
IN
US 20200057942A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0057942 A1

Ross et al . (43) Pub . Date : Feb. 20 , 2020

(54) NEURAL NETWORK PROCESSOR Publication Classification

(71) Applicant : Google LLC , Mountain View , CA (US)
(72) Inventors : Jonathan Ross , Mountain View , CA

(US) ; Norman Paul Jouppi , Palo Alto ,
CA (US) ; Andrew Everett Phelps ,
Middleton , WI (US) ; Reginald Clifford
Young , Palo Alto , CA (US) ; Thomas
Norrie , Mountain View , CA (US) ;
Gregory Michael Thorson , Waunakee ,
WI (US) ; Dan Luu , Madison , WI (US)

(51) Int . Ci .
GOON 3/08 (2006.01)
GOON 5/04 (2006.01)
GO6N 3/063 (2006.01)
G06F 15/80 (2006.01)

(52) U.S. CI .
CPC GO6N 3/08 (2013.01) ; G06F 15/8046

(2013.01) ; G06N 37063 (2013.01) ; G06N 5/04
(2013.01)

(21) Appl . No .: 16 / 663,876

(22) Filed : Oct. 25 , 2019

Related U.S. Application Data
(63) Continuation of application No. 16 / 529,782 , filed on

Aug. 1 , 2019 , which is a continuation of application
No. 15 / 686,615 , filed on Aug. 25 , 2017 , which is a
continuation of application No. 14 / 844,524 , filed on
Sep. 3 , 2015 , now Pat . No. 9,747,546 .

(60) Provisional application No. 62 / 164,931 , filed on May
21 , 2015 .

(57) ABSTRACT
A circuit for performing neural network computations for a
neural network comprising a plurality of neural network
layers , the circuit comprising : a matrix computation unit
configured to , for each of the plurality of neural network
layers : receive a plurality of weight inputs and a plurality of
activation inputs for the neural network layer , and generate
a plurality of accumulated values based on the plurality of
weight inputs and the plurality of activation inputs ; and a
vector computation unit communicatively coupled to the
matrix computation unit and configured to , for each of the
plurality of neural network layers : apply an activation func
tion to each accumulated value generated by the matrix
computation unit to generate a plurality of activated values
for the neural network layer .

Dynamic Memory
210

Unified Buffer
208

Matrix Computation Unit
212 Direct Memory

Access Engine
204

Vector Computation
Unit
214

Host Interface
202

Sequencer
206

200

Patent Application Publication Feb. 20 , 2020 Sheet 1 of 6 US 2020/0057942 A1

Receive sets of
weight inputs

102

Receive sets of
activation inputs

104

Generate
accumulated values
from the weight and
activation inputs

106

Generate an output
from the accumulated

values
108

100 100

FIG . 1

Dynamic Memory 210

Patent Application Publication

Unified Buffer 208

Matrix Computation Unit 212

Direct Memory Access Engine 204

Feb. 20 , 2020 Sheet 2 of 6

Vector Computation Unit 214

Host Interface 202

Sequencer 206

US 2020/0057942 A1

FIG . 2

200

Weight Fetcher Interface 308 306

Patent Application Publication

Value Loader 312

Cell 314

Cell 316

Cell

Cell

Value Loader

Cell 318

Cell

Cell

Cell

302

304

Value Loader

Cell

Cell

Cell

Cell

322

Feb. 20 , 2020 Sheet 3 of 6

Value Loader

Cell

Cell

Cell

Cell

Accumu lator Unit

Accumu lator Unit
Accumu lator Unit

Accumu lator Unit

US 2020/0057942 A1

310

FIG . 3

300

320

Weight Path Register 412

Weight Register 402

Sum In Register 404

Patent Application Publication

Activation Register 406

Multiplication Circuitry 408

Summation Circuitry 410

Feb. 20 , 2020 Sheet 4 of 6

FIG . 4

US 2020/0057942 A1

400

510

Patent Application Publication

Activation Unit 504

Normalization Unit 506

Pooling Unit 508

502

Feb. 20 , 2020 Sheet 5 of 6 US 2020/0057942 A1

5003

FIG . 5

500

Patent Application Publication Feb. 20 , 2020 Sheet 6 of 6 US 2020/0057942 A1

No
of sets of

activation inputs >
rows

in systolic array ?
602

Generate
accumulated values

from the inputs
604

Yes

Divide the activation
inputs into portions

606

Generate
accumulated values
from each portion

608

Combine the
accumulated values

into a vector
610

600

FIG . 6

US 2020/0057942 A1 Feb. 20 , 2020
1

NEURAL NETWORK PROCESSOR

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica
tion Ser . No. 16 / 529,782 , filed Aug. 1 , 2019 , which is a
continuation of U.S. application Ser . No. 15 / 686,615 , filed
on Aug. 25 , 2017 , which is a continuation of U.S. applica
tion Ser . No. 14 / 844,524 , filed on Sep. 3 , 2015 , which is a
non - provisional of and claims priority to U.S. Provisional
Patent Application No. 62 / 164,931 , filed on May 21 , 2015 ,
the entire contents of which are hereby incorporated by
reference .

