w0 2017204952 A1 | N0 0001 YO 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
30 November 2017 (30.11.2017)

(10) International Publication Number

WO 2017/204952 A1l

WIPOIPCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2017/028499

(22) International Filing Date:
20 April 2017 (20.04.2017)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

15/167,842 27 May 2016 (27.05.2016) us

(71) Applicant: INTUIT INC. [US/US]; 2700 Coast Avenue,
Mountain View, California 94043 (US).

(72) Inventors: WELLS, Joe; c/o INTUIT INC., 2700 Coast
Avenue, Mountain View, California 94043 (US). LAUCK-

HART, Greg; c/o INTUIT INC., 2700 Coast Avenue,
Mountain View, California 94043 (US).

(74) Agent: PATTERSON, B. Todd et al.; Patterson & Sheri-
dan, L.L.P., 24 Greenway Plaza, Suite 1600, Houston,

Texas 77046 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH,CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,
KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: DEFINING APPLICATION PROGRAMMING INTERFACES (APIS) USING OBJECT SCHEMAS

100
=L

| API SERVICE

| API EXTENDER

[REQUEST PROCESSOR 152]| ™

Ml -

APPLICATION GATEWAY 130

APPLICATION SERVER 150

USER INTERFACE

CLIENT DEVICE 120

NETWORK

110

FIGURE 1

A

STORE 170

USER DATA 162
DATA STORE

60
... SERVER -
. LOCATION 140,

[REQUEST PROCESSOR 152]| *
APPLICATION SERVER 150

\
API SCHEMA 172 | USER DATA 162
SCHEMA DATA DATA STORE 160

SERVER
*. LOCATION 140, .

(57) Abstract: The present disclosure relates to accessing data using dynamically generated application programming interface (API)
calls. According to one embodiment, a method generally includes receiving, at a computing system, a data request from a client device.
The data request generally identifies a navigable path through a graph projection of the API. The computing system generates an API
call to process the data request. To generate the API call for each node in the navigable path, the computing system, identifies a node in
the graph projection to access data from and generates a subquery to access data from the node using one or more parameters included
in the data request and defined in a schema associated with the node. The computing system executes the one or more subqueries to
obtain a result and returns the result of executing the subqueries as a result of the API call.

[Continued on next page]

WO 2017/204952 AT {00000 0 0 OO OO

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA,RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (4rt. 21(3))

WO 2017/204952 PCT/US2017/028499

DEFINING APPLICATION PROGRAMMING INTERFACES (APIS) USING
OBJECT SCHEMAS

BACKGROUND
Field

[0001] Embodiments presented herein generally relate to defining
application programming interfaces (APIs) using object schemas, and more
specifically to processing API function calls using a graph generated from

object schemas defining an API.
Description of the Related Art

[0002] Application programming interfaces (APIs) generally expose various
routines and methods to software developers for use in obtaining and
modifying data using features of a software application. These APIs may be
accessible programmatically (e.g., as function calls programmed in an
application or function library) or via a web resource for web-based
applications. Web-based applications can invoke functionality exposed by an
API, for example, using a Representational State Transfer function call (a
RESTful function call). A RESTful call generally uses HTTP requests to
invoke a function exposed by a web-based APl and provide data to the
invoked function for processing. In other cases, web-based applications can
invoke API functions using queries encapsulated in an HTTP POST request, a
Simple Object Access Protocol (SOAP) request, or other protocols that allow

client software to invoke functions on a remote system.

[0003] Application developers often develop extensions to an existing API
to add new functionality to an API. When developers introduce new
extensions to an existing API, developers may add additional API functions to
the target APl. Over time, the number of functions in an extended APl may

grow significantly. However, these functions may duplicate large amounts of

WO 2017/204952 PCT/US2017/028499

code, which may increase the amount of work required to maintain and
update the API.

SUMMARY

[0004] One embodiment of the present disclosure includes a method for
accessing data using dynamically generated application programming
interface (API) calls. The method generally includes receiving, at a computing
system, a data request from a client device. The data request generally
identifies a navigable path through a graph projection of the APIl. The
computing system generates an API call to process the data request. To
generate the API call for each node in the navigable path, the computing
system, identifies a node in the graph projection to access data from and
generates a subquery to access data from the node using one or more
parameters included in the data request and defined in a schema associated
with the node. The computing system executes the one or more subqueries
to obtain a result and returns the result of executing the subqueries as a result
of the API call.

