

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.) **B60L 11/18** (2006.01)

(52) CPC특허분류

B60L 11/1851 (2013.01) **B60L** 11/1861 (2013.01)

(21) 출원번호 **10-2016-0129935**

(22) 출원일자 **2016년10월07일** 심사청구일자 **2016년10월07일**

(65) 공개번호10-2018-0038822(43) 공개일자2018년04월17일

(56) 선행기술조사문헌 US20120139338 A1 (뒷면에 계속)

전체 청구항 수 : 총 8 항

(45) 공고일자 2018년06월08일

(11) 등록번호 10-1866063

(24) 등록일자 2018년06월01일

(73) 특허권자

현대자동차주식회사

서울특별시 서초구 헌릉로 12 (양재동)

(72) 발명자

이호중

경기도 안양시 동안구 관악대로 121 삼성래미안아 파트 119동 1204호

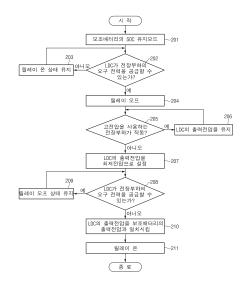
이동준

경기도 수원시 장안구 천천로22번길 34, 백설마을 삼환나우빌아파트 511동 1702

(뒷면에 계속)

(74) 대리인

특허법인태평양


심사관 : 송홍석

(54) 발명의 명칭 보조배터리의 릴레이 제어 시스템 및 그 방법

(57) 요 약

본 발명은 제어기가 보조배터리의 릴레이를 제어하는 방법에 있어서, 보조배터리의 SOC 유지모드에서 LDC(Low DC/DC Converter)가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하는 단계; 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, 보조배터리의 전원이 전장부하로 공급되는 릴레이 온 상태를 유지하는 단계; 및 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 보조배터리의 전원이 전장부하로 공급되지 않도록 릴레이를 오프하는 단계를 포함한다.

대 표 도 - 도2

(52) CPC특허분류

B60L 2210/10 (2013.01) B60L 2230/30 (2013.01) B60Y 2200/90 (2013.01) Y02T 10/7005 (2013.01) Y02T 10/7216 (2013.01)

(72) 발명자

권나래

서울특별시 은평구 갈현로29길 24, 예성베르빌 20 1호

김지헌

경기도 구리시 이문안로 51 한성아파트 112동 102 호

최원경

경기도 화성시 동탄청계로 303-14, KCC스위첸아파 트 1122동 1703호

(56) 선행기술조사문헌

KR1020150077820 A*

KR1020140142559 A

KR1020140016660 A

KR1020110057941 A

KR1020090059175 A

KR1020060003520 A

KR1019970055036 A

KR101220389 B1

*는 심사관에 의하여 인용된 문헌

명세서

청구범위

청구항 1

삭제

청구항 2

제어기가 보조배터리의 릴레이를 제어하는 방법에 있어서,

보조배터리의 SOC 유지모드에서 LDC(Low DC/DC Converter)가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하는 단계;

상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, 보조배터리의 전원이 전장부하로 공급 되는 릴레이 온 상태를 유지하는 단계; 및

상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 보조배터리의 전원이 전장부하로 공급 되지 않도록 릴레이를 오프하는 단계

를 포함하는 보조배터리의 릴레이 제어 방법.

청구항 3

제 2 항에 있어서,

상기 릴레이 오프 단계 이후,

고전압을 사용하는 전장부하가 작동하고 있는지 확인하는 단계;

상기 확인 결과, 작동하고 있으면 LDC의 출력전압을 유지하는 단계; 및

상기 확인 결과, 작동하고 있지 않으면 LDC의 출력전압을 최저 전압으로 설정하는 단계

를 더 포함하는 보조배터리의 릴레이 제어 방법.

청구항 4

제 2 항에 있어서,

상기 릴레이 오프 단계 이후,

LDC가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하는 단계;

상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 릴레이의 오프 상태를 유지하는 단계; 및

상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, LDC의 출력전압을 보조배터리의 출력 전압과 일치시킨 후 릴레이를 온 하는 단계

를 더 포함하는 보조배터리의 릴레이 제어 방법.

