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( 57 ) ABSTRACT 
A circuit for performing neural network computations for a 
neural network comprising a plurality of neural network 
layers , the circuit comprising : a matrix computation unit 
configured to , for each of the plurality of neural network 
layers : receive a plurality of weight inputs and a plurality of 
activation inputs for the neural network layer , and generate 
a plurality of accumulated values based on the plurality of 
weight inputs and the plurality of activation inputs ; and a 
vector computation unit communicatively coupled to the 
matrix computation unit and configured to , for each of the 
plurality of neural network layers : apply an activation func 
tion to each accumulated value generated by the matrix 
computation unit to generate a plurality of activated values 
for the neural network layer . 
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NEURAL NETWORK PROCESSOR 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation of U.S. applica 
tion Ser . No. 16 / 529,782 , filed Aug. 1 , 2019 , which is a 
continuation of U.S. application Ser . No. 15 / 686,615 , filed 
on Aug. 25 , 2017 , which is a continuation of U.S. applica 
tion Ser . No. 14 / 844,524 , filed on Sep. 3 , 2015 , which is a 
non - provisional of and claims priority to U.S. Provisional 
Patent Application No. 62 / 164,931 , filed on May 21 , 2015 , 
the entire contents of which are hereby incorporated by 
reference . 

BACKGROUND 

[ 0002 ] This specification relates to computing neural net 
work inferences in hardware . 
[ 0003 ] Neural networks are machine learning models that 
employ one or more layers of models to generate an output , 
e.g. , a classification , for a received input . Some neural 
networks include one or more hidden layers in addition to an 
output layer . The output of each hidden layer is used as input 
to the next layer in the network , i.e. , the next hidden layer 
or the output layer of the network . Each layer of the network 
generates an output from a received input in accordance with 
current values of a respective set of parameters . 

SUMMARY 
[ 0004 ] In general , this specification describes a special 
purpose hardware circuit that computes neural network 
inferences . 
[ 0005 ] In general , one innovative aspect of the subject 
matter described in this specification can be embodied in a 
circuit for performing neural network computations for a 
neural network comprising a plurality of neural network 
layers , the circuit comprising : a matrix computation unit 
configured to , for each of the plurality of neural network 
layers : receive a plurality of weight inputs and a plurality of 
activation inputs for the neural network layer , and generate 
a plurality of accumulated values based on the plurality of 
weight inputs and the plurality of activation inputs ; and a 
vector computation unit communicatively coupled to the 
matrix computation unit and configured to , for each of the 
plurality of neural network layers : apply an activation func 
tion to each accumulated value generated by the matrix 
computation unit to generate a plurality of activated values 
for the neural network layer . 
[ 0006 ] Implementations can include one or more of the 
following features . A unified buffer communicatively 
coupled to the matrix computation unit and the vector 
computation unit , where the unified buffer is configured to 
receive and store output from the vector computation unit , 
and the unified buffer is configured to send the received 
output as input to the matrix computation unit . A sequencer 
configured to receive instructions from a host device and 
generate a plurality of control signals from the instructions , 
where the plurality of control signals control dataflow 
through the circuit ; and a direct memory access engine 
communicatively coupled to the unified buffer and the 
sequencer , where the direct memory access engine is con 
figured to send the plurality of activation inputs to the 
unified buffer , where the unified buffer is configured to send 
the plurality of activation inputs to the matrix computation 

