»UK Patent .,GB

2995408

(13)B

(45)Date of B Publication 05.04.2023

(54) Title of the Invention: SyStem, method and apparatus for enabling partial data

transfers with indicators

(51) INT CL: GO6F 13/40 (2006.01)

(21) Application No: 21122445
(22) Date of Filing: 20.01.2020
Date Lodged: 26.08.2021
(30) Priority Data:
(31) 16271015 (32) 08.02.2019 (33) US
(86) International Application Data:
PCT/GB2020/050114 En 20.01.2020
(87) International Publication Data:
W02020/161465 En 13.08.2020
(43) Date of Reproduction by UK Office 24.11.2021

(56) Documents Cited:
US 6366973 B1 US 20140143471 A1
(58) Field of Search:
As for published application 2595408 A viz:
INT CL GO6F
Other: EPO-Internal, WPI Data
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):
Tushar P Ringe
Jamshed Jalal
Anitha Kona
Mark David Werkheiser

(73) Proprietor(s):
Arm Limited
110 Fulbourn Road, Cambridge, Cambridgeshire,
CB1 9NJ, United Kingdom

(74) Agent and/or Address for Service:
TLIP Ltd
14 King Street, LEEDS, LS1 2HL, United Kingdom

g 80v969¢ 99

115

elpliq [Xv-01{XY

=T

iiiii P R ——

A0 ZHD ¢

20010 ZHO ')

2/5

¢ "Old

\\Nmm ()

8y9'1SYTM'1809 eleqy]

R a9 LSy VoY BRay T

() 9v2~, 82€ 1SYT'1E Elea | 067 H

‘ — P 1

| rrz~ 82€ 1SYT'LY Elea u

ax ‘ e l\l\l\!\l\\\.@v i

Ble(] -

|| ore~ 8ee 08 , i

| o ‘v ele@ |

| v~ 80 -

e ~8€2 i

| (aze=3zisuv 1x0=NT1dv) wpeoy e | ez [

9c7- 0 (§79=3ZISuY ‘0X0=NITdv) gresy X
il‘//lx/NON

(8Y9=3ZISYY ‘0X0=NITelv) vpesy L

002 102 YA T

BABIS XY afipug [Xv-0rXY 19ISEN IXV X007

3/5

ejeq pifenul

€ 'Ol

ele PlieA

NN
{[0lAD) yunyD Jemo ([11AD) yunyg Jeddn
< . ///////
gig ‘b Ct o €9
// //// NN
/ 0IAD) HUNYD JemoT {[1]AD) sunyg Jeddn
NN /// <
N; e ek oe
//A/m/_/ NN /m M//v/////%/
0lAD) yunyD Jemo 1AD) yunyp Jeddn
R / NN\
@Om P0S

(10,2 =[0:1]AD

N

1432

«—— 00,2 =[0:1]AD

N

80¢

1102 =[0'}IAD

N

208
®-00¢

4/5

¥ Old

i)
V.

OAEIS XV

o P
a..@wmwyammm LSV IV Ele(

P

i

opy~, 828 ISYR'LE B
o~ mwogERa T

O 0V eleg
(AN

~8EY
" Taze=azISHy 1X0=NT 1Y) gpesy

T

(828=3ZIS4Y ' LX0=NI V) vpeey
oy~ T

!\\..1\\1.\\!.?

™\-90

abpug [Xv-01IXY

Yy

Y

s 4

) N

0b=AD '@r9LSYTH' LV Bleqy

e

~2GY
L=AD ‘BY9LSY T 1808 ERQY

P 4

—

~05P
L0=AD “8¥9 0V eeqy
-

/ Jayng sbispy 1o}

Wwawsinbay oN

B

~YEY
B99=3ZISUY ‘0X0=NT Tuv) gpesy

A

oy ey~

(879=3ZISYY '0X0=NITav) ypeay_|]

