server of said plurality of peer-to-peer
network servers acts as a user server, and each of said
plurality of peer-to-peer network servers comprises:

- software license management means for controlling
program installations according to respective license
regulations;

- storage means for executable program codes to be
distributed to requesting servers;

- means for generating, storing, and dispatching a
metafile including at least license information on
licensing conditions for a corresponding executable

program code;

- means for sending a request for transmission of a
metafile for a corresponding executable program code;

- means for downloading and storing a metafile, and

- means for downloading, installing, and executing said
executable program code under control of said software

license management means.

The present invention further provides a method for running a
license management system, which method comprises the steps of:
- controlling program installations according to
respective license regulations by software license

management means;

- distributing executable program codes to requesting
servers from storage means;

- generating, storing, and dispatching a metafile
including at least license information on licensing
conditions for a corresponding executable program code;

- sending a request for transmission of a metafile for a
corresponding executable program code;

- downloading and storing a metafile, and

- downloading, installing, and executing said executable
program code under control of said software license

management means.

The present invention further provides a computer program
product for a license management system, causing a computer

system to perform said method.

As will be appreciated by one skilled in the art, aspects of the
present disclosure may be embodied as a system, method or
computer program product. Accordingly, aspects of the present
disclosure may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resident

software, micro-code, etc.) or an embodiment combining software

and hardware aspects that may all generally be referred to

(4 ”

herein as a “circuit,” “module” or “system.” Furthermore,
aspects of the present disclosure may take the form of a
computer program product embodied in one or more computer
readable medium(s) having computer readable program code

embodied thereon.

Any combination of one or more computer readable medium(s) may
be utilized. The computer readable medium may be a computer
readable signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More gpecific examples (a
non-exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having one
or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash memory),
an optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device, or
any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use by
or in connection with an instruction execution system,

apparatus, or device.

A computer readable signal medium may include a propagated data
signal with computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, including,
but not limited to, electro-magnetic, optical, or any suitable
combination thereof. A computer readable signal medium may be

any computer readable medium that is not a computer readable

storage medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or

any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of
the present invention may be written in any combination of one
or more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The
program code may execute entirely on the user's computer, partly
on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products according to
embodiments of the present disclosure. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data

processing apparatus to produce a machine, such that the

instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in a
computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded onto a
computer, other programmable data processing apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other devices
to produce a computer implemented process such that the
instructions which execute on the computer or other programmable
apparatus provide processes for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

The block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of
systems, methods and computer program products according to
various embodiments of the present disclosure. In this regard,
each block in the block diagrams may represent a module,
segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions discussed hereinabove may occur
out of the disclosed order. For example, two functions taught in
succession may, in fact, be executed substantially concurrently,
or the functions may sometimes be executed in the reverse order,

depending upon the functionality involved. It will also be noted

that each block of the block diagrams, and combinations of
blocks in the block diagrams, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hardware
and computer instructions.

The terminology used herein is for the purpose of describing
particular embodiments only and is not intended to be limiting
of the invention. As used herein, the singular forms "a", "an"
and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be
further understood that the terms "comprises"™ and/or
"comprising," when used in this specification, specify the
presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,

operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equivalents
of all means or step plus function elements in the claims below
are intended to include any structure, material, or act for
performing the function in combination with other claimed
elements as specifically claimed. The description of the present
invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to
the invention in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
invention. The embodiment was chosen and described in order to
best explain the principles of the invention and the practical
application, and to enable others of ordinary skill in the art
to understand the invention for various embodiments with various

modifications as are suited to the particular use contemplated.

Brief description of the drawings

In the following, preferred embodiments of the invention will be

described in greater detail by way of example only making

reference to the drawings in which:

Figs.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 to 4 illustrate the procedure of product provision and

10

11

license management according to a preferred embodiment

of the invention;

depicts a preferred embodiment of the license

management system according to the invention;

is a flowchart of a preferred procedure according to
the invention that is carried out by servers involved

in the product provision and license management;

is a schematic diagram of the product flow according

to the invention;

is a more abstract diagram of the product flow

according to the invention in a store network;

schematically depicts a preferred stack of involved

layers in a network server according to the invention;

shows a part of the regquest procedure that is launched

by a requesting server according to the invention, and

shows schematically the process of creating a metafile

according to a preferred embodiment of the invention.