BACKGROUND

[0002] This specification relates to computing neural net
work inferences in hardware .
[0003] Neural networks are machine learning models that
employ one or more layers of models to generate an output ,
e.g. , a classification , for a received input . Some neural
networks include one or more hidden layers in addition to an
output layer . The output of each hidden layer is used as input
to the next layer in the network , i.e. , the next hidden layer
or the output layer of the network . Each layer of the network
generates an output from a received input in accordance with
current values of a respective set of parameters .

SUMMARY
[0004] In general , this specification describes a special
purpose hardware circuit that computes neural network
inferences .
[0005] In general , one innovative aspect of the subject
matter described in this specification can be embodied in a
circuit for performing neural network computations for a
neural network comprising a plurality of neural network
layers , the circuit comprising : a matrix computation unit
configured to , for each of the plurality of neural network
layers : receive a plurality of weight inputs and a plurality of
activation inputs for the neural network layer , and generate
a plurality of accumulated values based on the plurality of
weight inputs and the plurality of activation inputs ; and a
vector computation unit communicatively coupled to the
matrix computation unit and configured to , for each of the
plurality of neural network layers : apply an activation func
tion to each accumulated value generated by the matrix
computation unit to generate a plurality of activated values
for the neural network layer .
[0006] Implementations can include one or more of the
following features . A unified buffer communicatively
coupled to the matrix computation unit and the vector
computation unit , where the unified buffer is configured to
receive and store output from the vector computation unit ,
and the unified buffer is configured to send the received
output as input to the matrix computation unit . A sequencer
configured to receive instructions from a host device and
generate a plurality of control signals from the instructions ,
where the plurality of control signals control dataflow
through the circuit ; and a direct memory access engine
communicatively coupled to the unified buffer and the
sequencer , where the direct memory access engine is con
figured to send the plurality of activation inputs to the
unified buffer , where the unified buffer is configured to send
the plurality of activation inputs to the matrix computation

unit , and where the direct memory access engine is config
ured to read result data from the unified buffer . A memory
unit configured to send the plurality of weight inputs to the
matrix computation unit , and where the direct memory
access engine is configured to send the plurality of weight
inputs to the memory unit . The matrix computation unit is
configured as a two dimensional systolic array comprising a
plurality of cells . The plurality of weight inputs is shifted
through a first plurality of cells along a first dimension of the
systolic array , and where the plurality of activation inputs is
shifted through a second plurality of cells along a second
dimension of the systolic array . For a given layer in the
plurality of layers , a count of the plurality of activation
inputs is greater than a size of the second dimension of the
systolic array , and where the systolic array is configured to :
divide the plurality of activation inputs into portions , where
each portion has a size less than or equal to the size of the
second dimension ; generating , for each portion , a respective
portion of accumulated values , and combining each portion
of accumulated values to generate a vector of accumulated
values for the given layer . For a given layer in the plurality
of layers , a count of the plurality of weight inputs is greater
than a size of the first dimension of the systolic array , and
where the systolic array is configured to : divide the plurality
of weight inputs into portions , where each portion has a size
less than or equal to the size of the first dimension ; gener
ating , for each portion , a respective portion of accumulated
values ; and combining each portion of accumulated values
to generate a vector of accumulated values for the given
layer . Each cell in the plurality of cells comprises : a weight
register configured to store a weight input ; an activation
register configured to store an activation input and config
ured to send the activation input to another activation
register in a first adjacent cell along the second dimension ;
a sum - in register configured to store a previously summed
value ; multiplication circuitry communicatively coupled to
the weight register and the activation register , where the
multiplication circuitry is configured to output a product of
the weight input and the activation input ; and summation
circuitry communicatively coupled to the multiplication
circuitry and the sum - in register , where the summation
circuitry is configured to output a sum of the product and the
previously summed value , and where the summation cir
cuitry is configured to send the sum to another sum - in
register in a second adjacent cell along the first dimension .
One or more cells in the plurality of cells are each configured
to store the respective sum in a respective accumulator unit ,
where the respective sum is an accumulated value . The first
dimension of the systolic array corresponds to columns of
the systolic array , and where the second dimension of the
systolic array corresponds to rows of the systolic array . The
vector computation unit normalizes each activated value to
generate a plurality of normalized values . The vector com
putation unit pools one or more activated values to generate
a plurality of pooled values .
[0007] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages . Implement
ing a neural network processor in hardware improves effi
ciency , e.g. , increase speed and throughput and reduce
power and cost , over implementations in software . This can
be useful for inference applications . Integrating components
of the neural network processor into one circuit allows
inferences to be computed without incurring penalties of

US 2020/0057942 A1 Feb. 20 , 2020
2

off - chip communication . Additionally , the circuit can pro
cess neural network layers that have a number of inputs , e.g. ,
a number of weight inputs or a number of activation inputs ,
larger than a size of a dimension of a matrix computation
unit within the circuit . For example , the circuit can process
a large number of weight inputs per neuron of the neural
network .
[0008] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below . Other
features , aspects , and advantages of the subject matter will
become apparent from the description , the drawings , and the
claims .