N N N

I |

N T S |
N S T N |

| AN T S N N T (NN N N A TN

A N R 7 N N A B

i

~~20¥

BISBNIXY % _ g,

3/5

500~
502 904 506 508 510
; Which | Who - loan
New Fields Chamel | Drives it | Width [Meaning
ChunkValidEnable| AR AX| 1 AXI Master Telling AXI Slave
512~ £14 Whether it Can Accept Partial _r 520
N 516N Masée{&/, Data Transfers ’
N-1: AXI Slave Teliing AX| Master
522 CVIN-1.0] R AXl Slave | N . g PO NaSter
A 524~ 526~ 528 ﬁévuhéch Chunk(s) are Valid on the) 530
FIG. 5
600~
602 ~604 606 608 610
; Which | Who = :
New Fields Chamnel | Drives it | Width | Meaning
ChunkValidEnable] AR AX! 1 AXi Master Telling AXI Slave
612~ 14 Whether it Can Accept Partial _620
014N 616~ Masé%rsj_ Data Transfers g i
AXI Master Telling AXI Slave
621~ MDTEnable AR AXI 1 ; g AR Diave
i y)] Wheter it Can AcCent Multiple |
2N Y Masé%{?/ Data Beats wih Diferent RD's | 027
N1 AX] Slave Telling AX] Master
622~ CVIN-1:0] 24 R AX! Slave | N | AN aner
X 624~ 626~ 628~ \é\ﬁhéch Chunk(s) are Valid on ing 630
IN-1: ave |N'M Various RIU's Being Transferred |
642NN W g4 R g6 ™ 98| iR |Overthe Bus, RID Vate n ne A 50
- B48~{Width) |Field is Valid Based on CY[N-1.0]
q: lave INM Yarious RRESP's Being
652~ \RRESPIN-1:0] R AXl Slave ERRESP [Transforred Over the 660
! 656 V=RRESP {Transferred Overthe Bus,
OGN PN 658{ifidh) |RRESP Value nthe Feld s Vaiid
Based on CV[N-1:0]

A ave IN'M Various RUSER's Being
662~|RUSERIN-1.0] IR AXi Siave [2 W NUSER DG 570
X 666 (M=RUSER|Transferred Overthe Bus, A

PO PPN BOBN[dh] [RUSER Valuzin e Field s Vall

Based on CY[N-1:0]

r lave Various RLAST's Bein
672~ RLASTIN-10] IR AXi Slave | N arious i 4 680

- 674 676 Transferred Qverthe Bus,
Ny 678y RLAST Value inthe Field is Valid

Based on CV[N-1:0]

FIG. 6

30 09 22

10

=
ol

20

SYSTEM, METHOD AND APPARATUS FOR ENABLING PARTIAL DATA
TRANSFERS WITH INDICATORS

BACKGROUND
[001] Some protocols do not provide for transferring partial data from one data bus to a
second data bus, which has increased capacity. This deficiency may result in systems with
mismatched data bus sizes, which require additional merge-buffers at all points of
interconnect as well as where data bus size mismatches are encountered. These additional
merge-buffers result in undesired increases in area and/or increases in power requirements for

the system.
BRIEF DESCRIPTION OF THE DRAWINGS

[002] The accompanying drawings provide visual representations, which will be used
to more fully describe various representative embodiments and can be used by those skilled
in the art to better understand the representative embodiments disclosed and their inherent

advantages. Inthese drawings, like reference numerals identify corresponding elements.

[003] FIG. 1 illustrates an interface system.

[004] FIG. 2 illustrates a merge-buffer embodiment.

[005] FIG. 3 illustrates an embodiment described herein.

[006] FIG. 4 illustrates yet another embodiment described herein.

[007] FIG. 5 illustrates a table according to a representative embodiment.

[008] FIG. 6 illustrates another table according to another representative embodiment.
DETAILED DESCRIPTION

[009] While this disclosure is susceptible of embodiment in many different forms, there

is shown in the drawings and will herein be described in detail specific embodiments, with
the understanding that the present disclosure is to be considered as an example of the
principles described and not intended to limit the disclosure to the specific embodiments
shown and described. In the description below, like reference numerals are used to describe

the same, similar or corresponding parts in the several views of the drawings.

30 09 22

[0010] In this document, relational terms such as first and second, top and bottom, and
the like may be used solely to distinguish one entity or action from another entity or action
without necessarily requiring or implying any actual such relationship or order between such

entities or actions. The terms “comprise”, "comprises," "comprising," or any other variation
thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article,
or apparatus that comprises a list of elements does not include only those elements but may
include other elements not expressly listed or inherent to such process, method, article, or
apparatus. An element proceeded by “comprises ...a” does not, without more constraints,
preclude the existence of additional identical elements in the process, method, article, or

apparatus that comprises the element.

"o«

[0011] Reference throughout this document to "one embodiment", “certain
embodiments”, "an embodiment" or similar terms mean that a particular feature, structure, or
characteristic described in connection with the embodiment is included in at least one
embodiment of the present disclosure. Thus, the appearances of such phrases or in various
places throughout this specification are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or characteristics may be combined in any

suitable manner in one or more embodiments without limitation.

[0012] The term “or” as used herein is to be interpreted as an inclusive or meaning any
one or any combination. Therefore, “A, B or C” means “any of the following: A; B; C; A
and B; A and C; B and C; A, B and C”. An exception to this definition will occur only when
a combination of elements, functions, steps or acts are in some way inherently mutually

exclusive.

