»UK Patent .,GB

(11)2588002

(13)B

(45)Date of B Publication 28.12.2022

(54) Title of the Invention: S€CUrity management for networked client devices using a

distributed ledger service

(51) INT CL: HO4L 9/08 (2006.01) HO4L 9/00 (2022.01) HO4L 9/14 (2006.01) HO4L 9/32 (2006.01)
HO4L 67/104 (2022.01)

(21) Application No: 2018249.9 (72) Inventor(s):
Josef Zankowicz

(22) Date of Filing: 10.05.2019 Jay Fallah
Scott Rankine
Kristopher Byrne

Date Lodged: 20.11.2020 Kevin John Oerton

(30) Priority Data:

(31) 62669652 (32) 10.05.2018 (33) US
(31) 15988427 (32) 24.05.2018 (33) US
(31) 62689303 (32) 25.06.2018 (33) US
(31) 62739771 (32) 01102018 (33) US

(60) Parent of Application No(s)
2217262.1 under section 15(9) of the Patents Act 1977

(86) International Application Data:
PCT/CA2019/050635 En 10.05.2019

(87) International Publication Data:
WO02019/213781 En 14.11.2019

(43) Date of Reproduction by UK Office 14.04.2021

(56) Documents Cited:
EP 3777111 A1
CN 108011370 A
US 20180075247 A1

EP 3676744 A1
US 20190102409 A1

(58) Field of Search:
As for published application 2588002 A viz:
INT CL HO4L
Other: Questel Orbit, Canadian Patents Database
updated as appropriate

Additional Fields
INT CL G06Q
Other: WPI, EPODOC

(73) Proprietor(s):
NXM Labs,INC.
800 W. El Camino Real, Suite 180, Mountain View,
California 94040, United States of America

(74) Agent and/or Address for Service:
Barker Brettell LLP
100 Hagley Road, Edgbaston, BIRMINGHAM,
B16 8QQ, United Kingdom

g ¢00884¢ 99

1/16

ﬁ wwm Jawnsuoy) eleq

0¢

09 WalsAs
uolnguisiq
/98e101s eieQ

g sadessaln
agessay Y, |euonesado SEMEA
paieiay /21emyos
-AJ4NI3g 371A8Q
N “.
~ ° ...f.;
b M SOBRSSAIN i

J98pa7 pangliisiq E

2/16

59T ONY

S1T Mowapy
duppom/INVY

0871 swalsAsgnsg
LORBIUNWIWOTY
SSRBIIM,

YAV
DIN3/WINY/NIS

o)1
Alddns Jamod

GET
auoz

pa1sna

SO0t
Hun
Buissaroug

¢ DId

0ET AMowa
AN 31N2385-UoN

S7T Moway
AN 3Inoag

DZT Aoway
D{(eseII-UON

ovT
$37e4133U] 43S

SYT
S10SUTS

O/t 43430

1udI) Axoud

suonesiddy/so

SETIGUETIRERT

SlemMmiLLIY

ainjeudis asemutdty

34015 Ay

Jayiuap) anbun

3/16

¢ DI

sa1e|dwa] Pesuo) Lews

sassaippy/sacedsawen

uolewJloju| 8uig

S3SSAIPPY IIN(Q/SBII0IUBAU|

09¢ 0sZ ove
3NPON 128paT 101e13U95
Jysigqnd eieq painquisiq LeuUo) Hews
0€e 0c¢e
uondAnag/uondAnug 301AI9S UOEINURYINY

)54

sadepalu| Suiiwesdodd uonedddy

00¢

SWaISASONS UOIIEIIUNWIWOY YIOMIBN

4/16

v DId

0L
Jawnsuon ejeq

eleq ajaipuan (§)

0T
931Aa(UBID

09
wi3sAS uolngLiasiq
/e8e101§ e1eqQ

JIOMIoN

06
waishs
J98pa7 painqiasia

WaIsAS Axodd
J98pa painglasig

NomiaN

A

aBessan d7d

h 4

Agnd

T¢400C 0T
30IAR(Q J33d

5/16

0L
Jawnsuon ejeq

®

09
wi3sAS uolngLiasiq
/e8e101§ e1eqQ

06
waishs
J98pa7 painqiasia

¢ DId

08

NomiaN
J|gnd

0T
931Aa(UBID

A

aBessan d7d

h 4

T¢400C 0T
30IAR(Q J33d

6/16

9 DId

>memmm§ |043u0D @

08
WaisAs Axoudd

—7]

J88pa1 painquisiq

&

Response @

@ afessap

Y

06
Wa3sAs
Jadpa painginsia

_ adessan 104U0
FIOMIBN Wi 0 @
2A19nd

@ anjep a1e3s
S6

a8elo1s e1e(Q

0T
CRINETJRUETTS)

®

pdessalN dZd

Tc¢ 0Dt 0T
201N J9Rd

L OId

>mwmmmm§ [043U0) @
>

— h o1
N a8essa [043U0) @ @o1Aa(B

08
WaisAs Axoudd
J88pa1 painquisiq

FIOMIBN
algnd

7116

I
s
a
®| 5
[
g
_ ,
2\@ :
)
) ,
3 ® 721007 o1
0IAa(193d
=
®© |§ ¢
% Jalopdx3
96
Aonsoday
Adon oneis
[o
o *,
S)
£O ©%
v
@;m\, a8e1015 S6
waishs @ v a8elo1s eleq
Ja8pan paingisig

8/16

8 DId

GEE

$S800Y JURIO)

oce
100V ‘asuodsay

Gze Muap

14
13N

Gle

I3 1senbay

0L€
100y Buljig

Gog
a0InIag Jo)siBoy

00¢ sadiAleg
‘eleq AJojuanu|

08 WaysAg JOPINOI B0INBS Jainoenuep
fxoid woosls | @o1AB(] JUBID

0L @dlAeQ
JusiD

9/16

6 DId

sy
sry asuodsay
(2injie} ‘'ss800ns)
asuodsey
Ot uoindexy
Gey
((s)Aex ognd ‘ain
uonouny j1ed
0ty
(s)Aex alignd ‘sq| sz¥ ain
‘sA@y al0ls pue
ajelausn)
0cy uonejeisu|
Gy
ajepdn asemuil4
OLy
UOHEIYLIDA
110]4
1sanbay
00t
uonezieniuj
06 WosAg 0f 80in0g 08 WalsAg 0L 821A8Q

JebBpeT painguisig SJEMWI4 Axoid VLT

10/16

060 2]04 Jolensiuiwipe ysinbuial/iajsued]

GET 921Aap JUBI[D JO Bjes

Q7 201A3P JOIRIISIUILIPR PPY

GZ¥ 195N 3AOWRL/ppPY

G9¥ sdulled paindijuodalg

077 3uuied srowal/ppy

0o suolssiwad paindyuodald

SRS SO

11/16

[T DId

gag
" ®eyspueH
0G¢G
(s)Aey ‘esuodsay
ovS 14
(aaniey ‘sso00NS) (s)Ae) ‘esuodsay
asuodsay
GEG uoinoex3
0€g uonoung
UlWpY |BD
GZS
UONBOIBA
026 1senbay
UIWpY ppy Glg
Jayiuspj
0LG lieisy]
G0s
2IEMJJOS
00S
}senbay
06 WalsAg 0G 90in0g 08 WasAg AL Te 0l @o1A8Q

1eBpan peynguisi 2JeM)J0g fxoid uIwpy waD

12/16

089 589 Buuied
uononyisuj Buuied
Gl9
uononsu| Buuied
G99 0.9 asuodsay
she)| ‘esuodsey
099 uoindaxy
-t 5 559 069
utied pioosy asuodsey
191 74¢)
1sanbay Bulied 0r9
Se9 asuodsay
0£9 UONEDYLIDA
asuodsay
G629 029
Aienp UONEOUBA
i G190 1senbay B e, e .
EEEEEEEEEEEEEEEEEEE 019 Jaijusp|
GO9 1senbay
"009 Jolnusp|
06 WalshAg 08 walsAg 2-02 20l 1-02 1-01
Jabpa peynguisiq Axold 801A8(] UIWLPY Il -TqBU LT) 30IAS(] UIWPY LIl ETg BULTI)

13/16

¢l DI

0./ UOlEULIU0D

G9/ UOHEWIUOD

GG/ 09/ a2suodsay
sAay ‘esuodsay

0G/ uonnosx4y

G/ 19SM ploosy

O/ osuodsay

. 082
0eL A1SND UONBORLISA
s2.
SUOISSIWISY
0z.
induy
T grzain
B 0L/ WIjueD
G0/ 1senbay
00, Jeynuep| -
06 WolsAg 08 wajsAg LZ 991A8(0Z 99IA8(] 0l 221A8Q

18bpan peinquisiqg Axold s uwpy wein

14/16

1 DId

-
088 ®1epdn AM | so0nep pasied
088 etepdn Aoy
0.8 G/8 ajepdn Asy
asuodsay
598 evepdn , 098 658 swypuoBle
(s)hey d1and abueyo/siay
alelsuabay
068 8yepdn
ajemuLi4
Gyg asuodsay
Aian
08 0 ceg
0£8 puewwon
ayepdn
GZg lnsay
0z8 aJedwon
G| g asuodsay
018 Aienp 508
asuodsay
008
1sanbay Hpny
Op 924n0S 06 WalsAg 07 201A2Q 08 WIISAS 0T @01A3(Q
alemulLiig 1abpa painguisiq ulpy AX0.d wLlD

15/16

¢1 "DIA

066
UONEOYIION
G6 (s)hey
0¥6
(s)Aey ppy
Gee
ajepdn
0¢6
(s)Aey dlland
suonoe Ajjibe-01dA1n
GZ6
Splo2ay Jes|D §16 siemuiy
026 alojsay
- AJuBLIBAA 8XOAU| 0Le6
oeq||0
06 Aoeq|oy
uoneoyjoN
006 18leQ
06 WeisAg Wa)sAs 0¢ =21Ae(08 WalsAg 0T =21Aa(

18bpsn pseinquisi(JojueLiepn ulpy AX0.d wLlD

16/16

91 DIA

Svol

0¥01 81epdn

GEQL uoneulOU]

1989y

0001 Peles

es|n 0eolL
uopueqy
0¢ol
ujwpe ppy

GLOL oBLlUOD

yews

010} 10BAUOD
Hews ppy

(pasinbail j1) uawAed AousinoojdAlD

201ABP JUBI[D JO Jajsuel) [eoisAyd

GO0l uoledyON

06 welsAg 08 walshg
18bpan peinquisiqg Axold

ljsuel |

0001 18I8S

801A8(] 0Z 821n8Q
uIwpY maN uIpy

0} ®91aeQ
jusio

SECURITY MANAGEMENT FOR NETWORKED CLIENT DEVICES USING A
DISTRIBUTED LEDGER SERVICE

Cross-Reference to Related Applications

[0001] This application claims priority to United States Provisional Application No.
62/669,652 filed on May 10, 2018; to United States Provisional Application No.
62/739,771 filed on October 1, 2018; to United States Provisional Application No.
62/689,303 filed on June 25, 2018; and to United States Patent Application No. 15/988,427

filed on May 24, 2018, the entireties of which are incorporated herein by reference.

Technical Field

[0002] This disclosure relates to security management of networked devices, and in
particular to the use of distributed ledger (blockchain) services to mediate communications

between network-enabled client devices.

Technical Background

[0003] With the proliferation of Internet-enabled (so-called “smart” devices or “Internet of
Things” devices), the number of potential attack vectors on home, workplace, industrial,
public, and even government networks has increased enormously. This is evidenced by
recent reports of vulnerabilities in smart home products, enabling unauthorized parties to
gain access to private information or launch distributed denial of service (DDoS) attacks.
Furthermore, by even conservative estimates, the number of smart devices globally is in the
billions, and expected to grow significantly over the coming decades. Thus, the proliferation
of smart devices also challenges the scalability of existing frameworks for managing these
devices, all of which must be provisioned for communication over wired or wireless
networks, and in some cases, cellular networks; and, to some degree, tracked for security

and accounting purposes.

[0004] Many smart devices also generate operational or sensor data that is potentially
consumable by different parties; not only the owner of the smart device, but also by device
manufacturers, regulatory bodies, and advertisers. While it may be desirable to publish

sensor data gathered by smart devices, this activity raises important privacy considerations.

Brief Description of the Drawings

[0005] In drawings which illustrate by way of example only embodiments of the present

invention,

[0006] FIG. 1 is an illustration of an example networked environment in which a distributed

ledger system and proxy system may operate.

[0007] FIG. 2 is a block diagram illustrating select functional components of an example

client device operating in the environment of FIG. 1.

[0008] FIG. 3 is a block diagram illustrating select functional components of an example

distributed ledger proxy system.

[0009] FIG. 4 is an interaction diagram illustrating a possible flow of control and data

messages in a first configuration of the environment of FIG. 1.

[0010] FIG. 5 is an interaction diagram illustrating a possible flow of control and data

messages a further configuration.

[0011] FIG. 6 is a further interaction diagram illustrating a possible flow of messages in a

further configuration variant.

[0012] FIG. 7 is an interaction diagram illustrating a possible flow of messages employing

an explorer module.

[0013] FIG. 8 is a sequence diagram illustrating a high level process for associating a

telecommunications carrier or client device vendor with the distributed ledger system.

[0014] FIG. 9 is a sequence diagram illustrating a high level process for registering a new

client device with the distributed ledger system.

[00o1s] FIG. 10 is a block diagram illustrating a code template for use by the distributed

ledger proxy system.

[0016] FIG. 11 is a sequence diagram illustrating a high level process for creating an

administration relationship between a user device and a client device.

[0017] FIG. 12 is a sequence diagram illustrating a high level process for pairing two client

devices.

[0018] FIG. 13 is a sequence diagram illustrating a high level process for associating a

second user device with a client device.

[0019] FIG. 14 is a sequence diagram illustrating high level processes for conducting an

audit and for invoking agile cryptography action on a client device.

[0020] FIG. 15 is a sequence diagram illustrating a high level process for invoking a

warranty action on the client device.

[0021] FIG. 16 is a sequence diagram illustrating high level processes for transferring a
client device to another owner/administrator, and relinquishing or abandoning a client

device.