청구항 5

삭제

청구항 6

보조배터리;

친환경 차량의 전장부하에 전원을 공급하는 LDC(Low DC/DC Converter);

상기 보조배터리로부터의 전원을 상기 전장부하에 공급하거나 차단하는 릴레이; 및

상기 LDC가 상기 전장부하에서 요구하는 전력을 공급할 수 없으면 상기 보조배터리의 전원이 전장부하로 공급되는 릴레이 온 상태를 유지하고, 공급할 수 있으면 상기 보조배터리의 전원이 전장부하로 공급되지 않도록 릴레이를 오프하는 제어기

를 포함하는 보조배터리의 릴레이 제어 시스템.

청구항 7

제 6 항에 있어서,

상기 제어기는,

상기 릴레이를 오프한 상태에서 고전압을 사용하는 전장부하가 작동하고 있으면, LDC의 출력전압을 유지하는 것을 특징으로 하는 보조배터리의 릴레이 제어 시스템.

청구항 8

제 6 항에 있어서,

상기 제어기는,

상기 릴레이를 오프한 상태에서 고전압을 사용하는 전장부하가 작동하고 있지 않으면, LDC의 출력전압을 최저전 압으로 설정하는 것을 특징으로 하는 보조배터리의 릴레이 제어 시스템.

청구항 9

제 6 항에 있어서,

상기 제어기는,

상기 릴레이를 오프한 상태에서 LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 릴레이의 오프 상태를 유지하는 것을 특징으로 하는 보조배터리의 릴레이 제어 시스템.

청구항 10

제 6 항에 있어서,

상기 제어기는,

상기 릴레이를 오프한 상태에서 LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, LDC의 출력전압을 보조 배터리의 출력전압과 일치시킨 후 릴레이를 온 하는 것을 특징으로 하는 보조배터리의 릴레이 제어 시스템.

발명의 설명

기 술 분 야

- [0001] 본 발명은 보조배터리의 릴레이 제어 시스템 및 그 방법에 관한 것으로, 더욱 상세하게는 친환경 차량에서 보조 배터리의 전원을 전장부하(electronic loads)로 공급 및 차단하는 릴레이를 효율적으로 제어함으로써, 보조배터리의 SOC(State Of Charge) 유지모드에서 보조배터리의 열화도(deteriorated degree) 및 온도 등으로 인해 불필요하게 발생하는 보조배터리의 충/방전을 원천적으로 방지하는 기술에 관한 것이다.
- [0002] 본 발명에서 친환경 차량은 고전압배터리를 이용하여 전기 모터를 구동시켜 주행하는 차량으로서, HEV(Hybrid Electric Vehicle), EV(Electric Vehicle), PHEV(Plug-in Hybrid Electric Vehicle), FCEV(Fuel Cell Electric Vehicle) 등을 포함한다.

배경기술

[0003] 일반적으로, 친환경 차량은 구동용 전원을 공급하기 위한 고전압 배터리와, 내부 전기장치(전장부하)에 작동 전원을 공급하기 위한 보조배터리를 구비한다. 이때, 보조배터리 및 전기장치와 연결되어 있는 LDC(Low voltage DC-DC Converter)는 상위 제어기의 제어하에 보조배터리의 전압이 기준치를 초과하지 않으면, 고전압 배터리의

고전압을 보조배터리의 충전용 전압으로 낮추어(down converting) 보조 배터리를 충전한다.

- [0004] 이러한 보조배터리는 차량의 시동은 물론 각종 램프, 시스템, ECU(Electronic Control Units) 등과 같은 전기장 치에 작동 전원을 공급하는 역할을 수행한다.
- [0005] 지금까지 차량의 보조배터리는 완전 방전이 되어도 다시 충전하여 사용할 수 있는 장점으로 인해 납산 축전지 (lead-acid storage battery)가 주로 사용되었으나, 이러한 납산 축전지는 무겁고 충전밀도가 낮으며, 특히 납산은 환경오염 물질이기 때문에 최근 친환경 차량에서는 12V 리튬이온 배터리(lithium ion battery)로 대체되고 있다.
- [0006] 그러나 12V 리튬이온 배터리는 과방전이 되면 재충전이 불가한 치명적인 약점이 있어, 이를 보완하기 위해 과방 전 방지용 릴레이를 이용하여 12V 리튬이온 배터리의 과방전을 방지하는 기술들이 속속 개발되고 있다.
- [0007] 한편, 친환경 차량에서는 주행조건 및 배터리상태에 따라 LDC의 출력전압을 가변 제어하여 보조배터리의 충전/방전/유지를 수행하고 있다. 특히, SOC 유지모드에서는 보조배터리의 충/방전(충전 또는 방전)이 일어나지 않도록 LDC의 출력전압 값을 설정해 주는데, 보조배터리의 열화도 및 온도 등으로 인해 보조배터리의 충/방전 전류가 정확히 0A로 맞춰지지 않아 보조배터리에 불필요한 충/방전이 발생한다.
- [0008] 이로 인해, 고전압 배터리의 불필요한 에너지 손실이 발생하는 문제점이 있다.

