)

PCI‘ WORLD INTELLE?J;&:;E};?I};E&I} ORGANIZATION
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 5 : (11) International Publication Number: WO 93/08559
GO09G 3/02 AL | 43) Intermational Publication Date: 29 April 1993 (29.04.93)

(21) International Application Number: PCT/US92/09123

(22) International Filing Date: 22 October 1992 (22.10.92)

(30) Priority data:

781,747 23 October 1991 (23.10.91) US

(60) Parent Application or Grant
(63) Related by Continuation
US 781,747 (CIP)

Filed on 23 October 1991 (23.10.91)

(71) Applicant (for all designated States except US): ELEC-
TRONIC INK [US/US]; 1119 Park Hill Road, Berkeley,
CA 94708 (US).

(72) Inventor; and ,
(75) Inventor/Applicant (for US only) : KLEY, Vic [US/US];
1119 Park Hill Road, Berkeley, CA 94708 (US).

(74) Agent: LARWOOD, David, J.; Crosby, Heafey, Roach &
May, 1999 Harrison Street, Oakland, CA 94612 (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CS,
DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG,
MN, MW, NL, NO, PL, RO, RU, SD, SE, US, Euro-
pean patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,
IE, IT, LU, MC, NL, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).

Published
With international search report,

(54) Title: COMPUTER INPUT SYSTEM

(57) Abstract

A computer input system (30) consists of hardware for determining the position of a drawing tool such as a pen (30) in re-
lation to a display incorporated in a writing tablet (50) and software components for identifying the pen (30) user and for accele-
rating information entry be expanding stroke characteristics or word abbreviations. The writing tablet (50) includes a writing sur-
face with a pixel array (100) connected to a host processor. The pen (30) includes an optical sensor (34A, 34B) connected to a
controller and to an output device coupled to a remote receiver. One form of receiver is a transparent, resistive sheet (53) essen-
tially covering the writing tablet (50). The host processor can control the pixel display to illuminate pixels (100) near the pen (30)
and can receive information from the pen (30). When the user brings the pen (30) to the writing surface (50), the host can display

pixels (100) under the pen (30), leaving a trail of electronic ink.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT
AU
BB
BE
BF
BG
8J

BR

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzerland
Céte d’lvoire
Cameroon
Czechoslovakia
Czech Republic
Germany
Denmark.
Spain

Finland

FOR THE PURPOSES OF INFORMATION ONLY

France

Gabon

United Kingdom
Guinca

Greece

Hungary

Ircland

Italy

Japan

Democratic People’s Republic
of Korca
Republic of Karca
Licchtenstein

Sri Lanka
Luxembourg
Monaco
Madagascar

Mali

Mongolia

Mauritania

Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slavak Republic
Sencgal

Sovict Union

Chad

Togo

Ukraine

United States of America
Viet Nam

“t€)

o

-

WO 93/08559 PCT/US92/09123

10

15

20

25

30

35

COMPUTER INPUT SYSTEM

Field of the Invention

The present invention relates to pen and brush input for electronic tablets or displays
and software for controlling and speeding up input through pen, brush and keyboard text input
systems, user identification and point of sale/teller systems.

Background of the Invention

The computer industry has developed a number of writing tablets and light pens to
allow a user to interact with a computer in a rough approximation of putting pen to paper. Such
devices generally give a line of fixed width in response to user input. Some newer devices include
a pressure sensitivity, but no system has been developed that emulates a pen or brush in a natural
way. No one has found a natural way to increase input speed for either pens or keyboard input.
In addition, thé user must be identified in order to operate most stroke recognition, point of sale
and automatic teller systems.

Summary Of The Invention

The invention consists of hardware embodiments for determining the position of a
drawing tool in relation to a display incorporated in a writing tablet. The invention includes
software components for identifying the pen user including kernal information for complete or
partial stroke recognition and communication, particularly useful for completion of point of sale or
debit transactions. A preferred drawing tool takes the form of a pen or brush and herein generally
will be referred to as a pen.

The present invention provides a pen-based computer input system comprising a pen
and tablet. The writing tablet includes a writing surface with a pixel array connected to a host
processor, which may be incorporated in the writing tablet. The pen includes an optical input
connected through an optical sensor to a pen controller. The pen controller, in turn, is connected
to an output device which can be directly or capacitively coupled to a remote receiver. The tablet
may include or be connected to a receiver designed to receive information from the pen or brush.
One form of receiver is a transparent, resistive sheet essentially covering the pixel array. The host
processor can control the pixel display to illuminate pixels near the pen, thereby communicating
with the pen, and the pen can communicate with the host processor through the output device and
remote receiver. When the user brings the pen to the writing surface, the host can display pixels
under the pen, leaving a trail of electronic ink and giving the user the feel of actually writing. By
displaying a wider path of pixels when the user presses the pen more firmly, the effect can
approximate writing with a fine fountain pen. The process of stroke processing is illustrated in the
flowchart of Figure 1.

Optical means in the pen or brush provide information about drawing tool angle and
pressure and brush bristle flex and spread. Logic and or microprocessors in the pen or brush body
act alone or in conjunction with software in a host computer to provide stroke processing and
estimate or refine the position of the pen nib or brush bristles on the tablet surface.

-1-

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

Software in the host also acts to increase input speed by providing a method for
phrases or text sections from either keyboard or
evolving strokes from often used words as distinct

ations from the overall word and phrase history.

abbreviating common or frequently used words,
pen sources and to suggest new -abbreviations by
from the overall stroke history and letter abbrevi
The expansion process is illustrated by the flowchart of Figure 2.

One object of the invention is to provide a set of stroke parameters peculiar to the
user and an associated personal identification which can be stored in the pen to allow optimal
stroke recognition in a host system, including a new host when the user first uses it. "

Another object of the invention is to provide a system in which pen position hardware
cost is minimized in the tablet and host and an electronic pen cartridge is created suitable for
inclusion in a wide variety of pen body styles, diameters and weights by many different suppliers.

Another object of the invention is to provide a dual function device which may
contain a drawing tool of this invention plus a traditional writing device such as a fountain pen ot
aser or a second drawing tool of this invention.

e

ball point pen, a graphite pencil or er.

Brief Description Of The Drawings
Figure 1 is a overview flow chart of the pen and input accelerator system.

Figure 2 is a detailed flow chart of the accelerator input software subsystem.
Figure 3 is a side view of the pen and tablet.

Figure 4 is a top view of the tablet and display.

Figure 5 is a detailed view of the tablet and writing surface.

Figure 6 is a detailed sectional view of a pen nib and of a brush and its active

elements.

Figure 7 is a view of the pen body and an enlarged view of the nib and its electronic
elements.

Figure 8 is a block diagram showing the interaction of a host computer, tablet and
writing tip.

Detailed Description Of The Invention
The present invention consists of two major components - stroke entry and character

handling. Stroke entry involves detecting the presence of a writing instrument near a writing tablet
and selectively turning on pixels in the tablet to reflect the user’s actions, effectively applying
"electronic ink." Once a character is complete, that character is analyzed to detect special

. encoding and to speed information entry.

The present invention preferably utilizes the tablet illustrated Figures 4 and 5. Tablet 50
includes a raster display of individually addressable pixels 100 arranged in rows and columns. The
pixels can be of most any type of conventional manufacture, including LCD, ferroelectric liquid
crystal, phosphor or other type known in the industry. The tablet writing surface 51 is covered by
a relatively transparent, resistive sheet 53, which can be a metal such as gold or a metal oxide
such as indium tin oxide. The resistive sheet may be the topmost layer of the display or it may be
covered with a protective layer 54, illustrated in Figure 5. The conductive sheet is connected to

conductive sensors 52A, 52B at opposite ends of the writing surface. The conductive sensors 52A,

-2-

WO 93/08559 PCT/US92/09123

10

15

20

25

30

35

40

52B are connected in turn to circuitry which calculates the relative strength of a signal generated
by the pen as picked up by the two conductive sensors and then connected to the host computer
(not shown). This allows the ratiometric determination of the approximate position of the pen
along one dimension of the writing surface. This signal also carries information from the pen.

