

US 20050020004A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0020004 A1

1 (10) Pub. No.: US 2005/0020004 A1 (43) Pub. Date: Jan. 27, 2005

Chopra

(54) METHOD AND APPARATUS FOR SIMULTANEOUSLY REMOVING MULTIPLE CONDUCTIVE MATERIALS FROM MICROELECTRONIC SUBSTRATES

(76) Inventor: Dinesh Chopra, Boise, ID (US)

Correspondence Address: PERKINS COIE LLP PATENT-SEA P.O. BOX 1247 SEATTLE, WA 98111-1247 (US)

- (21) Appl. No.: 10/923,359
- (22) Filed: Aug. 20, 2004

Related U.S. Application Data

(62) Division of application No. 10/230,602, filed on Aug. 29, 2002.

Publication Classification

(51) Int. Cl.⁷ H01L 21/8238

(57) ABSTRACT

A method and apparatus for simultaneously removing conductive materials from a microelectronic substrate. A method in accordance with one embodiment of the invention includes contacting a surface of a microelectronic substrate with an electrolytic liquid, the microelectronic substrate having first and second different conductive materials. The method can further include controlling a difference between a first open circuit potential of the first conducive material and a second open circuit potential of the second conductive material by selecting a pH of the electrolytic liquid. The method can further include simultaneously removing at least portions of the first and second conductive materials by passing a varying electrical signal through the electrolytic liquid and the conductive materials. Accordingly, the effects of galvanic interactions between the two conductive materials can be reduced and/or eliminated.

Fig. 1 (Prior Art)

Fig. 2A

Fig. 4

Fig. 5

Fig. 8

Fig. 9

METHOD AND APPARATUS FOR SIMULTANEOUSLY REMOVING MULTIPLE CONDUCTIVE MATERIALS FROM MICROELECTRONIC SUBSTRATES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to the following pending U.S. Patent Applications, all of which are incorporated herein by reference: Ser. No. 09/651,779 (Attorney Docket 10829.8515US), filed Aug. 30, 2000; Ser. No. 09/651,808 (Client Docket 00-0036), filed Aug. 30, 2000; Ser. No. 09/653,392 (Client Docket 00-0130), filed Aug. 31, 2000; Ser. No. 09/888,084 (Attorney Docket 10829.8515US01), filed Jun. 21, 2001; Ser. No. 09/887,767 (Attorney Docket 10829.8515US02), filed Jun. 21, 2001; and Ser. No. 09/888, 002 (Attorney Docket 10829.8515US03) filed Jun. 21, 2001. Also incorporated herein by reference are the following U.S. Patent Applications filed simultaneously herewith: 10/(Attorney Docket 10829.8515US06); 10/ (Attorney Docket 10829.8515US07); 10/ (Attorney Docket 10829.8515US08); 10/____ (Attorney Docket 10829.8672); and 10/ (Attorney Docket 10829.8673).

TECHNICAL FIELD

[0002] The present disclosure is directed toward methods and apparatuses for simultaneously removing multiple conductive materials from microelectronic substrates.

BACKGROUND

[0003] Microelectronic substrates and substrate assemblies typically include a semiconductor material having features, such as memory cells, that are linked with conductive lines. The conductive lines can be formed by first forming trenches or other recesses in the semiconductor material and then overlaying a conductive material (such as a metal) in the trenches. The conductive material is then selectively removed to leave conductive lines or vias extending from one feature in the semiconductor material to another.

[0004] FIG. 1 is a partially schematic illustration of a portion of a microelectronic substrate 10 having a conductive line formed in accordance with the prior art. The microelectronic substrate 10 includes an aperture or recess 16 in an oxide material 13. A barrier layer 14, formed from materials such as tantalum or tantalum compounds, is disposed on the microelectronic substrate 10 and in the aperture 16. A conductive material 15, such as copper, is then disposed on the barrier layer 14. The barrier layer 14 can prevent copper atoms from migrating into the surrounding oxide 13.

[0005] In a typical existing process, two separate chemical-mechanical planarization (CMP) steps are used to remove the excess portions of the conductive material 15 and the barrier layer 14 from the microelectronic substrate 10. In one step, a first slurry and polishing pad are used to remove the conductive material 15 overlying the barrier layer 14 external to the aperture 16, thus exposing the barrier layer 14. In a separate step, a second slurry and a second polishing pad are then used to remove the barrier layer 14 (and the remaining conductive material 15) external to the aperture 16. The resulting conductive line 8 includes the conductive material 15 surrounded by a lining formed by the barrier layer 14.