선행기술문헌

특허문헌

[0009] (특허문헌 0001) 대한민국공개특허 제2015-0077820호

발명의 내용

해결하려는 과제

- [0010] 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은 친환경 차량에서 보조배터리의 전원을 전장부하 (electronic loads)로 공급 및 차단하는 릴레이를 제어하여 SOC(State Of Charge) 유지모드에서 보조배터리의 열화도(deteriorated degree) 및 온도 등으로 인해 불필요하게 발생하는 보조배터리의 충/방전을 원천적으로 방지함으로써, 친환경 차량의 연비를 향상시킬 수 있는 보조배터리의 릴레이 제어 시스템 및 그 방법을 제공하는데 그 목적이 있다.
- [0011] 본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.

과제의 해결 수단

- [0012] 상기 목적을 달성하기 위한 본 발명의 방법은, 제어기가 보조배터리의 릴레이를 제어하는 방법에 있어서, 보조배터리의 SOC 유지모드에서 LDC(Low DC/DC Converter)가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하는 단계; 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, 보조배터리의 전원이 전장부하로 공급되는 릴레이 온 상태를 유지하는 단계; 및 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 보조배터리의 전원이 전장부하로 공급되지 않도록 릴레이를 오프하는 단계를 포함한다.
- [0013] 또한, 상기 본 발명의 방법은 상기 릴레이 오프 단계 이후, 고전압을 사용하는 전장부하가 작동하고 있는지 확인하는 단계; 상기 확인 결과, 작동하고 있으면 LDC의 출력전압을 유지하는 단계; 및 상기 확인 결과, 작동하고 있지 않으면 LDC의 출력전압을 최저 전압으로 설정하는 단계를 더 포함한다.
- [0014] 또한, 상기 본 발명의 방법은 상기 릴레이 오프 단계 이후, LDC가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하는 단계; 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 릴레이의 오프 상태를 유지하는 단계; 및 상기 판단 결과, LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, LDC의 출력 전압을 보조배터리의 출력전압과 일치시킨 후 릴레이를 온 하는 단계를 더 포함한다.

- [0015] 상기 목적을 달성하기 위한 본 발명의 시스템은, 보조배터리의 릴레이 제어 시스템에 있어서, 보조배터리; 친환경 차량의 전장부하에 전원을 공급하는 LDC(Low DC/DC Converter); 보조배터리로부터의 전원을 전장부하에 공급하거나 차단하는 릴레이; 및 보조배터리의 SOC 유지모드에서 LDC가 전장부하에서 요구하는 전력을 공급할 수 있는지 판단하여, 공급할 수 없으면 보조배터리의 전원이 전장부하로 공급되는 릴레이 온 상태를 유지하고, 공급할수 있으면 보조배터리의 전원이 전장부하로 공급되지 않도록 릴레이를 오프하는 제어기를 포함한다.
- [0016] 여기서, 상기 제어기는 상기 릴레이를 오프한 상태에서 고전압을 사용하는 전장부하가 작동하고 있으면, LDC의 출력전압을 유지하는 것을 특징으로 한다.
- [0017] 또한, 상기 제어기는 상기 릴레이를 오프한 상태에서 고전압을 사용하는 전장부하가 작동하고 있지 않으면, LDC 의 출력전압을 최저전압으로 설정하는 것을 특징으로 한다.
- [0018] 또한, 상기 제어기는 상기 릴레이를 오프한 상태에서 LDC가 전장부하에서 요구하는 전력을 공급할 수 있으면, 릴레이의 오프 상태를 유지하는 것을 특징으로 한다.
- [0019] 또한, 상기 제어기는 상기 릴레이를 오프한 상태에서 LDC가 전장부하에서 요구하는 전력을 공급할 수 없으면, LDC의 출력전압을 보조배터리의 출력전압과 일치시킨 후 릴레이를 온 하는 것을 특징으로 한다.