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG . 1 is a flow diagram of an example method for
performing a computation for a given layer of a neural
network .
[0010] FIG . 2 shows an example neural network process
ing system .
[0011] FIG . 3 shows an example architecture including a
matrix computation unit .
[0012] FIG . 4 shows an example architecture of a cell
inside a systolic array .
[0013] FIG . 5 shows an example architecture of a vector
computation unit .
[0014] FIG . 6 is a flow diagram of another example
process for performing , using a systolic array , the compu
tation for a given neural network layer having more activa
tion inputs than rows in the systolic array .
[0015] Like reference numbers and designations in the
various drawings indicate like elements .

method 100. The method 100 can be performed for each
layer of the neural network in order to compute an inference
from a received input .
[0020] The system receives sets of weight inputs (step
102) and sets of activation inputs (step 104) for the given
layer . The sets of weight inputs and the sets of activation
inputs can be received from dynamic memory and a unified
buffer , respectively , of the special - purpose hardware circuit .
In some implementations , both the sets of weight inputs and
the sets of activation inputs can be received from the unified
buffer .

[0021] The system generates accumulated values from the
weight inputs and the activation inputs using a matrix
multiplication unit of the special - purpose hardware circuit
(step 106) . In some implementations , the accumulated val
ues are dot products of the sets of weight inputs and the sets
of activation inputs . That is , for one set of weights , the
system can multiply each weight input with each activation
input and sum the products together to form an accumulated
value . The system can then compute dot products of other set
of weights with other sets of activation inputs .
[0022] The system can generate a layer output from the
accumulation values (step 108) using a vector computation
unit of the special - purpose hardware circuit . In some imple
mentations , the vector computation unit applies an activa
tion function to the accumulated values , which will be
described further below in reference to FIG . 5. The output of
the layer can be stored in the unified buffer for use as an
input to a subsequent layer in the neural network or can be
used to determine the inference . The system finishes pro
cessing the neural network when a received input has been
processed through each layer of the neural network to
generate the inference for the received input .
[0023] FIG . 2 shows an example special - purpose inte
grated circuit 200 for performing neural network computa
tions . The system 200 includes a host interface 202. The host
interface 202 can receive instructions that include param
eters for a neural network computation . The parameters can
include at least one or more of the following : how many
layers should be processed , corresponding sets of weight
inputs for each layer of the layer , an initial set of activation
inputs , i.e. , the input to the neural network from which the
inference is to be computed , corresponding input and output
sizes of each layer , a stride value for the neural network
computation , and a type of layer to be processed , e.g. , a
convolutional layer or a fully connected layer .
[0024] The host interface 202 can send the instructions to
a sequencer 206 , which converts the instructions into low
level control signals that control the circuit to perform the
neural network computations . In some implementations , the
control signals regulate dataflow in the circuit , e.g. , how the
sets of weight inputs and the sets of activation inputs flow
through the circuit . The sequencer 206 can send the control
signals to a unified buffer 208 , a matrix computation unit
212 , and a vector computation unit 214. In some implemen
tations , the sequencer 206 also sends control signals to a
direct memory access engine 204 and dynamic memory 210 .
In some implementations , the sequencer 206 is a processor
that generates clock signals . The sequencer 206 can use
timing of the clock signals to , at appropriate times , send the
control signals to each component of the circuit 200. In some
other implementations , the host interface 202 passes in a
clock signal from an external processor .

DETAILED DESCRIPTION
[0016] A neural network having multiple layers can be
used to compute inferences . For example , given an input , the
neural network can compute an inference for the input . The
neural network computes this inference by processing the
input through each of the layers of the neural network . In
particular , the layers of the neural network are arranged in a
sequence , each with a respective set of weights . Each layer
receives an input and processes the input in accordance with
the set of weights for the layer to generate an output .
[0017] Therefore , in order to compute an inference from a
received input , the neural network receives the input and
processes it through each of the neural network layers in the
sequence to generate the inference , with the output from one
neural network layer being provided as input to the next
neural network layer . Data inputs to a neural network layer ,
e.g. , either the input to the neural network or the outputs of
the layer below the layer in the sequence , to a neural network
layer can be referred to as activation inputs to the layer .
[0018] In some implementations , the layers of the neural
network are arranged in a directed graph . That is , any
particular layer can receive multiple inputs , multiple out
puts , or both . The layers of the neural network can also be
arranged such that an output of a layer can be sent back as
an input to a previous layer .
[0019] FIG . 1 is a flow diagram of an example process 100
for performing a computation for a given layer of a neural
network using a special - purpose hardware circuit . For con
venience , the method 100 will be described with respect to
a system having one or more circuits that performs the