[0013] For simplicity and clarity of illustration, reference numerals may be repeated
among the figures to indicate corresponding or analogous elements. Numerous details are set
forth to provide an understanding of the embodiments described herein. The embodiments
may be practiced without these details. In other instances, well-known methods, procedures,
and components have not been described in detail to avoid obscuring the embodiments
described. The description is not to be considered as limited to the scope of the embodiments

described herein.

[0014] The following terms may be used in this description of various embodiments of

the present disclosure.

30 09 22

10

15

20

25

[0015] Auxiliary: additional, supplemental.

[0016] AXI: Advanced e(X)tensible Interface (AXI). AXI is an interface developed by

ARM®.

[0017] AXID: Advanced e(X)tensible Interface (AXI) Identification. AXI is an interface
developed by ARM® for the ARM®AMBA(RTM) microcontroller bus and is currently used

by many companies such as Xilinx® incorporated.

[0018] Beat: an individual data transfer within an AXI burst.

[0019] Block Offset: specifies the desired data within the stored block data within the

cache row. Sometimes referred to merely as “offset”.

[0020] Buffer: a temporary storage area, usually in RAM. The purpose of most buffers is
to act as a holding area, enabling the CPU to manipulate data before transferring it to a

device.

[0021] Bus: a communication mechanism that transters data between components inside
a computer, or modules of a computer, or between computers. As used herein the term “bus”
covers all related hardware components {wire, optical fiber, etc.) and software, including

communication protocols.

[0022] Cache: cache memory, also called CPU memory, is random access memory
(RAM) that a computer microprocessor can access more quickly than it can access regular
RAM. This memory is typically integrated directly with the CPU chip or placed on a separate
chip that has a separate bus interconnect with the CPU.

[0023] Cache Block: basic unit for cache storage. May contain multiple bytes/words of
data. A cache line is the same as cache block. Note that this is not the same as a “row” of

cache.

[0024] CPU: central processing unit; the electronic circuitry within a computer that
carries out the instructions of a computer program by performing the basic arithmetic, logical,

control and input/output (I/O) operations specified by the instructions.

30 09 22

10

=
ol

20

25

[0025] Execution: the basic operational process of a computer. It is the process by which
a computer retrieves a program instruction from its memory, determines what actions the
instruction dictates, and carries out those actions. This cycle is repeated continuously by the

central processing unit (CPU), from boot-up to when the computer is shut down.

[0026] Flowchart: a type of diagram that represents an algonthm, workflow or process.

The tlowchart shows the steps as boxes of various kinds, and their order.
[0027] Generate: to produce, create or derive from one or more steps or actions.
[0028] Index: describes which cache set that data has been put in.

[0029] Interface: either a hardware connection or a user interface. An interface can also
be used as a verb, describing how two devices connect to each other. A hardware interface is

used to connect two or more electronic devices together.

[0030] Micro-architectural: computer organization, the way a given instruction set

architecture (ISA), 1s implemented in a processor.

[0031] Interface Bridge: joins two or more interfaces to a layer. The layers are joined by

the interface bridge as though the layers were joined to the same switch.

[0032] I/O: input/output, the transfer of data between a processor and a peripheral
device in a data processing system. I/O devices may include keyboards, displays, pointing

devices, etc. that can be coupled either directly or through intervening I/O controllers.
[0033] Merge: to combine data portions.

[0034] Merge Buffer: a type of buffer that stores data that will be merged, or has been

merged.

[0035] Module: a component or part of a program or device that can contain hardware
or software, or a combination of hardware and software. In a module that includes software,
the software may contain one or more routines, or subroutines. One or more modules can

make up a program and/or device.

[0036] Offset: the block offset is sometimes simply referred to as the "offset" or the

"displacement”.

30 09 22

10

=
ol

20

25

[0037] Uperation: a single step performed by a computer in the execution of a program.

[0038] Ordering tag: kind of metadata that helps describe an item and allows it to be

found again by browsing or searching.

[0039] Peripheral: a computer device, such as a keyboard or printer, which is not part of
the essential computer (7.e., the memory and microprocessor). These auxiliary devices are

typically intended to be connected to the computer.

[0040] Protocol bridge: a device that connects two networks, such as local-area networks
(LANS), or two segments of the same LAN that use the same protocol, such as Ethernet or

Token-Ring.

[0041] Register: a temporary storage area.

[0042] Source Code: any collection of code, possibly with comments, written using
human readable programming language, usually as plain text. The source code of a program
is specially designed to facilitate the work of computer programmers, who specity the actions
to be performed by a computer mosily by writing source code. The source code 13 often
transformed by an assembler or compiler, into binary machine code understood by the
computer. The machine code might then be stored for later execution. Alternatively, source

code may be interpreted and thus immediately executed.