[0005] Another embodiment provides a computer-readable storage
medium having instructions, which, when executed on a processor, performs
an operation for accessing data using dynamically generated application
programming interface (APIl) calls. The operation generally includes
receiving, at a computing system, a data request from a client device. The
data request generally identifies a navigable path through a graph projection
of the APIl. The computing system generates an API call to process the data
request. To generate the API call for each node in the navigable path, the
computing system, identifies a node in the graph projection to access data
from and generates a subquery to access data from the node using one or
more parameters included in the data request and defined in a schema
associated with the node. The computing system executes the one or more
subqueries to obtain a result and returns the result of executing the

subqueries as a result of the API call.
2

WO 2017/204952 PCT/US2017/028499

[0006] Still another embodiment of the present invention includes a
processor and a memory storing a program, which, when executed on the
processor, performs an operation for accessing data using dynamically
generated application programming interface (API) calls. The operation
generally includes receiving, at a computing system, a data request from a
client device. The data request generally identifies a navigable path through a
graph projection of the API. The computing system generates an API call to
process the data request. To generate the API call for each node in the
navigable path, the computing system, identifies a node in the graph
projection to access data from and generates a subquery to access data from
the node using one or more parameters included in the data request and
defined in a schema associated with the node. The computing system
executes the one or more subqueries to obtain a result and returns the result
of executing the subqueries as a result of the API call.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] So that the manner in which the above recited features of the
present disclosure can be understood in detail, a more particular description
of the disclosure, briefly summarized above, may be had by reference to
embodiments, some of which are illustrated in the appended drawings. It is to
be noted, however, that the appended drawings illustrate only exemplary
embodiments and are therefore not to be considered limiting of its scope, may
admit to other equally effective embodiments.

[0008] Figure 1 illustrates an example computing environment, according
to one embodiment.

[0009] Figure 2 illustrates an example graph representation of an

application programming interface (API), according to one embodiment.

[0010] Figure 3 illustrates an example schema definition for a node in a
graph-based API, according to one embodiment.

WO 2017/204952 PCT/US2017/028499

[0011] Figure 4 illustrates an example RESTful request for data from a
remote source using a graph-based API, according to one embodiment.

[0012] Figure 5 illustrates an example graph query for data from a remote
source using a graph-based API, according to one embodiment.

[0013] Figure 6 illustrates a block diagram of an example API service,

according to one embodiment.

[0014] Figure 7 illustrates a block diagram of an example API extender,

according to one embodiment.

[0015] Figure 8 illustrates example operations for decomposing a request
for data using a graph-based API into a plurality of subqueries, according to

one embodiment.

[0016] Figure 9 illustrates example operations for processing a request for

data using a graph-based API, according to one embodiment.

[0017] Figure 10 illustrates example operations for verifying and adding an
extension to a graph-based API, according to one embodiment.

[0018] Figure 11 illustrates an example computing system for exposing a
graph-based API to client devices and processing requests for data using a
graph-based API, according to one embodiment.

DETAILED DESCRIPTION

[0019] Application programming interfaces (APIs) generally expose
methods and procedures that software developers can use to build software
applications using features provided by a software system. These features
may include, for example, database interaction, data processing, and so on.
Over time, additional features may be introduced into the API to address data
and processing requirements for various use cases. To introduce new
features into the API, a developer can, for example, add additional functions
which may have a distinct name or overload an existing function (i.e., have

the same name as an existing function but use different input parameters).
4

WO 2017/204952 PCT/US2017/028499

[0020] Embodiments presented herein provide techniques for generating
API function calls by traversing a graph representation of an API. Generally,
a graph representation of an API includes a root node and a plurality of child
nodes, with each child node representing a function exposed by the API (e.g.,
to request or write data to a data store, analyze data in a data store, and so
on). The graph may be generated using a group of schema definition files.
Each schema definition file can define one or more nodes (functions) and
include, for example, information defining the data provided by a node,
required and optional parameters for functions supported by a node, and
relationships between nodes (e.g., parent/child nodes). The graph
representation of the APl can define, for example, the access path for any
function defined by the APl as a navigable path through the graph. By
projecting a graph representation of an API| based on the schema definitions
files, a computing system can provide a navigable path (e.g., from the root
node to a child node representing the function that a user wishes to invoke)
that enables software developers to program customizable interactions with a
system without building custom APIs to support specific functions (or

variations on a function).

[0021] In building web services, developers can define schemas for the
format and content of a result generated by a specific API function. Each API
function may be defined, for example, as a RESTful path. Individual RESTful
paths to specific APl functions are generally created manually (defined and
coded) to define each function supported by the APIl. As developers wish to
add functionality to an API, developers generally add a new RESTful path to
the API and generate code to provide the desired functionality to the API.

[0022] According to embodiments presented herein, a server that exposes
an APl to multiple client devices can use a graph structure to represent
functions supported by the APl. When a server receives a request from a
client system to interact with the API (e.g., as a RESTful path, a serialized

data string, and so on), the server can decompose the request to identify the

5

WO 2017/204952 PCT/US2017/028499

nodes in the graph accessed by the request and an order in which the nodes
are to be accessed. To decompose the request into a set of subqueries, the
server can parse the request based on a delimiter defined for the request.
Based on the identified nodes and the order in which the nodes are accessed,
the server can traverse the graph structure to generate queries or other API
function calls to satisfy the request.