Referring to Figures 7A and 7B, pen 30 includes writing tip 31, which can be
manufactured as an interchangeable insert adapted to pen barrels of many manufacturers. Writing
tip 31 consists primarily of support 40 which carries conductive nib 36 and light guides 35A, 35B
which are optically coupled to photodetectors 34A, 34B which are connected in turn via leads 42
to controller 33. Nib 36 is a conductive or semi-conductive material such as pen brass terminated
by tip 39, constructed of a material which provides a pleasing feel on the "writing" surface of
tablet 50. Either or both photodetectors 34A and 34B independently detect light, each carrying an
external signal to controller 33 in a manner well known in the art. For example, some methods
used in photo-optical isolation devices can be utilized in the present invention. Battery 32 provides
power for all components of writing tip 31. Controller 33, preferably an ASIC chip, controls and
receives information from photodetectors 34A, 34B and transmits information to nib 36 through
lead 43 and coupling pin 37. Controller 33 can send information to a host computer through a
direct cable connection (not shown) but preferably broadcasts a signal through nib 36. If nib 36 is
sufficiently close to resistive sheet 53, a signal generated by controller 33 is transmitted through
nib 36 using direct or capacitive coupling through resistive sheet 53 and conductive sensors 524,
52B to appropriate circuitry and thence to the host computer.

Referring to Figure 6, an alternative input device consists of electronic brush 29. Brush
29 includes "bristles" in the form of a fiber optic bundle of fibers 26 constrained by collar 27 and
coupled to photodetector array 28. Each fiber 26 is coated with a conductive film or aiternately
(not shown) interspersed with conductive flexible wires. Brush collar 27 constrains the fiber and
blocks extraneous light. Photodetector array 28 may be a linear or area array, with elements
connected to a controller 33 (not shown) which in turn can transmit electronic signals through
conductive fibers 26 in a manner closely analogous to the actions of writing tip 31. The system
and method of this invention will be generally described using writing tip 31 as an example, but
one skilled in the art will understand how to apply brush 29 in a similar manner.

Referring to Figure 8, the host can communicate with controller 33 by cycling the on-off
state of pixels 100 in tablet 50. The host can selectively activate pixels 100 and compare timing of
pixel illumination versus return signals from controller 33, through nib 36 and resistive sheet 53,
to determine where the pen is located, using techniques well known for interacting with prior art
light pens. Since the pen contains photo-detectors 34A and 34B, each photodetector can pickup
signals from separate illuminated pixels which can provide information about the angle of nib 36
on tablet 50. In addition, combinations of controlled pixel illumination and detection schemes in
writing tip 31 can provide information about the proximity of writing tip 31 to tablet 50. This
information can be used to vary the width of a stroke to be illuminated by pixels according to the
pressure applied by the user. A brush, as illustrated in figure 6, can receive signals through
multiple sensors, providing information about the location of each bristle. For any drawing tool,
any pixel which is sufficiently close to the tool can be maintained in the "on" state. The net result

-3-

10

15

20

25

30

35

PCT/US92/09123

WO 93/08559

is the application of "electronic ink" which reflects the angle and pressure of the user’s writing
actions.

The input system can detect the location of the drawing tool in relation to the writing
tablet including which pixels are closest to any component of the pen and which pixels near the
pen may be weakly interacting with the pen. This allows calculation of the timing, pressure and

angle of each stroke as it is applied. This information can be used to derive stroke kernal

information which can be compared with recorded stroke kernal information or other information

to identify the user. This may be used for identification of an individual, to select a certain stroke
recognition sequence, or otherwise used to facilitate interaction of a user with a stroke recognition
system. Recorded stroke information may be stored in a central host, for example a computer tied
to a series of ATM or point of sale systems, in host controller in the tablet, or in the local
controller in the pen. There may be multiple stored patterns for a single user, or there may be
multiple stored patterns for a series of users, who might for example share a single pen.
Alternately the controller can transfer user signature identification information to the host. The
controller may act to confirm a transaction from the host and contain stored information about the
user’s credit limit or debit account which is updated by the host with each transaction.

In using brush 29, fibers 26 are in optical contact with the pixels as they are changed
which is detected by photodetector array 28. Thus brush 29 has the ability to sense individual
"hristle” contact and contact angle to provide the same qualities of use as a normal paintbrush.

A writing implement of this invention can be personalized to contain user identification
information as well as information about user preferences and writing habits. This information can
be stored in memory, e.g- EPROM, connected to controller 33 so that pen 30 or brush 29 can be

used with multiple tablets 50 effectively interchangeably.
Referring to Figure 6, pixels 100 are cycled at times known to the host computer. Pen

nib 36 with light guides 35A and 35B under the tip (not shown in Figure 6) "see" a series of pixel
elements. As the pixels are cycled the position of the nib and its angle with the paper is
determined by coordinating the pixel change with the sensed light through the pen. In addition as
the nib pressure increases the light guides make greater contact with more pixels which provides
pressure information to the pen system.

When writing tip 31 is activated, for example by being held by the user, it repeatedly
transmits stored user identification and key parameters. When writing tip 31 is held sufficiently
close to tablet 50, the host "wakes up” and begins processing input. The host can read and store
the user identification and key parameters. The host can activate pixels 100 on tablet 50. The
signal from writing tip 31 is picked up through resistive sheet 53 by conductive sensors S2A and
52B producing two signal amplitudes according to distances 20 and 21 between pen 30 and
conductive sensors 52A and 52B. The ratio of these signal amplitudes provides a precise location
of pen 30 along the tablet surface. The host uses this information to flick on pixels sequentially
across the tablet surface while collecting the detected changes as described above. Once position,
nib angle and pressure are determined, the information is passed to subroutines which update the
display to show the proper flow of electronic "ink." Stroke recognition is used to identify and
convert the character input by the user. Conventional character recognition programs can perform

-4-

10

15

20

25

30

35

40

WO 93/08559 PCT/US92/09123

basic character conversion but the stroke information regarding angle, pressure and other
information provided by the new pen input system can facilitate character recognition.

One means for ratiometric positioning in one dimension has been described in detail
above. Other ratiometric means include determining a resistance, a capacitance, or an appropriate
electromagnetic value in the X dimension, the Y dimension, or both dimensions, preferably
simultaneously or nearly so. A sonic position evaluation system may be used, as may an active
optical position evaluation method.

In an alternate embodiment in conjunction with an adequately fast display (such as
ferroelectric liquid crystals, gas plasma, etc.) pen or brush position may be entirely determined by
sequentially flicking (turning on and off or XOR’ing) pixels only while monitoring the response of
the pen (brush). In this embodiment, transparent resistive film 18 (Figure 4) is not required, but it
may still serve as the primary communications channel of the system.

The system allows rapid determination of a drawing tool’s location by first performing a
coarse search, then refining the search until a specific pixel or group of pixels in the immediate
vicinity of the drawing tool can be identified.

Traditional means of identifying the position of a light pen or similar pointing device is
to activate all pixels in a display sequentially, usually by a regular raster scan, then signalling a
host computer when the pointing device has detected an activated pixel. This timing information
can be coordinated with information about the raster driver to derive the position of the pointing
device. Traditional pointing devices are crude equivalents of the drawing tool of the present
invention but the principles for locating the precise location of an older pointing device or the new
drawing tool are similar. The coarse search of this invention improves this old method by locating
the approximate position of the drawing tool and only pixels near the drawing tool need be tested
in order to locate the precise location of the drawing tool.

A new means of approximating the location of the drawing tool is a pattern search.
Selected regions of the writing tablet can be activated selectively and the drawing tool can be
monitored for a response. Where a response is detected, the corresponding region can be
subdivided into smaller patterns which can be tested again, then subdivided as much as necessary -
until the precise location of the drawing tool is determined. One potential set of patterns is a
traditional binary tree search where half the display is activated, then the other half. The half in
which the drawing tool is located is then subdivided into two portions, and the process is repeated
until the position is sufficiently determinate. This pattern matching does not rely on raster
scanning and is best performed with a device that can randomly address pixels, either singly or in
groups.