US 2020/0057942 A1 Feb. 20 , 2020
3

[0025] The host interface 202 can send the sets of weight
inputs and the initial set of activation inputs to the direct
memory access engine 204. The direct memory access
engine 204 can store the sets of activation inputs at the
unified buffer 208. In some implementations , the direct
memory access stores the sets of weights to dynamic
memory 210 , which can be a memory unit . In some imple
mentations , the dynamic memory is located off of the circuit .
[0026] The unified buffer 208 is a memory buffer . It can be
used to store the set of activation inputs from the direct
memory access engine 204 and outputs of the vector com
putation unit 214. The vector computation unit will be
described in more detail below with reference to FIG . 5. The
direct memory access engine 204 can also read the outputs
of the vector computation unit 214 from the unified buffer
208 .
[0027] The dynamic memory 210 and the unified buffer
208 can send the sets of weight inputs and the sets of
activation inputs , respectively , to the matrix computation
unit 212. In some implementations , the matrix computation
unit 212 is a two - dimensional systolic array . The matrix
computation unit 212 can also be a one - dimensional systolic
array or other circuitry that can perform mathematical
operations , e.g. , multiplication and addition . In some imple
mentations , the matrix computation unit 212 is a general
purpose matrix processor .
[0028] The matrix computation unit 212 can process the
weight inputs and the activation inputs and provide a vector
of outputs to the vector computation unit 214. In some
implementations , the matrix computation unit sends the
vector of outputs to the unified buffer 208 , which sends the
vector of outputs to the vector computation unit 214. The
vector computation unit can process the vector of outputs
and store a vector of processed outputs to the unified buffer
208. The vector of processed outputs can be used as acti
vation inputs to the matrix computation unit 212 , e.g. , for
use in a subsequent layer in the neural network . The matrix
computation unit 212 and the vector computation unit 214
will be described in more detail below with reference to FIG .
3 and FIG . 5 , respectively .
[0029] FIG . 3 shows an example architecture 300 includ
ing a matrix computation unit . The matrix computation unit
is a two - dimensional systolic array 306. The two - dimen
sional systolic array 306 can be a square array . The array 306
includes multiple cells 304. In some implementations , a first
dimension 320 of the systolic array 306 corresponds to
columns of cells and a second dimension 322 of the systolic
array 306 corresponds to rows of cells . The systolic array
can have more rows than columns , more columns than rows ,
or an equal number of columns and rows .
[0030] In the illustrated example , value loaders 302 send
activation inputs to rows of the array 306 and a weight
fetcher interface 308 sends weight inputs to columns of the
array 306. In some other implementations , however , activa
tion inputs are transferred to the columns and weight inputs
are transferred to the rows of the array 306 .
[0031] The value loaders 302 can receive the activation
inputs from a unified buffer , e.g. , the unified buffer 208 of
FIG . 2. Each value loader can send a corresponding activa
tion input to a distinct left - most cell of the array 306. The
left - most cell can be a cell along a left - most column of the
array 306. For example , value loader 312 can send an
activation input to cell 314. The value loader can also send
the activation input to an adjacent value loader , and the

activation input can be used at another left - most cell of the
array 306. This allows activation inputs to be shifted for use
in another particular cell of the array 306 .
[0032] The weight fetcher interface 308 can receive the
weight input from a memory unit , e.g. , the dynamic memory
210 of FIG . 2. The weight fetcher interface 308 can send a
corresponding weight input to a distinct top - most cell of the
array 306. The top - most cell can be a cell along a top - most
row of the array 306. For example , the weight fetcher
interface 308 can send weight inputs to cells 314 and 316 .
[0033] In some implementations , a host interface , e.g. , the
host interface 202 of FIG . 2 , shifts activation inputs through
out the array 306 along one dimension , e.g. , to the right ,
while shifting weight inputs throughout the array 306 along
another dimension , e.g. , to the bottom . For example , over
one clock cycle , the activation input at cell 314 can shift to
an activation register in cell 316 , which is to the right of cell
314. Similarly , the weight input at cell 316 can shift to a
weight register at cell 318 , which is below cell 314 .
[0034] On each clock cycle , each cell can process a given
weight input and a given activation input to generate an
accumulated output . The accumulated output can also be
passed to an adjacent cell along the same dimension as the
given weight input . An individual cell is described further
below with reference FIG . 4 .
[0035] The accumulated output can be passed along the
same column as the weight input , e.g. , towards the bottom
of the column in the array 306. In some implementations , at
the bottom of each column , the array 306 can include
accumulator units 310 that store and accumulate each accu
mulated output from each column when performing calcu
lations with layers having more weight inputs than columns
or layers having more activation inputs than rows . In some
implementations , each accumulator unit stores multiple par
allel accumulations . This will be described further below
with reference to FIG . 6. The accumulator units 310 can
accumulate each accumulated output to generate a final
accumulated value . The final accumulated value can be
transferred to a vector computation unit , e.g. , the vector
computation unit 502 of FIG . 5. In some other implemen
tations , the accumulator units 310 passes the accumulated
values to the vector computation unit without performing
any accumulations when processing layers with fewer
weight inputs than columns or layers having fewer activat
ing inputs than rows .
[0036] FIG . 4 shows an example architecture 400 of a cell
inside a systolic array , e.g. , the systolic array 306 of FIG . 3 .
[0037] The cell can include an activation register 406 that
stores an activation input . The activation register can receive
the activation input from a left adjacent cell , i.e. , an adjacent
cell located to the left of the given cell , or from a unified
buffer , depending on the position of the cell within the
systolic array . The cell can include a weight register 402 that
stores a weight input . The weight input can be transferred
from a top adjacent cell or from a weight fetcher interface ,
depending on the position of the cell within the systolic
array . The cell can also include a sum in register 404. The
sum in register 404 can store an accumulated value from the
top adjacent cell . Multiplication circuitry 408 can be used to
multiply the weight input from the weight register 402 with
the activation input from the activation register 406. The
multiplication circuitry 408 can output the product to sum
mation circuitry 410 .