[0043] Tag: a unique identifier for a group of data. Because different regions of memory

may be mapped into a block, the tag is used to differentiate between them.

[0044] In an interface protocol, as an AXI protocol, there is usually no provision for
transferring partial data from a first bus to a second bus, which is a wider data bus, also
described as a bus with increased capacity. This results in interface based systems, such as
AXI based systems, with mismatched data bus sizes, which means that the system uses
additional merge- buffers at all points on the interconnect where such data bus size
mismatches are encountered. This results in undesired additional area/power overhead for the
system. Embodiments described herein enable partial data transfers on a wider data bus

thereby optimizing area/power metrics for the system.

[0045] A sufficiently complex AXI based system may be composed of a diverse set of

5

30 09 22

10

=
ol

20

25

blocks with different data bus sizes. These different data bus sizes create a need for merge-
buffers at every point where data bus width mismatch is encountered. A merge-buffer is
required when data is moving from a narrow data bus to a wider data bus and typically, data
is not guaranteed to arrive back-to-back on the narrow data bus since the AXI protocol does

not support partial datatransfers on a wider data bus.

[0046] FIG. 1 shows a system 100 that includes a first interface, shown as AXI
master 102, an interface-to-interface bridge, shown as AXI-to-AXI bridge, 104 and a

second interface, shown as AXI slave 106.

[0047] The first interface, shown as AXI master, 102 has memory module 110. The
memory module 110 includes one or more registers 112 and one or more data buffers
114. The register(s) 112 is used as a temporary storage area, or memory area, built into
memory module 110. The register(s) 112 may be used to fetch instructions and hold
each instruction as it is executed. The register(s) 112 may be used to pass data from a

memory to a processor.

[0048] The data buffer 114 is used to buffer data at AXI master 102. The data in
data buffer 114 is received via bus 116.

[0049] The interface-to-interface bridge, shown as AXI-to-AXI bridge, 104
includes memory, or storage module 120. Storage module 120 includes one or more

registers 122 and one or more merging buffers 124.

[0050] Second interface, shown as AXI slave, 106 includes storage, or memory

module 126.

[0051] The second interface, AXI slave, 106 has a 2 GHz clock and first interface,
AXI master, 102 has a 1 GHz clock. The distinction between the two clocks is indicated
by dashed line 103. Register 112 is in communication with register 122 via bus 118.

Register 122 is in communication with memory module 126 via 128.

[0052] First interface, AXI Master, 102 has a 64B data bus 116 and second
interface, AXI slave, 106 has a 32B data bus 130. The AXI-to-AXI bridge 104 manages
data bus width mismatch and has a tracker to process transactions. As shown in FIG.

1, the bus width and clock speeds are proportional. Thus, AXI master 102 has a 64B

10

=
ol

30 09 22

N
o

25

30

data bus 116 and a 1 GHz clock, while AXI slave 106 has a 32B data bus 130 and a 2
GHz clock.

[0053] FIG. 1 shows that the AXI-to-AXI bridge 104 utilizes full read buffering
to merge two 32B beats (130) into one 64B beat (116) since two 32B beats are not
guaranteed to arrive back-to-back. This may result in significant overhead in terms of

area if AXI master 102 has many outstanding Read transactions.

[0054] FIG. 2 shows system 200 that includes first interface, AXI master 202,
interface-to-interface bridge 240, AXI-to-AXI bridge, 204 and second interface, AXI
slave 206. ReadA (ARLEN=0x0, ARSIZE=64B) 232, and ReadB (ARLEN=0x0,
ARSIZE=64B) 234 are shown. AXI-to-AXI bridge 204 sends Read A(ARLEN=0x1,
ARSIZE=32B) 236 and ReadB(ARLEN=0x1, ARSIZE=32B) 238.

[0055] Data A0,32B, 240; Data_B0,32B, 242; Data A1,RLAST, 32B, 244;
Data B1,RLAST,32B, 246; RData_ AOA1,RLAST,64B, 250; and

RData BOB1,RLAST,64B, 252 are shown. A merge-buffer covers a window from
when first data arrives 240 until the last data is delivered 252.

[0056] FIG. 2 shows that there are two pending read requests on narrow data bus
side, for example a 32B data bus. It may happen that first chunk(half) for two reads
arrive before second chunk may arrive. AXI-to-AXI bridge 204 needs to save the first
chunk of read since the wider data bus side (64B) can only accept data when both the

chunks are available. This necessitates the use of the merge-bufter.

[0057] For example: If AXI Master 232 supports 256 outstanding read request each
worth one cacheline size, the size of the merge buffer required in this case is 64Bx256

= 128K flops, which is a significant overhead in terms of PPA.