Detailed Description of the Invention

[0022] The embodiments and examples herein generally provide a framework for the
management of network-enabled client devices, such as so-called smart or [oT devices, that
facilitates provisioning and administration of client devices on wired and wireless networks,
while also maintaining an auditable record of security information for the client devices and
associated administrator and user devices. The framework governs onboarding, registration,
pairing, permissioning, and other processes using security information maintained in a
distributed ledger (such as a blockchain). Each device managed in the framework is assigned
an immutable unique identity (UID) that uniquely identifies the device within the
distributed ledger. Client devices interface with the distributed ledger through a proxy
service platform that receives control messages and either queries the distributed ledger or
implements transactions or smart contracts on the distributed ledger in order to manage
security policies and information on the client device’s behalf. The proxy service platform
may also use the distributed ledger as a form of authentication service to determine whether

requests received by a client device or another device are valid.

[0023] Thus, in one aspect, a system is provided in which a distributed ledger computing

system maintains a distributed ledger for storing security-related information for a plurality

of network-enabled client devices, and a proxy computing system is configured to exchange
security-related messages with the plurality of network-enabled client devices over a first
communication path, and to engage in transactions or call functions with the distributed

ledger on behalf of the network-enabled client devices over a second communication path.

[0024] In one aspect, the distributed ledger stores associations between unique identifiers
defined for the plurality of network-enabled client devices and corresponding encryption

keys.

[0025] In another aspect, the distributed ledger stores pairing associations between network-
enabled client devices, and/or associations between administrator devices and network-

enabled client devices.

[0026] In a further aspect, the proxy computing system is configured to receive, from a
network-enabled client device over the first communication path, a security-related request;
generate a transaction or a function call for the distributed ledger, the transaction including
as an account identifier or as a parameter a unique identifier of the network-enabled client
device; and transmit the transaction or function call to the distributed ledger computing

system for execution on the distributed ledger over the second communication path.

[0027] In still a further aspect, the proxy computing system is further configured to receive
an output from the distributed ledger computing system in response to the executed

transaction or function.

[0028] In another aspect, the distributed ledger computing system comprises a repository
storing a copy of the distributed ledger, the copy of the distributed ledger being updated
when a change is made to the distributed ledger; the proxy computing system is further
configured to access the copy of the distributed ledger over a third communication path
distinct from the second communication path; and the proxy computing system receives,
from a network-enabled client device over the first communication path, a security-related
request; generates a transaction or a function call for the distributed ledger, the transaction
including as an account identifier or as a parameter a unique identifier of the network-
enabled client device; transmits the transaction or function call to the distributed ledger

computing system for execution on the distributed ledger over the second communication

path; and retrieves, from the copy of the distributed ledger over the third communication
path, security-related information for transmission to the network-enabled client device. The
transaction or function call may comprise a transaction adding a pairing association
between the network-enabled client device and a second network-enabled client device, and
the security-related information retrieved from the copy of the distributed ledger comprises a
public key for the second network-enabled client device. Further, each network-enabled
client device may be configured to self-generate a unique identifier for identifying the

network-enabled client device in the distributed ledger.

[0029] The examples and embodiments described herein also provide a framework in which
the control and data planes of the network are effectively separated, thus separating the
control over security policies from content published by client devices. In one aspect, the
system comprises a distributed ledger computing system maintaining a distributed ledger for
storing security-related information for a plurality of network-enabled devices, and a proxy
computing system configured to exchange messages with the plurality of network-enabled
client devices over a first communication path; to engage in transactions or call functions
with the distributed ledger on behalf of the network-enabled client devices over a second
communication path; and to transmit data received from the plurality of network-enabled
client devices to a data storage or distribution computing system over a third

communication path.

[0030] In one aspect, each network-enabled client device comprises a processing unit and a
communications subsystem, and is being configured to transmit messages comprising
vendible data and security-related messages to the proxy computing system over the first
connection; the proxy computing system is configured to transmit vendible data received
from one of the network-enabled client devices to the data storage or distribution system
over the third communication path; and the proxy computing system is configured to
generate a transaction or a function call for the distributed ledger based on a security-related
message received from the network-enabled client device, and transmit the transaction or
function call to the distributed ledger computing system for execution on the distributed

ledger over the second communication path.

[0031] “Client devices”, in this context, include but are not limited to devices
conventionally referred to as “smart devices” or “IoT devices”, but may include any suitable
computerized device provided with a radiocommunication subsystem or a wired
connection, enabling the device to either communicate over a network, which may be a
public network, such as the Internet, or to communicate with another device that forwards
messages over a network on its behalf. Client devices often have less powerful processors
than personal communication devices such as smartphones, so as to reduce the cost of
manufacture. In some cases, client devices may also have minimal user interfaces, since
their main purpose may simply be connection of sensor data (e.g., temperature, humidity,
speed, location), and perhaps the control of another device based on the sensor data and/or
instructions received from a user device over a network (e.g., a thermostat controllable by a
user’s smartphone). On the other hand, some client devices contemplated by this disclosure
can be complex and more powerful. For example, a vehicle that is equipped for network

communication may be considered to be a client device.

[0032] An example topology of a networked environment in which these inventive concepts
may be implemented is illustrated in FIG. 1. It will be appreciated by those skilled in the art
that the examples described and depicted herein are not intended to be limiting, and are
simply intended to illustrate the inventive concepts. Client devices 10, such as the devices
discussed above, may operate in a wireless mesh network 30, although this is not necessary
(for example, client devices may communicate over a local area network). The example
mesh network 30 depicts a plurality of consumer devices, such as a thermostat, smart
speaker, and light fixture operating as nodes in the network. As will be seen in the following
discussion, each client device 10 is associated with at least one user device, which operates
as an administrator device 20. One such device is shown in the mesh network 30. A single
administrator device 20 may be used to administrate multiple client devices 10, but a given
client device 10 in the examples provided herein has only one associated administrator
device 20 at a time. Additionally, one or more secondary user devices 21 may be associated
with a given client device 10, with approval received from the administrator device 20. A

user device 21 is provided with a subset of permissions to operate the client device 20.

[0033] Firmware, applications, and software for the client devices and administrator devices
may be made available for retrieval over the public network from firmware sources 40 and
software sources/application servers 50. For example, the original equipment manufacturer
or a distributor may make firmware files available for download by a client device 10 when
the device is first activated, as described below. Various mechanisms for hosting and

delivering firmware and software updates will be known to those skilled in the art.

[0034] Generally, administrator device 20 may be any suitable user communication/data
processing device configured for network communications and capable of communicating
(typically, over a wireless connection) with the client device 10, with a user interface such as
a display screen or speech interface enabling the user to implement various control actions
relating to the client device 10. The user device 21 may be the same type of user
communication/data processing device. The examples of the administrator device 20 and
user device 21 are not intended to be limiting. In other contexts, particularly in industrial or
commercial settings, devices 20, 21 may be special purpose computing devices. It is
contemplated that in the context of household or workplace consumer client devices, the
administrator device 20 and user devices 21 will typically be a smartphone, personal
computer (e.g., a desktop or laptop computer, or a tablet computing device), or even a smart
speaker. As mentioned above, such devices would be provisioned with software
applications, which may be downloaded from a client device manufacturer or vendor site or
other software source such as an online software marketplace, represented generically by
software source/application servers 50. The software applications are executed by the device
20, 21 to enable the device 20, 21 to register in the system and obtain authority over one or
more client devices 10, and may be referred to below as a device control application. Each
type of client device (e.g., each device model or class of device models) may be associated
with a specific device control application, or each vendor may provide a proprietary device

control application for use with client devices supplied by that vendor.

[0035] In such implementations, messages containing operational commands may be
transmitted by the administrator or user device 20, 21 directly to the client device 10 via
peer-to-peer (P2P) messaging, or alternatively, the operational commands from the device

20, 21 may be routed to an application server 50, which then transmits a message with the

24 06 22

operational command to the client device 10. An operational command is a command directed to
the operation of the device, for example to turn the device on/off or alter operational parameters.
In the case of a smart thermostat client device, for example, operational commands may include
setting a target room temperature or defining a scene. The devices 20, 21 may also transmit
security or access-related commands via the application server 50, for example to add users who
are permitted to operate the client device 10, but as will be seen below, to provide an enhanced

level of security, security-related commands are managed using the distributed ledger.

[0036] In a typical household implementation, devices on the mesh network 30 communicate
with any accessible external nodes (e.g., services accessible over a public network such as the
Internet) via an access point and Internet gateway. Other example client devices 10' and 10"
shown in FIG. 1 are a blood glucose monitor and an automobile, respectively, with a common
administrator device 20. These devices are illustrated as operating outside a mesh network,
although of course those skilled in the art will recognize that a network communication-enabled
automobile may be configured for communication in ad hoc mesh networks, for example using a
for vehicle-to-vehicle (V2V) protocol. These devices may be adapted for wireless local area
network (WLAN) communication and may communicate with the distributed ledger proxy
system 80 and other accessible nodes in the environment in a manner similar to the example
mesh network 30. They may, alternatively, be configured with suitable radio access technology
compliant with one or more cellular communications standards such as 5" generation (5G), as
may defined by the Third Generation Partnership Project (3GPP®) or International Mobile
Telecommunications-2020 (IMT-2020) Standard, or earlier (fourth to second generation)
standards such as Long Term Evolution (LTE®), Universal Mobile Telecommunications System
(UMTS), or Global System for Mobile Communications (GSM). In the case of a client device 10
that 1s expected to be mobile during the course of day-to-day operation (e.g., a vehicle or a
personal medical device), it may be preferable for the client device 10 to be equipped for cellular
communications unless it is accompanied by a paired communications device with cellular
access, such as a smartphone. The network infrastructure required for these communication

methods is omitted for clarity in FIG. 1.

[0037] The client devices 10 and administrator devices 20 communicate, typically over a public

network, with a distributed ledger proxy computing system 80. Briefly, the proxy system 80

24 06 22

operates as an intermediary between the client devices 10 and a distributed ledger (e.g.,
blockchain) computing system 90, enabling client devices 10 to use the distributed ledger system
90 without requiring the client devices 10 to engage in resource-intensive operations. Functions

of the distributed ledger proxy system 80 are discussed in further detail below.

[0038] The distributed ledger proxy system 80 is configured to transmit requests (e.g., smart
contract or function calls, transactions, etc.) to a distributed ledger system 90. The distributed
ledger system 90 in these examples is a networked set of distributed ledger client computing
nodes implementing a suitable distributed ledger software module for maintaining an instance of
a distributed ledger. Appropriate platforms include Hyperledger®, available from The Linux
Foundation, or Ethereum®, which 1s available from the Ethereum Foundation, and
implementations of these platforms include IBM® Hyperledger® Fabric; Parity Ethereum from
Parity Technologies; Hyperledger Sawtooth, a project of Hyperledger hosted by The Linux
Foundation); and Infura from ConsenSys Inc. Other appropriate platforms and infrastructures
known to the person skilled in the art may be employed. Selection of one particular platform
over another may be determined, at least in part, by the capacity of the infrastructure to handle
the volume of traffic anticipated when managing the client devices, which may number in the
millions or billions. Selection may also be determined at least in part by a desired consensus
algorithm, if any is used (e.g., proof of authority versus proof of work versus proof of stake). In
the particular implementations discussed below, for enhanced security the distributed ledger 1s
private, rather than public, and because the participating distributed ledger nodes are known to

each other, a consensus algorithm may not be required.

[0039] As will be seen in greater detail in the various implementations described below, only the
proxy system 80 is permitted to directly access the distributed ledger system 90 over a private
channel. While the client devices and administrator devices may communicate with the proxy
system 80 over a public network (preferably using encryption), communication between the

proxy system 80 and the distributed ledger system 90 is preferably secured

private, and the distributed ledger system 90 is preferably maintained as a private system
with suitable firewall protection and physical security. This limited access protects
confidential information stored in the distributed ledger from inadvertent exposure in the
event a client device 10 is compromised. Additionally, one or both of the proxy system 80

and the distributed ledger system 90 may include additional data storage systems 85, 95.

[0040] In this example environment, the distributed ledger is used to track and store
security-related information such as registered devices, pairings, and public keys, and
optionally sensitive information, such as personal identifying information, relating to a
device or the owner of the device. While the distributed ledger may also be used to store
other types of information generated by the device 10, it is contemplated that the sensor or
operational data generated by a client device 10 may be transmitted to a separate data
storage and/or distribution system 60, where it may be made accessible to data consumers
70 for their own use. This sensor or operational data may be considered to be “vendible”
data—that is to say, data aside from security-related or personal identifying information
data, that is generated or collected by the client device 10 during the course of its operation
that is generally consistent with the purpose of the device 10. The client device 10 may
optionally transmit this “vendible” data to the data storage and/or distribution system 60
directly over a private or public network; but alternatively, as will be seen with reference to
FIG. 5, vendible data is transmitted by the client device 10 to the proxy system 80, which
routes vendible data to the data storage and/or distribution system 60. In this manner, as
explained below, the vendible data can be, in effect, anonymized, and also aggregated for
reporting and research purposes with minimal concern that personal identifying information
has been included. Aspects of the systems and methods described below thus facilitate
compliance with privacy laws and regulations, such as the United States Health Insurance
Portability and Accountability Act of 1996, the European Union General Data Protection
Regulation; and the Canadian Personal Information Protection and Electronic Documents Act,

among others.

[0041] In the example network environment of FIG. 1, all client devices 10 are associated
with a single distributed ledger proxy system 80 and distributed ledger, regardless of any

logical or physical groupings of the client devices 10, device type, or vendor. For example,

10

24 06 22

client devices 10 using the same proxy system 80 and distributed ledger may be located in
different households, municipalities, countries, or organizations and include devices or machines
as diverse as smart lighting and automobiles, manufactured and sold by different suppliers and
vendors. In some implementations, segmentation may be desirable. Separate distributed ledger
proxy servers 80 and distributed ledger systems 90 may be used for client devices in different
countries, to facilitate compliance with privacy laws. A government organization using the
system may wish to segregate its client devices from consumer devices. In that case, a separate
network environment with a distinct distributed ledger proxy server 80 and distributed ledger
platform 90 may be established for that organization. As another example, it may be desirable to
locate a distributed ledger proxy server 80 closer to the edge of the network while still employing
the same distributed ledger; for example, a single proxy server 80 may serve a neighborhood or
municipality, or a specified class of client device 10 (e.g., vehicles versus household devices). If
necessary, interactions among the multiple proxy servers 80 and the distributed ledger system 90

may be handled by a supervisory layer.

[0042] FIG. 2 is a schematic depicting possible functional components of a generic client device
10. It will be appreciated by those skilled in the art that network-enabled client devices suitable
for use in the system described herein can range from small, single-purpose devices, such as a
thermometer or humidity sensor, to complex machines with multiple sensor and control systems,
such as an automobile. They may be equipped for different types of radiocommunication,
ranging from Bluetooth® to 5G cellular communication. Thus, while FIG. 2 illustrates select
functional elements of a client device 10, those skilled in the art will appreciate that a given
client device may include fewer elements than those depicted in FIG. 2, or may in fact include

more functional elements.