This method of coarse positioning is also useful with existing precision positioning
devices such as digitizing tablets. Current devices can be modified to utilize and benefit from
coarse positioning through minimal modification of the hardware or software drivers.

Once the approximate location of the drawing tool has been determined, specific pixels in
the approximate area can be activated while responses from the drawing tool are monitored. The
system can continue to test pixels in that approximate area while the drawing tool is in contact or
approximate contact with the writing tablet, enabling the system to follow which pixels are near the
drawing tool at times in the future. If the drawing tool is moved away from the writing surface,

-5-

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

as between words or between some strokes, the system can continue to monitor the general area of

the Iast stroke. It is convenient to think of the approximate location of the drawing tool as a
"bubble" which expands or contacts depending on the state of the system. The system should test
pixels within the bubble with sufficient frequency to track changing states of the drawing tool in
relation to the writing surface.

One skilled in the art can readily set a frequency of pixel testing and a range of pixel

locations to test during various operating states, including: no drawing tool near the writing tablet,

a drawing tool in contact with the writing tablet, a slowly or rapidly moving drawing tool, a
drawing tool recently in contact with the writing tablet, and other states of interest. For example,
when the drawing tool is moving slowly, then the bubble can be rather small and the sampling
frequency can be relatively low. If the drawing tool is moved away from the writing tablet, the
bubble can be checked periodically within an expanding bubble, the expectation being that there is
a high initial probability that the drawing tool will be returned in the vicinity of the previous
stroke, but the probability of returning to that specific or general location decreases with time. At
some point, the system resumes the general pattern testing to identify when the drawing tool does

return and then to locate the position of the drawing tool.
Once a character has been input, it is processed according to the following steps. Each

character is placed in a character buffer. The Fasthand software then takes this character (whether
from pen, brush or keyboard source) to perform the input acceleration and shorthand functions
illustrated in Figure 2. An input character is first tested to see if it is a special character of some
sort including an ideograph or evolved stroke set. If not, the character is placed in a word buffer
and the next character is accepted. If the input character is a normal word terminator, such as
space, comma, period (followed by space) or other punctuation, the text contents of the word
buffer are examined. The word terminator is combined with the text and the text is tested to see if
it matches any of a list of abbreviations, stored, for example, in a look up table. If any matches
are found, the corresponding expanded text is substituted for the abbreviated text and output and
processing continues with the next character in the input stream.

If there are no exact matches for the text and the known abbreviations, then the text is
examined for prefix or suffix abbreviations. The first two or three letters are tested against a table
of known prefix abbreviations and if a prefix abbreviation is found, the corresponding expanded
prefix is substituted in the text. In a similar fashion, the last letters of the text are tested against
either a suffix algorithm or a user updatable table of suffix abbreviations or both and any
corresponding suffixes are substituted in the text regardless of whether the first portion of the word
has been abbreviated. In a preferred embodiment, the last letter of a word or entry may be
capitalized using the conventional shift key or caps lock, signalling to the controller that the user
desires a suffix expansion using an available algorithm or table entry. The text is then output and
processing continues with the next character in the input stream.

One or more special characters can be interpreted as commands. In the preferred
implementation, the equals sign is used to enter new abbreviations in the abbreviation table. Any
text, generally a series of characters, followed by an equals sign, with no intervening space, is
treated as a new abbreviation and any text following the equals sign, including spaces or other
punctuation, up to the next equals sign following a non-space character, is treated as the

-6-

“

WO 93/08559 PCT/US92/09123

10

15

20

25

corresponding expanded text. The new abbreviation and corresponding expansion are stored with
other known abbreviations for subsequent interpretation.

Another useful command causes the processor to cease interpreting the subsequent word
or series of words. One could develop an elaborate language of special symbols to implement
various control and interpretation functions. Each of these command schemes are encompassed
within the claims of the present invention. '

Another useful command uses an up arrow (*) as an alternative way to set “caps lock"
on, causing any text following it to be capitalized. This may also be accomplished by setting the
caps lock directly.

Words which are not expanded, in other words, which have no abbreviation, either in
whole or in part, are examined for potential abbreviation. Each non-abbreviated word is entered in
a history table, setting a frequency flag for that word or incrementing a counter associated with
that word. If the count is high enough then a proposed abbreviation is shown via pop-up to the
user. Alternately for stroke based characters the stroke collection making up the letters and/or
ideographs in the word are sorted and reduced to a unique related subset which is presented to the
user as a suggested new efficient form. A fully spelled out word elicits a pop-up window with the
abbreviation from the table as a teaching tool and as a reminder.

A batch program periodically analyzes the history table creates a frequency table and

~ suggests abbreviations for text from other sources, or from abbreviations previously created by the

user.

Source code for one implementation of this process is included as Example 1. This
source code carries out the novel features of the software but does not include all of the code for
basic functions or unrelated prior art software which is used in the actual device and method.

A general description of a device and method of using the present invention as well as a
preferred embodiment of the present invention has been set forth above. One skilled in the art will
recognize and be able to practice additional variations in the methods described and variations on
the device described which fall within the teachings of this invention.

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

45

50

55

Example 1:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pcstuff.h”
#include "ab.h"
#include "list.h"

/***Copyright 1992 Electronic Ink, Inc.
int PrefixCount = 0;

int DefCount = 0;

int SuffixCount = 0;

int ShortCount = 0;

PTR AbbreviationsfMAX DEFS];
PTR Words [MAX_DEFS]';

char *ShortWords[MAX_SHORTS];

PTR PrefixesyMAX_PREFIXES];
PTR PreAbbrevsf]MAX_PREFIXES];

PTR SuffixessMAX SUFFIXES];
PTR SufAbbrevsfMAX_SUFFIXES];

**
;***** l
This program uses two independently sorted arrays of pointers to nodes.
One array is sorted by Abbreviations, and the other list is sorted by
Words. This allows us to use a binary search on both Words and
Abbreviations.
E2 2219 /
/ LINKED LIST OPERATIONS * */

*
MakeNode() mallocs space for and returns a pointer to a list node,
" initiallizing the fields to the specified character string parameters

PTR MakeNode(char * Word, char * Abbrev, int objtype)

{
NODE * nodeptr ; /* Points to allocated node - returned to caller */

int TextSize;
char *TextPtr;

/* Make thenode */
if ((nodeptr = (PIR) HeapAllocate (sizeof (NODE))) == NULL)

{

}retum (NULL);
TextSize = strlen (Word) + strlen (Abbrev) + 2;
TextPtr = (char *)HeapAllocate (TextSize);
if ({NULL == TextPtr)

HeapFree (nodeptr);

return (NULL);

nodeptr->word = TextPtr;
strepy (nodeptr->word, Word);

WO 93/08559

10

15

20

25

30

35

45

50

55

nodeptr-> abbrev = nodeptr->word + strlen (Word) + 1;
strcpy (nodeptr- > abbrev, Abbrev);

/* Tnitialize type and lengths */
nodeptr->type = objtype ;

nodeptr-> WordLength = strlen (Word);
nodeptr- > AbbrevLength = strlen (Abbrev);

nodeptr-> UseCount = nodeptr->WarnCount = 0;
nodeptr-> TempFlag = 0;
return(nodeptr) ;

PCT/US92/09123

JRERRREA KRR KRR R KRR AR R Rk Kk Kk
/*

MakeShortNode() mallocs space for and returns a pointer to a list node,
initiallizing the fields to the specified character string parameters

*/
char * MakeShortNode(char * Word)

char * nodeptr ; /* Points to allocated node - returned to caller */

/* Make the node */

if ((nodeptr = (char *) HeapAllocate (strlen (Word) + 1)) == NULL)

}retum (NULL);

strcpy (nodeptr, Word);
return(nodeptr) ;