unit , and where the direct memory access engine is config 
ured to read result data from the unified buffer . A memory 
unit configured to send the plurality of weight inputs to the 
matrix computation unit , and where the direct memory 
access engine is configured to send the plurality of weight 
inputs to the memory unit . The matrix computation unit is 
configured as a two dimensional systolic array comprising a 
plurality of cells . The plurality of weight inputs is shifted 
through a first plurality of cells along a first dimension of the 
systolic array , and where the plurality of activation inputs is 
shifted through a second plurality of cells along a second 
dimension of the systolic array . For a given layer in the 
plurality of layers , a count of the plurality of activation 
inputs is greater than a size of the second dimension of the 
systolic array , and where the systolic array is configured to : 
divide the plurality of activation inputs into portions , where 
each portion has a size less than or equal to the size of the 
second dimension ; generating , for each portion , a respective 
portion of accumulated values , and combining each portion 
of accumulated values to generate a vector of accumulated 
values for the given layer . For a given layer in the plurality 
of layers , a count of the plurality of weight inputs is greater 
than a size of the first dimension of the systolic array , and 
where the systolic array is configured to : divide the plurality 
of weight inputs into portions , where each portion has a size 
less than or equal to the size of the first dimension ; gener 
ating , for each portion , a respective portion of accumulated 
values ; and combining each portion of accumulated values 
to generate a vector of accumulated values for the given 
layer . Each cell in the plurality of cells comprises : a weight 
register configured to store a weight input ; an activation 
register configured to store an activation input and config 
ured to send the activation input to another activation 
register in a first adjacent cell along the second dimension ; 
a sum - in register configured to store a previously summed 
value ; multiplication circuitry communicatively coupled to 
the weight register and the activation register , where the 
multiplication circuitry is configured to output a product of 
the weight input and the activation input ; and summation 
circuitry communicatively coupled to the multiplication 
circuitry and the sum - in register , where the summation 
circuitry is configured to output a sum of the product and the 
previously summed value , and where the summation cir 
cuitry is configured to send the sum to another sum - in 
register in a second adjacent cell along the first dimension . 
One or more cells in the plurality of cells are each configured 
to store the respective sum in a respective accumulator unit , 
where the respective sum is an accumulated value . The first 
dimension of the systolic array corresponds to columns of 
the systolic array , and where the second dimension of the 
systolic array corresponds to rows of the systolic array . The 
vector computation unit normalizes each activated value to 
generate a plurality of normalized values . The vector com 
putation unit pools one or more activated values to generate 
a plurality of pooled values . 
[ 0007 ] Particular embodiments of the subject matter 
described in this specification can be implemented so as to 
realize one or more of the following advantages . Implement 
ing a neural network processor in hardware improves effi 
ciency , e.g. , increase speed and throughput and reduce 
power and cost , over implementations in software . This can 
be useful for inference applications . Integrating components 
of the neural network processor into one circuit allows 
inferences to be computed without incurring penalties of 
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off - chip communication . Additionally , the circuit can pro 
cess neural network layers that have a number of inputs , e.g. , 
a number of weight inputs or a number of activation inputs , 
larger than a size of a dimension of a matrix computation 
unit within the circuit . For example , the circuit can process 
a large number of weight inputs per neuron of the neural 
network . 
[ 0008 ] The details of one or more embodiments of the 
subject matter of this specification are set forth in the 
accompanying drawings and the description below . Other 
features , aspects , and advantages of the subject matter will 
become apparent from the description , the drawings , and the 
claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0009 ] FIG . 1 is a flow diagram of an example method for 
performing a computation for a given layer of a neural 
network . 
[ 0010 ] FIG . 2 shows an example neural network process 
ing system . 
[ 0011 ] FIG . 3 shows an example architecture including a 
matrix computation unit . 
[ 0012 ] FIG . 4 shows an example architecture of a cell 
inside a systolic array . 
[ 0013 ] FIG . 5 shows an example architecture of a vector 
computation unit . 
[ 0014 ] FIG . 6 is a flow diagram of another example 
process for performing , using a systolic array , the compu 
tation for a given neural network layer having more activa 
tion inputs than rows in the systolic array . 
[ 0015 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

method 100. The method 100 can be performed for each 
layer of the neural network in order to compute an inference 
from a received input . 
[ 0020 ] The system receives sets of weight inputs ( step 
102 ) and sets of activation inputs ( step 104 ) for the given 
layer . The sets of weight inputs and the sets of activation 
inputs can be received from dynamic memory and a unified 
buffer , respectively , of the special - purpose hardware circuit . 
In some implementations , both the sets of weight inputs and 
the sets of activation inputs can be received from the unified 
buffer . 

[ 0021 ] The system generates accumulated values from the 
weight inputs and the activation inputs using a matrix 
multiplication unit of the special - purpose hardware circuit 
( step 106 ) . In some implementations , the accumulated val 
ues are dot products of the sets of weight inputs and the sets 
of activation inputs . That is , for one set of weights , the 
system can multiply each weight input with each activation 
input and sum the products together to form an accumulated 
value . The system can then compute dot products of other set 
of weights with other sets of activation inputs . 
[ 0022 ] The system can generate a layer output from the 
accumulation values ( step 108 ) using a vector computation 
unit of the special - purpose hardware circuit . In some imple 
mentations , the vector computation unit applies an activa 
tion function to the accumulated values , which will be 
described further below in reference to FIG . 5. The output of 
the layer can be stored in the unified buffer for use as an 
input to a subsequent layer in the neural network or can be 
used to determine the inference . The system finishes pro 
cessing the neural network when a received input has been 
processed through each layer of the neural network to 
generate the inference for the received input . 
[ 0023 ] FIG . 2 shows an example special - purpose inte 
grated circuit 200 for performing neural network computa 
tions . The system 200 includes a host interface 202. The host 
interface 202 can receive instructions that include param 
eters for a neural network computation . The parameters can 
include at least one or more of the following : how many 
layers should be processed , corresponding sets of weight 
inputs for each layer of the layer , an initial set of activation 
inputs , i.e. , the input to the neural network from which the 
inference is to be computed , corresponding input and output 
sizes of each layer , a stride value for the neural network 
computation , and a type of layer to be processed , e.g. , a 
convolutional layer or a fully connected layer . 
[ 0024 ] The host interface 202 can send the instructions to 
a sequencer 206 , which converts the instructions into low 
level control signals that control the circuit to perform the 
neural network computations . In some implementations , the 
control signals regulate dataflow in the circuit , e.g. , how the 
sets of weight inputs and the sets of activation inputs flow 
through the circuit . The sequencer 206 can send the control 
signals to a unified buffer 208 , a matrix computation unit 
212 , and a vector computation unit 214. In some implemen 
tations , the sequencer 206 also sends control signals to a 
direct memory access engine 204 and dynamic memory 210 . 
In some implementations , the sequencer 206 is a processor 
that generates clock signals . The sequencer 206 can use 
timing of the clock signals to , at appropriate times , send the 
control signals to each component of the circuit 200. In some 
other implementations , the host interface 202 passes in a 
clock signal from an external processor . 