Detailed description

In the following, like numbered elements in these figures are
either similar elements or perform an equivalent function.
Elements which have been discussed previously will not
necessarily be discussed in later figures if the function is

equivalent.

It is the purpose of the present invention to create a flexible
business-to-business (B2B-) solution in order to facilitate the
end-to-end provisioning process. Browsing products (like in
catalogues or web stores) that are offered by providers is made
possible by a direct connection to the back-end processes which
are needed to acgquire product features. Upon selection of
products (e.g. software) by the customer, the product and
product features can be deployed automatically on the customer’s

computer.

The license management system according to the invention will be
described in the following with reference being made to Figs. 1
to 4. In Fig. 1 there are shown three network servers 101 which

are linked to each other in a provider and user network 100.

If one of the network servers 101 has become aware of a software
product that is offered by another network server 101 it sends a
request 102 to the respective server 101. The addressed server
101 answers the request by transfer 103 of a metafile. At the
same time or at an earlier time a license server 104 and an
update-file server 105 are and have been informed respectively
of the dispatch of metafiles. The prior communication between
server 101 and license server 104 and update file and server

105, respectively, is indicated by dashed arrows in the Figures.

The following procedure is illustrated in the network 200 of
Fig. 2. Once the requesting server 201 has sent its request 202

and is in possession of the metafile 203 it presents the general

approval 206 of the offering server 201 as extracted from the
metafile 203 at a license server 204 and gets the corresponding
license in return. The license server 204 had been informed of
the request and of the dispatch of the metafile by the server
201 before, which process is indicated by dashed arrows in the
Figures. The information of the license server 204 and the
update-file server 205 may concern a single metafile dispatch or
may be a general notice that a particular software product has
been offered and the provider 201 will distribute metafiles as
requested from now on. With the valid license the requesting
server 201 sends a request 207 for downloading and installing of

the desired software product to the update-file server 205.

Instead of downloading the software product file from an update-
file server this may also be accomplished by downloading the
file from the provider server itself. Such scenario is
illustrated in network 300 of Fig. 3. The requesting server 301
directs its request 308 to the provider which supplies the file
after the license has been approved. While this is the more
direct way of providing the desired software product, in an
alternative the requesting server 301 is referred to the update-
file server 305 for downloading. In this case server 301 sends
the request 309 to the update-file server 305 and in return gets
the desired software product. This rather indirect provision
necessitates communication between provider server 301 and
update-file server 305 as indicated by a dashed arrow. Still
another alternative is the file transfer via an intermediate
file server 310. This procedure may be considered beneficial if
the update-file server 305 is likely to be overloaded and
therefore files are swapped out. The respective communications
messages between requesting server 301, update-file server 305,
and intermediary server 310 are indicated by dashed arrows in

Fig. 3.

In the above scenarios only two active servers are involved. The
other servers that were mentioned above only serve as storages
and buffers. However, the invention is not limited to the
exchange of products between two active servers only. Instead,
the receiving server may be entitled to re-distribute the
acquired software product. The entitlement to do so is of course
subject to the license which the receiving server has been

granted by the provider server.

In Fig. 4 re-distribution of an acquired software product by the
receiving server 401 in the provider and user network 400 is
shown. Once the receiving server 401 top right in Fig. 4 is in
possession of the software product there may be sent a request
402 from the server 401 down right in Fig. 4. The server 401 top
right sends a metafile 403 to server 401 down right in return.
Based on this metafile 403 the server 401 down right is entitled
to request a full license from a license server 404 by sending
an according request 412 to the license server 404. The software
product is downloaded then from file server 410 in a file
download process 413. In case there are updates available for
the purchased software product the downloading server is
informed about it and the updates may be obtained from an update
server 411 by request 414. License server 404 and update server
411 are still under control of the provider server 401 top left
in Fig. 4. File server 410 however gets its instructions from

the re-distributing server 401 top right in Fig. 4.

As has become obvious there is no communications necessary
between re-distributor and provider when the software product is
re-distributed. This separation as to communications between re-
distributor and provider is indicated by a vertical dashed line
in Fig. 4. The separation of re-distributor and provider is
reasonable since the software product that had been purchased by

the re-distributor from the provider is in the ownership of the

re-distributor now, and it is the re-distributor who is
responsible for state and usability of the software-product. In
other words the re-distributor is liable to the subseguent

purchaser for usability of the software product.