/ kX
/*

*/ InitList() initializes the arrays of pointers

\{loid InitList (void)
int i;

for i = 0; i < MAX DEFS;i++)
Words[i] = Abbreviations[i] = NULL;
for (i = 0; i < MAX_ PREFIXES; i+ +)
Prefixes[i] = PreAbbrevs{i] = NULL;
for (i = 0; i < MAX SUFFIXES; i++)
Suffixes[i] = SufAbbrevs[i] = NULL;
InitHeap (;

/************************************ *
int WordSortFunction (const void *a, const void *b)

{
PTR APtr, BPtr;
APtr = *(PTR ¥)a;

BPtr = *(PTR *)b;
return (stricmp (APtr-> word, BPtr-> word));

-~

/ *¥
int AbbrevSortFunction (const void *a, const void *b)

{
PTR APtr, BPtr;

5

10

15

20

25

30

35

45

50

35

PCT/US92/09123

WO 93/08559

= *PTR ¥)a;
BPtr = *(PTR *)b;

return (stricmp (APtr-> abbrev, BPtr-> abbrev));

/
void ResortWordLists (void)

[**% Sort lists here ***/
gsort ((void *) Words, DefCount, sizeof (Words[0]), WordSortFunction);
gsort ((void *) Abbreviations, DefCount, sizeof (Abbreviations{(]), AbbrevSortFunction);

*/

/
void ResortPreSuffixes (void)

{

%%+ Sort prefix lists ***/

gsort ((void *) Prefixes, PrefixCount, sizeof (Prefixes[0]), WordSortFunction);

gsort ((void *) PreAbbrevs, PrefixCount, sizeof (PreAbbrevs[0]), AbbrevSortFunction);

J*** Sort suffix lists ***/
gsort ((void *) Suffixes, SuffixCount, sizeof (Suffixes[0]), WordSortFunction);
gsort ((void *) SufAbbrevs, SuffixCount, sizeof (SufAbbrevs[0]), AbbrevSortFunction);

*/

/
PTR AddNode (char ¥*Word, char *Abbrev,
PTR *WordList, PTR *AbbreviationList,

int *ItemCount, int Type)

{

PTR Node;

if ((‘'Word[0]) | | ({tAbbrev[0])) J*** If word or abbrev are empty ***/
return s i

L);
if ((NULL == Word) || NULL == Abbrev))
return (NULL);
Node = MakeNode (Word, Abbrev, Type);

if (NULL == Node)
return (NULL);
if (SUFFIX == Type)
MaxSuffixLength = max (MaxSuffixLength, strlen (Word));
MaxSuffixLength = max (MaxSuffixLength, strlen (Abbrev));

}
WordList[*ItemCount] = AbbreviationList[*ItemCount] = Node;
(*ftemCount)+ +; :
return (Node);

/**

c{:har * AddShortNode (char *Word, char **WordList, int *temCount)
char *Node; '
if (\Word[0]) **= If word is empty ***/
return ;
if NULL == Word)
return

(NULL);
Node = MakeShortNode (Word);
if (NULL == Node)

return (NULL);
WordList[*ItemCount] = Node;
(*ItemCount)+ +;
return (Node);

/ kkkkRRKKKEK: X% . /

-10 -

WO 93/08559 PCT/US92/09123

PTR AddWord (char *Word, char *Abbrev, int Type, int ResortFlag)

{
PTR Result;

5 Result = AddNode (Word, Abbrev, Words, Abbreviations, &DefCount, Type);
if (ResortFlag)
ResortWordLists ();
return (Result);

10 / RERRTTER = owxk|
\{/oid BuildList (FILE *wordfile)

int type;

char buffer] MAXWORDSIZE] ;
15 char word] MAXWORDSIZE] ;

char abbrev] MAXWORDSIZE] ;

char *ChrPtr;

InitList () ;

MaxSuffixLength = 0,
while(fgets(buffer, MAXWORDSIZE, wordfile))

ChrPtr = &buffer[strien(buffer)-1];
25 wh‘i:ll(;,r g::pace (*ChrPtr)) /*¥** Skip past trailing spaces ***/

20

/*** Skip to start of number ***/
while ((isdigit (*ChrPtr)) && (ChrPtr > buffer))
30 ChrPtr—;

type = atoi (ChrPtr);
*ChrPtr = *\0’;

35 ChrPtr--; /*** Points to last char of abbrev ***/
while (isspace (*ChrPtr))
ChrPtr—; /*** Points to last non-space of abbrev ***/
(ChrPtr+1) = "\0’; /¥** Terminate abbrev ***/
while (lisspace (*ChrPtr))
ChrPtr—; [**** Points to first non-space of abbrev ***/
strcpy (abbrev, ChrPtr+1);

while (isspace (*ChrPtr))
ChrPtr—; /*** Points to last non-space of expansion ***/
45 *(ChrPtr+1) = "\0’;

strepy (word, buffer);

if ((KWORD == type) && (abbrev[0] !="9’))
AddNode (word, abbrev, Words, Abbreviations, &DefCount, type);
50 else if (PREFIX == type)
AddNode (word, abbrev, Prefixes, PreAbbrevs, &PrefixCount, type);
else if (SUFFIX == type)
AddNode (word, abbrev, Suffixes, SufAbbrevs, &SuffixCount, type);

else
55 AddShortNode (word, ShortWords, &ShortCount);

}
ResortWordLists (;
ResortPreSuffixes ();

}
] *
i{nt ReadWordList (char *FileName)

* * FRERAIEIK

60

-11 -

20

25

30

35

45

50

55

PCT/US92/09123

WO 93/08559
FILE *FPtr;
if (NULL == (FPtr = fopen (FileName, "))
return (0);
5 BuildList (FPir) ;
fclose (FPtr) ;
return (1);
JrExx * /
10 i{nt WordFindFunction (char *a, PTR b)
if (PREFIX == b->type) ,
return (strnicmp (a, b->word, b-> WordLength));
else /*¥***xif (KWORD == b->type *EEEE[
15 return (stricmp (a, b->word));
xi/

/
int AbbrevFindFunction (char *a, PTR b)

{if (PREFIX == b->type)

return (strnicmp (a, b-> abbrev, b-> AbbrevLength));

else /***** jf (KWORD == b->1yp
return (stricmp (a, b->abbrev));

e) *****/

ma\\-ﬂ

return (stricmp (Key, Node->word));

| ¢ SuffixWordFindFunction (char *Key, PTR Node)

E 3

~

int SuffixAbbrevFindFunction (char *Key, PTR Node)

return (stricmp (Key, Node->abbrev));

*/

/
PTR BinarySearch (char *Key, PTR *[jst, int Count, int Compare())

int Low, High, Mid, Comp;

Low = 0;
High = Count - 1;
while (Low <= High)

{ .
Mid = (Low + High) >> 1;
Comp = Compare (Key, List[Mid]);
if (Comp < 0)

High = Mid - 1;
else if (Comp > 0)

Low = Mid + 1;

else
return (List[Mid]);

}
}retum (NULL); /¥*¥* Not found ***/

*/

/
PTR Find (char *word, int *Type)

Jx%% Search list for word as a word, prefix, or suffix, and set Type to

d. ***I

the appropriate type as foun

PTR NodePtr;
int i, Start;

-12-

10

15

20

25

30

35

45

50

55

WO 93/08559 PCT/US92/09123

NodePtr = NULL;

/*** Search words ***/
NodePtr = BinarySearch (word, Words, DefCount, WordFindFunction);

if (NodePtr)

*Type = KWORD;
}tetum (NodePtr);

[*** Search for abbreviations ***/
NodePtr = BinarySearch (word, Abbreviations, DefCount, AbbrevFindFunction);
if (NodePtr)

*Type = ABBREV;
}return (NodePtr);

[*** Search Prefixes ***/
NodePtr = BinarySearch (word, Prefixes, PrefixCount, WordFindFunction);

if (NodePtr)
*Type = KWORD;
}remm (NodePtr);