[0023] According to embodiments presented herein, extensions to an
object schema-based APl may be defined in relation to existing nodes in the
graph representation of the APIl. To add an extension to an object schema-
based API, a developer can provide a schema definition identifying one or
more parent nodes. Based on the schema definition, a graph representation
of the API is generally updated to reflect the existence of one or more
navigable paths to the extension. Developers can use the extension by
generating a request using one of the one or more navigable paths to the
extension. An API service can decompose the request to identify the nodes in
the graph representation of the API to interact with, and obtain the requested

data from a data source identified in the schema definition for the extension.

[0024] Figure 1 illustrates an example computing environment 100 for
projecting a graph representation of an APl and processing client requests
using the projected graph representation of the API, according to one
embodiment of the present disclosure. As illustrated, computing environment
includes a client device 120, application gateway 130, a plurality of server
locations 140, and a schema data store 170.

[0025] As illustrated, client device 120 includes a user interface 122 which
allows users to interact with data and services provided by a software system
via a graph-based API, as described in further detail below. User interface
122 generally displays graphical user interface (GUI) elements that allow a
user to request data from one or more application servers 150 (in server
locations 140) via application gateway 130 or directly from a specific

application server 150. In an example, user interface 122 may allow a user to

6

WO 2017/204952 PCT/US2017/028499

select data that the user wishes to view. Based on the selections received in
user interface 122, client device 120 can generate and transmit a query to
application gateway 130 (or a specific application server 150). Client device
120 may generate the query using a query format supported by application
gateway 130 or a specific application server 150. For example, client device
120 may format the query as a RESTful query, a GraphQL query, a custom
query language, or in any other format supported by application gateway 130

or a specific application server 150.

[0026] Client device 120 generally receives data from application gateway
130 (or a specific application server 150) to display in one or more graphical
elements in user interface 122. Client device 120 can subsequently display
the data in graphical elements in user interface 122. In some cases, user
interface 122 may allow a user to generate additional queries based on data
provided by application gateway 130 or a specific application server 150.

[0027] Application gateway 130 is generally configured to receive requests
for data from a client device 120 (i.e., queries composed in user interface
122), process requests, and provide data to the client device 120. As
illustrated, application gateway 130 includes APl service 132 and API

extender 134.

[0028] API service 132 can build a graph projection of the API based on
APl schema 172 stored at schema data store 170. The graph projection of
the APl may provide, for example, a structure that allows an API service 132
to interact with the API (e.g., using a request indicating a navigable path
through the graph projection of the API). The structure may represent, for
example, a protocol binding for a request protocol that allows API service 132
to respond to requests by identifying nodes in the graph projection of the API
and the associated data sources to interact with. To build a projection of the
API, API service 132 generally examines the schema definitions for each
node defined in the APIl. The schema definition for each node defined in the

API generally includes the name of the node, relationships to one or more

7

WO 2017/204952 PCT/US2017/028499

parent nodes, functions supported by a node, and so on. The projection of
the API corresponds to a hierarchy of nodes from the graph with n levels
starting from a root node. API service 132 may begin with a single root node
in a graph projection of the API, and as API service 132 reads schema
definitions for each node, API service 132 can add an identifier representing
the node (e.g., the node name) to an appropriate place (level) in the graph.
For example, API service 132 may add a first-level node in the graph linked to
the root node for a schema definition that identifies a node’s parent as the root
node. If API service 132 reads a schema definition for a child node with a
parent node that is not currently represented in the graph, API service 132
can search API| schema 172 for the schema definition of the identified parent
node. API schema 172 can add the identified parent node to the appropriate
level in the graph and add the child node to the graph at a level below the

parent node.

[0029] As discussed in further detail below, APl schema 172 can define
functions in relation to a parent node. The API exposed at application
gateway 130 may have a root node, and each request for data interaction
(e.g., read, write, data processing requests) using the APl may be defined and
verified in relation to an access route from the root node. For example, a valid
request may be defined as a continuous path through the graph
representation of the API, while an invalid request may be defined as a
discontinuous path through the graph representation of the API.