The license management system according to the invention is
based on server architecture comprising an abstract import layer
for the import of features from several feature sources or
catalogues to the local system. An internal/external use layer
allows the system to either use the acquired features internally
or (re-) distribute them via various output channels. Depending
on the regpective purpose multiple agents can be plugged-in. One
option for the export is a direct connection to the import layer

of another compatible software system.

Import of product features means import of self produced
software features, of software features from other systems, and
of software features from other companies, respectively.
Internal/external use of products means internal use of the
product like deployment by the importing system, redistribution
or sale to another system from the same platform, e.g. to a
company which does not use the platform, and any other use,
respectively. The whole process is integrated into the business
processes of the importing system and the interaction between
the systems creates a provider customer network emulating the

current real network of customers and providers.

In the following an embodiment of the invention will be
described with reference being made to Figure 5. A license key
in this system consists of a unique identifier and some data
associated with this identifier. The data contain for example
information that simply distinguishes between “entitled” and
“not entitled” (i.e. the right to use an application x on a

system or not). The data may also contain the number and type of

resources that are allowed for use (e.g. application y can run
on up to 5 processors and claim up to 3 GB of memory). Still
further, the data may include information on the expiry of the
license (e.g. the right to use application z until Dec. 31,
2012, but no longer). For a skilled person many more

applications of the present invention are obvious.

By using a 'Key-Value-Length' format for the license key, the
exact content of the license keys is transparent to the license
management system 500 according to the invention. License keys
contain encrypted parts that are created using standard
encryption techniques. Keys from various sources such as
software or hardware vendors 501 (License Seller 1, 2, 3 in
Figure 5) can be employed and may be limited to a given computer
system 502 or Operating System referring to the system serial
number or some other unique identifier. The keys are stored in
encrypted records on the license seller side. Each license

seller has his own encrypted record memory.

For the installation of a product the user installs an encrypted
license key on the computer system. Multiple independent license
keys may be installed over the time. The keys can be loaded from
external media (USB stick, CD ...) or from the web or may be
typed in via GUI. The computer system receives the encrypted
license keys, decrypts and validates them in a first decryption
and validation means 503. The validation process can include the
verification that the key is valid for this system serial
number, and that sufficient resources are available in the
computer system to run the newly licensed software. If
decryption and validation is successful, the license keys are
stored in a central secure license repository 505, i.e. a
permanent storage License Database. In this license repository
505 multiple license keys can be stored and individual license

keys can be updated or removed from the repository 505 without

affecting the other license keys in the repository. The central
license repository 505 is not accessible to the user; it is
encrypted, and it is therefore protected against fraud. The
license database 505 is self contained and requires no web
server access in order to verify a license. The verification of
the license at a later time is conducted by a second decryption

and validation means 506.

An Application Programming Interface (API) 507 is provided to
query license information from the central license database.
This API can be used by application programs 508, the Operating
System or even Hardware/Firmware to determine whether a certain
function is allowed, or whether an application program may be
loaded and for how long it may be used. The API 507 retrieves
license information from the license database 505, decrypts and
validates it in the second decryption and validation means 506
and hands it back to the caller, i.e. the application program
508 that runs on the computer system 502 of the user. The secure
API 507 is protected against manipulation of the results: for
example, the communication between database and application
programming interface (DB - API communication) is secured by
decryption on each API call. The communication may also be
secured by a trusted environment. Still another alternative is
securing the API by signature. Since the API is always

available, no network access is required.

Depending on the results of the API license query a chosen
software function on the computer system is executed or denied.
Meaningful error messages to the user can be generated by the
instance that issued the API license guery in case a function is
not entitled to run on this system. In addition, the API license
query can be issued repeatedly after predetermined time
intervals in order to validate the license and react accordingly

upon its expiration.

If the computer system 502 of the user acts as a vendor system a
license file is created and the respective data are merged and
encrypted in a merge and encryption means 504 that is located

between database 505 and interface to the server network.

The invention provides a software system to run the license
management system of Fig. 5 which creates and manages a network
of interacting providers and customers. Every participant may
take on either role (provider or customer) at any time and there
is no limit or prerequisite to their activities inside the
system network. The network connecting the users of the system
is decentralized and there is no need for a global manager or
agent and no need for a steady-state connection to a central

control entity.

In the following an embodiment of the method for handling
connection-, license- and rights management according to the

invention will be described with reference being made to Fig. 6.

The management method is based on metafiles in a distributed and
decentralized environment. Such metafile is issued and delivered
by a product provider, independently of but in connection with

the product itself.