US 2020/0057942 A1 Feb. 20 , 2020
4

computation unit 502 processes the vector of accumulated
values . That is , the control signals 510 can regulate whether
the activation values are pooled , normalized , or both . The
control signals 510 can also specify the activation , normal
ization , or pooling functions , as well as other parameters for
normalization and pooling , e.g. , a stride value .
[0047] The vector computation unit 502 can send values ,
e.g. , activation values , normalized values , or pooled values ,
to a unified buffer , e.g. , the unified buffer 208 of FIG . 2 .
[0048] In some implementations , the pooling unit 508
receives the activation values instead of the normalization
unit 506 , and the pooling unit 508 sends the pooled values
to the normalization unit 506 , which generates normalized
values to be stored in the unified buffer .
[0049] FIG . 6 is a flow diagram of example process for
performing , using a systolic array , the computation for a
given neural network layer having more activation inputs
than rows in the systolic array . For convenience , the process
600 will be described with respect to a system that performs
the process 600. In some implementations , a host interface
or a sequencer performs the process 600 , e.g. , the host
interface 202 or the sequencer 206 , respectively , of FIG . 2 .
In some other implementations , the host interface receives
instructions from an external processor that performs the
process 600 .

[0038] The summation circuitry can sum the product and
the accumulated value from the sum in register 404 to
generate a new accumulated value . The summation circuitry
410 can then send the new accumulated value to another sum
in register located in a bottom adjacent cell . The new
accumulated value can be used as an operand for a summa
tion in the bottom adjacent cell .
[0039] The cell can also shift the weight input and the
activation input to adjacent cells for processing . For
example , the weight register 402 can send the weight input
to another weight register in the bottom adjacent cell . The
activation register 406 can send the activation input to
another activation register in the right adjacent cell . Both the
weight input and the activation input can therefore be reused
by other cells in the array at a subsequent clock cycle .
[0040] In some implementations , the cell also includes a
control register . The control register can store a control
signal that determines whether the cell should shift either the
weight input or the activation input to adjacent cells . In some
implementations , shifting the weight input or the activation
input takes one or more clock cycles . The control signal can
also determine whether the activation input or weight inputs
are transferred to the multiplication circuitry 408 , or can
determine whether the multiplication circuitry 408 operates
on the activation and weight inputs . The control signal can
also be passed to one or more adjacent cells , e.g. , using a
wire .
[0041] In some implementations , weights are pre - shifted
into a weight path register 412. The weight path register 412
can receive the weight input , e.g. , from a top adjacent cell ,
and transfer the weight input to the weight register 402 based
on the control signal . The weight register 402 can statically
store the weight input such that as activation inputs are
transferred to the cell , e.g. , through the activation register
406 , over multiple clock cycles , the weight input remains
within the cell and is not transferred to an adjacent cell .
Therefore , the weight input can be applied to multiple
activation inputs , e.g. , using the multiplication circuitry 408 ,
and respective accumulated values can be transferred to an
adjacent cell .
[0042] FIG . 5 shows an example architecture 500 of a
vector computation unit 502. The vector computation unit
502 can receive a vector of accumulated values from a
matrix computation unit , e.g. , the matrix computation unit
described in reference to FIG . 2 .
[0043] The vector computation unit 502 can process the
vector of accumulated values at the activation unit 504. In
some implementations , the activation unit includes circuitry
that applies a non - linear function to each accumulated value
to generate activation values . For example , the non - linear
function can be tanh (x) , where x is an accumulated value .
[0044] Optionally , the vector computation unit 502 can
normalize the activation values in a normalization unit 506
that generates normalized values from the activation values .
[0045] Also optionally , the vector computation unit 502
can pool values , either activation values or normalization
values , using a pooling unit 508. The pooling unit 508 can
apply an aggregation function to one or more of the nor
malized values to generate pooled values . In some imple
mentations , the aggregation functions are functions that
return a maximum , minimum , or average of the normalized
values or of a subset of the normalized values .
[0046] Control signals 510 can be transferred , e.g. , by the
sequencer 206 of FIG . 2 , and can regulate how the vector