/*** Search for abbreviations ***/
NodePtr = BinarySearch (word, PreAbbrevs, PrefixCount, AbbrevFindFunction);
if (NodePtr)

*Type = ABBREV,
}retum (NodePtr);
/*** Search for suffixes ***/
for (i = min (MaxSuffixLength, strlen (word)); i > 0; i-)
Start = strlen (word) - i;
NodePtr = BinarySearch (&word[Start], Suffixes, SuffixCount, WordFindFunction);
if (NodePtr))

*Type = KWORD;
return (NodePtr);

}
NodePtr = BinarySearch (&word[Start], SufAbbrevs, SuffixCount, AbbrevFindFunction);
if (NodePtr) -

*Type = ABBREV;
return (NodePtr);

}
}return (NULL);

/
char *FindShort (char *Short)

int i;
char *Result;

Result = NULL; '
for (i = 0; ((i < ShortCount) && (NULL == Result)); i+ +)

-13 -

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

45

50

55

if (0 == stricmp (Short, ShortWords[i])) /*** If a match ***/
Result = ShortWordsl[il;

return (Result);

x;i/

/
i{nt DeleteNode (PTR Node)
int i, WordIndex, Abbrevindex;

if NULL == Node)
return (0);

WordIndex = Abbrevindex = -1;
for (i = 0; (i < DefCount) && ((WordIndex < 0) |} (AbbrevIndex < 0)); i++)

{

if (Words[i] == Node)
WordIndex = i;

if (Abbreviations[i] == Node)
Abbrevindex = i;

}
if { (WordIndex < 0) || (Abbrevindex < 0)

return (0);
Words[WordIndex] = Words[DefCount-1];
Abbreviations[Abbrevindex] = Abbreviations[DefCount-1];
DefCount—;
HeapFree (Node);
ResortWordLists (;

Jxxxxx DEBUG - Update MaxSuffixLength - DEBUG xRk

return (1);

***/

£ 3

/
\{loid FormNodeString (PTR Node, char *Msg)
char MaxWord[80], MaxAbbrev[80];

strncpy (MaxWord, Node->word, 22);
MaxWord[18] = *\0’;

strncpy (MaxAbbrev, Node-> abbrev, 6);
MaxAbbrev[6] = *\0’;

sprintf (Msg, "%-22s %-6s %4d", MaxWord, MaxAbbrev, Node- > UseCount);

#f 0
switch (Node->type)

{case KWORD:
strcat (Msg, "WORD");
break ;

case PREFIX:
strcat (Msg, "PREFIX");
break ;
case SUFFIX:
strcat (Msg, "SUFFIX");
break ; _

3,
#endif
-14 -

&

PCT/US92/09123

WO 93/08559
5 : —
s PTR FormSuggestion (char *Word, char *Suggestion)
char NoVowels[80], *SrcPtr, *DstPtr;
int i, Type, Unique;
PTR Test;
10 DstPtr = NoVowels;
SrcPtr = Word;
*(DstPtr+ +) = *(SrcPtr+ +); /*¥** Always first character ***/
while (*SrcPtr)
15 if ((strchr ("aeiouAEIOU", *SrcPtr)) && (lispunct (*SrcPtr)))
*(DstPtr+ +) = *SrcPtr;
}SrcPtr+ +;
*DstPtr = *\0’;
20
Unique = 0;
i=2;
wh{ile (('Unique) && (i < = strlen (NoVowels)))
25 strncpy (Suggestion, NoVowels, i);
Suggestion[i] = *\0’;
i++;
Test = Find (Suggestion, &Type);
30 if ((NULL == Test) && (NULL == FindShort (Suggestion)))
} Unique = TRUE;
if (Unique)
return (NULL);
35 else
return (Test);
xxxxxxxx *k F++ 3 % 3 FIT 3 3 3 FEF 33T+ s+ £33 KKKk xxxxx/

40

45

50

55

/

void ExpandString (char *Str)
char *CharPtr;

CharPtr = strstr (Str, "[CR]");

- while (CharPtr)

*(CharPtr+ +) = ’\r’;
memmove (CharPtr, CharPtr+3, strlen (CharPtr+3) + 1);
CharPtr = strstr (CharPtr, "[CR]");

} '

] TR R ERER
/*

DisplayList() prints the list of word and abbrev fields of all nodes
o in lexicographic order

void DisplayList (int Top, int Left, int Bottom)

int i;

int Count = 0 ;

int Key;

char* prompt2 = "Press [SPACE] to continue." ;
char LineBuffer[50];

-15-

WO 93/08559

10

15

20

25

30

35

40

45

50

5

60

PTR *WordList;
int WordCount;

print_at (Top+ 1, Left+1, "Display Words", NORMAL);

#f 0
print_at (Top+3, Left+ 1, "Would you like to display:

print_at (Top+4, Left+1, " (P)refixes, or (S)uffixes? :". NORMAL)

do ¢
Key = toupper (bioskey(0) & 0xff);

while ((Key 1= "W*) && (Key |="P") && (Key !="S));
#endif
Key = "W’;

switch (Key)

case 'W’:
WordList = Words;
WordCount = DefCount;
break ;

case 'P’:
WordList = Prefixes;
WordCount = PrefixCount;

break ;
case 'S’:
WordList = Suffixes;

WordCount = SuffixCount;
break ;

default:
WordCount = 0;
break ;

}

ClearPopUp (;
for(i=0;i < WordCount; i++)

{
FormNodeString (WordListfil, LineBuffer);

/* Pause every 22 lines of output */
print_at (Top+1+Count, Left+1, LineBuffer, NORMAL);

if(1(+ +Count% (Bottom-Top-3)))

print_at (Bottom - 1, Left+1, prompt2, NORMAL) ;
bioskey (0);
ClearPopUp 0;
}Count = 0;
} /* end while */
if (Count)

{
print_at (Bottom - 1, Left+1, prompt2, NORMAL) ;
bioskey (0);

}
} /* end DisplayList() */

k4

PCT/US92/09123

(W)ords, ", NORMAL);

*/

/
int WriteWordList (FILE *{Ptr, PTR *WordList, int WordCount)
-16-

WO 93/08559 PCT/US92/09123

{
int i;
char Str[80];

5 for(i=0;i < WordCount; i+ +)

if (EOF == fprintf (fPtr, "%s %s %d\n", WordList[i]-> word, WordList[i]-> abbrev,
WordList[i]- > type))
return (0);
10
for (i = 0; i < ShortCount; i+ +)

{
if (EOF == fprintf (fPtr, "%s %d\n", ShortWords[i}, SHORT))
return (0);
15
return (1);

JREEEEER R KRR R R kKRR Rk Rk kR kR Rk Rk Rk Rk kK Kk ***W-****************/

int SaveWordList (void)
FILE *fPtr;

unlink (WORD BACKUP); /*** Delete back up file ***/
rename (WORD FILE, WORD BACKUP); [*** Save old file ***/
25 fPtr = fopen (WORD FILE, "wt");
if (NULL == fPtr)
return (0);
#f 0 :
if ('WriteWordList (fPtr, Prefixes, PrefixCount))

{
fclose (fPtr);
return (0);

}
if (!WriteWordList (fPtr, Suffixes, SuffixCount))

{
fclose (fPtr);
return (0);

}
#endif
40 if ({WriteWordList (fPtr, Words, DefCount))

{fclose (fPtr);
return (0);

}
45 fclose (fPtr);
return (1);

/** ab.c **/
#include <conio.h>
50 #include <ctype.h>
#include <dos.h>
#include <process.h>
#include <signal.h>
#include <stdio.h>
55 #include <stdlib.h>
#include <string.h>

20

30

35

#include "cscreen.h”
60 #include "ab.h"

#include "list.h"

#include "history.h"

-17-

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

45

50

55

#define WORD_PROCESSOR "WP.EXE"

/* Function declarations */

void syserr() ;

void Help() ; ’
void WriteToFile() ;