발명의 효과

[0020] 상기와 같은 본 발명은, 친환경 차량에서 보조배터리의 전원을 전장부하(electronic loads)로 공급 및 차단하는 릴레이를 제어하여 SOC(State Of Charge) 유지모드에서 보조배터리의 열화도(deteriorated degree) 및 온도 등으로 인해 불필요하게 발생하는 보조배터리의 충/방전을 원천적으로 방지함으로써, 친환경 차량의 연비를 향상시킬 수 있는 효과가 있다.

도면의 간단한 설명

[0021] 도 1 은 본 발명에 따른 보조배터리의 릴레이 제어 시스템에 대한 일실시예 구성도,

도 2 는 본 발명에 따른 보조배터리의 릴레이 제어 방법에 대한 일실시예 흐름도.

도 3 은 본 발명에 따른 보조배터리의 릴레이 제어 방법의 효과를 나타내는 일예시도이다.

발명을 실시하기 위한 구체적인 내용

- [0022] 상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 호릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
- [0023] 도 1 은 본 발명에 따른 보조배터리의 릴레이 제어 시스템에 대한 일실시예 구성도이다.
- [0024] 도 1에 도시된 바와 같이, 본 발명에 따른 보조배터리의 릴레이 제어 시스템은, 보조배터리(10), 릴레이(20), J/B(Juction Box)(30), 전장부하(40), LDC(Low DC/DC Converter)(50), PRA(Power Relay Assembly)(60), 고전 압 배터리(70), BMS(Battery Management System)(80), 및 제어기(90) 등을 포함한다.
- [0025] 상기 각 구성요소들에 대해 살펴보면, 먼저 보조배터리(10)는 일례로 12V 리튬이온 배터리로 구현될 수 있으며, 차량의 엔진 시동에 필요한 전원과 전장부하(40)에서 요구되는 전원을 공급한다.
- [0026] 다음으로, 릴레이(20)는 보조배터리(10)로부터의 전원을 전장부하(40)에 공급하거나 차단하는 역할을 수행한다. 이때, 릴레이(20)는 펄스(Pulse) 신호에 의해 제어되는 래칭 타입(Latching Type)의 릴레이로 구현될 수 있다.
- [0027] 다음으로, J/B(30)는 보조배터리(10)와 전장부하(40)와 LDC(50) 및 제어기(90)를 상호 연결하는 역할을 수행한다.
- [0028] 다음으로, 전장부하(40)는 친환경 차량에서 보조배터리(10)로부터 전원을 공급받아 작동하는 모든 전자장치를 의미한다.
- [0029] 다음으로, LDC(50)는 고전압 배터리(70)의 고전압을 저전압(일례로, 14.3V ~ 13.5V)으로 변환하고, 상기 저전압

을 기반으로 보조배터리(10)를 충전하거나 각 전장부하(40)에서 요구하는 정격전압을 공급한다.