[0043] The device 10 includes a processing unit, such as a microprocessor 105. Preferably, for
enhanced security, the processing unit 105 includes a trusted zone providing a trusted execution
environment for sensitive code, such as code for generating a unique identifier (UID), discussed
in further detail below, or cryptographic algorithms (encryption, decryption, key generation).
The processing unit 105 may also include a hardware true random number generator component

(TRNG), or the TRNG may be included as in the

11

client device 10 in a separate integrated circuit 165. The client device also includes a power
supply 110 (e.g., mains power or battery); volatile memory 115; non-volatile memory, in
this example non-erasable memory 120, secure non-volatile memory 125 (this may form
part of the trusted zone), and non-secure volatile memory 130. Non-erasable memory 120 is
used to store the UID once it is generated, uniquely identifies the client device within the
distributed ledger. This UID is generated once for the client device and is permanently
assigned. The secure memory 125 may be used to store the client device’s key store, in
particular the client device’s own private asymmetric key(s), and optionally its own and
other devices’ public keys, although these public keys may be maintained in a key store in
the non-secure memory 130. The non-secure memory 130 may store the device firmware,
including cryptographic algorithms; an initial identifier (which may be a manufacturer-
assigned identity, and is discussed below); the operating system or device applications; and
a proxy client module, which is used by the client device 10 to interface with the proxy
system 80. A signature or cryptographic hash of the firmware may be stored in the secure
non-volatile memory 125 for verification purposes. Additionally, a backup copy of firmware

may also be stored in non-volatile memory.

[0044] Depending on the purpose of the client device 10, the device may be provided with
various user interface mechanisms 140, such as, but not limited to a display screen,
touchscreen, switches, buttons, touchpads, keypads, and so on. As noted above, some client
devices have minimal interfaces and may only be equipped with simple controls or
interfaces, such as an on/off button, or a light-emitting diode. The client device 10 may also
be equipped with one or more sensors and location subsystems 145, such as a global
positioning system module, an accelerometer, thermometer, ambient light sensor,
microphone, camera, and the like. These sensors or subsystems may be used to generate
operational or sensor data that is used to control other device functions, or for distribution
to others. The client device 10 may also include various other input/output subsystems 155

and network and/or data ports 150, such as Ethernet and USB ports.

[0045] Many client devices 10 are configured for wireless network communication. Thus,
the device may be provided with one or more wireless communication subsystems 160

adapted for communicating over a network or direct link using one or more protocols,

12

including Wi-Fi™, Bluetooth™, near-field communication (NFC), Zigbee™, and the like.
In some implementations, as mentioned above, the client device 10 is configured to
communicate over a cellular network, and would be equipped with a suitable radio
communication subsystem. Frequently, access to a cellular network requires an association
of the client device 10 with a subscriber of the cellular network service. Thus, the client
device 10 may include an identity module, such as a Subscriber Identity Module (SIM),
Removable User Identity Module (RUIM), an embedded Universal Integrated Circuit Card
(eUICC), or an embedded SIM (eSIM) as represented by SIM/RUIM /eUICC interface
120. In some implementations, SIM functionality may be built into the processing unit 105

(e.g., an integrated SIM (iSIM), available from Arm Limited.

[0046] FIG. 2 depicts the sensor modules, applications, etc. in a unitary device with those
features that are required to access the proxy system 80, such as the wireless communication
systems 160 and proxy client. In some implementations, however, an existing computerized
device may be converted to a client device (in the vernacular, made “smart” or loT-enabled)
by connecting an installable client module (not shown in the drawings) to the existing device
to supply the missing functional elements required to interact with the proxy system 80. For
example, a vehicle may be equipped with cellular network access and sensors, but may not
be provisioned with suitable firmware, a proxy client, or cryptographic algorithms. The
missing functional elements may be provided in a separate client data processing module

that can be connected to the vehicle using an existing data port (e.g., USB).

[0047] Each client device 10 is provided with at least one initial identifier that is used to
identify the device for the purpose of initial steps in onboarding the device in the network as
discussed below. The initial identifier may be based on a manufacturer’s identifier, such as a
serial number applied by an original equipment manufacturer. In some cases, the initial
identifier may be the International Mobile Equipment Identity number (IMEI), or possibly a
media access control (MAC) address. This value is stored in non-volatile memory of the
client device 10, and as discussed with reference to FIG. 9 below, is used when a device 10

is initially onboarded in the network.

[0048] The client device 10 may also be provided with a further or administrative identifier

that is used for identification purposes by other client devices 10 and/or administrator and

13

user devices 20, 21. As this administrative identifier is intended to be detectable by users or
other devices as in the example of FIG. 11, depending on the user and communication
interface capabilities of the client device 10, the administrative identifier may be rendered in
a human or machine-perceivable form on an exterior of the client device 10, or may be
stored in non-volatile memory and transmitted to the recipient user or device. For example,
a smart inventory tracking device may only have a light emitting diode array that functions
as a user interface, with no display screen or audio output. The administrative identifier
may then be provided in the form of a two-dimensional barcode on the tracking device’s
exterior. However, if the tracking device includes a short-range radio communication
module, such as a near-field communication (NFC) module, the tracking device may
transmit the further identifier via NFC if the receiving device is NFC-enabled. As another
example, a smart speaker can include a display screen as well as a speaker, and may
transmit the administrative identifier to a user for manual entry in the other device by
presenting the administrative identifier either visually or audibly. The administrative
identifier may thus be a rendering of the value of the initial identifier in a different format
and/or medium (e.g. a 2D rendering of the initial identifier), but because it is the same value
may be considered to be the same as the initial identifier. In some cases, the administrative

identifier may have a different value from the initial identifier.

[0049] As will also be seen below, each client device 10 also generates a unique identifier
(UID) that is not necessarily related to the initial identifier, the administrative identifier, or
any other predefined device identifier. This UID is used to identify the client device 10 for
the purpose of distributed ledger transactions, and may also be used to identify a discrete
source of client device-generated data as discussed below with reference to FIG. 5, without
linking the client device-generated data to a specific client device 10 or operator of the client
device 10. Administrator and user devices 20, 21, are also provided with UIDs, but these

UIDs may be generated in a different manner than client device UlDs.

[0050] FIG. 3 is a schematic depicting select functional components of the distributed ledger
proxy system 80. Briefly, in the examples set out in this disclosure, the proxy system 80
operates a service or plurality of services over a network for client devices 10 relating to

security and data management. Thus, the proxy system 80 includes one or more

14

communication subsystems 200 for communicating over various communication channels
with the client devices 10, administrator and user devices 21, distributed ledger system 90
and, as will be seen below, optionally with a static copy of the distributed ledger; application
programming interfaces (APIs) 210 addressable by client devices 10; and an authentication
service 220 for validating requests received over the network, as well as an
encryption/decryption module 230. The proxy system 80 also includes modules for carrying
out specific tasks, such as a smart contract generator module 240 for generation of smart
contracts or functions based on template code; a distributed ledger module 250 that
generates transactions for transmission to the distributed ledger, or executes query functions
to retrieve information from the distributed ledger or a static copy of the distributed ledger;
and a data publisher module 260, which handles incoming sensor or operational data
generated by client devices, and generates messages or prepares the data for publication the
data storage and/or distribution system 60. The template code mentioned above, as well as
inventory information, device addresses, routing tables, billing information, namespaces or
other address information for publishing data (as discussed below), are stored in the data
storage system 85. Other possible functional modules of the proxy system will become

apparent to the skilled reader on reading the following description.

[0051] While the various modules 200-260 of the proxy system 80 were depicted as
subsystems within a proxy system 80, it will be appreciated by those skilled in the art that
the various functions of these modules may be combined or allocated to different individual
data processing systems within the proxy system 80. These functions may, moreover, be
distributed across multiple servers and or computing systems. It will also be appreciated that
while FIG. 3 illustrates select functional components of the proxy system 80, the selection
and configuration of appropriate computing systems will be within the scope of the person

skilled in the art.

[0052] As mentioned above, control messages and vendible data are routed from the client

device 10 to the designated recipients along different communication paths, thus providing

for separation of the control and data planes in the network. One example is shown in FIG.
4., which depicts communication amongst a client device 10, a peer device (e.g., another

client device 10, and administrator device 20, or other user device 21), the proxy server 80,

15

distributed ledger system 90, data storage and/or distribution system 60, and a data
consumer 70. In this example, the client device 10 and peer device 10, 20, 21 may engage in
P2P communication (path 1) using any appropriate wired or wireless technology and
protocol (e.g., Zigbee™ or Bluetooth™). Vendible data collected by the client device 10 in
this example is transmitted by the client device 10 via a public network (path 2) to the data
storage and/or distribution system 60. Typically, the data will be addressed to a
predetermined address defined in the client device’s software or firmware. After it is
received by the data storage and/or distribution system 60, the data may then be retrieved
by the data consumer 70, or pushed or streamed to the data consumer. These transmissions

may occur over a public or private network (path 3).

[0053] Control messages from the client device 10, administrator device 20, and/or user
device 21, on the other hand, are typically routed via a public network to the distributed
ledger proxy system 80 for handling over the public network (paths 4), for example via one
or more application programming interfaces (APIs) defined for the proxy system 80.
Control messages can include security, administrative, or ownership-related actions, such
as, but not limited to, requests to register a device in the distributed ledger, obtaining
encryption keys, obtaining or verifying a UID for another device, reset encryption keys,
trigger a firmware restore, add or remove a paired client device, add or remove a user, set
permissions for a client device or user device, transfer the administrator role to a new
device, and remove the administrator for the client device. For ease of reference, such
actions are referred to as “security-related” actions, functions, or requests. Control messages
to the proxy system 80 may be structured in any suitable format (e.g., with prescribed
length, fields, identifiers, etc.), but typically will include a type field indicating the type of

request, and a payload comprising parameters for the request.

[0054] At the proxy system 80, the received control message is read; the parameters of the
request are extracted, and the proxy system 80 generates a message for transmission to the
distributed ledger system 90 using the parameters. The message may be structured as a
transaction to be executed by the distributed ledger (e.g., to add or change a device’s public
key stored by the distributed ledger), a call, or invocation of a smart contract in the

distributed ledger. As a brief example, a request received from an administrator device 20 to

16

pair the client device 10 with another client device 10 may include, as parameters, the UIDs
of each of the client devices, as well as other optional information. The proxy system 80
may then construct a transaction invoking a smart contract, using the UIDs as parameters to
pass to the smart contract for execution on the distributed ledger. The UIDs may also
function as the distributed ledger account identifiers for each device managed using the
distributed ledger, which facilitates traversal of the distributed ledger to locate information

about a given device 10, 20, 21.

[0055] As those skilled in the art understand, smart contracts are executable functions, but
are referred to as “smart contracts” because their typical role in a blockchain is to execute
business logic to verify or enforce the performance of obligations, usually involving a
financial element. As will be appreciated from this disclosure, a smart contract need not be
modeled on a traditional contract or be used to transact business; instead, a smart contract
may be employed to perform a security-related function. Accordingly, in this disclosure

“smart contract” is used interchangeably with “function” and “chaincode”.

[0056] The message from the proxy system 80 to the distributed ledger system 90 is
transmitted over a private communication channel, as mentioned above (path 5). Once the
message is processed, in this example output from the distributed ledger is transmitted from
the distributed ledger system 90 to the proxy system 80 (path 6). The proxy system 80
prepares and sends any responsive control message to the requesting device, again over the
public network in this example (paths 7). It should be noted that a request from a device 10,
20, 21 for an action involving another device—for example, in the case of pairing, or
granting/removing permissions—responsive messages may be transmitted to more than one
endpoint involved in the action. The responsive control message may include a
confirmation of the success or failure of the request, and on a successful transaction, the
proxy system 80 may also transmit other security-related information to the endpoints, such
as public keys for the newly paired client devices 10 so that the devices can initiate P2P

communication.

[0057] FIG. 5 illustrates a further embodiment in which the proxy system 80 participates in
the distribution of vendible data. In this example, P2P messages, control messages between

the client device 10 and the proxy system 80, and messages between the proxy system 80

17

and the distributed ledger system 90 follow the same paths described in FIG. 4 (paths 1, 6,
7, 8, 9). However, in this implementation, vendible data is not transmitted by the client
device 10 to the data storage and/or distribution system 60. Instead, the vendible data is
transmitted to the proxy system 80 (e.g., using a different proxy system API), again in this
example via the public network (path 2). The proxy system 80 may transmit an
acknowledgement message to the client device 10 via the same network (path 4), and
transmits the vendible data to the data storage and/or distribution system 60 over either a

public or private network connection (path 3).

[0058] The proxy system 80 may repackage the data transmission to effectively anonymize
the vendible data, for example removing any identifiers associated with the vendible data, or
leaving only the UID described with reference to FIG. 9 below. The data storage and/or
distribution system 60 can operate as a repository from which data consumers 70 can
retrieve vendible data, according to any permissions defined for the data consumer.
Alternatively, the data storage and/or distribution system 60 may distribute or stream the
data to any subscribing data consumers 70, for example by acting as a broker employing a
publish-subscribe-based messaging protocol such as Message Queueing Telemetry Transport
(MQTT).

[0059] Distribution of vendible data may be granular according to various factors, such as
the client device type, location, and type of vendible data. For example, the client device 10
may be a continuous blood glucose meter that generates glucose readings on a periodic
basis, and operational data pertaining to the operational status of the device such as the time
periods during which the monitor is in use (e.g., starting timestamp and duration),
timestamps of calibration events, paired device type (but not necessarily the paired device
identity), power status, and battery status. While the sensor data—i.e., the glucose readings
and their associated timestamps—may be of interest to the patient and medical
professionals, the operational data may be of more interest to a manufacturer who wishes to
monitor the performance of their devices. Both types of vendible data may be routed from
the client device 10, to the proxy service 80, to the data storage and/or distribution system

60, but may be divided at any point to separate the sensor data from the operational data so

18

that only the sensor data is delivered to a subscribing medical data consumer and the

patient, and the operational data is delivered to the manufacturer.

[0060] As another example, the client device 10 may be a client system connected to various
sensors and subsystems in an automobile, collecting data on various sensor readings and/or
operational information such as engine temperature, engine speed, vehicle speed, odometer,
fuel level, environmental controls, seat belt indicators, headlight/hazard light use,
geographic location, proximity of other vehicles, and so on. One subset of this data may be
of interest to the manufacturer, while another subset may be of interest to a regulatory
authority (e.g., a municipality or state) for monitoring, road studies, or enforcement
purposes. Still further subsets may be of interest to an insurer and to an advertiser. The
subsets of the data delivered by the client device 10 may be defined and delivered to each
data consumer 70 (e.g., manufacturer, municipality, insurer, advertiser) accordingly. The
creation of vendible data subsets for distribution to data consumers 70 may be facilitated by
the use of a hierarchical namespace structure, such as that described in United States
Provisional Application No. 62/739,771 filed on October 1, 2018 and entitled “E-

Commerce Namespace”, the entirety of which is incorporated by reference.