DETAILED DESCRIPTION 
[ 0016 ] A neural network having multiple layers can be 
used to compute inferences . For example , given an input , the 
neural network can compute an inference for the input . The 
neural network computes this inference by processing the 
input through each of the layers of the neural network . In 
particular , the layers of the neural network are arranged in a 
sequence , each with a respective set of weights . Each layer 
receives an input and processes the input in accordance with 
the set of weights for the layer to generate an output . 
[ 0017 ] Therefore , in order to compute an inference from a 
received input , the neural network receives the input and 
processes it through each of the neural network layers in the 
sequence to generate the inference , with the output from one 
neural network layer being provided as input to the next 
neural network layer . Data inputs to a neural network layer , 
e.g. , either the input to the neural network or the outputs of 
the layer below the layer in the sequence , to a neural network 
layer can be referred to as activation inputs to the layer . 
[ 0018 ] In some implementations , the layers of the neural 
network are arranged in a directed graph . That is , any 
particular layer can receive multiple inputs , multiple out 
puts , or both . The layers of the neural network can also be 
arranged such that an output of a layer can be sent back as 
an input to a previous layer . 
[ 0019 ] FIG . 1 is a flow diagram of an example process 100 
for performing a computation for a given layer of a neural 
network using a special - purpose hardware circuit . For con 
venience , the method 100 will be described with respect to 
a system having one or more circuits that performs the 



US 2020/0057942 A1 Feb. 20 , 2020 
3 

[ 0025 ] The host interface 202 can send the sets of weight 
inputs and the initial set of activation inputs to the direct 
memory access engine 204. The direct memory access 
engine 204 can store the sets of activation inputs at the 
unified buffer 208. In some implementations , the direct 
memory access stores the sets of weights to dynamic 
memory 210 , which can be a memory unit . In some imple 
mentations , the dynamic memory is located off of the circuit . 
[ 0026 ] The unified buffer 208 is a memory buffer . It can be 
used to store the set of activation inputs from the direct 
memory access engine 204 and outputs of the vector com 
putation unit 214. The vector computation unit will be 
described in more detail below with reference to FIG . 5. The 
direct memory access engine 204 can also read the outputs 
of the vector computation unit 214 from the unified buffer 
208 . 
[ 0027 ] The dynamic memory 210 and the unified buffer 
208 can send the sets of weight inputs and the sets of 
activation inputs , respectively , to the matrix computation 
unit 212. In some implementations , the matrix computation 
unit 212 is a two - dimensional systolic array . The matrix 
computation unit 212 can also be a one - dimensional systolic 
array or other circuitry that can perform mathematical 
operations , e.g. , multiplication and addition . In some imple 
mentations , the matrix computation unit 212 is a general 
purpose matrix processor . 
[ 0028 ] The matrix computation unit 212 can process the 
weight inputs and the activation inputs and provide a vector 
of outputs to the vector computation unit 214. In some 
implementations , the matrix computation unit sends the 
vector of outputs to the unified buffer 208 , which sends the 
vector of outputs to the vector computation unit 214. The 
vector computation unit can process the vector of outputs 
and store a vector of processed outputs to the unified buffer 
208. The vector of processed outputs can be used as acti 
vation inputs to the matrix computation unit 212 , e.g. , for 
use in a subsequent layer in the neural network . The matrix 
computation unit 212 and the vector computation unit 214 
will be described in more detail below with reference to FIG . 
3 and FIG . 5 , respectively . 
[ 0029 ] FIG . 3 shows an example architecture 300 includ 
ing a matrix computation unit . The matrix computation unit 
is a two - dimensional systolic array 306. The two - dimen 
sional systolic array 306 can be a square array . The array 306 
includes multiple cells 304. In some implementations , a first 
dimension 320 of the systolic array 306 corresponds to 
columns of cells and a second dimension 322 of the systolic 
array 306 corresponds to rows of cells . The systolic array 
can have more rows than columns , more columns than rows , 
or an equal number of columns and rows . 
[ 0030 ] In the illustrated example , value loaders 302 send 
activation inputs to rows of the array 306 and a weight 
fetcher interface 308 sends weight inputs to columns of the 
array 306. In some other implementations , however , activa 
tion inputs are transferred to the columns and weight inputs 
are transferred to the rows of the array 306 . 
[ 0031 ] The value loaders 302 can receive the activation 
inputs from a unified buffer , e.g. , the unified buffer 208 of 
FIG . 2. Each value loader can send a corresponding activa 
tion input to a distinct left - most cell of the array 306. The 
left - most cell can be a cell along a left - most column of the 
array 306. For example , value loader 312 can send an 
activation input to cell 314. The value loader can also send 
the activation input to an adjacent value loader , and the 