The metafile is a signed file, in which a license to the product
is encoded. Apart from formal licence requirements the metafile
contains the location of the file product or feature product
that the customer is about to buy and install. There may be an
option as well to include additional license enforcement plug-

ins in the metafile.

The metafile is distributed through a trusted product provider

store, called provider server in the following. The trusted

provider server runs in a trusted environment and is able to
process the signed license file in order to enforce the license.
The trusted provider server is furnished so as to handle the
formal license language, and, if present, to execute the

additional license enforcements plug-ins.

For realization of the method according to the invention the
following prerequisites must be fulfilled. The trusted provider
server i1s assigned a unique unified identification (UUID). For
example, if the store has been approved and appointed by a
certification centre, the provider server may get the UUID from
the certification centre. For the encryption of the connection
part in the metafile a mechanism may be provided that prevents
the metafile from being decrypted by anyone else but the
targeted provider server. Moreover, the key may contain the
UUID. Further, only the issuer of the metafile (i.e. provider of
the feature) is entitled to create and change the license part.
However, if the targeted provider server is a reseller it may
change the source address of the app product, i.e. change the
URL on the internet where the source file is to be found for
downloading. This of course requires the consent of the metafile

issuer.

If the software is delivered from the trusted provider server,
e.g. to an external medium, it is encrypted through the unique
unified ID. The UUID is necessary as key for the installation of
the software product from an external medium. If the software is
deleted a signed report is created and may be saved in the
enterprise feature store (EFS) again in order to make the

license available again.

In the following example it is assumed that the metafile UUID
was issued by the target trusted provider server. The (signed)

license part of the metafile regquires that the product must not

be used in Afghanistan. If a request originates from India,
however, then the request is directed to URL download sources
with India specific conditions which are explained below.
Further it is regquired that only mainframe computers of type Y
are supported. Still further it is required that the file

product is only active during the weekend for 10 minutes.

The (encrypted) connection part of the metafile contains a URL
to a license server, a URL to the provider of the feature, i.e.
location of the feature to download, a URL where updates will be
provided, and a URL for an additional India license. In this

example India is only allowed to use it for 5 minutes a day.

The process of installing a new feature from an provider server
is illustrated in Fig. 6. A software provider issues a metafile
in step 601. Once the trusted provider server has received the
metafile in step 602 it examines the metafile in step 603 and
verifies that the UUID of the metafile matches to the given
target EFS. If it has been verified in step 603 that the UUID
matches to the given target EFS, in step 605 the connection part
is decrypted and the process continues. Otherwise, if
verification in step 603 was not successful, the procedure exits
in step 604. After step 605 the extracted URL is checked for
updates. If there are updates available to the software product
the procedure branches off to a second download and update of
the metafile at step 608. The procedure re-enters its ordinary
course in step 609 where the static license part is examined.
Additional license conditions are downloaded from the extracted
URL at step 611 if it is decided at step 0610 to branch off.
Otherwise the procedure continues at step 613. Once the
additional license conditions have been downloaded at step 611
the additional license content is examined at step 612 before
the procedure re-enters the ordinary course at 613. If at step

613 a fault is detected the procedure is terminated. Otherwise

the software product is downloaded from a trusted provider
server at step 614. Upon completion of step 614 either the
software product is installed on the target system in step 615
or a connection to a license server is established in step 616
and the feature is "registered". After installation and

successful registration the procedure is terminated at step 617.

Physical resources are provided to prevent external abuse. The
metafile contains multiple separate parts:

A first part relates to the connection itself. It grants rights
to a specific server to connect to the one who created this
file. It hands in the connection URL or similar. A link to the
server controlling the licenses is provided. A link to the

location or pool of the feature is stored.

A second part relates to the license. Specific rules are
provided for the feature. It is determined whether or not it is

a "normal” license.

A third part relates to rights and legal aspects. Approval is
given that the feature is usable inside the infrastructure and

location of the server.

With all information in one hand through inference with logic
languages additional value is possible. License can be bound
through the connection information to a specific license server.
By this a decentralized license management is easily possible

and other aspects can be considered as well.

In summary, a general license file is created which is not
specified for a specific user or location. An update mechanism
of licenses is provided to prevent damages and misuse.
Registration has been reduced to the certified and trusted

provider server instead of every customer/subject. It is no

longer necessary to monitor the deployed software, but it is
only checked when the installation is done or the software has
been deleted. All steps are covered in a single file reducing a
lot of traffic between the systems. Furthermore the license

servers don't have to be connected with each other.