- [0030] 다음으로, PRA(60)는 주 전원접점인 두 개의 릴레이와, 두 개의 릴레이 중 하나의 릴레이를 우회하는 회로상에 설치되는 프리차지 릴레이(Precharge Relay) 및 프리차지 저항(Precharge Resistance)을 포함할 수도 있다. 즉, 제2 배터리(180)의 (+)단과 DC 링크 (+)단 사이의 회로상에 제1 릴레이(즉, (+) 릴레이)가 위치하고, 제2 배터리(180)의 (-)단과 DC 링크 (-)단 사이의 회로상에 제2 릴레이(즉, (-) 릴레이)가 위치하여, 제1 릴레이를 우회하는 바이패스 회로상에 프리차지 릴레이 및 프리차지 저항이 구비된다.
- [0031] 이러한 PRA(60)에 구비된 2개의 릴레이는 BMS(80) 또는 모터 제어기(Motor Controller Unit, MCU)(미도시)에서 출력되는 릴레이 제어신호에 의해 제어된다.
- [0032] 다음으로, 고전압 배터리(70)는 메인 배터리로서, 차량 가속 시 모터 어시스트에 필요한 전기 에너지를 공급하고, 감속 또는 엔진 여유 출력 발생 시 모터 회생에 의해 발생한 전기에너지를 저장한다.
- [0033] 다음으로, BMS(80)는 보조배터리(10) 및 고전압 배터리(70)를 관리하며, 특히 보조배터리(10)의 충전/방전/유지를 제어한다.
- [0034] 다음으로, 제어기(90)는 보조배터리(10)의 SOC 유지모드에서 LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 있는지 판단하여 공급할 수 없는 경우에는 보조배터리(10)의 전원이 전장부하(40)로 공급되도록 릴레이(20)를 제어하고(릴레이 온), 공급할 수 있는 경우에는 보조배터리(10)의 전원이 전장부하(40)로 공급되지 않도록 릴레이(20)를 제어한다(릴레이 오프). 이때, 제어기(90)는 고전압(LDC(50)가 출력할 수 있는 전압범위 내에서의 고전압)을 사용하는 전장부하가 작동하지 않는 경우, LDC(50)의 출력전압을 최저전압으로 설정하여 저항성부하(resistive load)로 인한 에너지 손실을 감소시킬 수 있다.
- [0035] 이후, 제어기(90)는 LDC(50)가 전장부하(40)에서 요구하는 전력을 공급하지 못하게 되면, 릴레이(20)를 온(on)하여 보조배터리(10)의 전원이 전장부하(40)로 공급되도록 한다. 이때, 제어기(90)는 릴레이(20) 온 시, 서지 전류에 의한 보조배터리(10)의 열화 및 소손(burning)을 방지하기 위해 LDC(50)의 출력전압을 보조배터리(10)의 출력전압과 일치시킨다. 이를 위해, 본 발명은 보조배터리(10)의 출력전압을 측정하기 위한 전압센서(미도시)를 더 구비할 수도 있다.
- [0036] 이러한 제어기(90)는 일례로 릴레이(20)를 오프 하기 위한 제1 스위치(91)와 릴레이(20)를 온 하기 위한 제2 스위치(92)를 구비한다. 이때, 제어기(90)는 릴레이(20)를 온/오프 할 수 있는 하나의 스위치를 구비할 수도 있다.
- [0037] 본 발명의 일실시예에서는 별도의 제어기(90)를 구비한 형태를 예로 들어 설명했지만, 제어기(90)의 기능을 LDC(50) 또는 BMS(80)가 수행하도록 구현할 수도 있다.
- [0038] 도 2 는 본 발명에 따른 보조배터리의 릴레이 제어 방법에 대한 일실시예 흐름도로서, 제어기(90)에 의해 수행되는 과정을 나타낸다.
- [0039] 먼저, 보조배터리(10)의 SOC 유지모드에서(201), LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 있는 지 판단한다(202).
- [0040] 상기 판단 결과(202), LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 없으면, 보조배터리(10)의 전원이 전장부하(40)로 공급되는 릴레이(20) 온 상태를 유지한다(203).
- [0041] 상기 판단 결과(202), LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 있으면, 보조배터리(10)의 전원 이 전장부하(40)로 공급되지 않도록 릴레이(20)를 오프 한다(204).
- [0042] 이후, 고전압(LDC(50)가 출력할 수 있는 전압범위 내에서의 고전압)을 사용하는 전장부하가 작동하고 있는지 확인한다(205).
- [0043] 상기 확인 결과(205), 작동하고 있으면 LDC(50)의 출력전압을 유지한다(206).
- [0045] 이후, LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 있는지 판단한다(208).
- [0046] 상기 판단 결과(208), LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 있으면, 릴레이(20)의 오프 상태를 유지한다(209).

[0047] 상기 판단 결과(208), LDC(50)가 전장부하(40)에서 요구하는 전력을 공급할 수 없으면, LDC(50)의 출력전압을 보조배터리(10)의 출력전압과 일치시킨 후 릴레이(20)를 온 한다(210, 211).

[0048] 도 3 은 본 발명에 따른 보조배터리의 릴레이 제어 방법의 효과를 나타내는 일예시도이다.

[0049] 도 3의 "310"을 통해 알 수 있듯이, 종래에는 보조배터리(10)의 SOC 유지모드에서 불필요한 충/방전이 발생하였다. 이로 인해, 고전압 배터리(70)의 에너지 손실이 발생하여 친환경 차량의 연비를 저하시켰다.