[0006] One drawback with the foregoing process is that high downforces are typically required to remove copper and tantalum from the microelectronic substrate 10. High downforces can cause other portions of the microelectronic substrate 10 to become dished or eroded, and/or can smear structures in other parts of the microelectronic substrate 10. A further drawback is that high downforces typically are not compatible with soft substrate materials. However, it is often desirable to use soft materials, such as ultra low dielectric materials, around the conductive features to reduce and/or eliminate electrical coupling between these features.

SUMMARY

[0007] The present invention is directed toward methods and apparatuses for simultaneously removing multiple conductive materials from a microelectronic substrate. A method in accordance with one aspect of the invention includes contacting a surface of a microelectronic substrate with an electrolytic liquid, the microelectronic substrate having a first conductive material and a second conductive material different than the first. The method can still further include controlling an absolute value of a difference between a first open circuit potential of the first conductive material and a second open circuit potential of the second conductive material by selecting a pH of the electrolytic liquid. The method can further include simultaneously removing at least portions of the first and second conductive materials by passing a varying electrical signal through the electrolytic liquid and the conductive materials while the electrolytic liquid contacts the microelectronic substrate.

[0008] In a further aspect of the invention, wherein the first conductive material includes tungsten and the second conductive material includes copper, the method can include controlling an absolute value of a difference between the first open circuit potential and the second open circuit potential to be about 0.50 volts or less by selecting the pH of the electrolytic liquid to be from about 2 to about 5. The conductive materials can be removed simultaneously by passing an electrical signal from a first electrode spaced apart from the microelectronic substrate, through the electrolytic liquid to the first and second conductive materials through the electrolytic liquid to a second electrode spaced apart from the first electrode and spaced apart from the microelectronic substrate.

[0009] A method in accordance with another aspect of the invention includes providing a microelectronic substrate having a first conductive material and a second conductive material different than the first. The method can further include disposing on the microelectronic substrate an electrolytic liquid having a pH that controls a difference between a first open circuit potential of the first conductive material and a second conductive material. The method can further include simultaneously removing at least portions of the first and second conductive materials by passing a variable electrical signal through the electrolytic liquid and the conductive materials while the electrolytic liquid contacts the microelectronic substrate.

[0010] An electrolytic liquid in accordance with another embodiment of the invention can include a liquid carrier and

2

an electrolyte disposed in the liquid carrier. The electrolyte can be configured to transmit electrical signals from an electrode to the first and second conductive materials of the microelectronic substrate. A pH of the electrolytic liquid can be from about 2 to about 5.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a partially schematic, cross-sectional view of a portion of a microelectronic substrate having multiple conductive materials processed in accordance with the prior art.

[0012] FIGS. 2A-2C are partially schematic, cross-sectional illustrations of a portion of a microelectronic substrate having multiple conductive materials processed in accordance with an embodiment of the invention.

[0013] FIG. 3 is a partially schematic, cross-sectional view of a portion of a microelectronic substrate having multiple conductive materials processed in accordance with another embodiment of the invention.

[0014] FIG. 4 is a partially schematic illustration of an apparatus for electrolytically removing conductive materials from a microelectronic substrate in accordance with an embodiment of the invention.

[0015] FIG. 5 is a partially schematic illustration of an apparatus for electrolytically removing conductive materials from a microelectronic substrate in accordance with another embodiment of the invention.

[0016] FIG. 6 is a partially schematic illustration of an apparatus for electrolytically, chemically-mechanically and/ or electrochemically-mechanically removing conductive material from a microelectronic substrate in accordance with still another embodiment of the invention.

[0017] FIG. 7 is a partially schematic, isometric view of a portion of an embodiment of the apparatus shown in FIG. 6.

[0018] FIG. 8 is a partially schematic, isometric illustration of a portion of an apparatus for removing conductive material from a microelectronic substrate in accordance with yet another embodiment of the invention.

[0019] FIG. 9 is a schematic illustration of a waveform for electrolytically processing a microelectronic substrate in accordance with still another embodiment of the invention.

DETAILED DESCRIPTION

[0020] The present disclosure describes methods and apparatuses for removing conductive materials from a microelectronic substrate. The term "microelectronic substrate" is used throughout to include a substrate upon which and/or in which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical elements are fabricated. Features in the substrate can include submicron features (having submicron dimensions ranging from, for example, 0.1 micron to 0.75 micron) such as trenches, vias, lines and holes. It will be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to

practice certain embodiments of the invention. Additionally, the invention can include other embodiments that are within the scope of the claims but are not described in detail with respect to **FIG. 2A-9**.