The system according to the invention is applicable to all
computer systems or telecommunication devices, which need
licensing information such as Mainframe servers, personal

computers (PC, laptop ...) smart-phones and their apps.

Some selected applications will be described in the following

with reference being made to Figs. 7 to 11.

Fig. 7 is a schematic diagram of the product flow between
participants in the peer-to-peer server network in which any
participant can take on either role of provider and user. The
relation between provider and user and the process of
transferring goods and payments is highly complex. Yet the
egssential relationships may be summarized as shown in Fig. 7.
Two companies, namely company A 701 and company B 702 exchange
goods and payments and take part in the market. For instance,
company A 701 offers self produced software products through an
enterprise features store 703. Company B 702 is interested to
integrate the offered software product in the own system. The
software product is thus delivered from company A 710 to company
B 702 directly from the EFS of company A 701. Company B 702 may
use the software product from company A 701 exclusively now, or
it may re-distribute the software, or, if allowed, it may share
the software product with one other or multiple other network
servers. In addition it may the software purchased from company
A 701 in connection with own software products to third parties.

These options are indicated in Fig. 7 by respective arrows

referred to as “Provisioning” and “Redistribution and

Provisioning”.

A more abstract diagram of the product flow is illustrated in
Fig. 8. Fig. 8 shows a section of a store network where the
participating servers in the network are reduced to their
respective enterprise feature stores 801. Said enterprise
feature stores 801 are in fact storage means for executable
programs. The possible transactions in this network section are
an import of products (“Provisioning”) from a first EFS 801 to a
second EFS 801 as well as an import of products from outside the
network to the second EFS 801. A third option is the import of
self produced products in the second EFS 801.

The second EFS 801 in the diagram of Fig. 8 may export products
either to an external partner outside the network (“External
Sale out of the network”) or deliver it for internal use
(“Internal consume of products”). A third option for the second
EFS 801 is a re-distribution of acquired and self produced
products to a third EFS 801 inside the network (“Redistribution

and provision others”).

Details of data handling inside a network server are indicated
in Fig. 9. Fig. 9 schematically depicts a preferred stack of
involved layers in a network server. An import layer 901 is the
first element for data coming in from the upstream side of the
EFS 900. Data coming in may originate from another EFS (referred
to as “From another EFS”) or from an internal source (“self
produced Product”) or from outside the network (“Manual

importing, other company”).

The import layer 901 is directly connected to a features store
902 that is referred to here as catalogue. The catalogue 902 is

a storage means for executable programs that either are to be

completed by software products from external sources or that are
offered to other servers and users in the network. Hence, the
catalogue 902 is, apart from the import layer 901, also
connected to an export layer 903 for the distribution of
software products to other participants on the network. The term
other participants includes the server itself in which the EFS
is located. Correspondingly, from the export layer 903 the
product software may also be delivered for internal use by the
respective server (“Self consume”). An alternative distribution
channel is the delivery to another EFS on the network (“To
another EFS”). A third option is the delivery to a recipient

outside the network (“Export out of the network”).

The manual import of files is executed as follows. The user
selects the import option. Thereafter the user chooses the
desired file in the file browser. Then the user chooses the
license file in the file browser and defines required parameters
such as tags/Name/... in the EFS. Finally the import of the file
is started via FTP/... to the catalogue 902.

The import of a file from another EFS is executed as follows. At
first an authenticity check of the provider is executed.
Thereafter the import of the file to the catalogue 902 is
carried out as well as the import of meta-data related to that

file.

Finally the export of files to another EFS is described in the
following. First the selected file and the license for export
are prepared. Thereafter an EFS connection file is attached. A
connection to the import layer is established, and the file and

attachments like meta-data are sent.

It is to be noted here that the communication between catalogue

902 and import layer 901 as well as the communication between

catalogue 902 and export layer 903 is bi-directional. The
communication with elements outside the server, i.e. via import
layer 901 and export layer 903, respectively, however is uni-
directional. Both types of communications channels are indicated

by simple and double arrows in Fig. 9.

Fig. 10 shows a part of the request procedure that is launched
by a requesting server. Upon decision to acguire new software
products from a particular participant on the network the
requesting server establishes a connection to said participant

on the network at step 1001.