/**Copyright 1992 Electronic Ink, Inc.***GLOBAL VARIABLES #**#*kskikat/
char *ProgramName = * Abbreviate"; :
char Word[MAXWORDSIZE J;

char SearchWord [MAXWORDSIZE];

char *WordPtr = Word; :

int FlashDuration = 500; /*¥* Duration of flash in milliseconds
int Active = TRUE; '
int MaxSuffixLength = 0;

int DelimitFlag = 0;

int KillFlash = 0;

int KillThreshold = 2;

int HistoryThreshold = 6;

int RemindStart = 3;

int RemindEnd = 7;

int Expanding = 0;

int PreviousKey = 0;

int InPopupFlag = 0;

int CRExpandFlag = TRUE;

**/

unsigned long int Keystrokes = 0;

unsigned Iong int NonSpaces = 0;

unsigned long int NetKeystrokes = 0;

unsigned long int WordsTyped = 0;

unsigned long int WordsWarned = 0;

unsigned long int WordsExpanded = 0;

unsigned long int PotentialNetKeystrokes = 0;

I* TSR Related Variables /
unsigned ProgramSize = 5500; /*** Number of paragraphs
unsigned ScanCode = 52; [FEE > FXE] '
unsigned KeyMask = 8; [¥¥% ALT **¥/

unsigned BACK SCAN = KEY_BACKSPACE;
unsigned ASSIGN_KEY = ’=7;

unsigned DELIMIT KEY = ° ~" '

/ F***********Display COIOIS X *® /
BYTE BORDER _COLOR = 0x9f;

BYTE BACKGD_COLOR = 0x1f;

BYTE HIGHLIGI-IT{EOLOR = (0x71; ’

REREE

void UnbufferWord (char *Word)

***/

{
char *Ptr;

for (Ptr = Word; *Ptr; Pir++)
BufferKey (BACK_SCAN);
BufferKey (BACK_SCAN);

T T T 2T 2 2 2 22 AL LS Lt kkkkkkE ’ /

void BufferWord (char *Word)

{
char *Ptr;)
for (Ptr = Word; *Ptr; Pir++)
-18 -

WO 93/08559

10

15

20

25

30

35

40

45

50

55

BufferKey (*Ptr);

PCT/US92/09123

FT T T 3

******/

/*** *

void ShowAbbreviation (char *Word, PTR Node, char Key)

g*** Remind user that abbreviation exists for Word ***/
char FirstChar, TempStrfMAXWORDSIZE};

if (isupper (Word[0]))
, FirstChar = toupper(Node-> abbrev[0]) ;
else

FirstChar = Node-> abbrev[0] ;

if ((KWORD == Node->type) || (PREFIX == Node->type))

/*** Flash abbreviation on screen ***/
TempStr[0] = FirstChar;

TempStr[1] = "\0’;

strcat (TempStr, Node-> abbrev+1);

strcat (TempStr, &Word[strlen(Node- > word)]);
FlashWord (TempStr, FlashDuration);

}
else if (SUFFIX == Node-> type)

/*** Flash abbreviation on screen **¥*/

strcpy (TempStr, Word);
TempStr[strlen(Word)-strlen(Node- > word)] = ’\0’;
strcat (TempStr, Node- > abbrev);

FlashWord (TempStr, FlashDuration);

}
Node-> WarnCount+ +;

if ((Node->WarnCount > = 3) && (Node-> UseCount == 0) && (Node- > TempFlag))

{
/**** FlashWord ("Deleting. . .", FlashDuration);
DeleteNode (Node);

}
WordsWarned+ +;

****/

PotentialNetKeystrokes + = (Node->WordLength - Node- > AbbrevLength);

] *
void ExpandAbbreviation (char *Abbreviation, PTR Node, char Key)

char FirstChar, *CharPtr;
char NewWord[MAXWORDSIZE];

strcpy (NewWord, Node-> word);
ExpandString (NewWord);
if (isupper(Word[0]))
, FirstChar = toupper(NewWord[0]) ;
else
FirstChar = NewWord[0] ;

if KWORD == Node-> type)

/*** Backspace over abbreviation ***/
UnbufferWord (Abbreviation);

/*** Insert word into buffer ***/
BufferKey (FirstChar);
BufferWord (&NewWord[1]);

if (strlen (Abbreviation) > Node-> AbbrevLength)
-19-

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

45

50

55

BufferWord (&Abbreviation[Node-> AbbrevLength]);

else} if (SUFFIX == Node->type)

CharPtr = strstr (Abbreviation, Node-> abbrev); »
if (CharPtr == Abbreviation) /*** If word begins with abbreviation ¥¥¥/

return;
if (CharPtr) :

UnbufferWord (CharPtr); J** Unbuffer suffix **/
BufferWord (NewWord); /** Expanded suffix **/

if (strlen (CharPtr) > Node-> AbbrevLength)
) BufferWord (&CharPtr[Node-> AbbrevLength]);

Node-> UseCount+ +; J*+x Increment use counter ***/

Expanding = TRUE;

WordsExpanded+ +;

NetKeystrokes += (Node-> WordLength - Node-> AbbrevLength);
/*** Display new character ***/ '

BufferKey (Key) ;

wkE[

/
void ExtractSearchWord (char *Word, char *SearchWord)
int i;

strcpy (SearchWord, Word);

i = strlen (SearchWord) - 1;

while (({ > 0) && (ispunct(SearchWord[i])))

) SearchWord[i—] = "\0’;

/ **xK[

void ShowReminder (char *Word)

{
char Suggestion[80], Reminder[80];
PTR Node;

Node = FormSuggestion (Word, Suggestion);
if ((NULL != Node) && (0 == Node-> UseCount) && (1 == Node-> TempFlag))

DeleteNode (Node);

if ({NULL == Node)
[#¥* sprintf (Reminder, "Suggestion: Use *%s’ as an abbreviation for *%s’.",
Suggestion, Word); *xx/

strepy (Reminder, Suggestion);

Node = AddWord (Word, Suggestion, KWORD, TRUE);

if (Node) ,
Node-> TempFlag = 1;

else
sprintf (Reminder, "Suggestion: Create an abbreviation for *%s’.", Word);

FlashWord (Reminder, FlashDuration);
;***,, ¥

int ProcessKey (WORD Key, WORD ShiftMask)

PTR nodeptr;

char ¥cptr ;

int type;

int MaskedKey;
char Msg[80];

-20 -

10

15

20

25

30

35

40

45

50

55

60

WO 93/08559

MaskedKey = Key & Oxff;
if ((!Expanding) && (isprint (MaskedKey)) && (!InPopupFlag))

Keystrokes+ +;
if (lisspace (MaskedKey))
NonSpaces + +;

if (BACKSPACE == MaskedKey)

{
if (WordPtr != Word) /* Modify word: */
WordPtr—;

}
else if (DELIMIT_KEY == MaskedKey)

if (DELIMIT KEY != (PreviousKey & 0xff))
return (PreviousKey = Key);
if (Expanding)
return (PreviousKey = Key);
if (!DelimitFlag)
/*** Start of delimited text ***/
DelimitFlag = 1;
BufferKey (BACK_SCAN); /*** Back over delimiter ***/
}BufferKey (BACK_SCAN); /*** Back over delimiter ***/

else

{
DelimitFlag = 0;
if (WordPtr != Word) /*¥¥* If not first key after delimiter ***/

BufferKey (BACK_SCAN); /*** Back over delimiter ***/
BufferKey (BACK_SCAN); /*** Back over delimiter ***/

WordPtr = Word;
*WordPtr = EOW; [*** Reset WordPtr ***/

}
else if (ASSIGN_KEY == MaskedKey)

{if (ASSIGN_KEY != (PreviousKey & 0xff))
return (PreviousKey = Key);

if (Expanding)
return (PreviousKey = Key);

if (DelimitFlag)
return (PreviousKey = Key);

*WordPtr = EOW; [*** Terminate abbreviation ***/
if (Word == WordPtr)
return (PreviousKey = Key);
#ifdef TEST_
PopUp (ASSIGN POPUP);
BufferKey (BACK_SCAN); /*** Back over ASSIGN_KEY ***/
UnbufferWord (Word); [*** Back over abbreviation ***/