[0058] Embodiments described herein comprise an AXI Slave 206 tagging each
read data beat with chunk valid identifier called a “CV”.

[0059] There are parameters for the CV (chunk valid) generation:

[0060] Each bit of the CV indicates the portion of the data bus which carries valid data.

[0061] The portion-size of the wider data bus, which is denoted by each bit of CV,
is same as narrowest data bus size in the system.
[0062] The width of the CV on a particular bus is determined by a ratio of the

narrowest data bus size to its own bus size in the system.

10

=
ol

30 09 22

NJ
o

25

30

a. For example: In systems with 64B and 32B data bus widths, CV
will be 2-bit value for 64B bus.
b. For example: In systems with 64B, 32B, and16B data bus
widths, CV will be 4-bit value for 64B bus while CV will be 2-
bit value for 32B bus.
[0063] Value of 0 is not permitted on CV.
[0064] Staggered values on CV is allowed.

[0065] For example: In systems with 64B and16B data bus widths, a CV value of
0101 is allowed.

[0066] It is shown that RLAST semantics do not change with the particular
embodiment, which means RLAST always arrives on the last data beat even though
last data beat may not contain valid data on the entire bus. This ensures that all existing
IP’s which are watching RLAST to detect protocol completion windows still comport

with the process.

[0067] As shown in FIG. 3, system 300 has 64B and 32B bus widths, CV on 64B
bus is 2-bit wide and each bit indicate the half which is valid.

[0068] Specifically, as shown in FIG. 3, CV[1:0]=2"b11, 302 has valid lower
chunk (CV][0]) 306 and valid upper chunk (CV[1]) 304. Secondly, CV[1:0]=2"b01,
308 has valid lower chunk (CV[0]) 312 and invalid upper chunk (CV[1]) 310. Thirdly,
CV[1:0]=2’b10, 314 has invalid lower chunk (CV[0]) 318 and valid upper chunk
(CV[1)) 316.

[0069] In case shown in FIG. 3, legal values of CV [1:0] (302, 308, 314) =
[0070] {2°b11,2°b10,2’b01}

[0071] FIG. 4 shows a chunk valid example 400 according to an embodiment
described herein. FIG. 4 shows system 400 that includes first interface, AXI master
402, interface-to-interface bridge, AXI-to-AXI bridge, 404 and second interface, AXI
slave, 406. Read A (ARLEN=0x0, ARSIZE=64B) 432, and ReadB (ARLEN=0x0,
ARSIZE=64B) 434 are sent from AXI master 402. AXI-to-AXI bridge 404 sends
ReadA(ARLEN=0x1, ARSIZE=32B) 436 and ReadB(ARLEN=0x1, ARSIZE=32B)
438.

10

=
ol

30 09 22

NJ
o

25

30

[0072] Data A0,32B, 440; Data B0,32B, 442; Data B1,RLAST, 32B, 446,
Data A1,RLAST,32B, 444; are sent from AXI slave 406. Bits RData A0,64B,
CV=01, 450; RData BOB1,RLAST,64B, CV=11, 452; and RData A1, RLAST,64B,
CV=10,454 are shown.

[0073] FIG. 4 is different than FIG. 2 because the data bits 440, 442, 444 and 446 are in
a different sequence, that is A0 (440) and A1 (444) are not in direct sequence; but rather, BO
(442) and B1 (446) are between A0 (440) and A1 (444). Additionally, there is no merge
buffer, as shown in FIG. 2. Also, the bits 450, 452 and 454 have an associated CV identifier.
The data 440, 442, 444 and 446 are in a random order.

[0074] As shown in FIG. 4, AXI-to-AXI bridge 404 is sending partial data
RDATA _ AO (440) on wider data bus using chunk valid indication of CV=01 (450).
When Data_BO (442) and Data B1(446) from narrow side arrives back to back, it can
be collapsed into single wider data bus response and sent as RData BOB1 with CV=11
(452). Finally, when the second beat of ReadA (444) arrives, it is sent with CV=10
and with RLAST indication (454).

[0075] AXI master 402 needs to understand the meaning of the associated CV value

so that AXI master 402 can accept correct portion of the data.

[0076] Embodiments also include one or more flags from AXI master 402, which
can tell AXI slave406 whether AXI master 402 can tolerate partial data transfers. The
flag may be identified, or called, “ChunkValidEnable”. Legacy AXI masters may
choose to drive ChunkValidEnable=0.

[0077] If AXT slave 406 is not capable of driving different chunk valid values, it

is an embodiment that the flag may be set as all 1’s.
[0078] If AXT master 402 sets ChunkValidEnable=0, AXIT slave 406 sets CV=all 1’s.