[0050] As described above , each layer can have multiple
sets of activation inputs and each set of weight inputs can be
transferred to cells at distinct rows of the array . In some
implementations , some layers of the neural network have
more sets of activation inputs than there are rows of the
array .
[0051] The system can determine , e.g. , using a compara
tor , whether there are more sets of activation inputs for the
given neural network layer than there are rows in the systolic
array . In some implementations , the system makes the
determination at compile time . A set of activation inputs can
correspond to the activation inputs provided to a single row
of the array .
[0052] If there are more rows than sets of activation inputs
(step 602) , the system can generate accumulated values as
described above in the systolic array 306 of FIG . 3 (step
604) .
[0053] If there are more sets of activation inputs to be
processed than there are rows in the array (step 602) , the
system can divide the sets of activation inputs into portions
so that each portion has a size less than or equal to a number
of rows in the array (step 606) .
[0054] The system then can generate , for each portion of
activation inputs , a portion of accumulated values (step
608) . An accumulated value can be a sum of products of
activation and weight inputs to cells along a given column ,
e.g. , as described in systolic array 306 of FIG . 3. Each
portion of accumulated values can be stored in a buffer until
all portions of activation inputs have been processed . The
buffer can be a buffer in accumulator units 310 of FIG . 3 , a
buffer in the systolic array , or the unified buffer 208 of FIG .
2 .
[0055] The system can then combine all portions of accu
mulated values into a vector of accumulated values (step
610) . In particular , the system can access the buffer of
previously stored portions of accumulated values and accu
mulate , e.g. , using accumulator units 310 of FIG . 3 , the
accumulated values to generate a vector of the accumulated

US 2020/0057942 A1 Feb. 20 , 2020
5

values . The system can send the vector of the accumulated
values to a vector computation unit , e.g. , the vector com
putation unit 214 of FIG . 2 .
[0056] For example , if there are 256 rows in the array and
there are 300 sets of activation inputs to process at a given
layer , the system can generate 256 final accumulated values
from 256 sets of activation inputs for complete utilization of
the systolic array and store the 256 final accumulated values
in a buffer . The system can then generate 44 final accumu
lated values from the 44 remainder sets of activation inputs .
Finally , the system can combine all 300 final accumulated
values to form a vector and send the vector to the vector
computation unit .
[0057] If there are more sets of weight inputs than col
umns to the array , the system can perform similar operations .
That is , the system can divide the sets of weight inputs into
portions having fewer sets of weight inputs than a number of
columns in the array , generate accumulated values for each
portion , and combine the accumulated values into a vector
for use in the vector computation unit . In some implemen
tations , instead of comparing the number of sets of weight
inputs with the number of columns in the array , the system
can compare the number of accumulated values with the
number of columns in the array .
[0058] Although the system has been described with
weight inputs being transferred to columns of the array and
activation inputs being transferred to rows of the array , in
some implementations , the weight inputs are transferred to
rows of the array and the activation inputs are transferred to
columns of the array .
[0059] Although the hardware is described to be for com
puting inferences , the hardware can be used for one or more
of the following : convolutional or fully - connected neural
network training , linear or logistic regression , clustering ,
e.g. , k - means clustering , video - encoding , and image pro
cessing .
[0060] Embodiments of the subject matter and the func
tional operations described in this specification can be
implemented in digital electronic circuitry , in tangibly
embodied computer software or firmware , in computer hard
ware , including the structures disclosed in this specification
and their structural equivalents , or in combinations of one or
more of them . Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs , i.e. , one or more modules of computer
program instructions encoded on a tangible non transitory
program carrier for execution by , or to control the operation
of , data processing apparatus . Alternatively or in addition ,
the program instructions can be encoded on an artificially
generated propagated signal , e.g. , a machine - generated elec
trical , optical , or electromagnetic signal , that is generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus . The
computer storage medium can be a machine - readable stor
age device , a machine - readable storage substrate , a random
or serial access memory device , or a combination of one or
more of them .
[0061] The term “ data processing apparatus ” encompasses
all kinds of apparatus , devices , and machines for processing
data , including by way of example a programmable proces
sor , a computer , or multiple processors or computers . The
apparatus can include special purpose logic circuitry , e.g. , an
FPGA (field programmable gate array) or an ASIC (appli
cation specific integrated circuit) . The apparatus can also

include , in addition to hardware , code that creates an execu
tion environment for the computer program in question , e.g. ,
code that constitutes processor firmware , a protocol stack , a
database management system , an operating system , or a
combination of one or more of them .
[0062] A computer program (which may also be referred
to or described as a program , software , a software applica
tion , a module , a software module , a script , or code) can be
written in any form of programming language , including
compiled or interpreted languages , or declarative or proce
dural languages , and it can be deployed in any form ,
including as a standalone program or as a module , compo
nent , subroutine , or other unit suitable for use in a computing
environment . A computer program may , but need not , cor
respond to a file in a file system . A program can be stored in
a portion of a file that holds other programs or data , e.g. , one
or more scripts stored in a markup language document , in a
single file dedicated to the program in question , or in
multiple coordinated files , e.g. , files that store one or more
modules , sub programs , or portions of code . A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis
tributed across multiple sites and interconnected by a com
munication network .
[0063] The processes and logic flows described in this
specification can be performed by one or more program
mable computers executing one or more computer programs
to perform functions by operating on input data and gener
ating output . The processes and logic flows can also be
performed by , and apparatus can also be implemented as ,
special purpose logic circuitry , e.g. , an FPGA (field pro
grammable gate array) or an ASIC (application specific
integrated circuit) .
[0064] Computers suitable for the execution of a computer
program include , by way of example , can be based on
general or special purpose microprocessors or both , or any
other kind of central processing unit . Generally , a central
processing unit will receive instructions and data from a read
only memory or a random access memory or both . The
essential elements of a computer are a central processing
unit for performing or executing instructions and one or
more memory devices for storing instructions and data .
Generally , a computer will also include , or be operatively
coupled to receive data from or transfer data to , or both , one
or more mass storage devices for storing data , e.g. , mag
netic , magneto optical disks , or optical disks . However , a
computer need not have such devices . Moreover , a computer
can be embedded in another device , e.g. , a mobile telephone ,
a personal digital assistant (PDA) , a mobile audio or video
player , a game console , a Global Positioning System (GPS)
receiver , or a portable storage device , e.g. , a universal serial
bus (USB) flash drive , to name just a few .
[0065] Computer readable media suitable for storing com
puter program instructions and data include all forms of
nonvolatile memory , media and memory devices , including
by way of example semiconductor memory devices , e.g. ,
EPROM , EEPROM , and flash memory devices ; magnetic
disks , e.g. , internal hard disks or removable disks ; magneto
optical disks ; and CD ROM and DVD - ROM disks . The
processor and the memory can be supplemented by , or
incorporated in , special purpose logic circuitry .
[0066] To send for interaction with a user , embodiments of
the subject matter described in this specification can be
implemented on a computer having a display device , e.g. , a