WordPtr = Word; /¥** Clear word buffer ***/
*WordPtr = EOW;

#else
BufferKey (BACK_SCAN); /*** Back over ASSIGN_KEY **¥/
UnbufferWord (Word); [*** Back over abbreviation ***/

SetPopFlag (ASSIGN_POPUP); /*** Enable popup for assignment *xx|
#endif

}
else if ((* * == MaskedKey) ||
21 -

PCT/US92/09123

PCT/US92/09123

WO 93/08559

10

15

20

25

30

35

45

50

55

(C\r == MaskedKey) && (CRExpandFlag)))
{ /* Delimits word */
if ({Expanding)
WordsTyped++;
if (DelimitFlag)

WordPtr++ = MaskedKey; 7 / Add char to word: */
return (PreviousKey = Key);

WordPtr = EOW ; [Terminate word */

WordPtr = Word ; /* Reset wordptr */
ExtractSearchWord (Word, SearchWord); .

nodeptr = Find (SearchWord, &type) ; /* Find word or Abbreviation */

if ((NULL == nodeptr) && (strlen (SearchWord) > = HistoryThreshold))
J***= Word not abbrev or word - add to history k]
int Count;
char Msg[80];

Count = IncHistory (SearchWord);

if ((Count == RemindStart) && ({Expanding))
ShowReminder (SearchWord);

WordPtr = Word,

*WordPtr = EOW;

return (PreviousKey = Key);

}
else if (NULL == nodeptr)
return (PreviousKey = Key);

if (KWORD == type)

if ({Expanding)
ShowAbbreviation (Word, nodeptr, MaskedKey);

}
else if (ABBREV == type)

if ({Expanding)
ExpandAbbreviation (Word, nodeptr, MaskedKey);
x else if isspace. . . ***/
else if (isprint (MaskedKey))
, *WordPtr++ = MaskedKey; /* Add char to word: */
else
{
WordPtr = EOW ; / Terminate word */
WordPtr = Word ; /* Reset wordptr */

} ,
return (PreviousKey = Key);

/*********
/* Function to print error messages */

void syserr(msg)
char* msg ;

extern inf errno, Sys DEIT ;
extern char *sys_errist[] ;

fprintf(stderr, "ERROR: %s (%d", msg, ermo) ;
if (errno > 0 && ermo < sys_Derr)

-2 -

£

WO 93/08559 PCT/US92/09123

, fprintf(stderr, "; %s) \n", sys_errlist{errno]) ;
else
fprintf(stderr, ")\n") ;

5 exit(1) ;

JREREEEXERREEEEER KRR RRRERRRERKKKKK kR kKRR *kokk /
10 int Initialize (void)
initdisplay (; /*** Initialize display routines ***/
InitHistory ();
if (IReadWordList (WORD_FILE))
15 syserr ("Error: Word list not found.");
WordPtr = Word,;
*WordPtr = EOW; /*** Reset WordPtr ***/
return (1);
20
Ix * ** 'S % 4 F+3++3 1 3 *********************/
}'oid interrupt iFunc (bp, di, si, ds, es, dx, cx, bx, ax)
}
25 ,*&** *x%k sk kkikk F /
int ExecuteWordProcessor (char *WordProcessor, char **ArgList)
/*** Executes Word processor, with arguments in char * array ArgList.
If successful, function returns non-zero value. If not successful,
30 an error message is printed, and zero is returned. **¥*/
int Result;
Result = spawnvp (P_WAIT, WordProcessor, ArgList);
if (Result)
35 /*** Error ***/
char Msg[80];
sprintf (Msg, "Unable to run %s.", WordProcessor);
perror (Msg);
40
return (0 == Result);
/ ok kk
P void main (int argc, char **argv)
int iVect;
char ¢, *Ptr;
printf ("\n%s, Copyright 1992, Electronic Ink\n", ProgramName);
50 Initialize ();
InitResident (); /¥** Doesn’t return ***/
ExecuteWordProcessor (WORD_PROCESSOR, &argv[1]);
55

Terminate ();

} /* end of main() */

/** addhist.c **/

pes*xxxCopyright 1992 Electronic Ink, Inc.* ERRERE AR
60 HISTORY AddHistory (char *Word)

HISTORY_PTR NewHist, HistPtr;

-23-

WO 93/08559

10

15

20

25

30

35

45

50

55

int CompResult, Done;

=% Allocate space for node ***/
NewHist = HeapAllocate (sizeof (HISTORY_NODE));
if (NULL == NewHist)

return (NULL);

j=% Allocate space for word ***/
NewHist->Word = HeapAllocate (strlen (Word) + 1);

if NULL == NewHist->Word)

eapFree ((void *)NewHist);
return (NULL);

}
strcp (NewHist->Word, Word);
NewHist-> UseCount = 0;
NewHist->Left = :
NewHist-> Right = NULL;

jxxxx Add node to tree ***¥/
if NULL == HistoryRoot)

HistoryRoot = NewHist;
return (NewHist);

HistPtr = HistoryRoot;
Done = 0;
while (IDone)

{
CompResult = stricmp (W ord, HistPtr->Word);
if (CompResult > 0)

i
if (HistPtr->Right)
HistPtr = HistPtr->Right;

else
HistPtr-> Right = NewHist;
Done = 1; [¥x% Exit loop ***/

}
else if (CompResult < 0)

if (HistPtr->Left)
HistPtr = HistPtr->Left;

else
HistPtr-> Left = NewHist;
Done = 1;
}
else [R** Matéhing Node was found

HeapFree (N ewHist-> Word);
HeapFree ((void *)NewHist);
NewHist = NULL;

}Done =1;

tet?n‘n (NewHist);

.24 -

PCT/US92/09123

O 00 N O i B W N

L35 I

L B W N e

[}

WO 93/08559 PCT/US92/09123

What is claimed is:

1. An input system comprising

a drawing tool having an input connected to an optical sensor;

a controller connected to said optical sensor;

a host processor;

a writing surface having array of pixels connected to said host processor;

a receiving means connected to said host; and

an output device connected to said controller and coupled to said receiver, whereby said
system can sense information at the input and communicate that information to the receiving

means.

2. The input system of claim 1 wherein said drawing tool comprises a plurality of
optical sensors.

3. The input system of claim 2 wherein said drawing tool further comprises a
plurality of light guides, each of which is connected to one of said optical sensors.

4. The input system of claim 1 wherein said drawing tool comprises a pen having
two light guides and two optical sensors.

5. The input system of claim 1 wherein said drawing tool comprises a brush having
a plurality of optical sensor elements and a plurality of light guides, each of which is connected to
at least one of said optical sensor elements.

6. The input system of claim 5 wherein one of said light guides comprises a fiber
optical element coated with conductive material.

7. The input system of claim 5 further comprising a conductive strand intermixed
with said plurality of light guides.

8. The input system of claim 1 wherein said receiving means comprises
a relatively transparent, planar, conducting surface;

sensor means connected to said conducting surface;

signals from said output device for communication to said receiver; and
means for ratiometric measurement of said signals from said output device.

9. The input system of claim 1 further comprising means to identify a pixel closest
to said drawing tool.

-25-

PCT/US92/09123

WO 93/08559

W N =

O 00 N N W B W

MO NN RN
EOERBUERNBEBEEN R BRRS

Q0N W AW N -

(LS I

10. The input system of claim 1 further comprising means to transfer information to said
to said writing surface, said information

host processor regarding said drawing tool in relation
selected from the group consisting of position, angle and pressure.