[0061] Vendible data intended to be made available to a given data consumer 70 may be
encrypted with the data consumer’s public key to ensure that only the designated consumer
can access the data. Encryption of the data may occur at the data storage and/or
distribution system 60, or may be carried out in the proxy system 80 prior to transmittal to
the data storage and/or distribution system. If the encryption is carried out at the data
storage and/or distribution system 60 and the vendible data does not include any
information permitting the data consumer 70 to attribute any vendible datum to an
identifiable client device 10 or operator of the client device 10 (e.g., identifying data such as
an IMEI or MAC address, but excluding the UID), the distribution of the vendible data is
blinded: information passed through the network will not identify the data consumers 70 to
the client device 10 or its operator, and the data consumers 70 cannot identify the client
device 10 or its operator. This is because the UID, as will be seen below, can be derived
from a random value and not derived from any identifier previously assigned to the client

device 10. The association of the UID with the vendible data will only enable identification

19

of sets of vendible data generated by a single device having that UID, but will not enable

positive identification of the specific client device 10.

[0062] If the removal of the identifying information and encryption is carried out at the
proxy system 80 prior to delivery to the data storage and/or distribution system 60, then the
distribution of vendible data is still blinded, as the client device 10 will not be able to
identify the data storage and/or distribution system 60 or data consumer 70 through a
network transmission, and neither the data storage and/or distribution system 60 nor the

data consumer 70 will not be able to identify the client device 10 or its operator.

[0063] The UID may be associated with personal identifying data within the distributed
ledger system 90 or the data store 95, which is not publicly accessible. Thus, a data
consumer 70 subscribing to vendible data published by the client device 10 (path 5) is
unlikely to correlate the vendible data to an identifiable person or device without access to

privately held data.

[0064] As mentioned above, a control message sent to the distributed ledger proxy system
80 can result in the generation of a transaction to be executed by the distributed ledger, such
as an instruction to pair two client devices 10. The result of the executed transaction is a
change in the state of the distributed ledger, in that the transaction, comprising information
related to the new pairing, will be stored in a new block in the distributed ledger. In a simple
example, each new pairing may be represented by a change to a JavaScript Object Notation
(JSON) object. In this simple example, a device pairing for a given client device 10 may be
represented by a key-value pair identifying the UID of the paired device. Similarly, the
distributed ledger may also operate as a repository for public keys of devices 10, 20, 21,
which may also be stored as objects in a transaction. Thus, once the transaction is
committed to the distributed ledger, the proxy system 80 may the use the transaction
number to look up pairing information, or to retrieve a public key, from the distributed

ledger.

[0065] However, directly storing security-related information, such as encryption keys, may
not be desirable since the volume of data to be stored—yparticularly if the distributed ledger

is required to store information for millions or billions of client devices—will adversely

20

affect the efficiency of the distributed ledger system 90. To reduce resource consumption,
external storage solutions may be used in conjunction with the ledger, as represented
schematically by data storage 95. The data storage may, in fact, be a separate distributed
ledger; a separate central or distributed database; or a centralized or peer-to-peer file system.
As the distributed ledger system 90 is private, the data storage system 95 is likewise private
and accessible only by the distributed ledger system 90 using a private communication

channel.

[0066] FIGS. 6 and 7 illustrate further example implementations of the network
environment in which the private data storage 95 is used to store the security-related
information. In these examples, communications between peer devices 10, 20, 21 and the
proxy system 80 pertaining to vendible data, and communications with the data storage
and/or distribution system 60 and data consumer 70 are omitted for simplicity, but may
occur as described above with reference to FIGS. 4 and 5. Turning first to FIG. 6, P2P
messages, and control messages exchanged between the devices 10, 20, 21 and the proxy
system 80, occur as described with reference to FIGS. 4 and 5 (paths 1, 2, 7). The control
messages are likely routed through a public network. Messages from the proxy system 80 to
the distributed ledger system 90 are sent via a private channel (path 3). If a state-changing
event results from the message (i.e., a transaction is executed), the transaction is added in a
new block in the distributed ledger. However, if data related to the transaction is to be
stored, it is stored externally in the data storage system 95, which is private and accessible
only within the distributed ledger system 90. For example, in the case where a new pairing
between a client device 10 and another device is to be added to the distributed ledger, the
transaction may call a function that creates or edits a JSON object for the client device 10
(and optionally, for the other device as well, which is also managed by the distributed
ledger), and outputs the object to a compatible database or data structure maintained in the
data storage 95 (path 4). If necessary for later retrieval, a reference value for the object can

be stored in the transaction added to the distributed ledger.

[0067] Additionally, to provide immutability for the externally stored data, a hash value
may be generated based on the state of the external database or data storage structure in the

data storage 95. As one example, each time a change is made to the externally stored data, a

21

hash of the data in the data store is generated and returned to the distributed ledger; the
hash is a value representing the current state of the data store. The hash is then stored in the
transaction as well. In the example of a JSON document, the data may be stored in a tree
structure. Generating the hash may comprise traversing the tree from leaf to root to generate

hashes for each node, where each node hash combines the hashes of its child nodes, if any.

[0068] Subsequently, if a smart contract or function call requires the distributed ledger to
return information that was previously stored, such as a listing of paired devices for a given
client device 10, the last transaction associated with the client device’s UID can be located
in the distributed ledger and the reference value (if one was stored) obtained, the client
device’s data retrieved, and sent to the proxy system 80 in a responsive message. Either the
distributed ledger system 90 may parse the retrieved data (e.g., JSON document) to extract
the relevant data for transmission to the proxy system, or the proxy system 80 may be

configured to parse the retrieved data to extract the relevant data.

[0069] A number of security-related actions may involve requests for data that do not
actually require a transaction be added to the distributed ledger, such an administrator
request for a list of paired devices. Other actions may involve a transaction as well as
requests for data, such as a request to record a pairing between two devices, combined with
a request for their public keys to facilitate key distribution. As shown in FIG. 7, to reduce
the number of such requests for data directly from the distributed ledger a static copy of the
distributed ledger (and the stored data in the data storage 95), not intended to execute
transactions, can be stored in a separate data repository 96, and accessed via a browser or
explorer module 97. The explorer module 97 may be similar to a blockchain or block

explorer available for browsing blocks and transactions in a distributed ledger.

[0070] Thus, in FIG. 7, P2P messages between peer devices, and control messages
exchanged between the devices 10, 20, 21 and the proxy system 80, occur as described
above (paths 1, 2, 8). Again, messages between the devices 10, 20, 21 and the proxy system
80 are likely routed through a public network. Messages from the proxy system 80 to the
distributed ledger system 90 are again sent via a private channel (path 3), and any data
generated or altered as a result of a transaction in the distributed ledger may sent for storage

in external data storage (path 4; reference and state values may be generated and stored, but

22

are omitted here for simplicity). Each time the state of the distributed ledger or the
externally stored data changes (e.g., each time a block is added to the distributed ledger, or
each time the hash of the stored data changes), an updated copy of the ledger or stored data
is provided to the static copy repository 96 (paths 5 and 6). The static copy may be co-
located with a node of the distributed ledger system 90 and/or data storage system 95, or
with the proxy system 80, or it may be hosted separately. An explorer module 97, which
may be co-located with the static copy repository 96 or the proxy system 80 or located
elsewhere, receives queries (not shown in FIG. 7) and provides requested information about
individual blocks, transactions, UIDs (i.e., distributed ledger accounts), and/or externally
stored information (path 7). As it is contemplated that the distributed ledger is a private
distributed ledger, paths 4, 5, 6, and 7 may be private channels as well.

[0071] Returning to the example of a new pairing to be added to the distributed ledger for a
given client device 10, in response to the transaction sent by the proxy system (along path 3)
the distributed ledger system 90 may only transmit an acknowledgement (not shown); the
resultant transaction recorded in the distributed ledger will appear in the updated static copy
repository 96. The proxy system can then query the static copy repository 96 using the
explorer 97 to discover the resultant transaction and obtain any new or changed data
resulting from the transaction (path 7), then generate and transmit a responsive control
message to a device 10, 20, 21 (paths 8). Those skilled in the art will appreciate that the use
of the static copy repository 96 and explorer 97 reduces the number of request-response
communications occurring on the same communication channel between the proxy system
80 and the distributed ledger system 97. This mitigates the risk of an eavesdropper or man-

in-the-middle attack on the private channel.

[0072] The content of individual transactions in the distributed ledger and data in the data
storage system 95 may be encrypted as well. If a static copy is used and the distributed
ledger is used only for forensic and auditing purposes, then each transaction added to the
distributed ledger can be encrypted with a public key of the static copy repository 96 or the
explorer 97. When a request is made of the static copy repository via the explorer, the

explorer 97 or the static copy repository 96, as the case may be, can decrypt the relevant

23

transaction(s) and return the required information. Encrypting the distributed ledger in this

manner further restricts access to the content of the distributed ledger.

[0073] In a further embodiment, a client, administrator, or user device 10, 20, 21 may be
permitted to query the static copy repository 96 via the explorer 97. In that case,
communications between the explorer and the device 10, 20, 21 may occur in part over a
public network. In another variant, the static copy repository functions at least in part as a
distributed ledger client system, permitting execution of smart contracts not involving a state
change to the distributed ledger. This enables the proxy system 80 to call functions in the
static copy of the ledger in the static copy repository 96 rather than the distributed ledger,
further reducing the use of resources in the distributed ledger system 90. Thus, the
distributed ledger operates as an immutable and authoritative ledger for use in forensic
investigations or audits, and the static copy is used for most or all non-state-changing

operations.

[0074] Messages exchanged between the various nodes in the system in all the examples
described herein are preferably encrypted, and may be signed for additional security so that
recipients can verify the origin of the message. Any appropriate encryption standard known
in the art may be applied to a given communication path. For additional security,
communications may be secured using a hybrid encryption algorithm that combines two or
more encryption algorithms employing two or more keys; this may also include post-
quantum cryptographic algorithms to secure data at rest (in particular) against future

attacks.

[0075] Different devices or nodes in the system may employ encryption with different levels
of cryptographic strength in a hierarchical arrangement, such that devices having control or
authority over other devices employ stronger encryption than the governed devices. This
may also be a result of the relative processing power of various devices. For example, it is
generally contemplated that in the consumer context, an administrator or user device 20, 21
is likely to be a smartphone or other personal computing device, whereas the client device
10 will have lower processing power than the administrator or user device 20, 21. The
administrator or user device 20, 21 may be capable of using longer encryption keys or more

computationally-intensive algorithms than the client device 10. Therefore, for the purpose of

24

communication between the administrator or user device 20, 21 and the client device 10, the
administrator or user device may possess a public/private key pair of a length usable by the
client device 10 for the purpose of establishing a secure channel (e.g., generating, encrypting
and sending a symmetric key for a messaging session) and signing messages; but for storing
data in the administrator or user device 10 or for control messages exchanged with the
proxy system 80, which likely has a processing unit with more computational power than
the administrator or user device 20, 21, the administrator or user device employs longer key
lengths and/or more complex algorithms. Similarly, the proxy system 80, the distributed
ledger system 90, data storage system 95, and static copy repository 96 and/or explorer 97
in turn, may employ even longer key lengths and/or more complex algorithms when
exchanging messages and when storing data. This hierarchy of cryptographic strength
mitigates the risk of an attack on a component of the system through a compromised lower-
ranking device. For example, if a client device 10 is compromised, it cannot be used to
decrypt data stored in an administrator or user device 20, 21, proxy system 80, or distributed
ledger system 90; and even if it procured its administrator device’s private keys, it could not
forge administrator messages to the proxy system 80, because it would not be able to use the
longer private key to sign the message. Similar logic applies to a compromised administrator
or user device 20, 21, or a compromised proxy system 80. Key lengths, encryption
standards, and algorithms may be defined in security policies provided to the various

devices 10, 20, 21 when they are onboarded or registered in the system.

[0076] Denial of service attacks on the system can be further mitigated through the use of
token (which can be the same as cryptocurrency) based metering, which may be
implemented in a manner analogous to Ethereum gas, even in a distributed ledger system
(e.g. Hyperledger) that may not require the use of gas. For example, the proxy system 80
may control a faucet, i.e. source of tokens. When a new device 10, 20, or 21 is registered on
the distributed ledger, the proxy system may allocate a certain amount of tokens to the
device from a balance it maintains in the distributed ledger. This may occur through
execution of a smart contract during registration; in exchange for the device’s public key, a
token value is allocated to the device’s account (as identified by its UID). Thereafter, each
transaction sent to the distributed ledger on behalf of a requesting device includes a token

value to be spent by the requesting device. If the requesting device’s account does not have

25

sufficient tokens to meet the specified value, the transaction fails. If the requesting device
does have sufficient tokens, the transaction is completed and the tokens are transferred to
the proxy system 80’s account, or another account. Subsequently, the requesting device’s
account can be replenished from the faucet, which can be configured to replenish a given

account, or any account, at a predefined rate to mitigate a denial of service attack.

[0077] The token value for a given request may be set arbitrarily, and may depend on the
complexity of the request. The initial amount of tokens allocated to the device, and the
faucet’s output, may be defined according to the number of requests expected to be received
from the device. For example, if it is expected that a device will typically issue only about
one request per hour, the device may initially be allocated a sufficient amount of tokens for
one or two requests, and the faucet will be configured to replenish one request’s worth of
tokens only once per hour. The rate of replenishment may alternatively be set according to
the capacity of the proxy system 80 and/or distributed ledger system 90 to handle incoming

requests and transactions.

[0078] If informational requests (not requiring execution of a transaction on the distributed
ledger) are routed to the static copy repository 96 via the explorer 97, the proxy system 80
can also mitigate the risk of a denial of service attack by charging and refunding tokens for
each request received from a device 10, 20, 21. For example, if an administrator device 20
requests a list of paired devices for a given client device 10, the proxy system 80 first queries
the transmits a transaction to the distributed ledger system 90 to transfer a token amount
from the administrator device account to the proxy system’s account, and if successful, the
required query via the explorer 97 is then carried out. After a predetermined time (which
may be determined as described above), the proxy system 80 creates another transaction

returning the token amount to the administrator device account.