activation input can be used at another left - most cell of the 
array 306. This allows activation inputs to be shifted for use 
in another particular cell of the array 306 . 
[ 0032 ] The weight fetcher interface 308 can receive the 
weight input from a memory unit , e.g. , the dynamic memory 
210 of FIG . 2. The weight fetcher interface 308 can send a 
corresponding weight input to a distinct top - most cell of the 
array 306. The top - most cell can be a cell along a top - most 
row of the array 306. For example , the weight fetcher 
interface 308 can send weight inputs to cells 314 and 316 . 
[ 0033 ] In some implementations , a host interface , e.g. , the 
host interface 202 of FIG . 2 , shifts activation inputs through 
out the array 306 along one dimension , e.g. , to the right , 
while shifting weight inputs throughout the array 306 along 
another dimension , e.g. , to the bottom . For example , over 
one clock cycle , the activation input at cell 314 can shift to 
an activation register in cell 316 , which is to the right of cell 
314. Similarly , the weight input at cell 316 can shift to a 
weight register at cell 318 , which is below cell 314 . 
[ 0034 ] On each clock cycle , each cell can process a given 
weight input and a given activation input to generate an 
accumulated output . The accumulated output can also be 
passed to an adjacent cell along the same dimension as the 
given weight input . An individual cell is described further 
below with reference FIG . 4 . 
[ 0035 ] The accumulated output can be passed along the 
same column as the weight input , e.g. , towards the bottom 
of the column in the array 306. In some implementations , at 
the bottom of each column , the array 306 can include 
accumulator units 310 that store and accumulate each accu 
mulated output from each column when performing calcu 
lations with layers having more weight inputs than columns 
or layers having more activation inputs than rows . In some 
implementations , each accumulator unit stores multiple par 
allel accumulations . This will be described further below 
with reference to FIG . 6. The accumulator units 310 can 
accumulate each accumulated output to generate a final 
accumulated value . The final accumulated value can be 
transferred to a vector computation unit , e.g. , the vector 
computation unit 502 of FIG . 5. In some other implemen 
tations , the accumulator units 310 passes the accumulated 
values to the vector computation unit without performing 
any accumulations when processing layers with fewer 
weight inputs than columns or layers having fewer activat 
ing inputs than rows . 
[ 0036 ] FIG . 4 shows an example architecture 400 of a cell 
inside a systolic array , e.g. , the systolic array 306 of FIG . 3 . 
[ 0037 ] The cell can include an activation register 406 that 
stores an activation input . The activation register can receive 
the activation input from a left adjacent cell , i.e. , an adjacent 
cell located to the left of the given cell , or from a unified 
buffer , depending on the position of the cell within the 
systolic array . The cell can include a weight register 402 that 
stores a weight input . The weight input can be transferred 
from a top adjacent cell or from a weight fetcher interface , 
depending on the position of the cell within the systolic 
array . The cell can also include a sum in register 404. The 
sum in register 404 can store an accumulated value from the 
top adjacent cell . Multiplication circuitry 408 can be used to 
multiply the weight input from the weight register 402 with 
the activation input from the activation register 406. The 
multiplication circuitry 408 can output the product to sum 
mation circuitry 410 . 
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computation unit 502 processes the vector of accumulated 
values . That is , the control signals 510 can regulate whether 
the activation values are pooled , normalized , or both . The 
control signals 510 can also specify the activation , normal 
ization , or pooling functions , as well as other parameters for 
normalization and pooling , e.g. , a stride value . 
[ 0047 ] The vector computation unit 502 can send values , 
e.g. , activation values , normalized values , or pooled values , 
to a unified buffer , e.g. , the unified buffer 208 of FIG . 2 . 
[ 0048 ] In some implementations , the pooling unit 508 
receives the activation values instead of the normalization 
unit 506 , and the pooling unit 508 sends the pooled values 
to the normalization unit 506 , which generates normalized 
values to be stored in the unified buffer . 
[ 0049 ] FIG . 6 is a flow diagram of example process for 
performing , using a systolic array , the computation for a 
given neural network layer having more activation inputs 
than rows in the systolic array . For convenience , the process 
600 will be described with respect to a system that performs 
the process 600. In some implementations , a host interface 
or a sequencer performs the process 600 , e.g. , the host 
interface 202 or the sequencer 206 , respectively , of FIG . 2 . 
In some other implementations , the host interface receives 
instructions from an external processor that performs the 
process 600 . 