11. A process for accelerating the input of information and graphic elements by use
of abbreviated strokes of an input system comprising: '
taking an input character from said input system, said input character in the form of a
keyboard input, 2 menu selected character or a stroke pattern which has been preprocessed and
identified as a selected character or an arbitrary stroke pattern; .
testing said input character and
if said input character is not a special character then putting said character into a
word buffer;
if said input character is a special character and is a word terminator such as a
space, comma or other punctuation, then adding said special character to said word

buffer then retrieving the contents of said word buffer as text and
testing said text against a list of known abbreviations and, if such an

abbreviation is found, then expanding said abbreviated text and outputting said
expanded text, and if said text is all capitalized, then outputting said expanded
text as all capitals,

but if no abbreviation is found, then examining the first letters of said
text and comparing said first letters against a table of known prefixes and, if a
known prefix abbreviation is found, then expanding said prefix abbreviation and
then examining the last Ietters of said text and, if the last letters are capitalized,
comparing said letter against a fist of available routines for expanding suffixes,
and, if said last letter is not capitalized, comparing said last letters against a table
of known suffixes and, if a known suffix abbreviation is found, then expanding
said suffix abbreviation and outputting said expanded text or, if the last letter is
capitalized, then expanding the abbreviation,
if said input character is a special character and is an instruction code, then

proceeding according to the nature of said instruction.

12. The process of claim 11 wherein said special character is an instruction to read

the preceding characters as an abbreviation, said process further comprising

storing the preceding characters as an entry in a list of known abbreviations;

acquiring subsequent characters as expanded text, regardless of word terminators and
punctuation, until finding 2 second special character which indicates the end of said expanded text
and entering said expanded text info said list of known abbreviations, correlated with said entry of

said preceding characters.

13. The process of claim 11 wherein said special character is an instruction to not

expand the following or preceding input text.

-26 -

(73

o

(]

W -

B W WV WD =

00 ~1 O\ W Hh W N

WO 93/08559 PCT/US92/09123

14. The process of claim 11 further comprising storing in a history table each word
which is output without being expanded.

15. The process of claim 14 further comprising retrieving a word from said history
table and deriving a proposed abbreviation for said retrieved word, said abbreviation consisting of
either unique characters a unique subset of strokes not already being used in said list of known
abbreviations.

16. A drawing tool input system in which a drawing tool comprises a multi-point
light detecting means to establish drawing tool position.

17. The drawing tool input system of claim 16 in which said drawing tool further
comprises a means to establish drawing tool angle.

18. The drawing tool input system of claim 16 in which said drawing tool further
comprises a means to establish drawing tool pressure.

19. A drawing tool input system comprising individual identifying data are encoded
in a drawing tool means.

20. The method of claim 19 wherein said individual identifying data comprise
debit/credit information.

21. The method of claim 19 wherein said individual identifying data comprises
personal information selected from the group consisting of an individual’s name, home address,
business address, phone number, taxpayer ientification number, passport number, blood type, bank
account number, name of an individual to contact in case of an emergency and other personal
information.

22. The method of claim 21 further comprising a method of accessing said individual
identifying data by a host computer, wherein said individual identifying data cannot be modified or
accessed by a typical user but can be accessed by the host computer and read out or, under
selected conditions, modified.

23. A method of identifying the approximate position of a pointing device in two
dimensions, said method comprising:
providing a generally flat surface subdivided into a plurality of small regions,

substantially each of which can be activated;
providing a pointing device sensitive to whether or not a first one of said small region is

activated, wherein said pointing device can be tested to determine whether it is pointing to an

active small region;
activating a selected plurality of said small regions; and

-27 -

10

00 N O W AW

WO 93/08559 PCT/US92/09123

testing said pointing device to determine whether said first small region is within said
selected plurality of small regions.

24. A method of identifying the approximate position of a pointing device in two

dimensions, said method comprising:

providing a generally flat surface;

providing a pointing device;

providing ratiometric detection means sensitive to the position of said pointing device;
and

evaluating said ratiometric detection means to determine the approximate position of said
pointing device.

-28 -

24

4

WO 93/08559

Data update

PCT/US92/09123

from pen

User identification Pen position Display update
and stroke prog::ssor from nib
recognition ¢
Interpret character Calculate nib position, Draw "ink" track
from user table angle and pressure from new nib
and pen position from pixel and pen position, angle
information ratiometric data and pressure
_ Set character Flick pixels in pen
interrupt and pass off position region for
to other active collection by pen
routines for next data update
Fasthand Processsor
Implement input
acceleration via
command then pass
phrase, word or text
block over to
application
Figure 1

1/6

WO 93/08559

Fasthand character, stroke
and punctuation software
processor subsystem

'

On character interrupt; test character

PCT/US92/09123

for punctuation including space,
comma, period, colon or special No
character (ideograph) if equal symbol ~ |———
or equivalent ideograph set all

Save in character buffer and
pass character up to
application

characters which follow to next equal
as match for character(s) preceeding
first equal

l Yes

Test character buffer for entire

No

Set frequency flag for word and
show suggested abbreviation or

character set and parse prefix ——— evolved stoke shape (ideograph) as
and suffix for abreviations pop-up viea display if feature flag

for pop-up is enabled

¢'Yes

Instruct application to replace
prefix, suffix or word (one or
more characters)with match |g———-
from the shorthand table (may
consist of prefix , suffix,

"shorthand table" check flags for
application, file and document
specificity

words or phrases)

l

Clear character buffer in
preparation for next
character interrupt

Figure 2

2/6

WO 93/08559

PCT/US92/09123

50

Figure 4

100
z“é mm%mmmmmmmmmmmmmmmmmmmmmmm
N 51
\ 528

3/6

WO 93/08559 PCT/US92/09123

53 53 -52B
MNP 2L

Figure 5

4/6

PCT/US92/09123

WO 93/08559

Figure 7A

Figure 7B

5/6

PCT/US92/09123

WO 93/08559
Host l
Tablet \
Pixel Resistive Sheet
Writing tip
h 4
Light guide Pen Nib

.

Optical Sensor

Controller

Figure 8

6/6

INTERNATIONAL SEARCH REPORT

PCT/US92/09123

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) :GO9G 3/02
US CL :340/706,707,709 178/18, 341/29

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 340/706,707,709 178/18, 341/29

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US,A, 5,051,736 (Bennett et al.) 24 September 1991 See Fig. 1] .15
Y (1,3,4,10), Fig. 2 (14). 2-9,16-18
X GB,A, 2,193,827 (Sklarew) 17 February 1988 See Col. 1, lines 19
Y 14-24, Col. 2, lines 34-55. 20-24
Y US,A, 4,891,786 (Goldwasser) 02 January 1990 See Fig. 1 (10), 10-14
Fig. 7E (172,176,180). '
Y US,A, 4,922,236 (Heady) 01 May 1990 See Fig. 1, (23,3). 2-4,6-9 .
Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categories of cited documents: T later document published after the 'zqmrgnioml filing date or priority
"A° document defining the general state of the art which is not considered ﬁ'&mﬂf'ﬂeﬂm&:ﬁ?&eﬂp&mw cited to understand the
to-be part of particular reievance
“E* carlier documeat published on or afie the inlcrustional filing date X document of aricular rele e, e s rovolve an v oot be
L document which may throw doubts on priority claim(s) or which is whea the document is takea alone

cited to cstablish the publication date of another citation or other
/ special reason (as specified)
document referring to an oral disclosure, use, exhibition or other
means
p* document published prior to the interational filing date but later than
the priority date claimed

Q"

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d such combinati
being obvious to a person skilled in the art

document member of the same patent family

-y

age

Date of the actual completion of the international search

Date of mailing of the international search report

O8FER 1093

04 JANUARY 1993
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
AMARE MENGISTU

Box PCT
Washington, D.C. 20231
Facsimile No. NOT APPLICABLE

Telephone No. (703) 305-4880

Form PCT/1SA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

lines 34-55, Fig. 5.

PCT/US92/09123
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
| Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US,A, 4,078,151 (McNeary) 07 March 1978 See Col. 1, lines 5,16,17
14-24. ,
Y US,A, 4,947,156 (Sato et al.) 07 August 1990 See Col. 2, 5,16,17

Form PCT/ISA/210 (continuation of second sheet)(July 1992)x

T

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