[0021] One approach for addressing some of the drawbacks described above with reference to FIG. 1 is to remove conductive materials from the microelectronic substrate with electrolytic processes. Accordingly, a voltage is applied to the conductive material in the presence of an electrolytic liquid to remove the conductive material. However, many existing electrolytic liquids cannot simultaneously remove copper and tantalum, once the tantalum barrier layer has been exposed. Accordingly, chemical-mechanical planarization (CMP) techniques are typically used to remove the exposed tantalum barrier layer and the adjacent copper material. However, this approach typically re-introduces the high downforces that the initial electrolytic process was intended to avoid. Accordingly, another approach has been to replace the tantalum barrier layer with a tungsten barrier layer. However, tungsten (and tungsten compounds) typically form a galvanic couple with copper, which results in one or the other of these materials corroding and dissolving at an uncontrolled rate. The following disclosure describes methods and apparatuses for overcoming this drawback.

[0022] FIG. 2A is a partially schematic, cross-sectional side view of a microelectronic substrate 210 prior to electrolytic processing in accordance with an embodiment of the invention. In one aspect of this embodiment, the microelectronic substrate 210 includes a substrate material 213, such as an oxide or a low dielectric constant material. The substrate material 213 includes a substrate material surface 217 having an aperture 216 formed by conventional processes, such as selective etch processes. A first conductive material 218 is disposed on the substrate material 213 and can form a barrier layer 214 along the walls of the aperture 216. A second conductive material 209, such as a blanket fill material, can be disposed on the first conductive material 218 to form a fill layer 219. In one embodiment, the first conductive material 218 can include tungsten (W) or a tungsten compound, such as tungsten nitride (WN_x), and the second conductive material 209 can include copper or copper alloys such as alloys that include at least 50% copper. In other embodiments, these conductive materials can include other elements or compounds. In any of these embodiments, the first conductive material 218 and the second conductive material 209 can collectively define a conductive portion 211 of the microelectronic substrate 210.

[0023] To form an isolated conductive line within the aperture 216, the first conductive material 218 and second conductive material 219 external to the aperture 216 are typically removed. In one embodiment, the second conductive material 209 is removed using a CMP process. In other embodiments, an electrochemical-mechanical polishing (ECMP) process or an electrolytic process is used to remove the second conductive material 209. An advantage of electrolytic and ECMP processes is that the downforce applied to the microelectronic substrate 210 during processing can be reduced or eliminated. Apparatuses for performing these processes are described in greater detail below with reference to FIGS. 4-9. In any of these embodiments, the result after completing this portion of the process is a microelectronic substrate 210 having the second conductive material

3

209 external to the aperture **216** and external to the barrier layer **214** removed, as is shown in **FIG. 2B**.

[0024] Referring now to FIG. 2B, a process in accordance with one embodiment of the invention includes simultaneously, electrolytically removing the portions of the second conductive material 209 and the first conductive material 218 that extend beyond the substrate material surface 217 after the initial removal process described above with reference to FIG. 2A. Accordingly, in one aspect of this embodiment, an electrolytic liquid 231 can be disposed on the microelectronic substrate 210 and a pair of electrodes 220 (shown as a first electrode 220a and a second electrode 220b) can be positioned in electrical communication with the electrolytic liquid 231. The electrodes 220 can be coupled to a variable signal transmitter 221 (such as a variable current source) to provide a varying electrical signal to both the first conductive material 218 and the second conductive material 209. These conductive materials can be simultaneously removed via an electrolytic process

[0025] In a further aspect of this embodiment, the pH of the electrolytic liquid 231 is selected to control the difference between the open circuit potential of the first conductive material 218 and the open circuit potential of the second conductive material 209. As used herein, the difference in open circuit potentials between the first conductive material 218 and the second conductive material 209 refers to the difference in electrical potential that would result when measuring the voltage difference between the first conductive material 218 and the second conductive material 209 in the presence of the electrolytic liquid 231, but in the absence of any current applied by the signal transmitter 221. In a particular aspect of this embodiment, for example, when the first conductive material 218 includes tungsten and the second conductive material 209 includes copper, the pH of the electrolytic liquid 231 can be selected to be from about 2 to about 5 to produce a difference in open circuit potential of from about 0.50 volts to about -0.50 volts. In other words, the absolute value of the difference in open circuit potential can be about 0.50 volts or less. In other embodiments, the absolute value of the difference in open circuit potential can be about 0.25 volts or less, for example, 0.15 volts or less. In still further embodiments, the pH of the electrolytic liquid 231 can have other values to produce near-zero open circuit potential differentials for other combinations of first conductive materials 218 and second conductive materials 209. For example, in one embodiment, the electrolytic liquid 231 can have a pH of from about 0 to about 7.