[0030] API service 132 generally decomposes (or parses) a query against
a graph projection of an API to generate one or more subqueries executed on
application gateway 130 (or at server locations 140). To decompose (or
parse) a query, API service 132 can break a received query into a plurality of
parts based on one or more delimiters defined for a format of the query. For
example, if the query is received as a REST request, API service 132 can
decompose the request in a number of parts, e.g., using the forward slash

character as a delimiter. In some cases, API service 132 can parse a request

8

WO 2017/204952 PCT/US2017/028499

based on tabbing levels, nesting within braces (e.g., a query written using C
programming conventions), and so on. Generally, regardless of syntax and
the delimiters defined for a specific request syntax, API service 132 generally
decomposes the query to identify the portion of the graph projection of the API
that serves the query (e.g., identify the navigable path through the graph
projection of the APl and the one or more data sources to access in executing
the query). So long as a request is valid (e.g., a navigable path exists in the
graph projection of the API for the request), API service 132 can determine

data sources to query to satisfy the request.

[0031] After API service 132 parses the received query, API service 132
begins traversing the graph projection of the API to verify that the received
query is valid. To traverse the graph projection of the API, API service 132
examines the order in which the decomposed query identifies nodes to visit in
the graph projection. The first node identified in the decomposed query
generally represents the first node to visit from the root node, which, in a valid
query, is an immediate child node of the root node. Subsequent nodes
identified in the decomposed query indicate the next node to be visited in the
graph representation of the APIl. For each node identified in the decomposed
query, API service 132 can generate a query to obtain specified data from a
data source identified in the object schema defining the node. If API service
132 detects that one of the subqueries is not accessible (e.g., the node
identified in the subquery is not an immediate child of the node identified in a
previous subquery), API service 132 can stop processing the query and notify
client device 120 that the received query is invalid.

[0032] In some cases, because multiple paths may exist in a graph
projection of the API to a specified node, the context in which API service 132
performs a request on the specified node may change based on the navigable
path identified in the request. For example, assume that API service 132
receives a request for a list of vendors associated with a specific company. A

navigable path for such a request may constitute obtaining data from the

9

WO 2017/204952 PCT/US2017/028499

‘companies” node (e.g., a specific company), and requesting vendors
associated with the specific company. In a different request for vendors
associated with a specific event hosted by a specific company, the navigable
path may include obtaining data from the “companies” node to obtain an
identification of a specific company, obtaining data from an “events” node to
obtain an identification of a specific event for the identified company, and then
obtaining data from the “vendors” node for the identified company and event.

[0033] For each subquery, APl service 132 can obtain the schema
definition for the associated node in the API graph to determine if received
query includes any parameters that are required for the subquery to
successfully execute. If the schema definition indicates any specific
parameters required to execute the subquery, API service 132 can count the
number of parameters provided in the request to determine if the required
parameters were included in the request. API service 132 can, in some
cases, examine the parameters included in the request to determine if the
provided parameters match a parameter type (or definition) associated with
each parameter in the schema definition for the node. If API service 132
determines that the request did not include the required parameters identified
in the schema definition for the node, API service 132 can stop processing the
query and notify client device 120 that the received query is invalid. If the
request includes the required parameters, API service 132 can fill in the
parameters for the subquery from data received in the request based on the
format in which API service 132 received the query. For example, as
discussed in further detail below, if API service 132 receives the request as a
RESTful request (e.g., in an HTTP address format), the parameters for a
subquery may be included between an identification of a parent and child
node (subquery). In another case, if the request is formatted in a JSON-like
(JavaScript Object Notation) format, API service 132 can extract the
parameters from, for example, key-value pairs, or two-tuples of {parameter

name, value}, included in the request.

10

WO 2017/204952 PCT/US2017/028499

[0034] After API service 132 generates the one or more subqueries from
the request, API service 132 can execute the one or more subqueries based
on provider information included in the schema definition for each node
(subquery). As discussed in further detail below, the provider information
indicates where a subquery is to be executed, as data may reside in
geographically separate locations. For example, data for a list of companies
may reside on a server in the United States, while employee data may reside
on a server in the United Kingdom, payment information may reside on a
server in Australia, and so on. Based on the provider data identified in the
schema definition for each node, API service 132 can route each subquery to

the appropriate server(s) for processing.

[0035] In some cases, APl service 132 may route subqueries to the
appropriate server(s) for processing sequentially based, for example, on data
dependencies for the individual subqueries and a provider for each of the one
or more subqueries. For example, using the example described above,
assume that a user wishes to obtain information about an employee of a
specific company. API service 132 may generate two queries as a result of
decomposing the query against the API graph projection: a first query to
obtain a unique ID for the specified company, and a second query to obtain
information about the specified employee using the unique ID for the specified
company. Because the servers on which company data and employee data
are not collocated in this example, API service 132 may route the first query to
application server 150 in a first server location 1404 for execution before
routing the second query to application server 150 in a second server location

140, for execution.

[0036] After API service 132 routes the subqueries to the appropriate
server(s) for processing, APl service 132 receives a result set from at least
one of the one or more application servers 150. Based on the received result
set, API service 132 can generate a parseable response and transmit the

response to client device 120 for display in user interface 122. The parseable

11

WO 2017/204952 PCT/US2017/028499

response may be formatted, for example, as a set of JSON-style key-value
pairs including the data requested by a user.