[0079] FIG. 5 shows a representation 500 that includes “new fields” 502,
“channel” 504, “drive” 506, “width” 508 and “meaning” 510. In the field 502 is
“chunk valid enable” 512 and CV[N-1:0] 522. Channel 504 includes AR 514 and R
524. Drive 506 includes AXI master 516 and AXI slave 526. Width 508 includes “1”
518 and “N” 528. Meaning 510 includes a description of what the driver is instructing
520, 530, respectively.

10

=
ol

30 09 22

20

25

[0080] If the AXIT systems do not have flexibility to add new fields,
ARUSER/RUSER fields can be used to populate new fields.

[0081] The embodiment shown in FIG. 5 can be augmented by driving two or
more (up-to N, where “N” is any suitable number) distinct 32B data beats on a single

64B read data bus, which is shown in FIG. 6.

[0082] The embodiment of FIG. 6 shows that AXI slave flag has a special
message “multi-data transfer enabled”. In this mode, every distinct chunk being

transferred is associated with its own set of R channel fields such as:

[0083] RID[N-1:0] (642);

[0084] RRESP[N-1:0] (652);

[0085] RUSER[N-1:0] (662); and

[0086] RLAST[N-1:0] (672).

[0087] AXI Master can control if it is capable of accepting multiple narrow data
beats with distinct RID’s on a wider data bus using a field “MDTEnable” (Multi-Data-
Transfer Enable) (622). Note that there may be “N” unique RID’s and RLAST’s
which can arrive on a single RDATA bus and Master should be capable of uniquely
identifying it and handling it.

[0088] This will enable Chunk merging buffers to be eliminated while meeting
high bandwidth needs without wasting any data bus efficiency.

[0089] FIG. 6 shows a representation 600 that includes “new fields” 602,
“channel” 604, “drive” 606, “width” 608 and “meaning” 610.

[0090] In the field 602 is “chunk valid enable” 612; MDTEnable 621; CV[N-1:0]
622; RID[N-1:0] 642; RRESP[N-1:0] 652; RUSER[N-1:0] 662; and RLAST[N-1:0]
672;

2

[0091] Channel 604 includes AR 614; AR 623; R 624; R 644; R 654; R 664; and
R 674.

[0092] Drive 606 includes AXI master 616; AXI master 625; AXI slave 626; AXI
slave 646; AXI slave 656; AXI slave 666; and AXI slave 676. Thus, there are

intermediate AXI interface slaves that may choose to send partial data on a wider bus.

10

=
ol

30 09 22

[0093] Width 608 includes “1” 618; “1” 627; “N” 628; “N*M (M=RID width)”
648; “N*M (M=RRESP width” 658; “N*M (M=RUSER width” 668; and “N” 678.

[0094] Meaning 610 includes a description of instructions, as shown by 620, 629,
630, 650, 660, 670 and 680, respectively.

[0095] If AXT master sets MDTEnable=0, AXI slave sets the same values on RID
642, RRESP 652, RUSER 662, RLAST 672 for all narrow beats within a wider beat.

[0096] If the AXI systems do not have flexibility to add new fields,
ARUSER/RUSER fields can be used to populate new fields.

[0097] By removing the need for merging all data beats from a narrow bus side, the
need for merge buffers at all intermediate points on the interconnect is eliminated and

hence the system becomes optimized from area/power perspective.

[0098] Intermediate agents/AXI Slave can choose to send partial data on wider
data bus if system wants to optimize latency for critical portion of data. This improves

the performance of overall system.

[0099] Interconnects with no merge buffers need to fully serialize requests so that
all narrow beats can come back to back which can be merged to form a wider data
beat. With the embodiments shown in the present disclosure, such interconnects with
no merge buffer does not need to serialize requests and all requests can be sent in

parallel thereby improving the performance of the system.

[00100] One or more of the embodiments may be performed on a computing device. A
computing device may be understood to be any device having a processor, memory unit,
input, and output. This may include, but is not intended to be limited to, cellular phones,
smart phones, tablet computers, laptop computers, desktop computers, personal digital
assistants, graphical processing units, field programmable gate arrays, etc. Components of the
computer may include, but are not limited to, a processing unit, a system memory, and a
system bus that couples various system components including the system memory to the
processing unit.

[00101] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information such
as computer readable instructions, data structures, program modules or other data. Computer

storage media includes, but is not limited to, RAM, ROM, EEPROM, FLASH memory or

11

10

30 09 22

N
o

25

30

other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which
can be accessed by a computer.

[00102] Communication media typically embodies computer readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, radio frequency, infrared and other
wireless media. Combinations of any of the above should also be included within the scope of
computer readable media.