[0026] In any of the foregoing embodiments, the first and second conductive materials 218, 209 can be removed simultaneously without necessarily being removed at the same rates. For example, in one embodiment for which the first conductive material 218 includes tungsten or a tungsten compound and the second conductive material 209 includes copper, the copper can be removed at about four times the rate at which the tungsten or tungsten compound is removed. In other embodiments, the first and second conductive materials 218, 209 can be removed at rates that vary by greater or lesser amounts.

[0027] In one embodiment, the pH of the electrolytic liquid 231 can be controlled by disposing an acid in the electrolytic liquid 231. Accordingly, the electrolytic liquid 231 can include a liquid carrier (such as deionized water)

and an acid such as nitric acid, acetic acid, hydrochloric acid, sulfuric acid, or phosphoric acid. In other embodiments, the electrolytic liquid **231** can include other acids. In addition to reducing the pH of the electrolytic liquid **231**, the acid can provide ions to enhance the electrolytic action of the electrolytic liquid **231**. In any of these embodiments, the electrolytic liquid **231** can also optionally include an inhibitor, such as benzotriazole (BTA) to produce more uniform material removal. The electrolytic liquid **231** can also include oxidizers, such as hydroxylamine, peroxide or ammonium persulfate. In another embodiment, the oxidizers can be eliminated, for example, when the electrolytic action provided by the electrodes **220** is sufficient to oxidize the conductive materials **218** and **209**.

[0028] In any of the foregoing embodiments, the first conductive material 218 and the second conductive material 209 external to the recess 216 can be removed, producing a microelectronic substrate 210 having an embedded conductive structure 208, as shown in FIG. 2C. In one embodiment, the conductive structure 208 can include a conductive line and in other embodiments, conductive structure 208 can include a via or other feature in the microelectronic substrate 210. In any of these embodiments, the foregoing processes can provide a conductive structure 208 having a smooth external surface 207 that includes smooth external surface portions for both the first conductive material 218 and the second conductive material 209.

[0029] One feature of an embodiment of the method described above with reference to FIGS. 2A-2C is that the pH of the electrolytic liquid 231 can be selected to reduce or eliminate the open circuit potential differential between the first conductive material $\hat{2}18$ and the second conductive material 209. An advantage of this feature is that the likelihood for a galvanic reaction, which can preferentially pit, dissolve, or otherwise remove one of the conductive materials more readily than the other, can be reduced and/or eliminated. Accordingly, the resulting external surface 207 that includes the first conductive material 218 and the second conductive material 209 can be clean and uniform, as shown in FIG. 2C. Another advantage of this feature is that the first conductive material 218 and the second conductive material 209 can be removed simultaneously without requiring high downforces which can damage structures and features of the microelectronic substrate 210.

[0030] In the embodiments described above with reference to FIGS. 2A-2C, the first and second electrodes 220a, 220b are spaced apart from the microelectronic substrate 210 as they remove conductive materials from the microelectronic substrate 210. An advantage of this arrangement is that the conductive material removal process can be relatively uniform. In other embodiments, one or more of the electrodes can be positioned in direct contact with the microelectronic substrate 210. For example, as shown in FIG. 3, a first electrode 320a can be positioned in a spaced apart orientation relative to the microelectronic substrate 210, and a second electrode 320b can be connected to a rear surface of the microelectronic substrate 210. A conductive path 308 (such as an internal via) between the rear surface and the conductive portion 211 of the microelectronic substrate can complete the circuit between the electrodes 320a, 320b, allowing the signal transmitter 221 to remove conductive material in a manner generally similar to that described above. In still another embodiment, the second

electrode **320***b* can be connected directly to the microelectronic substrate **210**. Such arrangements can be used when material removal nonuniformities which may result from the direct contact between the electrode and the microelectronic substrate are remote from regions that might be adversely affected by such nonuniformities.

[0031] FIGS. 4-9 illustrate apparatuses for electrolytically, chemically-mechanically, and/or electrochemicallymechanically removing material from microelectronic substrates to perform the processes described above with reference to FIGS. 2A-3. Beginning with FIG. 4, an apparatus 460 can electrolytically remove conductive material from the microelectronic substrate 210 in accordance with an embodiment of the invention. In one aspect of this embodiment, the apparatus 460 includes liquid support, such as a vessel 430 containing an electrolytic liquid or gel 431. A support member 440 supports the microelectronic substrate 210 relative to the vessel 430 so that the conductive portion 211 of the microelectronic substrate 210 contacts the electrolytic liquid 431. In another aspect of this embodiment, the support member 440 can be coupled to a substrate drive unit 441 that moves the support member 440 and the substrate 210 relative to the vessel 430. For example, the substrate drive unit 441 can translate the support member 440 (as indicated by arrow "A") and/or rotate the support member 440 (as indicated by arrow "B").