[0037] In some cases, APl service 132 may include an authentication
service to identify a user of client device 120 and determine which portions of
an API the user can access. The authentication service may operate, for
example, on a per-session basis, where client device 120 provides login
credentials to API service 132 to establish a session with API service 132 that
is valid for a pre-determined amount of time. In another case, the
authentication service may operate using certificates transmitted from a client
device 120 and API service 132 that identify the client device 120 and the
private APIs (if any) that client device 120 can use. Based on the data
provided to the authentication service, API service 132 can generate a graph
projection of the API including any extensions usable by the specific client
device. If an application executing on client device 120 attempts to use an
APl extension that is not included in the graph projection (e.g., an API
extension that is not available for use by client device 120), API service 132
can generate an error to indicate that the requested APl extension is not
available for use by client device 120.

[0038] API extender 134 generally provides an interface in which software
developers can add extensions to an existing APl. APl extender 134 can
receive a definition of an API extension from a software developer as, for
example, an uploaded file or text input from a field provided by API extender
134 and displayed in user interface 122. The uploaded file may be, for
example, written in a parseable markup language (e.g., YAML, XML, and so
on) and define the node from which the extension depends, required and
optional data input for the extension, and one or more outputs provided by the

extension.

[0039] When APl extender 134 receives a definition of an API extension
from a software developer, API| extender 134 can verify that the extension

depends from an existing node (including the root node) in a current graph

12

WO 2017/204952 PCT/US2017/028499

projection of the API. If the extension depends from an existing node, API
extender 134 can commit the received file or text input defining API extension
to a schema data store (e.g., APl schema 172 in schema data store 170).
API| extender 134 can generate an updated graph projection of the API
including the newly-committed extension, and APl service 132 can
subsequently use the updated graph projection of the API to process requests

from a client device 120.

[0040] If APl extender 134 detects that the extension does not depend
from an existing node in the current graph projection of the API, API extender
134 can transmit a message to client device 120 to indicate that the definition
provided to APl extender 134 contains an error. In some cases, API extender
134 can, based on dependency information included in the definition provided
to API extender 134 and the current graph projection of the API, provide a
suggested dependency to a user (e.g., if the indicated dependency is a close
misspelling of a node in the current graph projection of the API). If a user
confirms that the suggested dependency is the correct dependency, API
extender 134 can edit the provided definition of the API extension and add the
AP| extension to the API, as discussed above.

[0041] Server location 140 may be a geographically distinct location at
which data and associated data processing routines may be stored. In a
distributed system, different types of data may be stored in different locations
to satisfy, for example, data privacy requirements for different countries and
so on. Each server location 140 may include an application server 150 and
data store 160.

[0042] Application server 150 generally includes a request processor 152.
Request processor 152 receives a query from API service 132 at application
gateway 130 for processing. The query may be, for example, an API call or a
database query including one or more parameters provided in the request
received at application gateway 130 or obtained from other data sources (e.g.,

from a separate query executed on a different application server 150). In

13

WO 2017/204952 PCT/US2017/028499

some cases, application server 150 at first server location 140, can directly
request data from second server location 140,. Application server 150 at first
server location 140, can determine whether or not a direct access to
application server 150 at second server location 140, is allowed based on
data included in the API schema definition for services provided by application

server 150 at second server location 140,.

[0043] Based on the query received from API service 132, request
processor 152 can execute a query on user data 162 in data store 160 for the
requested data. In some cases, request processor 152 may additionally
include other logic for processing the requested data before transmitting the

requested data to application gateway 130.

[0044] Data store 160 generally is a repository storing data that request
processor 152 can access to satisfy requests for data received at application
server 150. The requests for data, as discussed above, may be received from
API service 132 at application gateway 130 or from another application server
150 in a second server location 140, if the APl schema indicates that
application server 150 at first server location 1404 allows for direct querying of
data from a different application server. As illustrated, data store 160
generally includes user data 162 in a sortable and searchable state. In
response to a query received from request processor 152 at application
server 150, data store 160 can return a set of data matching the parameters
included in the request, and request processor 152 may perform additional
processing on the returned data before providing the data to a client device
120 via API service 132 at application gateway 130.

[0045] Schema data store 170 generally is a repository for storing schema
definition files for each node, or query, available in an APIl. As illustrated,
schema data store 170 includes AP| schema files 172. Data stored in API
schema files 172 may define one or more functions provided by the APIl. As
developers create API extensions through API extender 134, files defining

these API extensions may be committed to APl schema files 172. In some

14

WO 2017/204952 PCT/US2017/028499

cases, schema data store 170 may also store a graph projection of the API,
including extensions added to the API by various developers.