[00103] The system memory includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) and random-access memory
(RAM). A basic input/output system (BIOS), containing the basic routines that help to
transfer information between elements within computer, such as during start-up, is typically
stored in ROM.

[00104] Any combination of one or more computer-usable or computer-readable
medium(s) may be utilized. The computer-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable
read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc
read-only memory (CDROM), an optical storage device, a transmission media such as those
supporting the Internet or an intranet, or a magnetic storage device.

[00105] The computer-usable or computer-readable medium could even be paper or
another suitable medium upon which the program is printed, as the program can be
electronically captured, via, for instance, optical scanning of the paper or other medium, then
compiled, interpreted, or otherwise processed in a suitable manner, if desired, and then stored
in a computer memory. In the context of this document, a computer-usable or computer-

readable medium may be any medium that can contain, store, communicate, propagate, or

12

10

30 09 22

N
o

25

30

transport the program for use by or in connection with the instruction execution system,
apparatus, or device. The computer-usable medium may include a propagated data signal
with the computer-usable program code embodied therewith, either in baseband or as part of
a carrier wave. The computer-usable program code may be transmitted using any appropriate
medium, including but not limited to wireless, wire line, optical fiber cable, RF, etc.

[00106] Computer program code for carrying out operations may be written in any
combination of one or more programming languages, including an object-oriented
programming language such as Java(RTM), Smalltalk, C++, C# or the like, and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In
the latter scenario, the remote computer may be connected to the user's computer through any
type of network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider).

[00107] The present embodiments are described below with reference to flowchart
illustrations and/or block diagrams of methods, apparatus, systems and computer program
products according to embodiments. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations
and/or block diagrams, can be implemented by computer program instructions.

[00108] These computer program instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of
the computer, or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer program instructions may also be stored in a computer-readable
medium that can direct a computer or other programmable data processing apparatus, to
function in a particular manner, such that the instructions stored in the computer-readable
medium produce an article of manufacture including instruction means which implement the
function/act specified in the flowchart and/or block diagram block or blocks.

[00109] The computer program instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of operational steps to be

performed on the computer, or other programmable apparatus to produce a computer-

13

10

30 09 22

N
o

25

30

implemented process such that the instructions which execute on the computer or other
programmable apparatus, provide processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

[00110] Unless stated otherwise, terms such as "first" and "second" are used to arbitrarily
distinguish between the elements such terms describe. Thus, these terms are not necessarily
intended to indicate temporal or other prioritization of such elements.

[00111] As will be appreciated by one skilled in the art, the disclosure may be embodied
as a system, method or computer program product. Accordingly, embodiments may take the
form of an entirely hardware embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodiment combining software and

hardware aspects that may all generally be referred to herein as a "circuit," "module" or
"system." Furthermore, the embodiments may take the form of a computer program product
embodied in any tangible medium of expression having computer-usable program code
embodied in the medium.

[00112] The apparatus, system and methodologies presented herein provide an
advancement in the state of the art.

[00113] The various representative embodiments, which have been described in detail
herein, have been presented by way of example and not by way of limitation. It will be
understood by those skilled in the art that various changes may be made in the form and
details of the described embodiments resulting in equivalent embodiments that remain within
the scope of the appended claims.

[00114] It can be seen that the system and methodologies presented herein provide an
advancement in the state of the art.

[00115] Accordingly, some of the disclosed embodiments are set out in the following
items.

[00116] 1. A method comprising: generating one or more identifiers, each identifier
having a plurality of bits and a width component; and tagging one or more data beats with an
associated identifier selected from the one or more identifiers; where each bit of the identifier
indicates a portion of a data bus which carries valid data; where the width of the identifier on
a particular data bus is determined by a ratio of a narrowest data bus size to a bus size of the
identifier; and enabling partial data transfers of the data beats based on the identifier.

[00117] 2. The method initem 1, where a portion parameter of a second data bus is the
same as the narrowest data bus size.

[00118] 3. The method in item 1, where the identifier has a staggered value.

14

10

30 09 22

N
o

25

30

[00119] 4. The method initem 1, further comprising: designating a completion code
associated with the identifier that signifies a last data beat.

[00120] 5. The method in item 1, further comprising: utilizing a flag to determine
whether partial data transfers are permissible.

[00121] 6. The method in item 1, further comprising: driving a plurality of data beats on
a single read data bus, where the single read data bus is wider than the data beats.

[00122] 7. The method in item 6, where the single read data bus is 64B.

[00123] 8. The method in item 1, further comprising: interleaving one or more unrelated
data beats on a single read data bus in a non-sequential order.

[00124] 9. The method in item 1, where portions of the identifier represent valid data
and/or invalid data.