[0050] 그러나 본 발명이 적용된 경우(320)에는 보조배터리(10)의 SOC 유지모드에서 불필요한 충/방전이 발생하지 않았다. 아울러, 고전압을 사용하는 전장부하가 작동하지 않는 경우에 LDC(50)의 출력전압을 최저전압으로 설정 (330)하여 저항성 부하로 인한 에너지 손실을 감소시킬 수 있었다.

[0051] 한편, 전술한 바와 같은 본 발명의 방법은 컴퓨터 프로그램으로 작성이 가능하다. 그리고 상기 프로그램을 구성하는 코드 및 코드 세그먼트는 당해 분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 또한, 상기 작성된 프로그램은 컴퓨터가 읽을 수 있는 기록매체(정보저장매체)에 저장되고, 컴퓨터에 의하여 판독되고 실행됨으로써 본 발명의 방법을 구현한다. 그리고 상기 기록매체는 컴퓨터가 판독할 수 있는 모든 형태의 기록매체를 포함한다.

이상에서 설명한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술 적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도 면에 의해 한정되는 것이 아니다.

부호의 설명

[0053] 10 : 보조배터리

[0052]

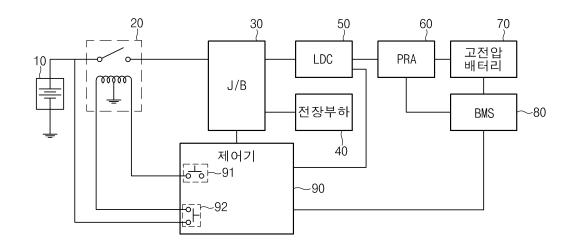
20 : 릴레이

30 : J/B

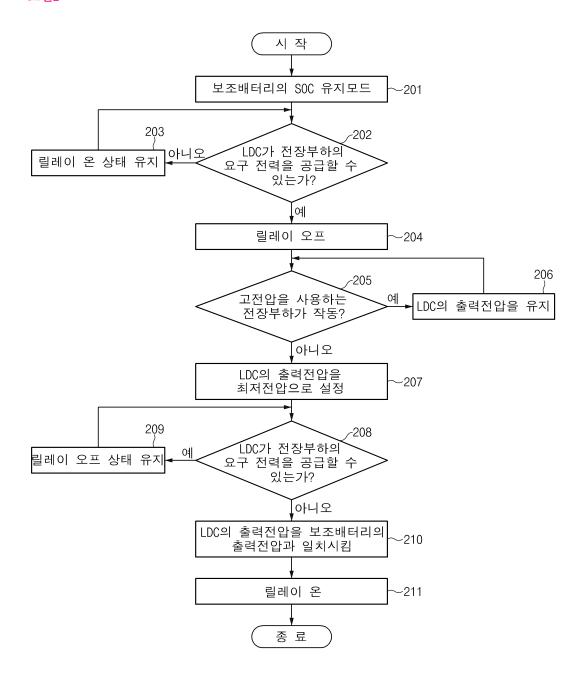
40 : 전장부하

50 : LDC

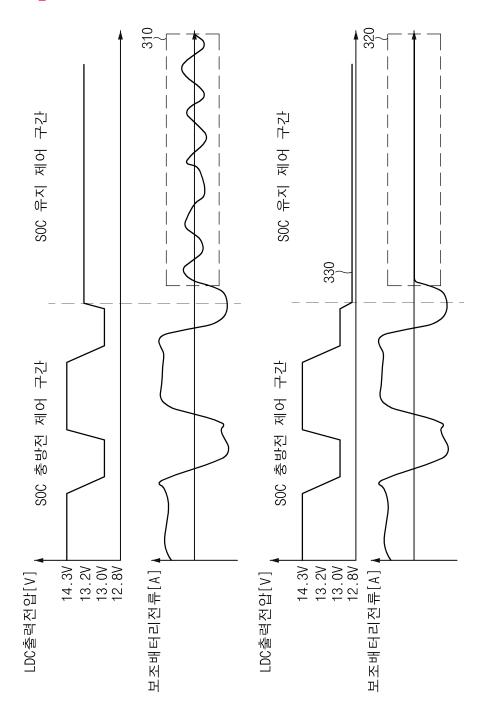
60 : PRA


70 : 고전압 배터리

80 : BMS


90: 제어기

도면


도면1

도면2

도면3