[0032] The apparatus 460 can further include a first electrode 420a and a second electrode 420b (referred to collectively as electrodes 420) supported relative to the microelectronic substrate 210 by a support arm 424. In one aspect of this embodiment, the support arm 424 is coupled to an electrode drive unit 423 for moving the electrodes 420 relative to the microelectronic substrate 210. For example, the electrode drive unit 423 can move the electrodes 420 toward and away from the conductive portion 211 of the microelectronic substrate 210, (as indicated by arrow "C"), and/or transversely (as indicated by arrow "D") in a plane generally parallel to the conductive portion 211. In other embodiments, the electrode drive unit 423 can move the electrodes 420 in other fashions, or the electrode drive unit 423 can be eliminated when the substrate drive unit 441 provides sufficient relative motion between the substrate 210 and the electrodes 420.

[0033] In either embodiment described above with reference to FIG. 4, the electrodes 420 can be coupled to a signal transmitter 421 with leads 428 for supplying electrical current to the electrolytic liquid 431 and the conductive portion 211. In operation, the signal transmitter 421 can supply an alternating current (signal phase or multi-phase) to the electrodes 420. The current passes through the electrolytic liquid 431 and reacts electrochemically with the conductive portion 211 to remove material (for example, atoms or groups of atoms) from the conductive portion 211. The electrodes 420 and/or the microelectronic substrate 210 can be moved relative to each other to remove material from select regions of the conductive portion 211, or from the entire conductive portion 211.

[0034] In one aspect of an embodiment of the apparatus 460 shown in FIG. 4, a distance D_1 between the electrodes 420 and the conductive portion 211 is set to be smaller than a distance D_2 between the first electrode 420*a* and the second electrode 420*b*. Furthermore, the electrolytic liquid 431

generally has a higher resistance than the conductive portion 211. Accordingly, the alternating current follows the path of least resistance from the first electrode 420a, through the electrolytic liquid 431 to the conductive portion 211 and back through the electrolytic liquid 431 to the second electrode 420b, rather than from the first electrode 420a directly through the electrolytic liquid 431 to the second electrode 420b. In one aspect of this embodiment, the resistance of the electrolytic liquid 431 can be increased as the thickness of the conductive portion 211 decreases (and the resistance of the conductive portion 211 increases) to maintain the current path described above. In another embodiment, a low dielectric material (not shown) can be positioned between the first electrode 420a and the second electrode 420b to decouple direct electrical communication between the electrodes 420 that does not first pass through the conductive portion 211.

[0035] FIG. 5 is a partially schematic, side elevation view of an apparatus 560 that includes a support member 540 positioned to support the microelectronic substrate 210 in accordance with another embodiment of the invention. In one aspect of this embodiment, the support member 540 supports the microelectronic substrate 210 with the conductive portion 211 facing upwardly. A substrate drive unit 541 can move the support member 540 and the microelectronic substrate 210, as described above with reference to FIG. 4. Electrodes 520, including first and second electrodes 520a and 520b, are positioned above the conductive portion 211 and are coupled to a current source 521. A support arm 524 supports the electrodes 520 relative to the substrate 210 and is coupled to an electrode drive unit 523 to move the electrodes 520 over the surface of the conductive portion 211 in a manner generally similar to that described above with reference to FIG. 4.

[0036] In one aspect of the embodiment shown in FIG. 5, the apparatus 560 further includes an electrolyte vessel 530 having a supply conduit 537 with an aperture 538 positioned proximate to the electrodes 520. Accordingly, an electrolytic liquid 531 can be deposited locally in an interface region 539 between the electrodes 520 and the conductive portion 211, without necessarily covering the entire conductive portion 211. The electrolytic liquid 531 and the conductive material removed from the conductive portion 211 flow over the substrate 210 and collect in an electrolyte receptacle 532. The mixture of electrolytic liquid 531 and conductive material can flow to a reclaimer 533 that removes most of the conductive material from the electrolytic liquid 531. A filter 534 positioned downstream of the reclaimer 533 provides additional filtration of the electrolytic liquid 531, and a pump 535 returns the reconditioned electrolytic liquid 531 to the electrolyte vessel 530 via a return line 536.