[ 0038 ] The summation circuitry can sum the product and 
the accumulated value from the sum in register 404 to 
generate a new accumulated value . The summation circuitry 
410 can then send the new accumulated value to another sum 
in register located in a bottom adjacent cell . The new 
accumulated value can be used as an operand for a summa 
tion in the bottom adjacent cell . 
[ 0039 ] The cell can also shift the weight input and the 
activation input to adjacent cells for processing . For 
example , the weight register 402 can send the weight input 
to another weight register in the bottom adjacent cell . The 
activation register 406 can send the activation input to 
another activation register in the right adjacent cell . Both the 
weight input and the activation input can therefore be reused 
by other cells in the array at a subsequent clock cycle . 
[ 0040 ] In some implementations , the cell also includes a 
control register . The control register can store a control 
signal that determines whether the cell should shift either the 
weight input or the activation input to adjacent cells . In some 
implementations , shifting the weight input or the activation 
input takes one or more clock cycles . The control signal can 
also determine whether the activation input or weight inputs 
are transferred to the multiplication circuitry 408 , or can 
determine whether the multiplication circuitry 408 operates 
on the activation and weight inputs . The control signal can 
also be passed to one or more adjacent cells , e.g. , using a 
wire . 
[ 0041 ] In some implementations , weights are pre - shifted 
into a weight path register 412. The weight path register 412 
can receive the weight input , e.g. , from a top adjacent cell , 
and transfer the weight input to the weight register 402 based 
on the control signal . The weight register 402 can statically 
store the weight input such that as activation inputs are 
transferred to the cell , e.g. , through the activation register 
406 , over multiple clock cycles , the weight input remains 
within the cell and is not transferred to an adjacent cell . 
Therefore , the weight input can be applied to multiple 
activation inputs , e.g. , using the multiplication circuitry 408 , 
and respective accumulated values can be transferred to an 
adjacent cell . 
[ 0042 ] FIG . 5 shows an example architecture 500 of a 
vector computation unit 502. The vector computation unit 
502 can receive a vector of accumulated values from a 
matrix computation unit , e.g. , the matrix computation unit 
described in reference to FIG . 2 . 
[ 0043 ] The vector computation unit 502 can process the 
vector of accumulated values at the activation unit 504. In 
some implementations , the activation unit includes circuitry 
that applies a non - linear function to each accumulated value 
to generate activation values . For example , the non - linear 
function can be tanh ( x ) , where x is an accumulated value . 
[ 0044 ] Optionally , the vector computation unit 502 can 
normalize the activation values in a normalization unit 506 
that generates normalized values from the activation values . 
[ 0045 ] Also optionally , the vector computation unit 502 
can pool values , either activation values or normalization 
values , using a pooling unit 508. The pooling unit 508 can 
apply an aggregation function to one or more of the nor 
malized values to generate pooled values . In some imple 
mentations , the aggregation functions are functions that 
return a maximum , minimum , or average of the normalized 
values or of a subset of the normalized values . 
[ 0046 ] Control signals 510 can be transferred , e.g. , by the 
sequencer 206 of FIG . 2 , and can regulate how the vector 

[ 0050 ] As described above , each layer can have multiple 
sets of activation inputs and each set of weight inputs can be 
transferred to cells at distinct rows of the array . In some 
implementations , some layers of the neural network have 
more sets of activation inputs than there are rows of the 
array . 
[ 0051 ] The system can determine , e.g. , using a compara 
tor , whether there are more sets of activation inputs for the 
given neural network layer than there are rows in the systolic 
array . In some implementations , the system makes the 
determination at compile time . A set of activation inputs can 
correspond to the activation inputs provided to a single row 
of the array . 
[ 0052 ] If there are more rows than sets of activation inputs 
( step 602 ) , the system can generate accumulated values as 
described above in the systolic array 306 of FIG . 3 ( step 
604 ) . 
[ 0053 ] If there are more sets of activation inputs to be 
processed than there are rows in the array ( step 602 ) , the 
system can divide the sets of activation inputs into portions 
so that each portion has a size less than or equal to a number 
of rows in the array ( step 606 ) . 
[ 0054 ] The system then can generate , for each portion of 
activation inputs , a portion of accumulated values ( step 
608 ) . An accumulated value can be a sum of products of 
activation and weight inputs to cells along a given column , 
e.g. , as described in systolic array 306 of FIG . 3. Each 
portion of accumulated values can be stored in a buffer until 
all portions of activation inputs have been processed . The 
buffer can be a buffer in accumulator units 310 of FIG . 3 , a 
buffer in the systolic array , or the unified buffer 208 of FIG . 
2 . 
[ 0055 ] The system can then combine all portions of accu 
mulated values into a vector of accumulated values ( step 
610 ) . In particular , the system can access the buffer of 
previously stored portions of accumulated values and accu 
mulate , e.g. , using accumulator units 310 of FIG . 3 , the 
accumulated values to generate a vector of the accumulated 
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values . The system can send the vector of the accumulated 
values to a vector computation unit , e.g. , the vector com 
putation unit 214 of FIG . 2 . 
[ 0056 ] For example , if there are 256 rows in the array and 
there are 300 sets of activation inputs to process at a given 
layer , the system can generate 256 final accumulated values 
from 256 sets of activation inputs for complete utilization of 
the systolic array and store the 256 final accumulated values 
in a buffer . The system can then generate 44 final accumu 
lated values from the 44 remainder sets of activation inputs . 
Finally , the system can combine all 300 final accumulated 
values to form a vector and send the vector to the vector 
computation unit . 
[ 0057 ] If there are more sets of weight inputs than col 
umns to the array , the system can perform similar operations . 
That is , the system can divide the sets of weight inputs into 
portions having fewer sets of weight inputs than a number of 
columns in the array , generate accumulated values for each 
portion , and combine the accumulated values into a vector 
for use in the vector computation unit . In some implemen 
tations , instead of comparing the number of sets of weight 
inputs with the number of columns in the array , the system 
can compare the number of accumulated values with the 
number of columns in the array . 
[ 0058 ] Although the system has been described with 
weight inputs being transferred to columns of the array and 
activation inputs being transferred to rows of the array , in 
some implementations , the weight inputs are transferred to 
rows of the array and the activation inputs are transferred to 
columns of the array . 
[ 0059 ] Although the hardware is described to be for com 
puting inferences , the hardware can be used for one or more 
of the following : convolutional or fully - connected neural 
network training , linear or logistic regression , clustering , 
e.g. , k - means clustering , video - encoding , and image pro 
cessing . 
[ 0060 ] Embodiments of the subject matter and the func 
tional operations described in this specification can be 
implemented in digital electronic circuitry , in tangibly 
embodied computer software or firmware , in computer hard 
ware , including the structures disclosed in this specification 
and their structural equivalents , or in combinations of one or 
more of them . Embodiments of the subject matter described 
in this specification can be implemented as one or more 
computer programs , i.e. , one or more modules of computer 
program instructions encoded on a tangible non transitory 
program carrier for execution by , or to control the operation 
of , data processing apparatus . Alternatively or in addition , 
the program instructions can be encoded on an artificially 
generated propagated signal , e.g. , a machine - generated elec 
trical , optical , or electromagnetic signal , that is generated to 
encode information for transmission to suitable receiver 
apparatus for execution by a data processing apparatus . The 
computer storage medium can be a machine - readable stor 
age device , a machine - readable storage substrate , a random 
or serial access memory device , or a combination of one or 
more of them . 
[ 0061 ] The term “ data processing apparatus ” encompasses 
all kinds of apparatus , devices , and machines for processing 
data , including by way of example a programmable proces 
sor , a computer , or multiple processors or computers . The 
apparatus can include special purpose logic circuitry , e.g. , an 
FPGA ( field programmable gate array ) or an ASIC ( appli 
cation specific integrated circuit ) . The apparatus can also 