In step 1002 it is checked whether or not the addressed EFS is
open, i.e. freely accessible. If so, Jjust a valid URL is needed,
and the according URL is taken as address and the connection to
the EFS is established in step 1008. In the negative, the
procedure branches at step 1002 and a request is sent to the
addressed server, i.e. participant on the network, at step 1003.
The request may either be accepted or rejected from the
addressee. Depending on the response from the addressee the
procedure will consequently branch off at step 1004 to terminate
at step 1007, if rejected, or will continue at step 1005, if
accepted. In step 1005 negotiations are started about details of
the transfer, namely access to rights and price for the product.
Once these issues have been settled the procedure continues at
step 1006 with the import of an EFS connector file inside the
EFS. If the EFS turns out to be restricted, specified EFS
connection files must be used. The specified EFS connection file
is certified by a provider, and in particular it contains
regulations of rights to access. Upon completion of all steps

the procedure exits at step 1007.

As should have become clear from Fig. 10 the procedure relies on
the exchange of rights management data. These data are encoded

in particular files termed metafiles.

Fig. 11 shows schematically the process of creating a metafile.
A metafile is created by an provider server 1101 that is the
provider or distributor of a software product. The metafile is
based on a certificate 1102 that may be issued by a certificate
trust center (not shown). The certificate 1102 contains
information like a unique identification number UUID which is
indicated in Fig. 11 as “EFS123...”. The metafile and the
information therein are made available to a license server 1104
at which users have to apply for a license if they want to use
the offered software product. Also an update-file server 1105 is
supplied with the information that forms the contents of the
metafile. The server 1105 can verify then whether or not a user
request for downloading the software product is covered by the
license that is quoted by the requesting user. If so the
download will be granted, otherwise the attempt to download the

software will be rejected.

The details of the metafile procedure are briefly summarized in
the following. The metafile is used for secure communications
taking into account the authentication, privacy, reliability,
and trusting at the exchange of messages. According to the
invention metafiles are applied to certification of distributors
and re-distributors. If a company wants to use the app store
solution provided, it sends a request to the distributor of a
centralized organization. The organization checks the company
and creates a signed certificate. The certificate consists of:
universally unique identifier (UUID) for the new distributor, a
location where the distributor will be used, specified rights
for the use of the distributor, a private and public keys pair

(RSA or other) wherein the private key is used for signing and

the public key for one way decryption. As an example the
certificates may include, apart from an ID number like
EFS123X0P-123-fGX-0oF the company’s name, its location, its

reseller status, a key, and a signature.

The certificates are stored inside the distributor store. Now
the distributor store is a trusted distributor store, and the
certificate may be used as a public/private key. State of the
art cryptography may be employed to ensure the identities of the
different distributor stores and to furthermore make sure that
each distributor store in the network can be uniquely

identified.

The exchange of certificates is executed like the SSL protocol
with a server infrastructure that is based on trusting.
Distributor store of company A that is certificated exchanges
certificates with company B that is also certificated. The
certificate of company A is verified by a certificate server,
i.e. a store vendor or a trusted authority. The certificate of
company B is in the same way verified by the authority. Each
distributor store can certify itself to other distributor stores
via challenge - response for example including public key

algorithms.

The metafile is created by providing the distributor store of
the provider access to the license server and an server that
manages updates on the metafiles and in addition manages the
binaries that belong to the products offered through the
distributor store. New product binaries are stored inside the
distributor store while the storage of the file could be located
on a different server. First it is checked if the binaries are
already inside the pool through the UUID created during
exportation/installation of the product, which may be termed

“wrapped around the UUID”. The URL addresses to the binaries are

created and stored. Licenses and updateserver etc. is created by
use of a logical language. Once the metafile certificate is
attached to the feature it cannot be detached later. This is

ensured by the trusted distributor store environment.

An example of a metafile for a software feature X may include a
number AllowedID: EFS456%*, a number CreatorID: EFS3123 (signed by
creator), a specification named “Static license: (Enc with
private key)”, the condition “Not allowed inside Australia”, a
comment “If company is company z then download additional
license part from URL Lic CompZ”, a time restriction “Only
usable 10 minutes per day”, a time and geographical restriction
“If country is China only usable on weekends”, a resource
restriction “Maximum runnable on 4 CPUs + plugins for special
cases’”, an encryption restriction “Connection: (l1.Enc with
private key + 2 Enc with key from trust org. + 3.Enc with public
key comp request feature)”, multiple URL restrictions like

“URL License Server= license.server.this; URL Update Server=
someadress; URL APPStore=someadress; URL Lic CompZ =...”; and an
additional comment like “IMPORTANT: The encrypton is done always
when a request comes in WITH the Public key passed from the
requestor. Remember we can be sure that the public key matches

to the requestor because of the trusted certification!!!”.