[0046] Figure 2 illustrates an example graph projection 200 of an API,
according to an embodiment. As illustrated, graph projection 200 includes a
root node 210 which API service 132 uses to begin a traversal of graph
projection 200 of the API to determine whether a received request is valid
(e.g., is accessible as a continuous path from root node 210) or invalid.

[0047] As illustrated, graph projection 200 includes a plurality of first-level
nodes 220 immediately accessible from root node 210. Each of the first-level
nodes 220 may represent a query for data that API service 132 can execute
on one or more application servers 150 at a server location 140. As
illustrated, first-level nodes 2201 (apps), 220, (companies), 2205 (users), 2204
(entities), and 2205 (schemas) indicate that a query for data from each of
these nodes requires that the query include an identifier. For example, to
obtain data for a specific company (i.e., a query that reaches node 220, from
root node 210), a request transmitted to API service 132 for processing is
required to include an identifier associated with a specific company. Further,
as illustrated in node 220s, queries for network data need not include an
identifier as a parameter.

[0048] Second-level nodes 230, which are illustrated as child nodes of
first-level node 220, (i.e., the companies node), provide data specific to a
specific member of a first-level node 220. As illustrated in Figure 2, second-
level nodes 230 provide information about bills payable (node 2304),
employees (node 230,), vendors (node 2303), items (node 2304), and so on
associated with a specific company. Generally, to successfully request data
associated with a second-level node 230, a request transmitted to API service
132 should be structured such that the appropriate second-level node 230 is
accessible from a first-level node 220 specified in the request. For example,
to request employee data from second-level node 230, for example, a

request transmitted to API service may be required to include a request for a

15

WO 2017/204952 PCT/US2017/028499

specified company (i.e., because second-level node 230, is accessible
through first-level node 220,, the request should generate a path in graph
projection 200 of the API from root node 210 to first-level node 220, to
second-level node 220,).

[0049] Graph projection 200 may be generated from one or more schema
definitions (e.g., APl schema files 172) stored in schema data store 170. As
software developers add API extensions to an existing API, AP| extender 134
can update graph projection 200 to add a node to graph projection 200
representing the API extension as an accessible path from root node 210. In
some cases, an APl extension may be added to graph projection 200 as a
first-level node 220 directly accessible from root node 210; in other cases,
where an API extension depends on (or uses) a specific set of data, the API
extension may be added to graph projection 200 as an n'" level node in graph
projection 200. For example, an APl extension that uses employee data may
be added as a third-level node from second-level node 230, (the employee
node illustrated in graph projection 200). To interact with the API extension, a
request may be structured to provide a path from root node 210 to first-level
node 220, (i.e., the companies node), then to second-level node 230, (the
employees node), and finally to the APl extension represented by the
appropriate third-level node.

[0050] Figure 3 illustrates an example node definition 300 for a data
function defined for a graph-based API, according to an embodiment.
Generally, node definition 300 can provide information identifying a scope of
the node, a data provider for the node, and one or more data properties
provided by the node. The scope information included in node definition 300
may be set to allow any application to use a data function defined for the
graph-based API (i.e., public scope) or may restrict access to the function to a
limited subset of users (e.g., private scope). For example, API| extensions
developed for a specific organization (e.g., by a third party developer or an

16

WO 2017/204952 PCT/US2017/028499

organization’s internal development team) may be set to a private scope that
allows only users within the organization to use the extension.

[0051] Provider information defined in node definition 300 generally
indicates a server location 140 at which the data used by the node is stored.
The provider information may include, for example, an IP address of the one
or more application servers 150 that can process the request, a URL of the
one or more application servers 150, and so on. In some cases, provider
information defined in node definition 300 may additionally indicate read/write
permissions for data associated with the node and whether the application
servers 150 identified as the provider for the node can be accessed directly
from other application servers 150 in different server locations 140.

[0052] As llustrated, node definition 300 includes data identifying a
plurality of properties associated with the node. The properties associated
with the node generally include data that a user can request from the node.
As illustrated, the node definition for “employee data” includes at least four
properties: “id,” “hireDate,” ‘releaseDate,” and ‘“contractDetails.” Each
property may be associated with a type, a data format, and a description. As
illustrated, “id,” “hireDate,” and “releaseDate” are defined in node definition
300 as primitives, while “contractDetails” is defined as an array including
multiple entries from the “EmployeeContractDetails” node. Based on the
information included in node definition 300, API service 132 can generate a
graph projection of the API including an access path to each of the employee
data properties defined in node definition 300.

[0053] Figure 4 illustrates a decomposed RESTful request 400 for data
using a graph projection of an API, according to an embodiment. As
illustrated, request 400 can be decomposed into a first part 410, second part
420, third part 430, and fourth part 440. Request 400 is formatted as a
uniform resource locator (URL) including a domain name and a logical path
separated by the forward slash indicator.