include , in addition to hardware , code that creates an execu 
tion environment for the computer program in question , e.g. , 
code that constitutes processor firmware , a protocol stack , a 
database management system , an operating system , or a 
combination of one or more of them . 
[ 0062 ] A computer program ( which may also be referred 
to or described as a program , software , a software applica 
tion , a module , a software module , a script , or code ) can be 
written in any form of programming language , including 
compiled or interpreted languages , or declarative or proce 
dural languages , and it can be deployed in any form , 
including as a standalone program or as a module , compo 
nent , subroutine , or other unit suitable for use in a computing 
environment . A computer program may , but need not , cor 
respond to a file in a file system . A program can be stored in 
a portion of a file that holds other programs or data , e.g. , one 
or more scripts stored in a markup language document , in a 
single file dedicated to the program in question , or in 
multiple coordinated files , e.g. , files that store one or more 
modules , sub programs , or portions of code . A computer 
program can be deployed to be executed on one computer or 
on multiple computers that are located at one site or dis 
tributed across multiple sites and interconnected by a com 
munication network . 
[ 0063 ] The processes and logic flows described in this 
specification can be performed by one or more program 
mable computers executing one or more computer programs 
to perform functions by operating on input data and gener 
ating output . The processes and logic flows can also be 
performed by , and apparatus can also be implemented as , 
special purpose logic circuitry , e.g. , an FPGA ( field pro 
grammable gate array ) or an ASIC ( application specific 
integrated circuit ) . 
[ 0064 ] Computers suitable for the execution of a computer 
program include , by way of example , can be based on 
general or special purpose microprocessors or both , or any 
other kind of central processing unit . Generally , a central 
processing unit will receive instructions and data from a read 
only memory or a random access memory or both . The 
essential elements of a computer are a central processing 
unit for performing or executing instructions and one or 
more memory devices for storing instructions and data . 
Generally , a computer will also include , or be operatively 
coupled to receive data from or transfer data to , or both , one 
or more mass storage devices for storing data , e.g. , mag 
netic , magneto optical disks , or optical disks . However , a 
computer need not have such devices . Moreover , a computer 
can be embedded in another device , e.g. , a mobile telephone , 
a personal digital assistant ( PDA ) , a mobile audio or video 
player , a game console , a Global Positioning System ( GPS ) 
receiver , or a portable storage device , e.g. , a universal serial 
bus ( USB ) flash drive , to name just a few . 
[ 0065 ] Computer readable media suitable for storing com 
puter program instructions and data include all forms of 
nonvolatile memory , media and memory devices , including 
by way of example semiconductor memory devices , e.g. , 
EPROM , EEPROM , and flash memory devices ; magnetic 
disks , e.g. , internal hard disks or removable disks ; magneto 
optical disks ; and CD ROM and DVD - ROM disks . The 
processor and the memory can be supplemented by , or 
incorporated in , special purpose logic circuitry . 
[ 0066 ] To send for interaction with a user , embodiments of 
the subject matter described in this specification can be 
implemented on a computer having a display device , e.g. , a 
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CRT ( cathode ray tube ) or LCD ( Liquid crystal display ) 
monitor , for displaying information to the user and a key 
board and a pointing device , e.g. , a mouse or a trackball , by 
which the user can send input to the computer . Other kinds 
of devices can be used to send for interaction with a user as 
well ; for example , feedback provided to the user can be any 
form of sensory feedback , e.g. , visual feedback , auditory 
feedback , or tactile feedback ; and input from the user can be 
received in any form , including acoustic , speech , or tactile 
input . In addition , a computer can interact with a user by 
sending documents to and receiving documents from a 
device that is used by the user ; for example , by sending web 
pages to a web browser on a user's client device in response 
to requests received from the web browser . 
[ 0067 ] Embodiments of the subject matter described in 
this specification can be implemented in a computing system 
that includes a back end component , e.g. , as a data server , or 
that includes a middleware component , e.g. , an application 
server , or that includes a front end component , e.g. , a client 
computer having a graphical user interface or a Web browser 
through which a user can interact with an implementation of 
the subject matter described in this specification , or any 
combination of one or more such back end , middleware , or 
front end components . The components of the system can be 
interconnected by any form or medium of digital data 
communication , e.g. , a communication network . Examples 
of communication networks include a local area network 
( “ LAN ” ) and a wide area network ( “ WAN ” ) , e.g. , the 
Internet . 