[0079] Use of tokens in this manner also enables creation of a record of requests received
from a given device. For example, a review of the transaction history will show the tokens
spent by a client device or an administrator device on requests for encryption keys of other
devices, which may be used to determine whether the requesting device may have been
compromised (for example, if the total number of requests or number of failed requests

exceeds a certain threshold). To reduce the number of transactions on the distributed ledger

26

recording security-related information, the token transactions may be carried out on a
separate distributed ledger. The separate ledger thus provides another source of data for
performing audits of device activity. Of course, denial of service attacks may be mitigated

using known techniques as well.

[0080] Initial registration of a client device 10 in the distributed ledger may depend on prior
registration of the client device manufacturer, and possibly a telecommunications service
provider (a “carrier”), with the proxy system 80. An example of a high level process for
initial manufacturer and carrier registration, and service provisioning for the manufacturer’s
client devices, is depicted in FIG. 8. A manufacturer generates and transmits inventory
information 300 to the proxy system 80, comprising the initial identifiers of the devices and
an identification of services associated with the devices. If the administrative identifiers
allocated to client devices are not the same as the initial identifiers, then the inventory
information could include the administrative identifiers as well, to facilitate future

operations by the proxy system 80.

[0081] In this context, “services” correlate to the vendible or operational data published by
the device for delivery to the data storage and/or distribution system 60. For example, a
simple humidity sensor may publish a single set of sensor data (humidity readings) a single
set of operational data; it is therefore associated with two services. The definition of these
services is used to define address or namespace information for storage or distribution of the
data. The initial identifiers, as mentioned above, can be a manufacturer-assigned value or a
standard identifier such as an IMEI As the initial identifier is used for inventory purposes, it
should uniquely identify the device in the inventory information. The proxy system 80
registers the services specified by the manufacturer, providing information to the data
storage and/or distribution system 60, if necessary, to provision accounts or addresses for

the client device data. The proxy system 80 also stores the list of initial identifiers.

[0082] If the client device requires carrier network access, terms of access would be
negotiated between the manufacturer and the carrier for each of the services defined for the
client device. The carrier then registers with the proxy system 305 in association with
specified client device services. The proxy system 80 registers the carrier and may return a

billing account number associated with each service 310.

27

[0083] Subsequently, a client device 10, once activated by its owner, will request access to
the carrier’s network, providing its IMEI 315. The carrier sends the IMEI to the proxy
system 80 to determine whether the IMEI is associated with a registered service. At 325, the
proxy system 80 verifies the IMEI against its inventory information. If the IMEI is not
found, the proxy system 80 sends a response 330 indicating that the IMEI was not failed.
The carrier may then reject the client device’s request for network access (not shown in FIG.
8). If, on the other hand, the IMEI is found, the proxy system 80 returns a message 330
indicating success, and including a billing account number for the associated services for
that IMEIL The carrier may store the billing account number in association with the device

IMETI for future billing purposes, and then grant network access 335 to the client device.

[0084] If the client device 10 does not require carrier network access, then steps 305-335
would not be necessary. For billing purposes, billing accounts associated with the services

would be registered in the proxy system 80 for the manufacturer rather than the carrier.

[0085] Turning to FIG. 9, client device 10 onboarding typically occurs upon receipt by the
operator of the client device (e.g. the consumer or purchaser of the client device 10). The

client device 10 is first initialized 400, which may include diverse actions depending on the
nature of the client device 10, such as physical installation steps. This may be required, for

example, in the case of a smart lock, lighting, or other fixture.

[0086] During the initialization 400, the client device 10, on booting, checks for a network
connection. If there is no network connection, initialization of the client device 10 may not
proceed any further; if the device 10 includes a sufficiently robust user interface, it may
present an error message or instruction to the user to physically connect the device to a
network (e.g., using an Ethernet port) or to bring the device within the range of a suitable
wireless network. Initialization may include, where necessary, input of credentials required
to access the network. If the client device 10 is provided with a SIM card as mentioned
above, credential input would not be necessary. If the client device 10 is being added to a
wireless local area network (WLAN), on the other hand, the operator may be required to

input the network key to enable client device access.

28

[0087] Also, on the initial booting, the client device 10 enters a firmware update mode and
attempts to contact 405 the firmware source 40 over the network connection to obtain a
current version of the firmware required for the client device 10. As mentioned above, the
client device 10 is provided with an initial identifier stored in memory. This value is
included in the request 405. It may be noted that the client device 10 may, on later
occasions, contact the firmware source 40 to re-download the firmware or obtain updates; to
do so, the requests sent may include not only the initial identifier, but also version and
timestamp information indicating the currently installed version of firmware and the time of
download or installation. The content and formatting of requests to the firmware source,

such as request 405, may be determined by the skilled reader.

[0088] On receipt of the request 405, the firmware source 40 verifies the initial identifier
410. If the initial identifier is not verified, the firmware source 40 may return an error
notification (not shown in FIG. 9). An error may result if the initial identifier is not present
in the firmware source’s list of identifiers assigned to devices, for example. If the initial
identifier is verified, the client device 10 may be permitted to download a firmware update
415 from the firmware source 40, which is installed at step 420. The firmware update 415
may include various libraries, as may be required by the client device 10, as well as
cryptographic libraries comprising algorithms for generating symmetric and/or asymmetric
keys, and encrypting and decrypting data. The firmware may also include the installable
client module, as well as required addresses or application programming interfaces (APIs)
for communicating with the proxy system 80. However, the installable client module and
the addresses/APIs may not be comprised in the firmware, but may instead be downloaded

or otherwise received separately by the client device 10.

[0089] In some implementations, the firmware update 415 received by the client device 10 is
timestamped with the date of transmission to the client device 10, and must be installed
within a predetermined time after the timestamp to ensure that the firmware is valid. The
firmware may be configured such that if the firmware is not installed within the
predetermined time, any attempted installation of the firmware will fail. Generally, delivery
of the firmware update 415 may follow the firmware source’s best practices, which may

include such time limitations, encryption policies, digital signature polices, etc.

29

[0090] At step 425, as part of the initial execution of the newly installed firmware, the client
device 10 generates and stores at least one set of asymmetric encryption keys for use in
encryption/decryption and signing operations. As it is generally preferable to employ
distinct key pairs for encryption/decryption and signing, at least two asymmetric public-
private key pairs may be generated at this stage and stored in the key store of the client
device 10. Additionally, if the cryptographic algorithms include a hybrid algorithm, multiple
asymmetric key pairs will be required for encryption/decryption. Thus, more than two key
pairs may be generated at this stage. The keys are generated using at least some random or
quasi-random value as input to the key generation function, using the output of a random
number generator module on the client device 10 or near-random user or sensor input, if the

client device 10 includes suitable input mechanism for receiving sufficiently random values.

[0091] Also at 425, the client device 10 generates a UID and stores the UID temporarily.
The UID may be generated as a hash of the output of a random number generator or from
random or quasi-random input from the user. In some implementations, the UID may be
generated from a combination (e.g., a concatenation) of a random or quasi-random value
and the initial identifier. While the use of a hashed value may not be strictly necessary, use
of a hash algorithm (which may be defined in the firmware for devices of the class of client
device 10) may ensure that resultant UIDs are of consistent length. The UID may
alternatively be generated by hashing a private key as generated by the client device 10. As
will be appreciated by those skilled in the art, the UID is used to collate data and messages
across various nodes; accordingly, an appropriate UID distinguishes the client device 10
from other devices within the same system. In the illustrated examples, the UTD
distinguishes the client device from other devices in the distributed ledger. One technique
for generating a sufficiently unique identifier that may serve as the UID is described in co-
pending United States Patent Application No. 16/183,254 entitled “Blockchain
Identification System”, filed on November 7, 2018, which is incorporated herein by

reference.

[0092] Once the UID and the keys are generated, the client device 10 then contacts the
proxy system 80 (e.g., using the provided API) and transmits the UID, initial identifier, and
its public key(s) 430 to the proxy system 80. This may occur as part of a request for

30

registration. The proxy system 80 conducts a verification to determine whether the client
device 10 should be registered on the distributed ledger. In one implementation, the
verification procedure comprises a check of the inventor information previously stored at
the proxy system 80 to verify that the initial identifier is valid, and a request to the
distributed ledger system 90 to verify the uniqueness of the UID as an identifier of a device
in the distributed ledger. In some implementations, there may also be checks to determine
that accounts have already been established for the services associated with the client device
10. In the example illustrated in FIG. 9, this is depicted as a function call, i.e., invocation of
a function in a smart contract or chaincode stored in the distributed ledger. The proxy
system 80 addresses a specific function for the vendor/carrier associated with the client
device 10 (e.g., using an application binary interface or ABI, or other address, which was
previously provided to the proxy system 80) on behalf of the client device 10 to add a new
account to the distributed ledger. The call can include the UID and the public key(s) as

parameters.

[0093] Execution of the function 440 by the distributed ledger can include a check of the
distributed ledger to determine that the UID is acceptably valid, and a responsive action
dependent on the outcome of the check. The check may simply involve a verification that

the UID is unique in the distributed ledger to date.

[0094] In some implementations, the proxy system 80 may also verify that any required

addresses or namespaces for publishing or storing data have also been established.

[0095] If the UID is not sufficiently unique, a failure message 445 may be returned to the
proxy system 80. If the UID passes the check, the function executed by the distributed
ledger system 90 additionally creates a new account for the UID in the distributed ledger,
storing the client device’s UID and associated public key(s). Other data may be stored in the
distributed ledger for the client device 10, including pairing and permissions information, as
well as the initial identifier. Optionally, as discussed above, other information may be stored
in the distributed ledger for the client device 10 as well, such as device operational and state
information, although as noted above this type of data may be stored elsewhere, €.g., in the

data storage and/or distribution system 60.

31

[0096] The proxy system 80 also updates the distributed ledger by adding new chaincode
(e.g., a smart contract) associated with the UID. This chaincode comprises functions to be
called when certain actions are required in the distributed ledger involving the client device
10. In one implementation, templates for the required functions are stored by the proxy
system 80 (e.g., in data store 85), and are retrieved to generate code specific to a new UID.
FIG. 10 is a schematic representation of code fragments or smart contracts that may be
stored in the distributed ledger for the client device 10. The code fragments can include
information that is used to define security relationships for the client device 10 when it is
added to the distributed ledger, such as preconfigured permissions 460, such as those
granted to an administrator device or to a user device, or preconfigured pairings 465 with
other client devices, as identified by their UIDs. Preconfigured permissions and pairings
may be defined by the device manufacturer and provided to the proxy system 85 in advance
of deployment of the client device 10. For example, permissions or pairings may be used to
permit the manufacturer’s personnel to access the device 10 functions to provide customer
service or repair work. Preconfigured data of this type may not be editable by the
administrator of the client device. Other code fragments or smart contracts include actions
that change the state of the distributed ledger by recording a new transaction implementing
a change to the security information (e.g., permissions, pairings, keys) of the client device,
such as adding or removing a pairing 470; adding or removing a user 475; adding an
administrator device 480; transferring the client device by a sale 485; or transferring
administrative control to a new administrator device, or having an administrator device

relinquish its administrator role 490.

[0097] In this implementation, in FIG. 9 the generated code can thus be included in the
function call 435 to the distributed ledger system 90, and execution 440 would include
addition of the new chaincode to the distributed ledger. The code may alternatively be
transmitted to the distributed ledger system 90 for addition to the distributed ledger in a
separate request. However, in a further implementation, the above functions 470-490 are not
added at the time the client device 10 itself is registered in the distributed ledger. Instead,
they are added in a smart contract earlier in the distributed ledger, prior to registration of
client devices. The smart contract in this case would be written generically, and would take

the client device 10 as an input parameter. The smart contract could then be invoked on

32

behalf of any client device 10. Any custom functions or preconfigured values required for a

client device would be added at the time the device was onboarded.

[0098] Continuing with FIG. 9, on successful execution 440, a response 445 indicating
success is sent to the proxy system 80. If the response indicates that the check was
successful, the client device 10 may then permanently store the UID by recording the UID
in the write-once memory. The response message 445 may include any necessary reference
values to enable location of the information and code entered in the distributed ledger (e.g.,
a transaction number, block number, and/or ABIs for stored functions in the distributed
ledger). The proxy system 80 may then transmit a response message 450 to the client device
10 based on the response 445. The reference values may be included in the response
message 450, which the client device 10 can then store in non-volatile memory for use in
generating further requests to the proxy system 80. However, this information may be stored
by the proxy system 80 on behalf of the client device 10. The proxy system 80 also stores the
network address of the client device 10 in association with the UID (and administrative

identifier) for future communications.

[0099] If the response message 450 indicates that the check failed, this may have occurred
for a variety of reasons (e.g., the initial identifier was not found, or the UID was not
sufficiently unique). In the case where the UID was found to have already occurred in the
distributed ledger, the client device 10 at this stage may generate a new UID (not shown)
and attempt the process of 430-450 again until it is successful. The proxy system 80, since it
mediates these communications, may track the number of attempts by the client device 10
to register on the distributed ledger, and may disallow further attempts after a predefined
limit.

[0100] It will be appreciated by those skilled in the art that the execution of the function or
smart contract 440 may take different forms. For example, the proxy system 80 may engage
in a multi-step verification/account addition process, in which it first checks the distributed
ledger (or the representation of the ledger in the explorer 96, as discussed above) to
determine whether the UID is sufficiently unique, and if the UID is sufficiently unique, it
secondly invokes a smart contract (i.e., calls a function) to create a new account in the

distributed ledger for the UID. Furthermore, a query that does not require a change of state

33

in the distributed ledger may be carried out by calling a function in the static copy of the
distributed ledger. In the interest of clarity, FIG. 9 and the remaining drawings depict
interactions between the proxy system 80 and the distributed ledger system 90 only as
depicted in FIGS. 4 and 5, without the data storage system 95, static copy repository 96, or
explorer 97. However, it should be understood that the processes depicted in FIGS. 9-16
also apply to the systems illustrated in FIGS. 6 and 7 as well. Those skilled in the art will
understand how modifications may be made to the interactions depicted in the
accompanying figures to accommodate an explorer 96. In addition, it should be understood
that the token metering procedure described above to mitigate denial of service attacks may
also be integrated into these processes. They are not illustrated here for the sake of

simplicity.

[0101] On completion of the process illustrated by FIG. 9, the client device 10 is thus
registered on the distributed ledger; however, no permissions, pairing information, or other
control information may have been added to the distributed ledger for the client device 10
unless they were included by the proxy service 80 in a request to the distributed ledger
system 90 as part of the onboarding procedure. Therefore, by this stage, there may be
neither an assigned administrator nor any paired devices recorded in the distributed ledger

for the client device 10.