[00125] 10. An apparatus comprising: a first bus having a first width; a second bus
having a second width, the second width being greater than the first width; and an interface
configured to send partial data on the second bus using an identifier that indicates the partial
data is valid, where the identifier has a plurality of bits and a width component, where each
bit of the identifier indicates a portion of the first data bus that carries valid data, and where
the width of the identifier on the first data bus is determined by a ratio of a narrowest data bus
size to the width of the first data bus.

[00126] 11. The apparatus in item 10, further comprising: an interface slave
associated with the first data bus; and an interface master associated with the second data bus.
[00127] 12 The apparatus in item 11, where the interface master indicates to the
interface slave whether the interface master can accept partial data transfers.

[00128] 13. The apparatus in item 11, further comprising: one or more
intermediate interface slaves configured to send partial data.

[00129] 14, The apparatus in item 11, where the interface slave drives a plurality

of data beats on the second data bus.

[00130] 15. The apparatus in item 10, further comprising: an interleaving buffer
configured to store interleaved single data beats.

[00131] 16. The apparatus in item 10, where the identifier has a staggered value.
[00132] 17. The apparatus in item 10, where a portion parameter of the second

data bus is the same as the narrowest data bus size.
[00133] The various representative embodiments, which have been described in detail
herein, have been presented by way of example and not by way of limitation. It will be

understood by those skilled in the art that various changes may be made in the form and

15

30 09 22

details of the described embodiments resulting in equivalent embodiments that remain within

the scope of the appended claims.

16

10

=
ol

22 11 22

20

25

CLAIMS

1. A method comprising:

at an interface between a first data bus having a first width and a second data bus

having a second width less than the first width:

generating one or more first data beats based on second data beats received
over the second data bus, each first data beat including data from one or more second

data beats,

generating one or more identifiers, each identifier having a plurality of bits
and a width determined by a ratio of the first width to a narrowest data bus size, each
bit associated with a portion of the first data bus, and each bit indicating whether the
associated portion of the first data bus carries valid data from a second data beat or

invalid data;

tagging each first data beat with an associated identifier selected from the one
or more identifiers based on the data included from the one or more second data beats;

and

sending each first data beat over the first data bus with the associated

identifier.

2. The method as claimed in claim 1, where a portion parameter of the second data

bus is the same as the narrowest data bus size.

3. The method as claimed in claim 1, where the identifier has a staggered value.

4. The method as claimed in claim 1, further comprising:

designating a completion code associated with the identifier that signifies a last,

second data beat.

5. The method as claimed in claim 1, further comprising:

utilizing a flag to determine whether partial data transfers are permissible.

6. The method as claimed in claim 1, further comprising:
driving a plurality of second data beats on the first data bus,

where the first data bus is a single read data bus, and

17

10

=
ol

22 11 22

20

25

where the single read data bus is wider than the second data beats.
7. The method as claimed in claim 6, where the single read data bus is 64B.

8. The method as claimed in claim 1, further comprising:
interleaving one or more unrelated first data beats on the second data bus in a non-

sequential order.

9. The method as claimed in claim 1, where each portion of the identifier represents
valid data or invalid data.

10. An apparatus comprising:

an interface;

a first data bus, having a first width, over which first data beats are sent from the

interface; and

a second data bus, having a second width less than the first width, over which second

data beats are sent to the interface; and
where the interface is configured to:

generate one or more first data beats based on the second data beats, each first

data beat including data from one or more second data beats,

generate one or more identifiers, each identifier having a plurality of bits and a
width determined by a ratio of the first width to a narrowest data bus size, each bit
associated with a portion of the first data bus, each bit indicating whether the
associated portion of the first data bus carries valid data from a second data beat or

invalid data,

tag each first data beat with an associated identifier selected from the one or
more identifiers based on the data included from the one or more second data beats,

and

send each first data beat over the first data bus with the associated identifier.

11. The apparatus as claimed in claim 10, further comprising:

an interface slave associated with the second data bus; and

18

22 11 22

an interface master associated with the first data bus.

12. The apparatus as claimed in claim 11, where the interface master indicates to the

interface slave whether the interface master can accept partial data transfers.

13. The apparatus as claimed in claim 11, further comprising:

one or more intermediate interface slaves configured to send partial data.

14. The apparatus as claimed in claim 11, where the interface slave drives a plurality

of second data beats on the first data bus.

15. The apparatus as claimed in claim 10, further comprising:

an interleaving buffer configured to store interleaved single second data beats.
16. The apparatus as claimed in claim 10, where the identifier has a staggered value.

17. The apparatus as claimed in claim 10, where a portion parameter of the first data

bus is the same as the first width.

19

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - CLAIMS