The creatorID stands for the company or person that is
officially the creator of this product. Therefore he has to sign
every metafile with his private key. If a metafile is created
that is wrong this may be backtracked to the distributor store
from which it originates and may implicate elimination of the
distributor from the trusted environment. This is only possible
because if a creator is indentified in the metafile a request
has to be sent to this company to verify the claim. Otherwise
the metafile is not useable. The only way to circumvent this

safety means would be claiming oneself the product creator.

It is important to understand that as long as one is inside the
trusted distributor store environment licenses can not be
tampered with and their enforcement is safe. If files come from
outside this trusted environment the risk of piracy is still
acceptable, but not 100%. If a piracy case has become known the
formerly trusted distributor store is excluded from the network

and the trusted environment is restored.

One of the most essential benefits of the present invention is
the decentralized connection between customers and providers
without any centralized regulation by a separate software

system.

In a software system the advantage of the present invention is
an enhanced end-to-end integration between business partners.
With the adaptation to the back-end processes of the involved
customers the highly manual and complex process can be
facilitated in a non-centralized way. This means the customer

can adapt the feature store to his/her needs.

Other benefits of the solution are as follows: With one metafile
only there is no need for redundancy information anymore. The
software product is easy to update. The invention offers a
generic approach, that is, one license file is adapted to the
respective application. It further saves bandwidth and reduces
the search for locations that are needed to continue with the
process. Different license servers need not be connected
constantly because each trusted provider server selects a
license server that manages the specific feature license. If a
change occurs an update is easily feasible due to the single
file approach. The license validation is more precise and
reliable because of the certification of the trusted provider

servers. On the other hand due to the above security enhancement

measures the software product is hard to forge. Since the
invention is a decentralized approach it is not required that a
single server surveys all steps as it is shown in the example.
Due to the UUID that is required for the installation the system

can guarantee that the license is not used too often.

List of Reference Numerals

100 provider and user
network

101 provider server

102 request

103 metafile transfer

104 license server

105 wupdate-file server

200 provider and user
network

201 provider server

202 request

203 metafile transfer

204 license server

205 update-file server

206 license retrieval

207 file and update
download

300 provider and user
network

301 provider server

303 metafile transfer

304 license server

305 wupdate-file server

308 first alternative
file download

309 second alternative
file download

310 file server

400 provider and user
network

401 provider server

402
403
404
410
411
412
413
414
500

501

502
503

504

505

506

507
508
601
602
603

604
605

606
607
608

31 -

request

metafile transfer
license server

file server

update server
license retrieval
file download

update download
license management
environment

file and license
vendor

computer system
first decryption and
validation means
merge and encryption
means

license database with
permanent storage
second decryption and
validation means

APT

application program
transfer of metafile
receiving metafile
examining incoming
UulD

branch off

extract and decrypt
connection part
extracting update URL
branch off

download

609 examine static
license part

610 branch off

611 download additional
license conditions

612 examine additional
license conditions

613 branch off

614 download product

615 install product

616 register on license
server

617 exit procedure

701 network server A

702 network server B

703 enterprise features
store

801 EFS software stack

901 dimport layer

902 catalogue

903 export layer

1001 establish connection

1002 branch off

1003 sending request

1004 branch off

1005 enter negotiations

1006 import connector file

1007 exit procedure

1008 call URL and connect

1101 provider server

1102 certificate provider

1104 license server

1105 update-file server

CLAIMS

License management system for computer program applications,
the system including an exchange network connecting a
plurality of peer-to-peer network servers,

wherein at least one network server of said plurality of
peer-to-peer network servers acts as a provider server and at
least one network server of said plurality of peer-to-peer
network servers acts as a user server, and each of said
plurality of peer-to-peer network servers comprises:

- software license management means for controlling
program installations according to respective license
regulations;

- storage means for executable program codes to be
distributed to requesting servers;

- means for generating, storing, and dispatching a
metafile including at least license information on
licensing conditions for a corresponding executable
program code;

- means for sending a request for transmission of a
metafile for a corresponding executable program code;

- means for downloading and storing a metafile, and

- means for downloading, installing, and executing said
executable program code under control of said software

license management means.