[0102] FIG. 11 depicts a high-level process for adding an administrator device for an
onboarded client device 10. As discussed above, the proposed administrator device 20 may
be a typical personal user communication or data processing device. The proposed
administrator device 20 obtains a device control application for use in operating or
managing functions on the client device 10. While the proposed administrator device 20
may have been provisioned with this device control application at an earlier stage, it is
expected that in the context of consumer client devices, the application will only be obtained
and installed once the client device 10 has been onboarded. This can be done in a
conventional manner by a direct download from a vendor/carrier associated with the client
device 10, from a server associated with the operator of the proxy service, or from a third
party such as an online software marketplace (“app store”). As noted above, the source of

the device control application is represented generically in FIG. 1 as the software source 50.

34

FIG. 11 represents a typical download and installation process with request 500 to the
software source 50; a responsive transmission 505 from the source 50 (i.e., software
download), and installation 510 in FIG. 11, likely over a network connection from an
external server over a public network (e.g., the Internet). Subsequent steps executed using
the administrator device 20 may be carried out through execution of the installed device
control application, which would be provisioned with appropriate addresses or APIs to

request the appropriate services from the proxy system 80.

[0103] The proposed administrator device 20 need not have been onboarded in the same
manner as the client device 10; accordingly, on initial execution of the device control
application or as part of the installation process 510, the proposed administrator device
generates its own UID. This may be done using a similar methodology as for the client
device 10, although the UID may not be stored in non-erasable memory. The proposed
administrator device 20 also obtains any required cryptographic libraries, if not already
provided on the device 20, and generates any asymmetric key pairs required for
communication (i.e., signing and encryption) if not already generated on the device.
Depending on the particular implementation and the configuration of the device, this may
require a separate firmware update by the device 20 to obtain the required libraries. It is
presumed, for the purpose of this example, that the proposed administrator device 20
processing system includes a secure or trusted memory and execution zone which is used for
generating and storing cryptographic keys, and other sensitive information. The UID may

be stored in this zone as well.

[0104] The proposed administrator device 20 obtains an administrative identifier 515 from
the client device 20. As discussed above depending on the nature of the client device 10, the
identifier obtained at this step may comprise a machine or human-readable insignia
provided on an exterior of the client device 10, such as a barcode or serial number, which
can be scanned and recognized by optical recognition software executing on the proposed
administrator device 20 or that can be manually entered by the user into administrator
device 20. If the client device 10 has a capable user interface, insignia may be displayed on a
display screen or audibly transmitted for capture by the proposed administrator device 20.

As another example, if both devices 10, 20 are suitably equipped, the identifier may be

35

transmitted wirelessly, for example using near-field communication (NFC). The
administrative identifier value provided at 515 may have the same value as the initial
identifier transmitted to the proxy system 80 during device onboarding, as described with
reference to FIG. 9. However, if the client device 10 has a sufficiently capable user interface
(e.g., display screen or audible interface) or is able to communicate with the proposed

administrator device 20, the client device’s UID may be directly provided instead at 515.

[0105] Once the identifier has been received, the proposed administrator device 20 transmits
a request 520 to the proxy system 80 to be added as an administrator of the client device 10.
The request 520 may include the administrator identifier or UID of the client device 10, the
UID of the administrator device 20, and the administrator device’s public key(s). If the
request 520 included an identifier other than the UID of the client device 10, then the proxy
system 80 may carry out an initial verification 525 that the identifier is associated with a
device UID. If the proxy system 80 has its own records of corresponding identifiers and
UIDs, this verification 525 may comprise querying its own data store to locate the
corresponding UID. Alternatively, this may involve a request to the distributed ledger
system 90 or the proxy system’s own data store 85 to determine the associated UID for the
identifier. This may be bundled with other requests sent to the distributed ledger system 90

as part of the administrator designation function.

[0106] The administrator device 20 may also register a user (e.g., owner/operator of the
administrator device 20) identity with the proxy system 80. This registration may follow a
conventional method for registering a licensed user of a software product; for example, the
user may submit personally identifying information such as name, address, email address,
consent to specified terms and conditions, and so forth. This information may be stored by
the proxy system 80 in its own data store 85, and/or may be stored by the distributed ledger
system 90 either in the distributed ledger itself, or in external storage 95. The administrator
device 20 UID, user identity, and network address may be stored in association by the proxy
system 80. The identifying information may then be used by the user to recover an account
(for example, if a password for accessing the application on the administrator device 20 is

forgotten) in the manner of conventional account recovery. The administrator device 20

36

UID, user identity, and network address may be stored in association by the proxy system
80.

[0107] If the client device UID is already available to the proxy system 80, then the proxy
system 80 requests (i.€., calls chaincode function(s) or smart contract function(s) of the
client device 10, via the appropriate ABI(s)) addition 530 of an administrator for the client
device 10. The parameters sent to the distributed ledger system 90 as part of the request may
include the UIDs of the proposed administrator device 20 and the client device 10, the
device 20’s public key(s), and, if required, information regarding permissions granted to the
administrator. Generally, it is presumed that administrator-level permissions are the highest-
level permissions available to a user, including the ability to manage other users of the client
device 10, add and remove device pairings, and invoke agile cryptography, transfer, and
warranty actions as described below. The distributed ledger system 90 executes the
function(s) 535, which can include steps of verifying the uniqueness of the UID for the
administrator device 20 in the distributed ledger, and on successful verification, storing in
the distributed ledger the public key(s) of the administrator device 20 in association with the
administrator device UID,; retrieving current information for the client device UID to verify
that no administrator relationship currently exists for the client device 10; on verifying there
is no existing administrator relationship, storing in the distributed ledger a client device-
administrator device association; and retrieving the public key(s) of the client device 10. As
mentioned above, key and administrator relationship data may be stored as a timestamped
entry in the distributed ledger, or in external storage 95 accessible to the distributed ledger. If
the request 530 includes an identifier for the client device 10 other than the UID, the
functions may include looking up the identifier in a data store available to the distributed
ledger (or in the distributed ledger itself) to determine the corresponding UID so that other
functions can be carried out. Optionally, chaincode for executing functions associated with
the administrator device 20 may be stored in the distributed ledger as well, generally as

described above with respect to the client device 10.

[0108] On completion, a success response 540 is transmitted to the proxy system 80. The
response can include reference values such as the transaction and block identifiers and ABIs

resulting from the execution, and the public key(s) associated with the client device 10.

37

Responses 545, 550 are then transmitted to the administrator device 20 and client device 10
confirming the administrator relationship that was recorded in the distributed ledger. The
responses can be combined with key distribution by the proxy service 80; the proxy service
80 transmits the public key(s) of the administrator device 20 (to the client device 10 and the
public key(s) of the client device 10 to the administrator device 20, for storage in their
respective key stores. The devices 10, 20 may then proceed with any required handshake
protocol 555 to initiate communications between them, and use any appropriate encryption
protocol for peer to peer messages. Again, as noted above, these example processes are
based on the architecture depicted in FIGS. 4 and 5, but those skilled in the art will
understand that suitable modifications may be made to these processes to accommodate the
use of external data storage 95, a static copy repository 96, and an explorer module 97.
These modifications may include modifications to the order and content of control messages
exchanged between the client and administrator devices 10, 20 on the one hand, and the
proxy system 80 on the other. For example, if the addition of the pairing relationship to the
distributed ledger succeeds, an initial response from the proxy system 80 to the devices 10,
20 may simply be a confirmation. Subsequently, the proxy system 80 may query the static
copy to obtain the public keys for each of the devices 10, 20, and then transmit the keys to

the other device 20, 10 in a separate control message.

[0109] The execution 530 may fail, in which case the response 535 indicates a failure, and
no keys are distributed. For example, a correlation between the non-UID identifier for the
client device 10 and a UID may not be found in the distributed ledger; or it may be
determined that an administrator relationship has already been defined and stored in the
distributed ledger for the client device 10. A possible handling of the latter error is discussed

below in the context of the addition of secondary users.

[0110] The administrator device 20 may be designated an administrator of multiple client
devices 10, but as seen above, a given client device 10 has only a single administrator device
20. In one implementation, when the administrator device 20 administers a plurality of
client devices, the UID is generated only once for the administrator device 20 and is used for
any associations created between the administrator device 20 and any client device. This

may be appropriate in the case where a single application executing on the administrator

38

device 20 is used to administer and/or operate any client devices (for example, if the same
application is used to control smart light fixtures and a thermostat). A single UID for the
administrator device 20 may also be used for different applications controlling different
types of client devices 10. However, in that case, the UID must be shared among the
applications, for example by defining a specific memory location for storing the UID that is
accessible by all applications, or by requiring the user to input the UID generated by a first

application each time another application for controlling another device is installed.

[0111] Alternatively, each application installed on the administrator device 20 for
controlling a type of client device may generate its own UID; in other words, the user may
be required to register multiple accounts with the proxy system 80 via each individual
application. This may be a preferred implementation in some cases, because different client
devices may have different security policies. For example, the security policy for a smart
light fixture may be weaker than the security policy for a smart door lock; the weaker
security policy may specify shorter encryption keys, weaker passwords for accessing
administrative functions, etc. Both policies would be implemented by the same
administrator device 20 controlling both the smart door lock and the smart light fixture, and
it may be desirable to ensure that there are distinct UIDs associated with the stronger and
weaker keys, so that if the smart light fixture is compromised, there is less risk of an attack
on the door lock, because the UID information for the light fixture will not be valid for the
door lock. Optionally, the distributed ledger system 90 may maintain a distributed ledger

associating UIDs that belong to the same registrant.

[0112] The same considerations and variations for the use of a single UID or multiple UIDs
also apply to the addition of a secondary user device 21, which is a device with at least
sufficient permission to operate a client device 10, but less than all the permissions available

to the administrator device 20.

[0113] FIG. 12 depicts a high-level process for pairing two client devices 10 for P2P
messaging, designated in FIG. 12 as 10-1 and 10-2. Pairing in this scenario requires the
permission of a client device’s respective administrator device and the recording of the
pairing in the distributed ledger. Each client device 10-1, 10-2 has a respective administrator

device 20-1, 20-2. The request for pairing may originate at a first client device, or with a user

39

or an administrator device. In FIG. 12, examples of a request for pairing with a target client
device 10-2 initiated by the administrator device 20-1 of the subject client device 10-1 and a
request for pairing initiated by the subject client device 10-1 are shown. The requesting
device first obtains the administrative identifier for the target client device 10-2. If the
requesting device is the administrator device 20-1, this process (600 in FIG. 12) can occur as
described above with reference to FIG. 11. The same process can also be used where the
requesting device is a user device 21, not shown in FIG. 12. In the case of the client device
10-1 initiating the request, depending on the interface capabilities of the device 10-1, the
administrative identifier may be obtained the same way (610 in FIG. 12). Alternatively, if
the client device 10-2 is capable of transmitting its UID to the requesting device, the UID
may be provided at 600 or 610 instead.

[0114] Once the target client device’s identifier is obtained, a request to add a pairing record
is transmitted by the requesting device 20-1, 10-1 to the proxy system 80. The request 605 or
615 includes the UID of the requesting device; the UID of client device 10-1 (if it was not
the requesting device); and the identifier of the target client device 10-2. If the request 605,
615 included an identifier other than the UID of the target client device 10-2, then the proxy
system 80 may carry out an initial verification 620 to confirm that the identifier is associated
with a device UID, and to obtain that target client device UID and the UID of the target
administrator device 20-2, and optionally to also verify whether a pairing for client devices
10-1 and 10-2 was already recorded in the distributed ledger. The initial verification 620 can
also include verification that the requesting device has authority over the subject client
device 10-1; for example, to verify that the UID of the requesting device is the assigned
administrator device 20-1. If the proxy system 80 has its own records of corresponding
identifiers and UIDs and/or associated client devices, administrators, and users, the
verification step 620 may consist of querying the proxy system 80’s own data store. If the
identifier obtained for the target client device 10-2 is the initial identifier, this may involve a
request to the distributed ledger system 90 or the proxy system’s own data store 85 to
determine the associated UID for the identifier. As mentioned above, these verification
queries may be bundled with other requests sent to the distributed ledger system 90. It
should also be noted that in all these examples, verification steps—which do not change the

state of the distributed ledger—may be executed by querying the static copy repository 96

40

storing the copy of the distributed ledger and the copy of externally stored data for the
ledger, if the static copy repository 96 is employed.

[0115] If the UID of the requesting device is determined to be a UID for a device other than
the administrator device 20-1—for example, a user device 21 (not shown), the subject client
device 10-1—then a set of additional verification steps occurs to confirm that the
administrator device 20-1 authorizes the request for pairing. This is shown as a verification
request 635 and response message 640 between the proxy system 80 and the administrator
device 20-1. If the administrator device 20-1 rejects the pairing request, then the process may
terminate at that point, optionally with a failure message sent to the requesting device (not
shown). When any request fails, the proxy system 80 may record the failed attempt in the
distributed ledger or in another data store. As described earlier, a token/cryptocurrency-
based metering system for mitigating denial of service attacks can provide a record of failed

requests, which can be used to detect whether a device is potentially compromised.

[0116] Assuming these initial checks are successful, the proxy system 80 then contacts the
administrator device 20-2 for confirmation that the pairing should proceed 645. Such
requests for confirmation may be presented on an administrator device in a user interface of
the device control application executing on the administrator device. A response 650 is
received by the proxy system 80 accepting or rejecting the pairing; if the pairing request is
rejected, again the process may end with a failure message sent to the requesting device. Of
course, if the requesting administrator device 20-1 is also the administrator device of the

target client device 20-2, then this additional request/response is not necessary.

[0117] If the pairing request (if necessary) is accepted by the administrator device 20-2, then
the proxy system 80 generates and transmits a transaction to record the pairing 655 in the
distributed ledger. The distributed ledger system 90 executes the transaction and any
required function(s) 660, storing the pairing association with reference to the client device
10-1, and optionally as well with reference to the client device 10-2. This updated
information is stored by the distributed ledger system 90. A response indicating success of
the transaction, together with public keys 663, is then sent to the proxy system 80 at 665 (as
noted earlier, if a static copy is employed, the communication at 665 will be between the

static copy repository and the proxy system). Optionally, a responsive message indicating

41

success is sent to the requesting device (e.g., the administrator device 20-1, as shown in
message 670). Further messages 675, 680 can then be sent to the client devices 10-1, 10-2,
instructing them that they may pair with each other. This instruction may in fact comprise
the public key(s) of the other device, retrieved by the proxy system 80, that are required to

initiate a pairing. The client devices 10-1, 10-2 may then engage in a pairing procedure 685.