[ 0068 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . 
[ 0069 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any invention or of what may be 
claimed , but rather as descriptions of features that may be 
specific to particular embodiments of particular inventions . 
Certain features that are described in this specification in the 
context of separate embodiments can also be implemented in 
combination in a single embodiment . Conversely , various 
features that are described in the context of a single embodi 
ment can also be implemented in multiple embodiments 
separately or in any suitable subcombination . Moreover , 
although features may be described above as acting in 
certain combinations and even initially claimed as such , one 
or more features from a claimed combination can in some 
cases be excised from the combination , and the claimed 
combination may be directed to a subcombination or varia 
tion of a subcombination . 
[ 0070 ] Similarly , while operations are depicted in the 
drawings in a particular order , this should not be understood 
as requiring that such operations be performed in the par 
ticular order shown or in sequential order , or that all illus 
trated operations be performed , to achieve desirable results . 
In certain circumstances , multitasking and parallel process 
ing may be advantageous . Moreover , the separation of 
various system modules and components in the embodi 
ments described above should not be understood as requir 
ing such separation in all embodiments , and it should be 
understood that the described program components and 

systems can generally be integrated together in a single 
software product or packaged into multiple software prod 
ucts . 

[ 0071 ] Particular embodiments of the subject matter have 
been described . Other embodiments are within the scope of 
the following claims . For example , the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results . As one example , the processes depicted in 
the accompanying figures do not necessarily require the 
particular order shown , or sequential order , to achieve 
desirable results . In certain implementations , multitasking 
and parallel processing may be advantageous . 
What is claimed is : 
1. ( canceled ) 
2. A circuit for performing neural network computations 

for a neural network comprising a plurality of neural net 
work layers , the circuit comprising : 

a matrix computation unit configured to compute multi 
plications using a plurality of cells of the matrix 
computation unit to generate accumulated values , 
wherein each of the multiplications is between a weight 
for a neural network layer and an input to the neural 
network layer ; and 

a vector computation unit configured to ( i ) generate a 
plurality of activated values for the neural network 
layer based on the accumulated values generated by the 
matrix computation unit and ( ii ) generate an output for 
the neural network layer based on the plurality of 
activated values . 

3. The circuit of claim 2 , wherein : 
the matrix computation unit is configured as a multi 

dimensional systolic array ; and 
the plurality of cells are arranged along at least a first 

dimension and a second dimension of the systolic array , 
the first dimension being different than the second 
dimension . 

4. The circuit of claim 3 , wherein the matrix computation 
unit is configured to : 

load one or more weights for the neural network layer into 
the plurality of cells of the matrix computation unit ; 
and 

shift one or more weights through the plurality of cells of 
the matrix computation unit . 

5. The circuit of claim 4 , wherein the matrix computation 
unit is configured to : 

shift one or more inputs for the neural network layer into 
the plurality of cells of the matrix computation unit to 
perform the multiplications between the weight for the 
neural network layer and the input to the neural net 
work layer . 

6. The circuit of claim 4 , wherein the vector computation 
unit is configured to : 

apply an activation function to each of the accumulated 
values provided by the matrix computation unit ; and 

generate the plurality of activated values for the neural 
network layer based on the activation function that is 
applied to each of the accumulated values . 

7. The circuit of claim 4 , wherein each activated value of 
the plurality of activated values represents an activation 
input to a second neural network layer and the matrix 
computation unit is configured to : 
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shift one or more weights for the second neural network 
layer through a first plurality of cells of the systolic 
array along a first , column dimension of the systolic 
array ; and 

shift a plurality of activation inputs to the second neural 
network layer through a second plurality of cells of the 
systolic array along a second , row dimension of the 
systolic array . 