License management system according to claim 1, wherein the
provider server has distributed server architecture in which
- said storage means for executable program codes
comprises an update-file server, and
- said means for storing metafiles comprises a license

server.

3. License management system according to any one of claims 1

and 2,

wherein

said means for downloading, installing, and executing
an executable program code comprises means for
extracting a URL-address for downloading an executable

program code from said metafile.

4. License management system according to any one of claims 1 to

3, wherein

said means for downloading and storing a metafile
comprises means for communicating geographical data of

the requesting server to the provider server.

5. License management system according to any one of claims 1 to

4, wherein

means for downloading, installing, and executing said
executable program code under control of said software
license management means 1s adapted to evaluate the
license information from its metafile when said

executable program code is executed.

6. License management system according to any one of claims 1 to

5, wherein the metafile comprises at least one of the

following data:

a secure unique identifier for the update-file server;
a unique identifier for the license server;
geographical data specifying usage of the executable
program code as a function of the geographical location
of the requesting server;

restriction data for restricting usage of the
executable program code as a function of a license
period;

a digital signature to confirm the correctness of the

metafile content.

7.

8.

9.

10.

Method for running a license management system according to

any one of the preceding claims, which method comprises the

steps

of:

controlling program installations according to
respective license regulations by software license
management means;

distributing executable program codes to requesting
servers from storage means;

generating, storing, and dispatching a metafile
including at least license information on licensing
conditions for a corresponding executable program code;
sending a request for transmission of a metafile for a
corresponding executable program code;

downloading and storing a metafile, and

downloading, installing, and executing said executable
program code under control of said software license

management means.

Method according to claim 7, in which

an executable program codes is located on an update-
file server, and

metafiles are located on a license server.

Method according to any one of claims 7 and 8, comprising the

step of:

- extracting a URL-address for downloading an executable

program code from said metafile by means for
downloading, installing, and executing an executable

program code.

Method according to any one of claims 7 to 9, comprising the

step of:

- communicating geographical data of the requesting
server to the provider server by said means for

downloading and storing a metafile.

11. Method according to any one of claims 7 to 10, comprising the
step of:

- evaluating the license information from its metafile
when said executable program code is executed by means
for downloading, installing, and executing said
executable program code under control of said software

license management means.

12. Method according to any one of claims 7 to 11, wherein the
metafile comprises at least one of the following data:

- a secure unique identifier for the update-file server;

- a unique identifier for the license server;

- geographical data specifying usage of the executable
program code as a function of the geographical location
of the requesting server;

- restriction data for restricting usage of the
executable program code as a function of a license
period;

- a digital signature to confirm the correctness of the

metafile content.

13. Computer program product for a license management system,
causing a computer system to perform a method for running a
license management system according to any one of the
preceding claims, which method comprises the steps of:

- controlling program installations according to
respective license regulations by software license
management means;

- distributing executable program codes to requesting

servers from storage means;

generating, storing, and dispatching a metafile
including at least license information on licensing
conditions for a corresponding executable program code;
sending a request for transmission of a metafile for a
corresponding executable program code;

downloading and storing a metafile, and

downloading, installing, and executing said executable
program code under control of said software license

management means.

®
*0.+.0°
%:2:2%8 INTELLECTUAL
® e e® PROPERTY OFFICE
38
Application No: GB1222051.3 Examiner: Mr Jonathan Golding
Claims searched: ALL Date of search: 12 June 2013

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1,7, 13 at| WO 2008/030759 Al
least (MICROSOFT CORPORATION)
Particularly figure 3 and paragraphs §1-83.
X 1,7, 13 at| US 2012/0072995 A1
least (CRAWFORD)
Particularly figures 1, 2 and paragraphs 10, 11, 19 and 24.
X 1,7, 13 at| US 2009/0222505 A1
least (PAVANET AL)
See abstract and paragraphs 11 and 12.
X 1,7, 13 at| US 2003/0204602 Al
least (HUDSON ET AL)
See abstract and paragraphs 12 and 13.
X 1 US 7925592 Bl
(ISSA ET AL)
See figures 1 and 4
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC® :

Worldwide search of patent documents classified in the following areas of the IPC
| GOGF; HO4L |
The following online and other databases have been used in the preparation of this search report

| EPODOC & WPI |

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

3787 INTELLECTUAL

. *.* PROPERTY OFFICE 39

International Classification:

Subclass Subgroup Valid From
GO6F 0021/10 01/01/2013
HO4L 0029/08 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