[0118] It will be appreciated that in some implementations, one or both client devices 10-1,
10-2 may not receive its pairing instruction message 675, 680 at the time it is transmitted; or,
alternatively, a pairing may have been pre-defined for the client devices 10-1 or 10-2, as
mentioned above with reference to FIG. 10. For example, the client device 10-1 may be a
component comprising a distributed ledger service client in an automobile, and the client
device 10-2 may control an access system in a parking garage. The owner of the automobile
may have entered into a lease agreement with the operator of the parking garage, granting
access to any parking garage controlled by the operator. As part of this agreement, the
parking garage operator, via the proxy system 80, may have executed for it a smart contract
defining pairings between the automobile client device 10-1, and all client devices 10-2 of
the garage operator. In either case, when the client device 10-1 first attempts to pair with the
client device 10-2 and transmits a request to the proxy system 80, one of the checks that may
be executed by the proxy system 80 is to determine whether a pairing already exists, as
mentioned above with reference to verification 620. If the pairing is found to exist in the
distributed ledger, then the proxy system 80 proceeds to retrieve the required keys for each

client device, and transmits them as in messages 675, 680.

[0119] FIG. 13 depicts a high-level process for adding a user device 21 that has limited
authority over a client device 10. As mentioned above, it is contemplated that the user
device 21 may be a personal computing/communication device, similar to the administrator
device 20. The user device 21 will download and install a device control application, and
generate a UID, in a manner similar to the administrator device 20 as discussed with
reference to FIG. 11. Once completed, the user device 21 may either initiate a request to be
added as a user for a given client device, or the administrator device 20 may initiate the
request. In the former scenario, the user device 21 may acquire an identifier 700 for the

client device 10 it wishes to control, then transmit a request 705 to be added as a user to the

42

proxy system 80. Obtaining the identifier (which may be the administrative identifier, or the
UID) can be carried out as described above. On receipt of the request, the proxy system
obtains the UID of the associated administrator device 20 (this may involve a query of the
distributed ledger, not shown in FIG. 13) and transmits a request for confirmation 710 to
the administrator device UID. Alternatively, the addition of a user device 21 may be
initiated by the administrator device 20. In one implementation, the administrator device 20
obtains the UID 715 of the proposed user device 21. This may be obtained using methods
described above: for example, a user may manually input the UID of the user device 21 into
the appropriate input field of the device control application; the administrator device 20 may
be configured to receive the UID using NFC or by other wireless means, or by scanning a
two-dimensional barcode displayed on a screen of the user device 21, or even by receiving a

message (€.g., a short message service (SMS) message).

[0120] In either implementation, either as part of the administrator device 20’s self-initiated
request or in response to the confirmation request 710 from the proxy system 80, the user of
the administrator device 20 confirms the user device 21’s role as a use of the client device
10. This can include selecting a permission level, or individual permissions, to be granted to
the user device 21 for all or a subset of client devices administered by the administrator
device 20. For example, in the context of a smart door lock, the property owner (who owns
the administrator device 20) may wish to give sufficient permission to a guest (and their user
device 21) to be able to lock and unlock the door, but does not wish to give the guest
sufficient authority to change the encryption algorithms or cycle the encryption keys
employed by the door lock. In some implementations, permissions may be configurable
with a time limit or defined period; for example, the guest may only have lock/unlock
permission during a specific time of day, or only for the week that they are staying at the
property. If the administrator device 20 administers a plurality of client devices 10,
permissions may be granted for all devices, or only a subset. Some permission sets may be
preconfigured in the device control application and available for selection by the user of the

administrator device 20.

[0121] The permissions selected at the administrator device 20 are transmitted 725 to the

proxy system 80, together with the relevant UIDs of the user device 21 and client devices

43

10. In the event the request for confirmation 710 was sent to the administrator device 20, the
inclusion of permissions for the user device 21 in the transmission 725 is indicative of
positive confirmation. As an aside, it will be appreciated that similar functionality in the
device control application executing on the administrator device 20 may be employed to
add or remove permissions granted to the user device 21, or to remove all permissions from
the user device 21 altogether (i.e., remove the user device 21 as a user for one or more client
devices administered by the administrator device 20). Thus, a request to change permissions
may be initiated by the administrator device 20 with the input 720 and permissions message
725.

[0122] At 730, the proxy system 80 conducts any verifications, as appropriate. These
verifications may be similar to the verifications described above for other processes, such as
verifying the UIDs received from the administrator device 20, and that the administrator
device 20 has authority over the specified client devices 10. As above, this may include
queries 730 of the distributed ledger system 90 (or the static copy), and responsive messages
740. If these verifications are successful, the proxy system 80 then transmits a new
transaction 745 to record and/or edit permissions granted to the user. The distributed ledger
executes the transaction 750, updating the distributed ledger to include the association of the
affected client devices 10 with the user device 21, and the permissions allocated to the user
device 21. A response indicating success of the transaction, together with public keys 755 for
the client device 10 and the user device 21, is then sent to the proxy system 80 at 755 (as
noted earlier, if a static copy is employed, the communication at 755 will be between the
static copy repository and the proxy system). Optionally, a responsive message 760
indicating success is sent to the administrator device 20. Further messages 765, 770 may
then be sent to the client devices 10 gaining a user device 21, and to the user device 21,
advising them of the relationship and providing the required keys so that the devices 21 can
establish P2P communication, if necessary for controlling the client devices 10. In the event
that permissions for a given user device 21 were altered or removed, of course no keys
would be provided to the user device 21; but the client device 10 may be instructed in the
confirmation message 770 to delete the keys associated with the user device 21 from its key

store.

44

[0123] It may be recalled that messages controlling the operation of a client device 10 may
be routed via the application server 50, rather than sent via P2P communication. In that
case, it may still be necessary for the client device 10 to obtain a copy of the user device 21°s
(or administrator device 20’s) key, since for verification purposes commands that are passed

to the client device 10 may be signed using the user or administrator device’s private key.

[0124] As alluded to above, security-related audits of client devices 10 may be performed
from time to time. Audits may include a review of information about the pairings,
permissions, etc. that are stored in the distributed ledger (or reflected in the static copy of the
distributed ledger) to confirm that any UIDs of other client devices 10, the administrator
device 20, and user devise 21 associated with a given client device 10 (e.g., through a
pairing, designation of a user with permissions) are valid; a review of a client device’s key
store to ensure that the public keys stored in the key store are all associated with a paired
device, administrator device, or user device recorded in the distributed ledger; a review the
pattern of token “expenses” to detect an anomalous pattern; verification of the signature or
hash of the client device’s firmware; and so forth. The proxy system 80 may be configured
to automatically initiate one or more of these auditing actions on a periodic basis for a given
client device 10, or to automatically initiate an auditing action on discovery of a triggering
event. For example, as mentioned above a repeated attempt by a client device 10 to make
requests for which it has insufficient token value may be an indication that the device 10 is
potentially compromised; the detection of the repeated attempt may constitute an audit-
triggering event. A triggering event need not be detection of a possible attack. For instance,
each time the administrator device 20 of a client device 10 is changed, an audit is
automatically triggered. Audits may also be triggered manually (e.g., by the administrator

device 20, or by an operator of the proxy system 80).

[0125] FIG. 14 depicts a simple example of one audit activity, verifying the key store of a
client device 10. However the audit is triggered, the proxy system 80 sends an audit-related
request 800 to the client device 10. The request, in this example, is a request for a listing of
some or all of the public keys stored in the client device’s key store (e.g., a list of UIDs
stored in association with the public keys, or a list of UIDs and the corresponding key

values). This listing is provided in response 805.

45

[0126] The proxy system 80 also queries the distributed ledger for a listing of all UIDs
associated with the UID of the client device 10. This request 810 can also include a request
for all the public keys for those associated UIDs, which are returned in the response 815. As
noted above, the query by the proxy system 80 may be made of the static copy of the
distributed ledger, if one is maintained. At 820, the proxy system 80 compares the results
from the distributed ledger and the client device 10. If the listing from the client device 10
matches the information from the distributed ledger, this positive result may be recorded in
the distributed ledger (result 825), if records of audits are maintained in the distributed
ledger. Information about the results of the audit may optionally be transmitted 830 to the

administrator device 20 associated with the client device 10.

[0127] If, on the other hand, the result of the comparison at 820 indicates a mismatch, this
may be an indication that the client device 10 has been compromised, and that an unknown
device has established communications with the client device 10. The proxy system 80 may
then trigger a remedial or a crypto-agility action in the client device 10 (command 835),
such as wiping the key store and re-provisioning the client device with paired/administrator
device/user device keys based on the information in the distributed ledger; regenerating the
client device’s public/private key pair(s); and/or changing cryptographic algorithms. The
remedial or crypto-agility action need not be triggered by a failed audit or other event; it
may be manually invoked by the operator of the proxy system 80 or the administrator
device 20. In the example of FIG. 14, it is presumed that a remedial or crypto-agility action

is triggered by the proxy system 80 with the command 835.

[0128] As a first step—particularly if a new encryption algorithm is to be substituted for an
algorithm currently in use by the client device 10—the client device 10 performs a check of
its firmware version (assuming that the encryption algorithms used by the device 10 are
included in its firmware) to determine that it has a current version. Thus, the client device
10 may query the firmware source 40 for current version information and compare the
response with its own version information (not shown in FIG. 14). If the firmware version
on the client device 10 matches the firmware version from the source 40, the firmware is up
to date. Otherwise, the client device 10 may request 840 and download 845 an update for its

firmware, which is installed at 850.

46

[0129] With current firmware, the client device 10 then regenerates its encryption keys
(optionally wiping its key store of public keys of other devices), and/or changes encryption
algorithms at 855. The private keys generated by the client device 10 are stored in its secure
memory. The public keys are transmitted 860 to the proxy system 80, which then updates
865 the distributed ledger with the new keys. The transmission 865 may also include a
request for UIDs of associated devices (paired client devices, user devices, administrator
device) and their public keys, since the public keys in their possession for the client device 10
will now be out of date, and the client device 10 may have wiped its key store. The UIDs
and keys are returned in a response 870. As noted above, the request for UIDs and keys,
since it does not change the state of the distributed ledger by itself, may be made of the static
copy of the distributed ledger, if one is available. Subsequently the proxy system 80 sends
public keys of other devices 875 to the client device 10 for storage in its key store, and

distributes the client device’s new public key(s) to associated devices 880.

[0130] A variant incorporating a crypto-agility action is a warranty action, in which a client
device 10, perhaps on determination that the client device 10 has been compromised. The
action is termed a “warranty” action because the it effectively provides a replacement or
repair of the compromised client device 10 because, aside from physical damage, the
warranty action resets the client device 10 to nearly its original state, as of the time the client

device 10 was initially onboarded by the proxy system 80.

[0131] An example process for implementing a warranty action is shown in FIG. 15. The
warranty action occurs on detection of a compromise or attack 900, or a determination that
the warranty action should be invoked at the proxy system 80. Optionally, at this time a
notification may be transmitted to a warrantor computing system for the warrantor’s own
records. The proxy system 80 also transmits an instruction 910 to the client device 10 to roll
back its firmware to an earlier version 915, i.e. the version with which the client device was
provided at the time of initialization. The earlier version may be stored as a backup on the
client device 10 or in the proxy system 80, or alternatively the earlier version is retrieved
from the firmware source 40 and provided to the client device 10. The firmware may be

subsequently updated using update procedures known in the art.

47

[0132] The proxy system 80 also invokes a warranty function or smart contract in the
distributed ledger 920. Execution 925 of the warranty function may determine what crypto-
agility actions should be carried out by the client device 10, and also clears any stored keys
for the client device 10, pairings with other client devices, and associations with user devices
21 (e.g., by adding a new transaction for the client device 10 in which any pairing/user
device information is deleted). It should be noted that because the UID generated at the
time of onboarding (see FIG. 9) was written into non-erasable memory, even though the
firmware is rolled back the UID for the client device 10 remains the same. Furthermore, in
the warranty action, the association between the client device 10 and the administrator
device 20 is maintained, since the client device 10 presumably remains under the control of
the same owner/operator, and an administrator device 20 will be required to reconfigure the

client device 10.

[0133] The proxy system 80 then instructs the client device 10 to carry out any crypto-agility
actions determined by the warranty smart contract. This can include the actions described
above with reference to FIG. 14, although the administrator public key may be retained in
the client device 10’s key store. The crypto-agility actions include regeneration of the
public/private key pair(s) required for the client device 10; the public key(s) are transmitted
930 to the proxy system 80. The proxy system 80 in turn sends the key(s) to be added to the
distributed ledger 935, which is done in a new transaction 940. Additionally, since the
administrator device 20 may need the new public key(s) for the client device 10, the key(s)
may be transmitted 945 to the administrator device 20 as well. Finally, at 950, a notification

of completion of the warranty action may be transmitted to the warrantor computer system.

[0134] It may be necessary, from time to time, to change the administrator device 20
associated with a client device 10. This may occur when the owner/operator of the client
device 10 wishes to transfer administrative functions to a newly acquired smartphone, or the
owner of the client device 10 enters into an agreement to transfer or sell the client device 10

to another party.

[0135] FIG. 16 illustrates a high level process for a transfer. The process is initiated by the
current administrator device 20, for example by selecting 1000 an option to transfer the

client device. There may be different transfer options: the transfer may simply be a change

48

to the communication/data processing device serving as the administrator device 20, with
no change of ownership or control over the client device 10, in which case it would be
desirable to maintain current device pairings and other security information for the client
device 10; or, the transfer may be a change in custody of the client device 10, in which case
it would be desirable to clear device pairings and other security information once the

transfer is confirmed.

[0136] It should be noted that before the new administrator device can assume the
administrator role for the client device 10, it must also install the device control application,
and generate its own UID. If the UID is known to the current administrator device 20 (for
example, if the two devices are in proximity), the current administrator device 20 may
acquire the new administrator device’s UID (e.g., by scanning a displayed 2D barcode, by
NFC, by manual input, etc.) and include the new administrator device’s UID in the
notification 1005. This may be the case when an owner/operator of a client device 10 is
simply transferring the administrator role to another personal communication device that
they own, or if the owner/operator and transferee are co-located. In that case, the proxy
system generates and transmits a new transaction with a smart contract 1010 to the
distributed ledger, referencing the UIDs of both the current and the new administrator
devices. No physical transfer or payment need be made in this case. Therefore, the proxy
system 80 invokes the smart contract, causing the distributed ledger to update the
association of the client device 10 with the UID of the new administrator device at 1020.
With the addition of a new administrator device for the client device 10, a similar process to
that depicted in FIG. 11 will follow, with the new administrator device providing its public
key(s) to the proxy system 80, and the proxy system 80 providing the public keys for the

new administrator device and client device to the other device.