8. The circuit of claim 7 , wherein the matrix computation 
unit is configured to : 

generate a vector of accumulated values for the second 
neural network layer based on dot products of multi 
plications between the one or more weights for the 
second neural network layer and different activation 
inputs to the second neural network layer that are 
shifted along the second , row dimension of the of the 
systolic array . 

9. The circuit of claim 8 , wherein the vector computation 
unit is configured to : 

receive the vector of accumulated values generated by the 
matrix computation unit ; and 

generate a vector of activation values in response to 
applying an activation function to each accumulated 
value in the vector of accumulated values . 

10. The circuit of claim 2 , wherein : 
the matrix computation unit is configured as a multi 
dimensional systolic array ; 

the systolic array includes the plurality of cells being 
arranged along at least a first dimension of the systolic 
array and a second dimension of the systolic array ; and 

the first dimension and the second dimension are the same 
dimension . 

11. A method for performing neural network computa 
tions using a circuit configured to implement a neural 
network comprising a plurality of neural network layers , the 
method comprising : 

receiving , by a matrix computation unit in the circuit , a 
plurality of weights for a neural network layer and 
inputs to the neural network layer ; 

computing , using a plurality of cells of a matrix compu 
tation unit , multiplications between a weight for the 
neural network layer and one or more of the inputs to 
the neural network layer ; and 

generating , using activation circuity of a vector compu 
tation unit in the circuit , an output for the neural 
network layer based on the multiplications . 

12. The method of claim 11 , wherein generating the 
output for the neural network layer comprises : 

generating , by the matrix computation unit , accumulated 
values for the neural network layer based on the 
multiplications , and 

generating , by the vector computation unit , a plurality of 
activated values for the neural network layer based on 
the accumulated values generated by the matrix com 
putation unit . 

13. The method of claim 12 , wherein computing the 
multiplications between the weight for the neural network 
layer and one or more of the inputs comprises : 

computing the multiplications using a multi - dimensional 
systolic array of the matrix computation unit , and 

wherein the plurality of cells are arranged along at least a 
first dimension and a second dimension of the systolic 
array , the first dimension being different than the sec 
ond dimension . 

14. The method of claim 13 , wherein receiving the 
plurality of weights for the neural network layer comprises : 

loading one or more weights for the neural network layer 
into a distinct cell of the plurality of cells of the matrix 
computation unit ; and 

shifting one or more weights through one or more cells of 
the plurality of cells of the matrix computation unit . 

15. The method of claim 14 , wherein receiving the inputs 
to the neural network layer comprises : 

shifting one or more inputs for the neural network layer 
into the distinct cell of the plurality of cells of the 
matrix computation unit to perform the multiplications 
between the weight for the neural network layer and 
one or more of the inputs to the neural network layer . 

16. The method of claim 12 , wherein generating the 
plurality of activated values for the neural network layer 
comprises : 

applying , by the activation circuity of the vector compu 
tation unit , an activation function to each of the accu 
mulated values generated by the matrix computation 
unit ; and 

generating the plurality of activated values for the neural 
network layer based on the activation function applied 
to each of the accumulated values . 

17. The method of claim 16 , comprising : 
receiving , by the vector computation unit , a vector of 

accumulated values generated by the matrix computa 
tion unit ; and 

generating , by the vector computation unit , a vector of 
activation values in response to applying the activation 
function to each accumulated value in the vector of 
accumulated values . 

18. The method of claim 13 , wherein each activated value 
of the plurality of activated values represents an activation 
input to a second neural network layer and the method 
comprises : 

shifting one or more weights for the second neural net 
work layer through a first plurality of cells of the 
systolic array along a first , column dimension of the 
systolic array ; and 

shifting a plurality of activation inputs to the second 
neural network layer through a second plurality of cells 
of the systolic array along a second , row dimension of 
the systolic array . 

19. The method of claim 18 , comprising : 
generating a vector of accumulated values for the second 

neural network layer based on dot products of multi 
plications between the one or more weights for the 
second neural network layer and different activation 
inputs provided to the second neural network layer that 
are shifted along the second , row dimension of the of 
the systolic array . 

20. The method of claim 12 , wherein : 
the matrix computation unit is configured as a multi 

dimensional systolic array ; 
the systolic array includes the plurality of cells being 

arranged along at least a first dimension of the systolic 
array and a second dimension of the systolic array ; and 

the first dimension and the second dimension are the same 
dimension . 

21. One or more non - transitory machine - readable storage 
devices for storing instructions that are executable by one or 
more processing devices to cause performance of operations 
for performing neural network computations using a circuit 
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configured to implement a neural network comprising a 
plurality of neural network layers , the operations compris 
ing : 

receiving , by a matrix computation unit in the circuit , a 
plurality of weights for a neural network layer and 
inputs to the neural network layer ; 

computing , using a plurality of cells of the matrix com 
putation unit , multiplications between a weight for the 
neural network layer and one or more of the inputs to 
the neural network layer ; and 

generating , using activation circuity of a vector compu 
tation unit in the circuit , an output for the neural 
network layer based on the multiplications . 