US 2020/0057942 A1 Feb. 20 , 2020
6

CRT (cathode ray tube) or LCD (Liquid crystal display)
monitor , for displaying information to the user and a key
board and a pointing device , e.g. , a mouse or a trackball , by
which the user can send input to the computer . Other kinds
of devices can be used to send for interaction with a user as
well ; for example , feedback provided to the user can be any
form of sensory feedback , e.g. , visual feedback , auditory
feedback , or tactile feedback ; and input from the user can be
received in any form , including acoustic , speech , or tactile
input . In addition , a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user ; for example , by sending web
pages to a web browser on a user's client device in response
to requests received from the web browser .
[0067] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component , e.g. , as a data server , or
that includes a middleware component , e.g. , an application
server , or that includes a front end component , e.g. , a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification , or any
combination of one or more such back end , middleware , or
front end components . The components of the system can be
interconnected by any form or medium of digital data
communication , e.g. , a communication network . Examples
of communication networks include a local area network
(“ LAN ”) and a wide area network (“ WAN ”) , e.g. , the
Internet .

[0068] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other .
[0069] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any invention or of what may be
claimed , but rather as descriptions of features that may be
specific to particular embodiments of particular inventions .
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment . Conversely , various
features that are described in the context of a single embodi
ment can also be implemented in multiple embodiments
separately or in any suitable subcombination . Moreover ,
although features may be described above as acting in
certain combinations and even initially claimed as such , one
or more features from a claimed combination can in some
cases be excised from the combination , and the claimed
combination may be directed to a subcombination or varia
tion of a subcombination .
[0070] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system modules and components in the embodi
ments described above should not be understood as requir
ing such separation in all embodiments , and it should be
understood that the described program components and

systems can generally be integrated together in a single
software product or packaged into multiple software prod
ucts .

[0071] Particular embodiments of the subject matter have
been described . Other embodiments are within the scope of
the following claims . For example , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . As one example , the processes depicted in
the accompanying figures do not necessarily require the
particular order shown , or sequential order , to achieve
desirable results . In certain implementations , multitasking
and parallel processing may be advantageous .
What is claimed is :
1. (canceled)
2. A circuit for performing neural network computations

for a neural network comprising a plurality of neural net
work layers , the circuit comprising :

a matrix computation unit configured to compute multi
plications using a plurality of cells of the matrix
computation unit to generate accumulated values ,
wherein each of the multiplications is between a weight
for a neural network layer and an input to the neural
network layer ; and

a vector computation unit configured to (i) generate a
plurality of activated values for the neural network
layer based on the accumulated values generated by the
matrix computation unit and (ii) generate an output for
the neural network layer based on the plurality of
activated values .

3. The circuit of claim 2 , wherein :
the matrix computation unit is configured as a multi

dimensional systolic array ; and
the plurality of cells are arranged along at least a first

dimension and a second dimension of the systolic array ,
the first dimension being different than the second
dimension .

4. The circuit of claim 3 , wherein the matrix computation
unit is configured to :

load one or more weights for the neural network layer into
the plurality of cells of the matrix computation unit ;
and

shift one or more weights through the plurality of cells of
the matrix computation unit .

5. The circuit of claim 4 , wherein the matrix computation
unit is configured to :

shift one or more inputs for the neural network layer into
the plurality of cells of the matrix computation unit to
perform the multiplications between the weight for the
neural network layer and the input to the neural net
work layer .

6. The circuit of claim 4 , wherein the vector computation
unit is configured to :

apply an activation function to each of the accumulated
values provided by the matrix computation unit ; and

generate the plurality of activated values for the neural
network layer based on the activation function that is
applied to each of the accumulated values .