[0037] In another aspect of an embodiment shown in FIG. 5, the apparatus 560 can include a sensor assembly 550 having a sensor 551 positioned proximate to the conductive portion 211, and a sensor control unit 552 coupled to the sensor 551 for processing signals generated by the sensor 551. The control unit 552 can also move the sensor 551 relative to the microelectronic substrate 210. In a further aspect of this embodiment, the sensor assembly 550 can be coupled via a feedback path 553 to the electrode drive unit 523 and/or the substrate drive unit 541. Accordingly, the sensor 551 can determine which areas of the conductive portion 211 require additional material removal and can

move the electrodes **520** and/or the microelectronic substrate **210** relative to each other to position the electrodes **520** over those areas. Alternatively, (for example, when the removal process is highly repeatable), the electrodes **520** and/or the microelectronic substrate **210** can move relative to each other according to a pre-determined motion schedule.

[0038] FIG. 6 schematically illustrates an apparatus 660 for electrolytically, chemically-mechanically and/or electrochemically-mechanically polishing the microelectronic substrate 210 in accordance with an embodiment of the invention. In one aspect of this embodiment, the apparatus 660 has a support table 680 with a top-panel 681 at a workstation where an operative portion "W" of a polishing pad 683 is positioned. The top-panel 681 is generally a rigid plate to provide a flat, solid surface to which a particular section of the polishing pad 683 may be secured during polishing.

[0039] The apparatus 660 can also have a plurality of rollers to guide, position and hold the polishing pad 683 over the top-panel 681. The rollers can include a supply roller 687, first and second idler rollers 684a and 684b, first and second guide rollers 685a and 685b, and a take-up roller 686. The supply roller 687 carries an unused or preoperative portion of the polishing pad 683, and the take-up roller 686 carries a used or postoperative portion of the polishing pad 683. Additionally, the first idler roller 684a and the first guide roller 685a can stretch the polishing pad 683 over the top-panel 681 to hold the polishing pad 683 stationary during operation. A motor (not shown) drives at least one of the supply roller 687 and the take-up roller 686 to sequentially advance the polishing pad 683 across the top-panel 681. Accordingly, clean preoperative sections of the polishing pad 683 may be quickly substituted for used sections to provide a consistent surface for polishing and/or cleaning the microelectronic substrate 210.

[0040] The apparatus 660 can also have a carrier assembly 690 that controls and protects the microelectronic substrate 210 during polishing. The carrier assembly 690 can include a substrate holder 692 to pick up, hold and release the microelectronic substrate 210 at appropriate stages of the polishing process. The carrier assembly 690 can also have a support gantry 694 carrying a drive assembly 695 that can translate along the gantry 694. The drive assembly 695 can have an actuator 696, a drive shaft 697 coupled to the actuator 696, and an arm 698 projecting from the drive shaft 697. The arm 698 carries the substrate holder 692 via a terminal shaft 699 such that the drive assembly 695 orbits the substrate holder 692 about an axis E-E (as indicated by arrow "R1"). The terminal shaft 699 may also rotate the substrate holder 692 about its central axis F-F (as indicated by arrow "R2").

[0041] The polishing pad 683 and a polishing liquid 689 define a polishing medium 682 that electrolytically, chemically-mechanically, and/or electro-chemically-mechanically removes material from the surface of the microelectronic substrate 210. In some embodiments, the polishing pad 683 may be a nonabrasive pad without abrasive particles, and the polishing liquid 689 can be a slurry with abrasive particles and chemicals to remove material from the microelectronic substrate 210. In other embodiments, the polishing pad 683 can be a fixed-abrasive polishing pad in which abrasive particles are fixedly bonded to a suspension medium. To polish the microelectronic substrate 210 with the apparatus

660, the carrier assembly 690 presses the microelectronic substrate 210 against a polishing surface 688 of the polishing pad 683 in the presence of the polishing liquid 689. The drive assembly 695 then orbits the substrate holder 692 about the axis E-E and optionally rotates the substrate holder 692 about the axis F-F to translate the substrate 210 across the polishing surface 688. As a result, the abrasive particles and/or the chemicals in the polishing medium 682 remove material from the surface of the microelectronic substrate 210 in a chemical and/or chemical-mechanical polishing process.

[0042] In a further aspect of this embodiment, the polishing liquid 689 can include an electrolyte for electrolytic processing or ECMP processing. In another embodiment, the apparatus 660 can include an electrolyte supply vessel 630 that delivers an electrolyte separately to the polishing surface 688 of the polishing pad 683 with a conduit 637, as described in greater detail below with reference to FIG. 7. In either embodiment, the apparatus 660 can further include a current supply 621 coupled to electrodes positioned proximate to the polishing pad 683. Accordingly, the apparatus 660 can electrolytically remove material from the microelectronic substrate 210.