17

WO 2017/204952 PCT/US2017/028499

[0054] First part 410 may be defined as the portion of request 400
including data identifying the root node of the graph projection of the API,
which, as discussed above, may function in a similar fashion to a protocol
binding that allows API service 132 to decompose request 400 and identify
the data sources to interact with to satisfy request 400. As illustrated, the root
node in a RESTful request 400 may be represented as a domain name (or
sub-domain) pointing, for example, to an application gateway that receives
request 400 for decomposition into multiple subqueries and routing of the
subqueries to one or more application servers 150 at one or more server
locations 140, as discussed above. If the domain identified in first part 410
cannot be found, user interface 122 may display an error message indicating
that the request is invalid.

[0055] Second part 420 represents a first subquery that API service 132 at
application gateway can route for execution on an application server 150. As
illustrated, second part 420 represents a request for data from the companies
node 220, in graph projection 200 of the API. Second part 420 additionally
includes a numerical identifier (e.g., the value “1”) that identifies the company
for which a user is requesting data. As companies node 2201 requires that an
ID be provided in a valid query, API service 132 can generate an error and
discontinue processing request 400 if second part 420 did not include a value
for the ID parameter (e.g., if the query had been written as
“‘companies/employees/...”). Upon routing a valid second part 420 to the
appropriate application server 150 identified in the AP| schema for companies
node 220,, API service 132 can receive a key or other data that identifies the
company and can be used to generate further subqueries for data related to

the identified company.

[0056] Third part 430 represents a second subquery that depends on the
result provided by the first subquery. As illustrated, third part 430 represents
a request for a specific employee of the company queried in second part 420.

As employees node 230, requires that an ID be provided in a valid query, API

18

WO 2017/204952 PCT/US2017/028499

service 132 can check third part 430 to determine whether or not an ID is
provided in third part 430 (and consequently whether third part 430 represents
a valid query). Upon determining that third part 430 is a valid query, API
service 132 routes the query to the appropriate application server 150
identified in the API schema for employees node 230, to obtain information for
the specified employee.

[0057] Fourth part 440 represents a specific data set that a user wishes to
obtain from API service 132. As illustrated, fourth part 440 is a request for
contract details related to the employee identified in third part 430. In this
case, an ID is optional and not provided in fourth part 440. Because an ID is
not provided in fourth part 440, API service 132 can generate a query for all of
the contract details associated with the identified employee and provide the
result set of one or more contract details to a client device 120 via application
gateway 130.

[0058] Figure 5 illustrates an example request 500 for data using a graph
projection of an API, according to an embodiment. As illustrated, request 500
may be transmitted to APl service 132 in a JSON-like format (e.g., as a
GraphQL request) for processing and parsing. In request 500, subqueries
may be represented in different levels of tab indentation in the request. For
example, the companies subquery is represented as a first level of tab
indentation and includes a parameter in a JSON-like key-value pairing. As
illustrated, the parameter provided in request 500 for the companies subquery
is an identifier of the company. API service can generate the companies
subquery from data in the first indentation level in request 500, route the
companies subquery to the appropriate application server 150 defined for
companies node 220, in graph projection 200 of the APIl. In response, API
service 132 receives a key or other data that identifies the company.

[0059] The employees subquery is represented as a second level of tab
indentation in request 500, which indicates that the employees subquery

depends on data returned from execution of the first subquery (e.g., depends

19

WO 2017/204952 PCT/US2017/028499

on an identifier of a specific company for which employee data is to be
queried). As illustrated, the employees subquery also includes a parameter in
a JSON-like key-value pairing. API service 132 can generate the employees
subquery from the company identifier returned for the companies subquery
and the employee ID provided in the second level of tab indentation in request
500. Based on the data set returned from executing the employees subquery,
API service 132 can generate a final subquery to request contract details for
the employee identified in the employees subquery. API service 132 may
transmit the results of the final subquery to client device 120 for display in
user interface 122.

[0060] Figure 6 illustrates an example block diagram of an API service
132, according to an embodiment. As illustrated, API service 132 includes a
request parser 610, a request router 620, a request processor 630, and a
response generator 640.

[0061] Request parser 610 is generally configured to receive a request for
data from client device 120 and decompose the request into one or more
subqueries. To decompose the request into one or more subqueries, request
parser 610 can include a defined set of delimiters or other rules for processing
the request. For example, if API service 132 receives requests in a RESTful
format (e.g., in the format illustrated by request 400), API service 132 can use
the forward slash character (i.e., “/’) to decompose the request into one or
more subqueries. In some cases, if APl service 132 allows requests to
include parameters using HTTP parameter conventions, request parser 610
can additionally use the question mark and ampersand characters as
delimiters to separate an identification of the node (or subquery) from the

parameters provided for the subquery.