7. The circuit of claim 4 , wherein each activated value of
the plurality of activated values represents an activation
input to a second neural network layer and the matrix
computation unit is configured to :

US 2020/0057942 A1 Feb. 20 , 2020
7

shift one or more weights for the second neural network
layer through a first plurality of cells of the systolic
array along a first , column dimension of the systolic
array ; and

shift a plurality of activation inputs to the second neural
network layer through a second plurality of cells of the
systolic array along a second , row dimension of the
systolic array .

8. The circuit of claim 7 , wherein the matrix computation
unit is configured to :

generate a vector of accumulated values for the second
neural network layer based on dot products of multi
plications between the one or more weights for the
second neural network layer and different activation
inputs to the second neural network layer that are
shifted along the second , row dimension of the of the
systolic array .

9. The circuit of claim 8 , wherein the vector computation
unit is configured to :

receive the vector of accumulated values generated by the
matrix computation unit ; and

generate a vector of activation values in response to
applying an activation function to each accumulated
value in the vector of accumulated values .

10. The circuit of claim 2 , wherein :
the matrix computation unit is configured as a multi
dimensional systolic array ;

the systolic array includes the plurality of cells being
arranged along at least a first dimension of the systolic
array and a second dimension of the systolic array ; and

the first dimension and the second dimension are the same
dimension .

11. A method for performing neural network computa
tions using a circuit configured to implement a neural
network comprising a plurality of neural network layers , the
method comprising :

receiving , by a matrix computation unit in the circuit , a
plurality of weights for a neural network layer and
inputs to the neural network layer ;

computing , using a plurality of cells of a matrix compu
tation unit , multiplications between a weight for the
neural network layer and one or more of the inputs to
the neural network layer ; and

generating , using activation circuity of a vector compu
tation unit in the circuit , an output for the neural
network layer based on the multiplications .

12. The method of claim 11 , wherein generating the
output for the neural network layer comprises :

generating , by the matrix computation unit , accumulated
values for the neural network layer based on the
multiplications , and

generating , by the vector computation unit , a plurality of
activated values for the neural network layer based on
the accumulated values generated by the matrix com
putation unit .

13. The method of claim 12 , wherein computing the
multiplications between the weight for the neural network
layer and one or more of the inputs comprises :

computing the multiplications using a multi - dimensional
systolic array of the matrix computation unit , and

wherein the plurality of cells are arranged along at least a
first dimension and a second dimension of the systolic
array , the first dimension being different than the sec
ond dimension .

14. The method of claim 13 , wherein receiving the
plurality of weights for the neural network layer comprises :

loading one or more weights for the neural network layer
into a distinct cell of the plurality of cells of the matrix
computation unit ; and

shifting one or more weights through one or more cells of
the plurality of cells of the matrix computation unit .

15. The method of claim 14 , wherein receiving the inputs
to the neural network layer comprises :

shifting one or more inputs for the neural network layer
into the distinct cell of the plurality of cells of the
matrix computation unit to perform the multiplications
between the weight for the neural network layer and
one or more of the inputs to the neural network layer .

16. The method of claim 12 , wherein generating the
plurality of activated values for the neural network layer
comprises :

applying , by the activation circuity of the vector compu
tation unit , an activation function to each of the accu
mulated values generated by the matrix computation
unit ; and

generating the plurality of activated values for the neural
network layer based on the activation function applied
to each of the accumulated values .

17. The method of claim 16 , comprising :
receiving , by the vector computation unit , a vector of

accumulated values generated by the matrix computa
tion unit ; and

generating , by the vector computation unit , a vector of
activation values in response to applying the activation
function to each accumulated value in the vector of
accumulated values .

18. The method of claim 13 , wherein each activated value
of the plurality of activated values represents an activation
input to a second neural network layer and the method
comprises :

shifting one or more weights for the second neural net
work layer through a first plurality of cells of the
systolic array along a first , column dimension of the
systolic array ; and

shifting a plurality of activation inputs to the second
neural network layer through a second plurality of cells
of the systolic array along a second , row dimension of
the systolic array .

19. The method of claim 18 , comprising :
generating a vector of accumulated values for the second

neural network layer based on dot products of multi
plications between the one or more weights for the
second neural network layer and different activation
inputs provided to the second neural network layer that
are shifted along the second , row dimension of the of
the systolic array .

20. The method of claim 12 , wherein :
the matrix computation unit is configured as a multi

dimensional systolic array ;
the systolic array includes the plurality of cells being

arranged along at least a first dimension of the systolic
array and a second dimension of the systolic array ; and

the first dimension and the second dimension are the same
dimension .

21. One or more non - transitory machine - readable storage
devices for storing instructions that are executable by one or
more processing devices to cause performance of operations
for performing neural network computations using a circuit

US 2020/0057942 A1 Feb. 20 , 2020
8

configured to implement a neural network comprising a
plurality of neural network layers , the operations compris
ing :

receiving , by a matrix computation unit in the circuit , a
plurality of weights for a neural network layer and
inputs to the neural network layer ;

computing , using a plurality of cells of the matrix com
putation unit , multiplications between a weight for the
neural network layer and one or more of the inputs to
the neural network layer ; and

generating , using activation circuity of a vector compu
tation unit in the circuit , an output for the neural
network layer based on the multiplications .