[0043] FIG. 7 is a partially exploded, partially schematic isometric view of a portion of the apparatus 660 described above with reference to FIG. 6. In one aspect of the embodiment shown in FIG. 6, the top-panel 681 houses a plurality of electrode pairs, each of which includes a first electrode 720a and a second electrode 720b. The first electrodes 720a are coupled to a first lead 728a and the second electrodes 720b are coupled to a second lead 728b. The first and second leads 728a and 728b are coupled to the current supply 621 (FIG. 6). In one aspect of this embodiment, the first electrodes 720a can be separated from the second electrodes 720b by an electrode dielectric layer 729a that includes Teflon[™] or another suitable dielectric material. The electrode dielectric layer 729a can accordingly control the volume and dielectric constant of the region between the first and second electrodes 720a and 720b to control the electrical coupling between the electrodes.

[0044] The electrodes 720*a* and 720*b* can be electrically coupled to the microelectronic substrate 210 (FIG. 6) by the polishing pad 683. In one aspect of this embodiment, the polishing pad 683 is saturated with an electrolytic liquid 731 supplied by the supply conduits 637 through apertures 738 in the top-panel 681 just beneath the polishing pad 683. Accordingly, the electrodes 720a and 720b are selected to be compatible with the electrolytic liquid 731. In an another arrangement, the electrolytic liquid 731 can be supplied to the polishing pad 683 from above (for example, by disposing the electrolytic liquid 731 in the polishing liquid 689, rather than by directing the electrolytic liquid upwardly through the polishing pad 683). Accordingly, the apparatus 660 can include a pad dielectric layer 729b positioned between the polishing pad 683 and the electrodes 720a and 720b. When the pad dielectric layer 729b is in place, the electrodes 720aand 720b can be isolated from physical contact with the electrolytic liquid 731 and can accordingly be selected from materials that are not necessarily compatible with the electrolytic liquid 731.

[0045] FIG. 8 is an isometric view of a portion of an apparatus 860 having electrodes 820 (shown as a first

electrode 820a and a second electrode 820b), and a polishing medium 882 arranged in accordance with another embodiment of the invention. In one aspect of this embodiment, the polishing medium 882 includes polishing pad portions 883 that project beyond the electrodes 820a and 820b. Each polishing pad portion 883 can include a polishing surface 888 and a plurality of flow passages 884 coupled to a fluid source (not shown in FIG. $\hat{8}$) with a conduit $\hat{837}$. Each flow passage 884 can have an aperture 885 proximate to the polishing surface 888 to provide an electrolytic liquid 831 proximate to an interface between the microelectronic substrate 210 and the polishing surface 888. In one aspect of this embodiment, the pad portions 883 can include recesses 887 surrounding each aperture 885. Accordingly, the electrolytic liquid 831 can proceed outwardly from the flow passages 884 while the microelectronic substrate 210 is positioned directly overhead and remains spaced apart from the electrodes 820. In other embodiments, the polishing pad portions 883 can be applied to other electrodes, such as those described above with reference to FIGS. 4 and 5 to provide for mechanical as well as electromechanical material removed.

[0046] The foregoing apparatuses described above with reference to FIGS. 4-8 can be used to electrolytically, chemically-mechanically and/or electrochemically-mechanically process the microelectronic substrate 210. When the apparatuses are used to electrolytically or electrochemically-mechanically process the microelectronic substrate 210, they can provide a varying electrical current that passes from the electrodes, through the conductive material of the microelectronic substrate 210 via the electrolytic liquid. For example, as shown in FIG. 9, the apparatus can generate a high-frequency wave 904 and can superimpose a lowfrequency wave 902 on the high-frequency wave 904. In one aspect of this embodiment, the high-frequency wave 904 can include a series of positive or negative voltage spikes contained within a square wave envelope defined by the low-frequency wave 902. Each spike of the high-frequency wave 904 can have a relatively steep rise-time slope to transfer charge through the dielectric material to the electrolytic liquid, and a more gradual fall-time slope. The fall-time slope can define a straight line, as indicated by high-frequency wave 904, or a curved line, as indicated by high-frequency wave 904a. In other embodiments, the highfrequency wave 904 and the low-frequency wave 902 can have other shapes depending, for example, on the particular characteristics of the dielectric material and the electrolytic liquid, the characteristics of the microelectronic substrate 210, and/or the target rate at which conductive material is to be removed from the microelectronic substrate 210.