[0062] In another example, request parser 610 can decompose a request
for data from client device 120 into one or more subqueries based on levels of
indentation in the request. Each level of indentation may represent a different

subquery that depends on a previous subquery. To extract parameters from a

20

WO 2017/204952 PCT/US2017/028499

request, request parser 610 can search for parameters in each level of
indentation by searching for key-value pairs between a defined set of
characters (e.g., the opening and closing braces (‘{* and “}’), opening and
closing parentheses (“(* and “)”), and so on). If a subquery can include
multiple parameters, each parameter may be separated by a defined

character, such as the semicolon character ().

[0063] After request parser 610 decomposes a received request for data
into one or more subqueries, request parser 610 determines whether the
request is a valid request. To determine if a received request for data is a
valid request, request parser 610 can examine each subquery against a
schema definition for the subquery. If the schema definition indicates that a
number of parameters are required for the subquery to execute and the
request does not include the required number of parameters, request parser
610 can determine that the request is invalid and generate an error message
to indicate that the required number of parameters for a specific subquery

were not provided in the request.

[0064] Request parser 610 can also traverse a graph projection 200 of the
API to determine that each subquery generated from the received request is
accessible in the graph projection 200 of the API. Errors in request may
result, for example, from misspelling of node names (resulting in a subquery
that is not in the graph projection 200 of the API) or from skipping levels of
nodes in graph projection 200 of the API. If request parser 610 determines
that the request includes one or more subqueries that are not accessible in a
traversal of graph projection 200 of the API, request parser can generate an

error message to indicate that the request is invalid.

[0065] Upon determining that a request is a valid request (e.g., includes an
accessible path through graph projection 200 of the APl and any required
parameters for each node identified in the path), request parser 610 can
provide the one or more subqueries to request router 620 for processing at

the appropriate application server 150. To route a subquery to the

21

WO 2017/204952 PCT/US2017/028499

appropriate application server 150 for processing, request router 620 can
examine provider information included in the schema definition for the node
representing the subquery. The provider information generally includes an
address (e.g. URL) of the server that can process requests for data related to
the node in graph projection 200 of the API.

[0066] In some cases, where a second subquery depends on data
returned by a first subquery, request router 620 can provide subqueries in a
sequential fashion. Using the request illustrated in FIG. 4 as an example,
request router 620 can route a first subquery generated from second part 420
to an application server 150 identified in the schema definition for the node
associated with the first subquery. Upon receiving a valid response (e.g.,
non-null data) to the first subquery, request router 620 can generate a second
subquery based on the response to the first subquery and the data in third
part 430 of the request. Request router 620 subsequently can provide the
second subquery to an application server 150 identified in the schema
definition for the node associated with the second subquery.

[0067] In some cases, the provider information for a node in graph
projection 200 of the API indicates that a subquery related to the node can be
processed at application gateway 130. If a subquery can be processed at
application gateway 130, request router 620 can provide the subquery to
request processor 630 for processing. Request processor 630 is generally
configured to receive a subquery and generate a result set from data stored in
an associated data store. In some cases, where the associated data store is
a relational database, request processor 630 may be configured to generate
and process a Structured Query Language (SQL) query on the relational
database and return the results of the SQL query as a data set, or array, to
request router 620. In some cases, the associated data store may be a non-
relational database, a series of flat files, and so on, and request processor
630 may return the results of the query as serialized, parseable data.

22

WO 2017/204952 PCT/US2017/028499

[0068] Response generator 640 is generally configured to cache the
responses generated for each subquery defined by request parser 610 until
API service 132 completes processing the request. When API service 132
receives a data set for the last subquery identified by request parser 610,
response generator 640 can generate a response to be transmitted to the
requesting client device 120. API service 132 may generate the response, for
example, as serialized data, such as XML data or a JSON-formatted
response, that client device 120 can parse to extract the data set for the last

subquery.

[0069] Figure 7 illustrates a block diagram of an example API extender
134, according to an embodiment. As illustrated, API extender 134 includes a
schema extension interface 710, schema extension verifier 720, and API

graph generator 730.

[0070] Schema extension interface 710 generally provides an interface for
users of a client device 120 to provide schema definitions to be verified and
added to the APIl. In some cases, schema extension interface 710 may be a
webpage that provides a text field in which a developer can write a schema
definition for an extension to the API. In some cases, schema extension
interface 710 may alternatively or additionally provide a file upload interface
that developers can use to upload schema definition files to API extender 134
to be verified and added to the API.

[0071] Upon receiving a schema definition at schema extension interface
710, API extender 134 provides the received schema definition to schema
extension verifier 720 to d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>