[0137] If the transfer is a sale, the smart contract 1010 will include a value to be paid by the
purchaser. The price may be established by the owner of the client device 10 or on
agreement between the owner and the purchaser and input at the time of selection 1000.
Alternatively, a resale price for the client device may be determined in advance and stored
in the device control application or in the distributed ledger. The resale price may even be

automatically adjusted to account for typical wear and tear, and even taking into account

49

the actual usage of the device based on sensor and/or operational data generated by the
device. The notification of transfer 1005 to the proxy system 80 will therefore include the

price.

[0138] The client device 10 is then transferred to the custody of the transferee or purchaser,
if necessary, and if applicable, the payment is made. These actions can occur “offline”, so to
speak, as the transfer may be physical or legal, and not programmatic. The payment may be
made using conventional methods rather than using cryptocurrency. In any case, the
purchaser or the seller will need to provide an electronic form of proof of payment to the
proxy system 80 so that the proxy system 80 will trigger the execution of the smart contract
1015. Since the distributed ledger system 90 is accessible only to the proxy system 80, the
purchaser cannot transact with the seller using the same distributed ledger that manages
security information for the client device 10. In one alternative, the administrator device 20,
proxy system 80, and new administrator device may be associated with accounts on a
different distributed ledger that is limited to processing payment transactions between
parties, which also identifies parties by UID. The account associated with the new
administrator device may make a cryptocurrency payment to the current administrator
device 20. Because the proxy system 80 has access, it can monitor the separate distributed
ledger for new transactions to verify that the payment was made before invoking the smart
contract 1015. In this case, the current pairing information and other security information
for the client device 10 is deleted, since a new owner is responsible for the client device 10.
The process then continues generally as described above. In this process, it may be noted
that the client device 10 is continually associated with an administrator device 10; the UTD

of the administrator device 10 changes on execution of the smart contract at 1020.

[0139] In some instances, the UID of the new administrator’s device may not be known, but
a price has been set in the smart contract. This may be the case where the purchaser or
transferee is physically remote from the current administrator device 20. In that case, the
proxy system 80 may be configured to accept the first proof of payment of the established
price that it receives from any party. Alternatively, since the current administrator device 20
remains the current administrator device 20 until the smart contract is executed at 2020, the

proxy system 80 may simply await a manually triggered notification from the administrator

50

device 20 of the UID of the new administrator device (not shown in FIG. 16), once the

seller receives the payment and the new administrator device’s UID.

[0140] In other circumstances, the user of the administrator device 20 may wish to
immediately relinquish its administrator role, even if there is no other device available to
assume the administrator role. This may occur, for example, when the client device 10 is
decommissioned, or offered for sale without an immediate buyer without a set price. FIG.
16 also briefly illustrates a process for abandoning a client device 10. It will be appreciated
that the process resembles a warranty action, in that pairings and associations with user
devices, and client device keys, are removed from the distributed ledger. However,
abandonment further removes the relationship between the administrator device 20 and the
client device 10. At 1000, the user of the administrator device 20 selects an option to
abandon the client device 10. The request 1030 is sent to the proxy system 80, which
invokes a function 1035 on the distributed ledger to clear all information concerning the
client device 10 besides its UID; thus, all pairings, keys, and associations with other devices
are cleared by adding a new transaction to the distributed ledger removing this information.
Of course, as the distributed ledger is a permanent record of all transactions, this
information may be preserved in the distributed ledger, but is no longer current. This
clearing function is executed at 1040. In addition, the proxy system 80 sends an instruction
1045 to the client device 10 to delete any information it stores, such as pairings and public
keys of other devices. The proxy system 80 may also require the client device 10 to

implement a crypto-agility function such as regeneration of keys.

[0141] The examples and embodiments are presented only by way of example and are not
meant to limit the scope of the subject matter described herein. Each example embodiment
presented above may be combined, in whole or in part, with the other examples. Some steps
or acts in a process or method may be reordered or omitted, and features and aspects
described in respect of one embodiment may be incorporated into other described
embodiments. As one example, in the implementations described above the distributed
ledger and/or its external data store maintained information about device pairings and
associated user and administrator devices, as well as public keys and UIDs. In a minimal

implementation, the distributed ledger may be used only to store UIDs and their associated

51

public keys. Records of paired devices, users, and administrators may instead be maintained
by the proxy system 80 in its data storage system 85. Thus, rather than search the distributed
ledger or the static copy of the distributed ledger to retrieve information about pairings, the
proxy system 80 may simply query its own data store to retrieve the needed information.
Those skilled in the art implementing the systems and methods described herein may choose
to store a greater or lesser amount of information in the distributed ledger, pushing storage

of any information not recorded in the distributed ledger down to the proxy system 80.

[0142] Further, variations of these examples will be apparent to those in the art and are

considered to be within the scope of the subject matter described herein.

[0143] The data employed by the systems, devices, and methods described herein may be
stored in one or more data stores. The data stores can be of many different types of storage
devices and programming constructs, such as RAM, ROM, flash memory, programming
data structures, programming variables, and so forth. Code adapted to provide the systems
and methods described above may be provided on many different types of computer-
readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM,
flash memory, computer hard drive, etc.) that contain instructions for use in execution by
one or more processors to perform the operations described herein. The media on which the

code may be provided is generally considered to be non-transitory or physical.

[0144] Computer components, software modules, engines, functions, and data structures
may be connected directly or indirectly to each other in order to allow the flow of data
needed for their operations. Various functional units have been expressly or implicitly
described as modules, engines, or similar terminology, in order to more particularly
emphasize their independent implementation and operation. Such units may be
implemented in a unit of code, a subroutine unit, object, applet, script or other form of code.
Such functional units may also be implemented in hardware circuits comprising custom
VLSI circuits or gate arrays; field-programmable gate arrays; programmable array logic;
programmable logic devices; commercially available logic chips, transistors, and other such
components. As will be appreciated by those skilled in the art, where appropriate, functional
units need not be physically located together, but may reside in different locations, such as

over several electronic devices or memory devices, capable of being logically joined for

52

execution. Functional units may also be implemented as combinations of software and

hardware, such as a processor operating on a set of operational data or instructions.

[0145] Use of any particular term should not be construed as limiting the scope or requiring
experimentation to implement the claimed subject matter or embodiments described herein.
Any suggestion of substitutability of the data processing systems or environments for other
implementation means should not be construed as an admission that the invention(s)
described herein are abstract, or that the data processing systems or their components are

non-essential to the invention(s) described herein.

[0146] A portion of the disclosure of this patent document contains material which is or
may be subject to one or more of copyright, design, or trade dress protection, whether
registered or unregistered. The rightsholder has no objection to the reproduction of any such
material as portrayed herein through facsimile reproduction of this disclosure as it appears

in the Patent Office records, but otherwise reserves all rights whatsoever.

53

05 09 22

Claims
1. A system for managing a plurality of network-enabled client devices, comprising;:

a distributed ledger computing system maintaining a distributed ledger for storing

security-related information for the plurality of network-enabled client devices;

a proxy computing system configured to exchange security-related messages with the
plurality of network-enabled client devices over a first communication path, and to initiate
transactions or call functions with the distributed ledger on behalf of the network-enabled
client devices over a second communication path, the proxy computing system being further

configured to:

receive, from a network-enabled client device, a request for registration on the
distributed ledger, an identifier for the network-enabled client device and at least one

public key for the network-enabled client device;

initiate a transaction or function call with the distributed ledger to register the

network-enabled client device on the distributed ledger; and

after the network-enabled client device is registered, exchange security-related
messages with the registered network-enabled client device over the first
communication path, and initiating transactions or functions with the distributed
ledger on behalf of the registered network-enabled client device over the second

communication path.

2. The system of claim 1, wherein the distributed ledger stores associations between
unique identifiers defined for the plurality of network-enabled client devices and

corresponding encryption keys.

3. The system of either claim 1 or 2, wherein the distributed ledger stores pairing

associations between network-enabled client devices, and the plurality of network-enabled

54

05 09 22

client devices comprises a first network-enabled client device and a second network-enabled

client device, the proxy computing system being further configured to:

receive a request to pair the first network-enabled client device and the second

network-enabled client device;
verify the pairing; and

initiate a transaction or function call to add a pairing record to the distributed ledger
for the pairing of the first network-enabled client device and the second network-enabled

client device.

4, The system of claim 3, wherein the proxy computing system is further configured to
contact an administrator device associated with the second network-enabled client device
and obtain confirmation of the pairing prior to initiating the transaction or function call to

add the pairing record.

S. The system of any one of claims 1 to 4, wherein the distributed ledger stores
associations between administrator devices and network-enabled client devices, the proxy

computing system being further configured to:

receive a request to add a device as an administrator device for a designated network-

enabled client device;

verify the addition of the administrator device for the designated network-enabled

client device; and

initiate a transaction or function call to add a record to the distributed ledger
associating the device as an administrator device for the designated network-enabled client

device.

55

05 09 22

6. The system of any one of claims 1 to 5, wherein the distributed ledger stores
associations between user devices and network-client enabled devices, the proxy computing

device being further configured to:

receive a request to add a device as a user device for a designated network-enabled

client device;

verify the addition of the user device for the designated network-enabled client
device, comprising, when the request is received from the user device or the designated
network-enabled device, contacting an administrator device associated with the designated
network-enabled client device to obtain confirmation that the device may be added as a user

device for the designated network-enabled client device; and

initiate a transaction or function call to add a record to the distributed ledger

associating the device as a user device for the designated network-enabled client device.

7. The system of any one of claims 1 to 6, wherein the transactions or functions
initiated on behalf of the registered network-enabled client device comprise a unique
identifier for the registered network-enabled client device as an account identifier or as a

parameter.

8. The system of any one of claims 1 to 7, wherein the proxy computing system is
further configured to receive an output from the distributed ledger computing system in

response to an executed transaction or function.

9. The system of any one of claims 1 to 8, wherein:

the distributed ledger computing system comprises a repository storing a state of the
distributed ledger, the state being updated when a change is made to the distributed ledger;

and

56

05 09 22

wherein the proxy computing system is further configured to query the repository for
security-related information in response to a security-related request received from a
network-enabled client device, user device, or administrator device, and to transmit the

security-related information in response to the request.

10. The system of claim 9, wherein the security-related information comprises a public
key for an administrator device or a user device associated with the network-enabled client
device, or for a network-enabled client device other than the requesting network-enabled

client device.

11. The system of any one of claims 1 to 10, further comprising the plurality of network-

enabled client devices.

12. The system of claim 11, wherein each network-enabled client device is configured to
self-generate a unique identifier for identifying the network-enabled client device in the

distributed ledger.

13. A method, comprising:

maintaining, by a distributed ledger computing system, a distributed ledger for

storing security-related information for a plurality of network-enabled client devices;
a proxy computing system:

receiving, from a network-enabled client device, a request for registration on
the distributed ledger, an identifier for the network-enabled client device and at least

one public key for the network-enabled client device;

initiating a transaction or function call with the distributed ledger to register

the network-enabled client device on the distributed ledger;

57

05 09 22

after the network-enabled client device is registered, exchange security-related
messages with the registered network-enabled client device over a first
communication path, and initiating transactions or functions with the distributed
ledger on behalf of the registered network-enabled client device over a second

communication path.

14. The method of claim 13, wherein the distributed ledger stores associations between
unique identifiers defined for the plurality of network-enabled client devices and

corresponding encryption keys.

15. The method of either claim 13 or 14, wherein the distributed ledger stores

pairing associations between network-enabled client devices, and the plurality of network-
enabled client devices comprises a first network-enabled client device and a second network-

enabled client device, the method further comprising the proxy computing system:

receiving a request to pair the first network-enabled client device and the

second network-enabled client device;
verifying the pairing; and

initiating a transaction or function call to add a pairing record to the
distributed ledger for the pairing of the first network-enabled client device and the

second network-enabled client device.

16. The method of claim 15, further comprising the proxy computing system contacting
an administrator device associated with the second network-enabled client device and
obtaining confirmation of the pairing prior to generating the transaction to add the pairing

record.

58

05 09 22

17. The method of any one of claims 13 to 16, wherein the distributed ledger stores
associations between administrator devices and network-enabled client devices, the method

further comprising the proxy computing system:

receiving a request to add a device as an administrator device for a designated

network-enabled client device;

verifying the addition of the administrator device for the designated network-enabled

client device; and

initiating a transaction or function call to add a record to the distributed ledger
associating the device as an administrator device for the designated network-enabled client

device.

18. The method of any one of claims 13 to 17, wherein the distributed ledger stores
associations between user devices and network-client enabled devices, the method further

comprising the proxy computing device:

receiving a request to add a device as a user device for a designated network-enabled

client device;

verifying the addition of the user device for the designated network-enabled client
device, comprising, when the request is received from the user device or the designated
network-enabled device, contacting an administrator device associated with the designated
network-enabled client device to obtain confirmation that the device may be added as a user

device for the designated network-enabled client device; and

initiating a transaction or function call to add a record to the distributed ledger

associating the device as a user device for the designated network-enabled client device.

19. The method of any one of claims 13 to 18, wherein the transactions or functions

initiated on behalf of the registered network-enabled client device comprise a unique

59

05 09 22

identifier for the registered network-enabled client device as an account identifier or as a

parameter.

20. The method of claim 19, further comprising the proxy computing system receiving
an output from the distributed ledger computing system in response to an executed

transaction or function.

21. The method of any one of claims 13 to 20, wherein the distributed ledger computing
system comprises a repository storing a state of the distributed ledger, the state being

updated when a change is made to the distributed ledger, the method further comprising;:

the proxy computing system querying the repository for security-related information
in response to a security-related request received from a network-enabled client device, and

transmitting the security-related information to the network-enabled client device.

22. The method of claim 21, wherein the security-related information comprises a public
key for an administrator device or a user device associated with the network-enabled client
device, or for a network-enabled client device other than the requesting network-enabled

client device.

23. The method of any one of claims 13 to 22, wherein each network-enabled client
device is configured to self-generate a unique identifier for identifying the network-enabled

client device in the distributed ledger.

24. Non-transitory computer-readable media storing code which, when executed by at
least one processor of a computing system, causes the computing system to implement the

method of any one of claims 13 to 23.

60

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - CLAIMS
	Page 72 - CLAIMS
	Page 73 - CLAIMS
	Page 74 - CLAIMS
	Page 75 - CLAIMS
	Page 76 - CLAIMS
	Page 77 - CLAIMS