[0047] The methods described above with reference to FIGS. 2A-3 may be performed with the apparatuses described above with reference to FIGS. 4-9 in a variety of manners in accordance with several embodiments of the invention. For example, in one embodiment, a single apparatus can be used to electrolytically remove first the second conductive material 209 and then the first and second conductive materials 218, 209 simultaneously. Alternatively, one apparatus can initially remove the second material 209 (e.g., via CMP) and the same or another apparatus can subsequently remove both the first and second conductive materials 218, 209. In either embodiment, both the first an second conductive materials 218, 209 can be removed simultaneously when they are exposed. In one aspect of both

embodiments, the downforce applied to the microelectronic substrate **210** can be reduced or eliminated during electrolytic processing. In another aspect of these embodiments, a selected downforce can be applied to the microelectronic substrate **210** during electrolytic processing to supplement the electrolytic removal process with a mechanical removal process. The electrolytic removal process in addition to or in lieu of the mechanical removal process.

[0048] From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

1-54. (Canceled)

55. An electrolytic liquid for removing first and second conductive materials from a microelectronic substrate, the first conductive material being different than the second conductive material, the electrolytic liquid comprising:

a liquid carrier; and

- an electrolyte disposed in the liquid carrier and configured to transmit electrical signals from an electrode to the first and second conductive materials of the microelectronic substrate;
- wherein a pH of the electrolytic liquid is from about 2 to about 5.

56. The electrolytic liquid of claim 55 wherein the electrolyte includes an acid.

57. The electrolytic liquid of claim 55 wherein the electrolyte includes at least one of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and acetic acid.

58. The electrolytic liquid of claim 55 wherein the liquid carrier includes deionized water.

59. The electrolytic liquid of claim 55 wherein the pH of the electrolytic liquid is selected to control an absolute value of a difference between a first open circuit potential of the first conductive material and a second open circuit potential of the second conductive material to be about 0.50 volts or less.

60. The electrolytic liquid of claim 55 wherein the pH of the electrolytic liquid is selected to control an absolute value of a difference between a first open circuit potential of the first conductive material and a second open circuit potential of the second conductive material to be about 0.25 volts or less.

61. The electrolytic liquid of claim 55, further comprising an oxidizer.

62. The electrolytic liquid of claim 55, further comprising an oxidizer selected from hydroxylamine, peroxide and ammonium persulfate.

63. The electrolytic liquid of claim 55, further comprising a corrosion inhibitor.

64. The electrolytic liquid of claim 55, further comprising a corrosion inhibitor that includes benzotriazole.

65. A system for removing first and second conductive materials from a microelectronic substrate, the first conductive material being different than the second conductive material, the system comprising:

a substrate support configured to carry a microelectronic substrate;

- at least one electrode positioned at least proximate to the substrate support;
- a liquid support positioned proximate to the substrate support to carry an electrolytic liquid in contact with the microelectronic substrate; and
- an electrolytic liquid carried by the liquid support, the electrolytic liquid including:
 - a liquid carrier;
 - an electrolyte disposed in the liquid carrier and configured to transmit electrical signals from the at least one electrode to the first and second conductive materials of the microelectronic substrate, wherein a pH of the electrolytic liquid is from about 2 to about 5.

66. The system of claim 65 wherein the liquid support includes a liquid vessel.

67. The system of claim 65 wherein the liquid support includes a polishing pad having a polishing surface positioned to contact the microelectronic substrate, wherein the at least one of the polishing pad and the substrate support is movable relative to the other.

68. The system of claim 65 wherein the electrode is a first electrode and wherein the system further comprises:

a second electrode spaced apart from the first electrode; and

an electrical signal transmitter coupled to the first and second electrodes, wherein the first and second electrodes are positioned to be spaced apart from the microelectronic substrate when the substrate carrier carries the microelectronic substrate.

69. The system of claim 65, further comprising a sensor positioned to detect an amount of conductive material on the microelectronic substrate.

70. The system of claim 65 wherein at least one of the at least one electrode and the substrate support is movable relative to the other.

71. The system of claim 65 wherein the electrolyte includes at least one of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and acetic acid.

72. The system of claim 65 wherein the pH of the electrolytic liquid is selected to control an absolute value of a difference between a first open circuit potential of the first conductive material and a second open circuit potential of the second conductive material to be about 0.50 volts or less.

73. The system of claim 65 wherein the pH of the electrolytic liquid is selected to control an absolute value of a difference between a first open circuit potential of the first conductive material and a second open circuit potential of the second conductive material to be about 0.25 volts or less.

* * * * *